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We develop fixed size confidence regions for estimating the fixed and ran-
dom effects parameters of the mixed effects logistic regression model. This
model applies to, among others, the study of the effects of covariates on a
dichotomous response variable when subjects are sampled in clusters. Two
sequential procedures are developed to estimate with a prescribed accuracy
(confidence level) and fixed precision the set of fixed and random effects pa-
rameters and linear transformations of these parameters, respectively. We
show that the two procedures are asymptotically consistent (i.e., the cover-
age probability converges to the nominal confidence level) and asymptotically
efficient (i.e., the ratio of the expected random sample size to the unknown
best fixed sample size converges to 1) as the width of the confidence region
converges to 0. Suggestions to improve the performance of the procedures
are provided based on Monte Carlo simulation and illustrated through a
longitudinal clinical trial data.

keywords: Mixed effects logistic regression model, sequential estimation,
fixed width confidence estimation.

1 Introduction

Studies of the effects of covariates on a dichotomous response variable based on clustered
data are very common in many fields including medicine, education, and social sciences.
A data cluster may consist of repeated measures on a single subject (longitudinal data)
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or cross-sectional responses from a group of subjects sampled as a cluster (e.g., sampled
from the same site or organization). This latter type of clustering encompasses multilevel
and hierarchical data (Tuerlinckx et al., 2006). For example, Davis (1991) reports a
multi-center randomized clinical trial comparing two treatments for a respiratory illness.
The primary outcome, respiratory status (0 = poor, 1 = good), was assessed at 4 visits.
The covariates were site, sex, age, and baseline respiratory status. In this trial, correla-
tions between responses of the same subject as well as responses from subjects treated
at the same site cannot be overruled a priori. A standard model for analyzing this type
of data is the mixed effects logistic regression where the random effects components of
the model are used to fit the dependency structure within clusters. Another example of
application of this model can be found in Boccuzzo and Luca (2012).

In the context of experiments where subjects are sampled sequentially as is common
in clinical trials and other fields, we develop in this manuscript fixed size confidence
regions for the set of fixed and random effects parameters of the mixed effects logistic
regression model, and for linear transformations of these parameters as well. These
regions have a controlled maximum width and contain all the target parameters with a
prescribed coverage probability. This dual control of the precision of estimation (width
of region) and coverage probability can only be achieved through sequential or adaptive
experimental designs.

Specifically, let Xij be a vector of covariates and Yij be a dichotomous response ob-
served on the jth subject from cluster i = 1, . . . , n, where 1 ≤ j ≤ ki. Let Xi =
(Xi1, . . . ,Xiki) be the matrix of covariates and YYY i = (Yi1, . . . , Yiki)

′ be the vector of
responses collected from cluster i. Assume that, conditional on Xi and a cluster spe-
cific random variable ui ∈ IR, Yi1, . . . , Yiki are independent Bernoulli with P[Yij =
1 |Xij , ui] = µij . Assume further that (YYY 1, u1,X1), . . . , (YYY n, un,Xn) are independent
and identically distributed (i.i.d.), and the unobservable random effects u1, . . . , un are
i.i.d. N(0, σ2), σ2 ≥ 0.

Suppose that µij = P[Yij = 1|Xij , ui] follows the logistic mixed effects model

ln

[
µij

1− µij

]
= X′ijβββ + ui, i ≥ 1, j = 1, . . . , ki (1)

where βββ ∈ IRp are unknown fixed effects parameters.
Aim: We develop fixed size confidence regions with a prescribed accuracy (confidence
level) for θθθ = (βββ′, σ2)′ in Model (1) and its linear transform γγγ = Aθθθ where is A is a
q × (p+ 1) matrix of rank q (q ≤ p+ 1).

There is a rich literature about the fixed precision interval estimation of the fixed
effects of a Generalized Linear Model (GLM) which inherently assumes independent
responses, i.e., without random effects (Chang, 1999; Chang and Martinsek, 1992).
However, to the best of our knowledge, the problem undertaken in this manuscript, i.e,
the fixed precision estimation of the parameters of the mixed effects logistic regression
model has not been addressed. This latter model has a wider scope including clustered
data such as longitudinal, multi-level and hierarchical data. More advanced relevant
work in the literature concern the estimation of the parameters of the logistic regres-
sion model (GLM) with fixed precision under a Covariate-Adjusted Response-Adaptive
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design where subjects are allocated to treatments based on values of their covariates
and information from previous subjects (Chang and Park, 2013; Chambaz et al., 2015;
Zhang and Hu, 2009). In other applications, Grabovsky and Chang (2003) derived a
stopping rule for sequential adaptive tests with application to the computerized CAT,
GRE and GMAT standard tests. Chang (2011) considered the sequential estimation of
GLM when there are measurement errors under both adaptive and fixed designs. Chien
et al. (2011) developed a two-stage sequential method to estimate with fixed precision the
fixed effects of a retrospective (case-control) logistic regression model. Spiessens et al.
(2002) developed a group sequential method for testing an ordinal logistic random-effects
model when the random-effects distribution is misspecified.

