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Abstract: In this study, we have developed the Bayesian estimator of the 
population proportion of a sensitive characteristic when data are obtained 
through the Randomized Response Technique (RRT) proposed by Kim and Warde 
[12]. Superiority of the Bayesian estimators is established for a wide range of the 
values of the population proportion using simple Beta prior information. It is 
observed that the Bayesian estimators are better than the usual Maximum 
Likelihood Estimator (MLE) for small as well as moderate samples. The 
Proposed estimator is also compared with the Warner [29], Kim and Warde [12] 
and Kim et al. [13] estimators. 
 
Keywords: Bayesian estimation, mean squared error, randomized response 
technique, simple random sampling. 

 
1. Introduction 
 
In human population surveys, estimation of population proportion of a stigmatized attribute 
(induced abortion, drug usage, tax evasion, etc.) with direct questioning method is a complex 
dealing. An evaluator may possibly collect deceitful answers from the study respondents when 
he/she uses conventional direct questioning approach. Due to various reasons, information about 
commonness of stigmatized attributes, in the population, is necessary. Originally, Warner [29] 
projected an effective method of survey to collect information about stigmatized attributes by 
providing privacy and secrecy to the respondents. Warner’s procedure consists of two questions 
A and Ac to be answered on probability foundation. The simple random sampling with 
replacement (SRSWR) is assumed. The thi  selected respondent is requested to indiscriminately 
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pick a question ( c or A A ) and report yes if his/her real category matches with chosen question 
and no otherwise. The probability of  a yes for thi  respondent is then given by: 
 
( ) ( )( )1 1P yes p pθ π π= = + − −          (1) 

 
where p is the probability of selecting question A  ,and π  is population proportion of 
individuals possessing the stigmatized attribute. The two questions are: 
 
• A= do you belong to possess the sensitive attribute. 
• cA = do you not belong to possess the sensitive attribute. 
 
From (1) we get: 
 

( )1
2 1

p
p

θ
π

− −
=

−
.                                                                                                                        

 
By the method of maximum likelihood, an unbiased estimator of π  is: 
 

( )ˆ 1 1ˆ ,     
2 1 2ML

p
p

p
θ

π
− −

= ≠
−

,          (2) 

 

where ˆ n
n

θ
ʹ′

=  and nʹ′ is the number of yes responses in the sample of n . 

The variance of the estimator given in (2) is shown to be: 
 

( ) ( ) ( )
( )2

1 1
ˆ

2 1ML

p p
Var

n n p
π π

π
− −

= +
−

.         (3) 

 
A big amount of developments and variants of Warner’s RRT have been suggested by quite a lot 
of researchers. Greenberg et al. [8], Folsom et al. [7], Christofides [4], Odumade and Singh [20], 
Mangat [14], Perri [21], Singh and Horn [23], Kim and Warde [12] are some of the many to be 
cited. The interested readers may be referred to Chaudhuri and Mukerjee [3], Fox and Tracy [6] 
and Tracy and Mangat [26] for a comprehensive discussion on RRT. 
Prior information about the unknown parameter is sometimes obtainable and can be used along 
with the sample information for estimation of that unknown parameter. This is Bayesian 
approach of estimation. Hard works done by researchers on Bayesian analysis of randomized 
response models are not very massive; nonetheless, attempts have been made on the Bayesian 
analysis of  RRTs. Winkler and Franklin [28], Spurrier and Padgett [25], O’Hagan [18], Oh [19], 
Migon and Tachibana [16], Unnikrishnan and Kunte [27], Barabesi and Marcheselli [1, 2], 
Hussain et al. [11] and Kim et al. [13] are the major references on the Bayesian analysis of the 
RRTs.  
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 The arrangement of the paper is as follows. In Section 2, we present the Kim and Warde [12] 
RRT followed by Bayesian estimation of population proportion and comparisons using Kim and 
Warde [12] RRT in Section 3. Section 4 contains the conclusions. 
 
