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The common issues of high-dimensional gene expression data are that
many of genes may not be relevant to their diseases. Gene selection has
been proved to be an effective way to improve the result of many classifi-
cation methods. In this paper, an adaptive penalized logistic regression is
proposed, with the aim of identification relevant genes and provides high clas-
sification accuracy of autism data, by combining the logistic regression with
the weighted L1-norm. Experimental results show that the proposed method
significantly outperforms two competitor methods in terms of classification
accuracy, G-mean, and area under the curve. Thus, the proposed method
can be useful for other cancer classification using DNA gene expression data
in the real clinical practice.

keywords: penalized logistic regression; lasso; SCAD; autism data; gene
selection.

1 Introduction

The autism spectrum disorder (ASD) term is often referred to neurodevelopmental syn-
drome which is characterized by impairments in socialization and communication, and
behaviors and interests. It usually appears before 3 years of age. In addition, the
prevalence of autism in boys is nearly four times greater than in girls. ASD is strongly
heritable and it is among the most highly heritable common neuropsychiatric disorders
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(Latkowski and Osowski, 2015a,b). Studying the gene expression microarray is an im-
portant research direction in ASD, which can help in identifying the most related genes
to ASD, and, therefore, can help in diagnosis.

One of the major advancement made in the field of biology and genetics research is the
emergence of DNA microarray technology. This technology facilitates the determination
of the expression values of thousands of genes simultaneously (Zheng and Liu, 2011).
The gene expression data is used for various analyses to understand the biological sig-
nificance of the tissue from which the genes were extracted for the experiment (Apolloni
et al., 2016; Algamal and Lee, 2015a). These gene expression datasets are applied to nu-
merous areas of application, such as cancer classification and tumor detection. In cancer
classification, the taxonomy of normal and abnormal patterns of the cells is one of the
most important and significant processes during the cancer diagnosis and drug discovery
(Algamal and Lee, 2015c,b; Algamal, 2012). It can help to improve the health care of
patients, and, therefore, the high prediction of cancer has great value in the treatment or
the therapy (Algamal and Lee, 2015b). Gene expression dataset often contains a large
number of genes, d , with only a few samples, n, making the gene expression dataset
matrix has rows less than columns, d > n (Algamal and Lee, 2015c). Over the last
two decades, gene selection has received increasing attention, motivated by the desire
to understand structure in the high-dimensional gene expression datasets. With these
types of datasets, typically many genes are irrelevant and redundant which could poten-
tially vitiate the classification performance. Accordingly, it is preferred to reduce the
dimensionality of these datasets. Reduction of the dimensions is often achieved by gene
selection, which is maintaining a direct relationship between a gene and a classification
performance (Algamal, 2012).

According to the mechanism of selection, gene selection methods, in general, can
be classified into three categories: filter methods, wrapper methods, and embedded
methods. Filter methods are one of the most popular gene selection methods, which are
based on a specific criterion by gaining information of the each gene. These methods work
separately and they are not dependent on the classification method. For the wrapper
methods, on the other hand, the gene selection process is based on the performance
of a classification algorithm to optimize the classification performance. In embedded
methods, gene selection process is incorporated into the classification methods, which
can perform gene selection and classification simultaneously. These methods provide
higher computational efficiency comparing with the wrapper methods (Algamal and Lee,
2017; Algamal et al., 2017b; Algamal and Ali, 2017b,a; Kahya et al., 2017a; Algamal,
2008; Kahya et al., 2017b; Al-Fakih et al., 2015; Algamal et al., 2017a, 2016b, 2015,
2016a; Algamal, 2011; Algamal and Allyas, 2017; Al-Fakih et al., 2016; Algamal, 2017).