This paper is structured as follows. In the next section we derive the fixed size
confidence region for the vector of fixed and random effects θθθ and describe its asymptotic
properties. In Section 3, we deduce a fixed size confidence region for linear transforms
of θθθ. Simulation results are presented in Section 4. In Section 5 we discuss some design
considerations to improve the flexibility of the procedure. The proposed procedure
is illustrated on data from a longitudinal clinical trial in Section 6. Conclusions are
provided in Section 8 and the proofs of results are presented in the Appendix. In the
sequel all calculations are done conditional on Xij , unless otherwise specified.

2 The fixed size confidence region for θθθ

Consider the maximum likelihood estimator (MLE) θ̂θθn of θθθ = (βββ′, σ2)′ based on a sample
of n clusters using the Gauss-Hermite or Laplace quadratures. The derivation of the
score function and information matrix is shown in the Appendix. Moreover, θ̂θθn and
its standard error can be computed using the glmmML package in the R statistical
software (http://CRAN.R-project.org/package=glmmML) developed by Brostrom and
Holmberg (2011). Sinha (2004) defined the regularity conditions for the consistency and
asymptotic normality of the MLE in the Generalized Linear Mixed Model (GLMM).
Under these regularity conditions, as n→ +∞,

Σ1/2
n

(
θ̂θθn − θθθ

)
L−→ N (0, Ip+1) , (2)

where Ip+1 is the identity matrix with p+1 rows, and Σ
1/2
n is the Cholesky decomposition

of the conditional Fisher Information matrix given X1, . . . ,Xn.

As shown in (12), Σn is the sum of n cluster specific independent random matrices
depending on the corresponding Xi, namely, EYYY i

[
Wi(θθθ,YYY i)

∣∣Xi] where EYYY i represents the
expectation with respect to YYY i. Then, by the i.i.d property of X1,X2, . . . and the Strong

Law of Large Numbers, limn→+∞ n
−1Σn = Σ where Σ = EXi

{
EYYY i

[
Wi(θθθ,YYY i)

∣∣ Xi]}.

Let Σ̂n be Σn with θθθ replaced by θ̂θθn. By (2) and the consistency of MLE,(
θ̂θθn − θθθ

)′
Σ̂n

(
θ̂θθn − θθθ

)
L−→ χ2(p+ 1),
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where χ2(p+ 1) is the chi-square distribution with p+ 1 degrees of freedom. Let Rn be
the ellipsoid defined by

Rn =

{
Z ∈ Rp+1 :

(
Z− θ̂θθn

)′
Σ̂n

(
Z− θ̂θθn

)
≤ d2λ̂n

}
, (3)

where d is a positive constant and λ̂n is the smallest eigenvalue of Σ̂n. Rn has a maximum
axis equal to 2d and limn→+∞ n

−1λ̂n = λ, the smallest eigenvalue of Σ.

Observe that if d2λ̂n ≈ χ2
1−α(p+ 1), then P[θθθ ∈ Rn] ' 1−α where χ2

1−α(p+ 1) is the
(1−α)× 100th percentile of the χ2(p+ 1) distribution. This suggests the stopping time

Tθθθ = inf
{
n ≥ 2 : d2λ̂n ≥ cn

}
, (4)

where cn =
(
1 + cn−1

)
χ2
1−α(p + 1) and c > 0 is a known moderating constant to avoid

premature stopping. The proposed fixed size confidence region for θθθ with a maximum
axis of 2d and coverage probability converging to 1− α when d→ 0 is

RTθθθ =

{
Z ∈ Rp+1 :

(
Z− θ̂θθTθθθ

)′
Σ̂Tθθθ

(
Z− θ̂θθTθθθ

)
≤ d2λ̂Tθθθ

}
. (5)

The asymptotic properties of the stopping time Tθθθ and the confidence region RTθθθ are
presented in the following two theorems whose proofs are postponed to the Appendix.