 
2. Kim and Warde Mixed RRT 
 
To avoid the privacy problems in Moors [17] model, Mangat et al. [15] and Singh et al. [24] 
proposed alternative models to the Moors model. Specifically, Mangat et al. [15] proposed a 
random group method which can safeguard the privacy and anonymity of the respondents but it 
has an efficiency problem. Singh et al. [24] proposed models assumed simple random sampling 
without replacement which led to a high-cost survey compared with the Moors [17] model using 
simple random sampling with replacement. To circumvent these drawbacks of Mangat et al. [15] 
and Singh et al. [24] models, Kim and Warde [12] proposed a new randomized response model 
using simple random sampling. In Kim and Warde [12] RRM, each sample respondent, selected 
by simple random sampling with replacement, is asked to answer a direct question “I am a 
member of innocuous trait group”. If a respondent answers yes, then he/she is directed to go to 
randomization device R1 consisting of two statements (i) “I am a member of the sensitive trait 
group” and (ii) I am a member of innocuous trait group with pre-assigned probabilities T1 and (1-
T1). If a respondent answers no to the direct question, then the respondent is requested to use 
randomization device 2R  consisting of the statements of the Warner [29] RRT with pre-assigned 
probabilities p and (1- p) respectively. The proportion of yes responses from the respondents 
using R1 is given by: 
 

( ) ( )1 1 1 11 1IT T T Tψ π π π= + − = + − ,        (4) 
 
where Iπ  is proportion of individuals possessing innocuous trait. An estimator of π is defined 
as: 
 

( )1
1

ˆ 1
ˆa

T
T

ψ
π

− −
= .  

 
The variance of  ˆaπ  is given by: 
 

( ) ( ) ( ) ( )1 1
2

1 1 1 1

1 11
ˆa

T T
Var

nT nT
π πψ ψ

π
− + −⎡ ⎤− ⎣ ⎦= = . 

 
The proportion of yes answers from the respondents using 2R is given by (1). Another unbiased 
estimator of π is given by (2) with variance given by (3). 
Using ˆaπ and ˆMLπ , Kim and Warde [12] defined an unbiased estimator of π as: 
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KM 1 2 1ˆ ˆ ˆ       for 0< 1a ML
n n n
n n n

π π π= + < .  

 

The choice
1

1
2

p
T

=
−

 provides equal privacy protection in both the randomization 

devices 1R and 2R . With this choice, variance of the estimator KMπ̂ is given by: 
 

( ) ( ) ( ) ( ) ( )1 1KM
2
1

1 1 11
ˆ

T T
Var

n nT
λ π ππ π

π
− − + −⎡ ⎤− ⎣ ⎦= + , 

 

for 1 2n n n= +  and 1n
n

λ = , where 1n  and 2n  are the numbers of yes responses from the 

respondents using R1 and R2 respectively. The two problems with   KMπ̂  are apparent (i) the 
estimator may assume values outside the interval [0,1] and (ii) the variance of the estimator 
depends upon the numbers ( 1n and 2n ) of respondents using randomization devices R1 and R2. 
 
 
3. Bayesian Estimation of   using Kim and Warde (2005) RRT and 
Comparisons 
 
In many practical situations where we have some uncertainty about our parameter of interest (π ) 
which is formally given in the form of prior distribution (see Winkler and Franklin [28], and 
Spurrier and Padgett [25]), we use Beta distribution as a prior density for π  which is quite 
natural and common choice in literature (see Barabesi and Marcheselli [1] and Hussain and 
Shabbir [9, 10]). The probability model for the π  in the form of Beta distribution with α and 
β as hyperparameters is given as: 
 

( )
( )

( ) 111, 1        , 0 1.
Beta ,

f βαπ α β π π π
α β

−−= − ≤ ≤  

 
Now we develop a Bayesian analysis of Kim and Warde [12] RRT assuming a simple random 
sample with replacement (SRRWR). A sample of size   n   individuals is drawn and Kim and 
Warde [12] RRT is applied to collect responses from the selected individuals.  Also we assume 
that the number of respondents in each of the sub sample is known by some way.  

Let 
1

1

n

i
i

X Y
=

=∑ be the number of yes responses from the respondents using 1R , where  iY  is a 

Bernoulli random variable with probability of a yes given by (4). Now the conditional 
distribution of X given π  is: 
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( )
( )

( ) ( ) 11
/ 1 1 1 1
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!/ 1 1 1
! !

x n x
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x n xπ π π π
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= + − − − +

−
  

( )
( ) ( ) 111

1
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! 1
! !

x n xnn T d
x n x

π π
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= + −
−

     

( )
( )

( )
111

1
01

! !1
! ! ! !

x
n xn x j j

j

n xT d
x n x j x j

π π
− −

=

= −
− −∑ ,    (5) 

 

for  ( )1
1

1

1
0,1,2..., ,  where 

T
x n d

T
−

= = . The last step in (5) follows by simply writing ( )xdπ + in 

its binomial expansion. Thus, the posterior distribution of π  given X is: 
 

( ) ( )
( )

( )
( )

( )

1 11

0
/

1
0

! 1
! !