Logistic regression is a widely-used classification method in different classification
areas, especially in gene expression data classification. As the number of the genes
increases, the training time of applying logistic regression increases and also its compu-
tational complexity increases (Algamal and Lee, 2015c,d; Inan and Erdogan, 2013; Asar
and Gen, 2016; Asar, 2017). Unfortunately, logistic regression cannot automatically han-
dle gene selection although it has been proven advantageous in handling gene expression
data classification (Liang et al., 2013). Penalized methods are very effective embedded
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gene selection methods, which connected with many popular classification methods. In
recent years, logistic regression as among all the classification methods, those based on
sparseness, received much attention. It combines the logistic regression with a penalty
to perform gene selection and classification simultaneously. With deferent penalties, sev-
eral logistic regression models can be applied, among which are, L1-norm, which is called
the least absolute shrinkage and selection operator (lasso) (Tibshirani, 1996), smoothly
clipped absolute deviation (SCAD) (Fan and Li, 2001), elastic net (Zou and Hastie,
2005), and adaptive L1-norm (Zou, 2006). Unquestionably, L1-norm is considered to
be one of the most popular procedures in the class of sparse methods. Nonetheless,
L1-norm applies the same amount of the sparseness to all genes, resulting in inconsis-
tent gene selection (Fan and Li, 2001; Zou, 2006). To increase the power of informative
gene selection, in the present study, an adaptive logistic regression is proposed. More
specifically, a new weight inside L1-norm is proposed, which can correctly discriminate
the healthy children from children with autism. This weight will reflect the importance
amount of each gene. Experimentally, comparisons between our proposed gene selection
method and other two competitor methods are performed. The experimental results
prove that the proposed method is very effective for selecting the relevant genes with
high classification accuracy.

2 Penalized Logistic Regression

Logistic regression is a statistical method, which can be used to model a binary clas-
sification problem. The regression function has a nonlinear relation with the linear
combination of the genes. In cancer classification, the response variable of the logistic
regression has two values either 1 for the tumor class or 0 for the normal class. Let
yi ∈ {0, 1}, then the logistic regression model is defined as

ln[
pi

1− pi
] = xTi β, i = 1, 2, ..., n, (1)

where xTi is a 1 × p vector of genes and β = (β1, ..., βk)
T ∈ Rk is a vector of unknown

gene coefficients, and

E(yi = 1|xi) =
Exp(xTi β)

1 + Exp(xTi β)
. (2)

The log-likelihood function can be written as:

`(β) =
n∑
i=1

{yi ln (pi) + (1− yi) ln(1− pi)}. (3)

Logistic regression offers the advantage of simultaneously estimating the probabilities
pi and 1−pi for each class and classifying subjects. The predicted class is then obtained
by I{p̂i > 0.5}, where I is an indicator function. PLR adds a nonnegative penalty term
to Eq. (3), such that the size of gene coefficients in high-dimension can be controlled.
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Without loss of generality, it is assumed that the genes are standardized, then the
estimation of the vector β is obtained by maximizing the penalized logistic regression as

β̂PLR = arg max
β

[
n∑
i=1

{yi ln (pi) + (1− yi) ln(1− pi)} − λg(β)

]
(4)

where λ g(β) is the penalty term that sparse the estimates. The penalty term depends
on the positive tuning parameter, λ, which controls the tradeoff between fitting the data
to the model and the effect of the penalty. In other words, it controls the amount of
shrinkage. For the λ = 0, we obtain the maximum likelihood method (MLE) solution.
Conversely, for large values of λ the influence of the penalty term on the coefficient
estimates increases. Eq. (4) can be efficiently solved by the coordinate descent algorithm
(Friedman et al., 2010).

Despite the advantage of the Lasso, it has three shortcomings (Wang et al., 2011).
First, it cannot select more genes than the number of samples. Second, in microarray
gene data, there is grouping among genes, where genes that share a common biological
pathway have a high pairwise correlation with each other. The Lasso tries to select only
one gene or a few of them among a group of correlated genes. To overcome the first
two limitations, Zou and Hastie (2005) proposed the elastic net penalty, for which the
penalty is a linear combination of L1-norm and L2-norm. Last, the Lasso has a bias
gene selection, because it penalizes all gene coefficients equally. In other words, the
Lasso does not have the oracle properties, which refer to the probability of selecting the
right set of genes (with nonzero coefficients) converged to one, and that the estimators of
the nonzero coefficients are asymptotically normal with the same means and covariances
as if the zero coefficients are known in advance (Fan and Li, 2001). In relation to the
last limitation of the Lasso, oracle properties, Zou (2006) proposed the adaptive Lasso
in which adaptive weights are used for penalizing different coefficients in the L1-norm
penalty.