Theorem 1 Under the regularity conditions for the consistency and asymptotic nor-
mality of MLE, see Sinha (2004), as d→ 0,

i. P
[
Tθθθ < +∞

]
→ 1 a.s.

ii. Tθθθ → +∞ a.s.

iii. E
[
Tθθθ
]
→ +∞ a.s.

iv. Tθθθλd
2/cTθθθ → 1 a.s.

Theorem 2 Under the regularity conditions for the consistency and asymptotic nor-
mality of MLE, see Sinha (2004), as d→ 0,

i. Σ̂
1/2
Tθθθ

(
θ̂θθTθθθ − θθθ

)
L−→ N

(
0, Ip+1

)
,

ii.
(
θ̂θθTθθθ − θθθ

)′
Σ̂Tθθθ

(
θ̂θθTθθθ − θθθ

) L−→ χ2(p+ 1),

iii. P
[
θθθ ∈ RTθθθ

]
−→ 1− α.



Electronic Journal of Applied Statistical Analysis 5

3 Fixed size confidence regions for linear transformations
of θθθ

Experimenters may be interested only in some components of θθθ or their linear combi-
nations, e.g., the fixed effects parameters or their contrasts. When these parameters of
interest are linear transformations of θθθ of the form γγγ = Aθθθ where A is a q × (p + 1)
matrix of rank q (q ≤ p+ 1), fixed size confidence regions for γγγ are easily deduced from
Section 2. The MLE, γ̂γγn, of γγγ has a N(γγγ, AΣ−1n A′) distribution and AΣ−1n A′ is definite
positive (d.f.) when Σn is d.f. Let δ̂n be the smallest eigenvalue of [AΣ̂−1n A′]−1 = Ω̂n

(say). We define the (1−α)× 100% fixed size confidence region for γγγ, with a maximum
width of 2d, by

QTγγγ =

{
Z ∈ Rq :

(
Z− γ̂γγTγγγ

)′
Ω̂Tγγγ

(
Z− γ̂γγTγγγ

)
≤ d2δ̂Tγγγ

}
, (6)

where
Tγγγ = inf

{
n ≥ 2 : d2δ̂n ≥ c̃n

}
, (7)

where c̃n =
(
1 + cn−1

)
χ2
1−α(q). The results of theorems 1 and 2 apply to Tγγγ and QTγγγ .

The proof that Theorem 1 applies to Tγγγ is a straightforward application of (2) and
Lemma 1 in the Appendix. The proof of the properties of QTγγγ follows along the lines of
the proof of Theorem 2. The proofs of these results are omitted.

4 Simulation Study

To assess the performance of the proposed fixed size confidence regions for θθθ and γγγ = βββ
defined in (5) and (6), simulations were run in the statistical software R (version 3.1.2),
using the glmmML package. The procedures were iterated 1000 times under a wide range
of Model (1) parameter settings. Table 1 displays the results in the case of one covariate,
i.e., Xij = (1, Xij1)

′, with Xij1 ∼ N(−0.5 , 0.052), balanced designs with equal cluster
sizes ki = k = 10 and 25, and unbalanced design where ki is randomly selected from
{10, 15, 20}, standard deviation of random effects σ = 0.1, fixed effects β0 = 2.5, β1 =
0, 0.5, 1, 1.5, 3, 5, and a maximum confidence region width of 2d = 10. Table 2 displays
the case of two correlated covariates, i.e., Xij = (1, Xij1, Xij2)

′, where (Xij1, Xij2)
′ ∼

N
(

(−0.5, 0.5)′,
[
(0.332, 0.1)′, (0.1, 0.332)′

])
, under unbalanced design ki ∈ {10, 15, 20},

σ = 0.2, β0 = 2.2, (β1, β2) ∈ {(0, 0), (0.5,−1), (1,−1), (1,−2), (2,−2)} and d = 3. The
settings in tables 1 and 2 correspond to response probabilities µij = P[Yij = 1] varying
from 0.5 to 0.95. We don’t report the results for µij < 0.5 because simulation results are
symmetric about µij = 0.5. The moderating constant, c, was set in proportion to the
cluster size, that is, c = 10 when ki = 25, c = 20 when ki ∈ {10, 15, 20}, and c = 40 when
ki = 10. Higher values of c prevent premature stopping of the procedure which affects
the coverage probability in small cluster sizes. The nominal coverage probability was
set to 95%. In estimating θθθ and βββ, respectively, we calculated the average numbers of
clusters Tθθθ and Tβββ, the average total sample sizes NTθθθ and NTβββ , the estimated coverage
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probabilities of the confidence regions, P̂
[
θθθ ∈ RTθθθ

]
and P̂

[
βββ ∈ QTβββ

]
, and the average

Euclidean distance between the MLE at stopping and the corresponding parameter,
‖θ̂θθTθθθ − θθθ‖ and ‖β̂ββTβββ − βββ‖.