/ 0 1 .
! ,

! !

x
n xx j j

j
X x

x j

j

x d
j x j

f x I
x d j n x

j x j

βαπ π
π π

β α β

+ − −− + −

=
Π

−

=

−
−
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+ + −

−

∑

∑
 

 
Assuming a squared error loss function a closed form expression of the Bayesian estimator from 
the responses of the respondents using 1R , is given by: 
 

( )
( )

( )
( )

1

1

1
11

0 0

1
0

! 1
! !

ˆ .
! ,

! !

x
n xx j j

j
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x j

j

x d d
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x d j n x
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βαπ π π
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or 

( )
( )

( )
( )

1

1
0

1
0

! 1,
! !

ˆ
! ,

! !

x
x j

j
B x

x j

j

x d j n x
j x j

x d j n x
j x j

β α β
π

β α β

−

=

−

=

+ + + −
−

=
+ + −

−

∑

∑
.      (6) 

 

Let 
2

1

n

i
i

T W
=

=∑ be number of yes responses from the respondents using 2R , where 1 iW = with 

probability θ  and  0 iW =  with probability ( )1 θ− , where θ  is defined as in (1). The conditional 
distribution of T given π  is: 
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( )
( )

( )( )( ) ( )( )( ) 22
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for ( )
( )2

1
0,1, 2..., ,  where 

2 1
p

t n g
p
−

= =
−

. 

Thus, the posterior distribution of π  given T is: 
 

( )
( )

( )
( )

( )
2

2
12 1

/
0 0 2

!!/ 1
! ! ! !

n tt
jn j i i

T
i j
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−
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Π
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−
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where 
 

( )
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( )

( )
2

2

0 0 2

1
!! ,

! ! ! !

n tt
n j i

i j

k
n tt g i j
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−
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−
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. 

 
Under the squared error loss function a closed form expression of the Bayesian estimator of 
π based on the responses form the respondents using 2R  is given by: 
 

( )
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or 
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( )
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.    (8) 

 
Now using (6) and (8), we may define the Bayesian estimator of π as: 
 

1 2

Prop 1 2ˆ ˆ ˆB B
n n
n n

π π π= + .         (9) 
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Before moving towards formal comparisons of different estimators under study, we point out 
some computational issues related to our study. From (6), (8) and (9) it is apparent that the 
Bayesian estimator involves a large computation especially when the sample size and/or the 
number of yes responses is large. To deal with this difficulty we have written a program in R 
software (this program is available with the first author). As from the expression of the Bayesian 
estimator it is clear that it cannot be written as a linear function of the usual MLE, therefore, the 
approach of Samaneigo and Reneau [22] of using Bayes relative risk relative to an unknown true 
prior distribution for making comparison of Bayesian and Classical point estimators cannot be 
applied here. Chaubey and Li [5] used Classical approach to compare the Bayesian and Classical 
estimators and did not use a loss function. The same approach of comparison is used by Kim et 
al. [13] and we also follow the same approach in our study. 
As it is obvious that the two estimators ˆaπ  and ˆMLπ (and	  

1
ˆBπ  and 

2
ˆBπ ) are dependent. Moreover, 

unbiasedness property is not associated with 
1
ˆBπ  and 

2
ˆBπ .	   Therefor, to take care of biasedness 

and dependence issue we define the approximate Mean Squared Errors (MSEs) of the Bayesian 
( Propπ̂ ) and classical estimator ( KMπ̂ ), for a fixed value of π , as: 
 

( ) ( ) ( )
2 2

KM 1 2ˆ ˆ ˆa ML
n nMSE MSE MSE
n n

π π π⎛ ⎞ ⎛ ⎞≈ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, 

 
 and 
 

( ) ( ) ( )1 2

2 2
Prop 1 2ˆ ˆ ˆB B

n nMSE MSE MSE
n n

π π π⎛ ⎞ ⎛ ⎞≈ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, 

 
where 
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Using the Mangat [14] RRT, Kim et al. [13] proposed a Bayesian estimator which can be 
compared with proposed Bayesian estimator. Kim et al. [13] estimator BKπ̂  is given by: 
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The MSE of the Kim et al. [13] estimator BKπ̂ is given by: 
 

( ) ( ) ( ) ( )
2 2BK BK BK

0

ˆ ˆ ˆ 1
n

n xx

x
MSE Eπ π π π π φ φ

−

=

= − = − −∑ , 

 
where ( )1p pφ π= + − . Also, when data are obtained by Warner [29] RRT with probability of a 
yes answer given by (4), the Bayes estimator of the population proportion π is given by: 
 

( )
( )
( )

( )

( )
( )
( )

( )

0 0W

0 0

!! 1,
! ! ! !