3 The proposed method

In the context of gene expression classification problems, the goal of gene selection is to
improve classification performance, to provide faster and more cost-effective genes, and
to achieve a better knowledge of the underlying classification problem. High dimension-
ality can negatively influence the classification performance of a classifier by increasing
the risk of overfitting and lengthening the computational time. In addition, it makes
various classification methods not applicable for analyzing microarray gene expression
data directly. Therefore, removing irrelevant and noisy genes from the original microar-
ray gene expression data is essential for applying classification methods to analyze the
microarray gene expression data.

It is worthwhile to highlight that our contribution of this paper comes from the fol-
lowing issues. First, although PLR with L1-norm can be applied directly to the high
dimensional gene expression data, this method may select irrelevant genes because L1-
norm has the inconsistent property in gene selection. In other words, the estimates of
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the PLR with L1-norm can be biased for large coefficients because larger coefficients will
take larger penalties. Second, in PLR, the genes are usually standardized. However,
the standardization process may be unreasonable when the variances of genes showing
important effect.

Motivated by these issues, a consistent identification of the true underlying genes is
essential to improve the classification accuracy. As a result, the standard deviation for
each gene is proposed as a weight inside L1-norm, where

wj =
1

sd̂j
, j = 1, 2, ..., d, (5)

where sd̂j is the standard deviation for each gene. According to Eq. (5), the gene with
low value of standard deviation will receive relatively large amount of weight, while the
gene with high value of standard deviation will receive small amount of weight. By this
weighting procedure, the L1-norm can reduce the inconsistent property in gene selection.

After assigning each gene with its related weight, the PLR with weighted L1-norm is
utilized to select the informative genes with high classification accuracy. The detailed
of the adaptive PLR (APLR) computation is described in Algorithm 1. The APLR
equation has a convex form, which ensures the existence of global maximum point and
can be efficiently solved. As a result, the coordinate descent method can be used to solve
APLR.

Algorithm 1: The computation of APLR

Step 1: Find [wj , j = 1, 2, ..., d.

Step 2: Define x̃i = wjxi
Step 3: Solve the APLR,

β̂APLR = arg min
β

−
n∑
i=1

{yi ln(pi) + (1− yi) ln(1− pii)}+ λ

p∑
j=1

wj |βj|


4 Experimental Study

4.1 Dataset description

The autism gene expression dataset was first presented by Latkowski and Osowski
(2015a). This dataset is publicly available and it was retrieved from NCBI reposi-
tory database on September 5, 2015 (”NCBI database,” 2015). It consists of the gene
expression values of 146 male children (observations) from peripheral blood lympho-
cytes (PBL). The total RNA was extracted for microarray experiments with Affymetrix
Human U133 Plus 2.0 39 expression arrays. This dataset comprises 54,613 of genes,
82 of children with autism, and 64 of healthy children. Furthermore, this dataset has
been recently analyzed by Latkowski and Osowski (2015a) and Latkowski and Osowski
(2015b).
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4.2 Performance evaluation

In order to evaluate the predictive performance of the proposed method, three per-
formance metrics are implemented, specifically: (1) classification accuracy (CA), (2)
geometric mean of sensitivity and specificity (G-mean), and (3) area under the curve
(AUC). The CA stands for the proportion of correctly classified children with autism
and healthy children, which measures the classification power of the classifier. The CA
can define as:

CA =
TP + TN

TP + FP + FN + TN
× 100%, (6)

where TP is the number of true positive, FP is the number of false positive, TN is the
number of true negative, and FN is the number of false negative. A typical classification
method should maximize the accuracy on the both of children with autism and healthy
children. As a consequence, the G-mean has been proposed as a metric to highlight the
joint performance of sensitivity and specificity. It is defined as:

G−mean=
√

Sensitivity × Specificity, (7)

where sensitivity is the fraction of children with autism that were successfully classified,
and specificity is the fraction of healthy children that were properly classified. The
AUC was used to quantitatively evaluate the overall classification performance of the
proposed method. Its value can vary from 0 to 1, the closer value to 1, the better overall
classification performance.

4.3 Experimental setting

To demonstrate the usefulness of the proposed method, comparative experiments with
the PLR-lasso and the PLR-SCAD are conducted. To do so, the autism gene expression
dataset is randomly partitioned into the training dataset and the test dataset, where 70%
of the children are selected for training dataset and the rest 30% are selected for testing
dataset. For a fair comparison and for alleviating the effect of the data partition, all the
used classification methods are evaluated, for their classification performance metrics
using 10 folds cross validation, averaged over 100 partitioned times.Depending on the
training dataset, the tuning parameter value, λ, for each used classification method was
fixed as 0 ≤ λ ≤ 100. For the SCAD penalty, the constant a was set to equal 3.7 as it
suggested by Fan and Li (2001).

5 Experimental results

5.1 Classification performance

Table 1 summarizes, on average, the number of selected genes (# genes), the classification
accuracy, and the G-mean for the training dataset of applying the APLR, PLR-SCAD,
and the PLR-lasso. In addition, it summarizes the classification accuracy for the testing
dataset. The number in parenthesis is the corresponding standard deviation.
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Regarding classification accuracy and based on the training dataset, the proposed
method, APLR, achieved 93.27%, defeating PLR-SCAD and the PLR-lasso by 4.14%
and 9.41%, respectively. The G-mean of the APLR yields 0.927, which indicates that
the APLR has a separation capability between healthy children and children with autism.
In addition, PLR-SCAD secondly comes with 89.13% and better than PLR-lasso. This
is not surprising because the PLR-SCAD has the effectiveness of consistent selection.
Depending on the testing dataset, the APLR is better than the others in terms of
classification accuracy because it achieved 91.28%, which is 4.17% and 10.57% better
than PLR-SCAD and the PLR-lasso, respectively.

In terms of the number of selected genes, the results in Table 1 show that the APLR
selected significantly less genes than the other two methods, where it selects 9 genes
while PLR-SCAD and the PLR-lasso, respectively, selects 12 and 17 genes. Overall, the
classification performance of our proposed adaptive penalized support vector machine
method provides best overall classification performance compared to PLR-SCAD and
PLR-lasso. This is an implication that our proposed method can take consideration of
the information of each gene by its weight.

Table 1: Classification performance of the APLR, PLR-SCAD, and PLR-lasso over 100
times.

Methods
training dataset testing dataset

# genes CA G-mean CA

APLR 9 93.27 (0.070) 0.927 (0.050) 91.28 (0.006)

PLR-SCAD 12 89.13 (0.010) 0.887 (0.007) 87.11 (0.007)

PLR-lasso 17 83.86 (0.010) 0.825 (0.006) 80.71 (0.009)

5.2 Statistical significance test

For further ability confirmation of the proposed method in selecting the most relevant
genes with high classification performance, a pairwise comparison between the proposed
method and each competitor method was utilized using paired two-tailed t-test. This
test was performed depending on the area under the curve of the training dataset. Figure
1 shows the boxplot of the AUC for each used method. It is clearly seen that the AUC
of the proposed method is comparable to the results obtained from PLR-SCAD and the
PLR-lasso.

Table 2 reports the paired two-tailed t-test results at significance level α = 0.05. As
shown in Table 2, the AUC of the proposed method is statistically significant better
than those of PLR-SCAD and PLR-lasso.
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Figure 1: Boxplot of the AUC for the autism dataset achieved by the three used methods.

Table 2: P-values for the paired t-test of our proposed method results with two competi-
tor methods. (*) means that the two methods have significant differences

Dataset APLR vs PLR-SCAD APLR vs PLR-lasso

Autism 0.0012(*) 0.0002(*)

6 Conclusion

This paper presents an adaptive penalized support vector machine by combining the
logistic regression with the weighted L1-norm to identify the relevant genes in gene ex-
pression autism data. Our proposed method was experimentally tested and compared
with other existing methods. The superior classification performance of the proposed
method was shown through four aspects: high classification accuracy, G-mean and AUC.
Meeting these four aspects simultaneously nominates the proposed method as a promis-
ing gene selection method. Overall, the proposed method clearly illustrates its applica-
bility and usefulness in other types of high-dimensional classification data related to the
biological field.
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