ˆ
!! ,

! ! ! !

t n t
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n j i
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n tt g a i b j
i t i j n t j

n tt g a i b j
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β
π

β

−
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−
− −

= =

−
+ + +
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−
+ +

− − −

∑∑

∑∑
. 

 
Its MSE is given by: 
 

( ) ( )2W Wˆ ˆMSE Eπ π π= − ( ) ( )
( ) ( )

2W

0

!ˆ 1
! !

n
t n t

t

n
t n t

π π θ θ
−

=

= − −
−∑ . 

 
For comparison purposes, we have chosen a Beta prior with mean equal to 0.05 (i.e. 
α/(α+β)=0.05) for both the subsamples of the respondents using 1R  and 2R . Figures 1- 5 
demonstrate the behavior of the MSEs of the estimators Propπ̂ , KMπ̂ , BKπ̂ and Wπ̂ . This shows the 
robustness of Bayes estimators against the misspecification of prior distribution. From the 
Figures 1-5, we can observe that MSE of the proposed Bayesian estimator is less than the other 
competitor estimators over a wide range of π and is not much affected by changing 1T .  It has 
also been noted that the performance of the proposed estimator remains better no matter how 
many respondents used the randomization device 1R or 2R . For Instance, in Figure 5, 1 5n =  
and 2 20n = contrary to the case of Figure 1 where 1 15n = , 2 10n = . Moreover, the relative 
efficiency of the proposed Bayesian estimator decreases (as expected) as π  moves from 0 to 1. 
Better performance of the proposed Bayesian estimator for large values of π depicts an 
important point that even in the case of misspecified prior distribution proposed Bayesian 
estimator performs better than the other estimators discussed in this article. This study shows that 
Kim and Warde [12] RRT should be used to gather the data and Bayesian estimation should be 
applied.  For large samples, we have observed that relative efficiency of the proposed estimator 
decreases. This suggests using the proposed Bayesian estimation in a stratified random sampling 
protocol which could be a subject of the future studies. 
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Figure 1. MSEs of Propπ̂ , KMπ , BKπ̂ , Wπ̂ for 1 15n = , 2 10n = 1 0.6T = , 1α = , 19β =  and π  ranging from 
0 to 1. 
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Figure 2, MSEs of Propπ̂ , KMπ , BKπ̂ , Wπ̂ for 1 15n = , 2 10n = 1 0.7T = , 1α = , 19β =  and π  ranging from 
0 to 1. 

 



Bayesian estimation of population proportion in Kim and Warde mixed randomized response technique 

222 

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.5

1.0
1.5

2.0

p

MS
E

p̂
Prop

p̂
BK

p̂
W

p̂
KM

 
Figure 3. MSEs of Propπ̂ , KMπ , BKπ̂ , Wπ̂ for 1 15n = , 2 10n = 1 0.8T = , 1α = , 19β =  and π  ranging from 
0 to 1. 
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Figure 4. MSEs of Propπ̂ , KMπ , BKπ̂ , Wπ̂ for 1 15n = , 2 10n = 1 0.9T = , 1α = , 19β =  and π  ranging from 
0 to 1. 
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Figure 5. MSEs of Propπ̂ , KMπ , BKπ̂ , Wπ̂ for 1 5n = , 2 20n = 1 0.6T = , 1α = , 19β =  and π  ranging from 0 
to 1. 
 
 
5. Conclusions 
 
We have presented the Bayesian estimation of the population proportion when the data are 
gathered through the Kim and Warde [12] RRT. Using a simple prior distribution, we have 
presented the graphs for some selected values of the design parameters and population 
proportion. We observed that when sample size is small, the proposed Bayesian estimators, even 
with misspecified prior information, perform better than the MLE and the Warner [29] and Kim 
et al. [13] Bayes estimators. Moreover, the performance of proposed estimator does not depend 
upon the number of respondents using either 1R or 2R . The proposed Bayesian estimator is bound 
to lie in [0,1]but this may not be case with Kim and Warde [12] likelihood estimator. Overall we 
may conclude the better performance of proposed estimator over that of Kim and Warde [12] 
MLE and Bayesian estimators based on Warner [29] and Kim et al. [13] RRTs. 
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