Results indicate that the coverage probabilities of RTθθθ and QTβββ are controlled for
all values of β1 and β2, except when they are closer to 0 which corresponds to µij =
P[Yij = 1] close to 1. This reflects the known deficiencies of MLEs when the estimated
parameter is close to the boundary of the parameter space. However, adjusting the
value of the moderating constant, c, in proportion to the cluster sample size ki will
improve the coverage probability when µij is close to the boundary. Higher values of c
prevent premature stopping, thus reducing instances of estimation errors. The number
of sampled clusters and the total number of sampled subjects increase as µij moves away
from 0.5 to the boundary values of 0 and 1. The average distance between the MLE at
stopping and the parameter is well under the maximum allowed distance of 2d.

Table 1: Simulations of 95% confidence regions for θθθ and βββ under Model (1) where Xij =
(1, Xij1)

′, Xij1 ∼ N(−0.5 , 0.052), σ = 0.1, β0 = 2.5, d = 5

β1 Tθθθ NTθθθ P
[
θθθ ∈ RTθθθ

]
‖θ̂θθTθθθ − θθθ‖ Tβββ NTβββ P

[
βββ ∈ QTβββ

]
‖β̂ββTβββ − βββ‖

Constant ki = k = 25 and c = 10

0.0 81.1 2026.8 0.931 1.48 64.1 1603.0 0.941 1.65

0.5 67.6 1689.4 0.946 1.47 53.9 1346.5 0.942 1.67

1.0 57.1 1427.1 0.953 1.51 45.6 1141.0 0.949 1.68

3.0 34.4 858.8 0.976 1.33 27.9 697.4 0.966 1.48

5.0 29.2 730.8 0.971 1.35 23.9 597.8 0.967 1.48

Variable ki ∈ {10, 15, 25} and c = 20

0.0 137.9 2070.9 0.914 1.53 109.6 1645.0 0.933 1.69

0.5 115.3 1728.8 0.920 3.03 92.0 1380.2 0.936 3.19

1.0 97.2 1461.2 0.960 1.44 77.8 1169.1 0.949 2.16

3.0 58.9 884.8 0.962 1.43 48.1 722.3 0.954 1.58

5.0 50.5 758.8 0.974 1.35 41.4 621.0 0.967 1.45

Constant ki = k = 10 and c = 40

0.0 215.1 2150.7 0.903 1.49 171.0 1709.5 0.947 2.55

0.5 179.9 1799.3 0.927 2.07 144.4 1443.5 0.958 2.18

1.0 153.2 1531.7 0.939 1.42 123.5 1234.6 0.956 1.57

3.0 93.9 939.3 0.970 1.35 77.0 769.5 0.964 1.47

5.0 81.0 810.2 0.971 1.32 66.8 668.1 0.962 1.42

5 Design Considerations

When designing experiments, it is important to carefully select the values of d and c
because of their impact on the total sample size. Large values of c should be used for
small cluster sizes as illustrated in the previous section. The choice of d is determined
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by the desired precision of estimation and the maximum sample size, N , allowed by the
time and budgetary constraints. Usually, the desired precision corresponds to a range of
values of d, rather than a single value. In order to introduce more flexibility in choosing
d and reduce the chance of sampling beyond N , a range of values of d could be pre-
specified before sampling starts ranging from an acceptable, but not ideal, precision of
estimation represented by a lager value of d to an ideal precision corresponding to a
smaller value d. As sampling progresses, the stopping time will be evaluated at all the
pre-specified values of d and the value of the stopping time that is smaller and closest
to N , if any, will be used as the sample size for computing the fixed size confidence
regions. In case the stopping time is greater than N for all values of d, then sampling
will continue to the first stopping time instance. This latter scenario is an undesirable
situation that may happen in open-ended sequential sampling.

Table 2: Simulations of 95% confidence regions for θθθ and βββ under Model (1) where

Xij = (1, Xij1, Xij2)′, (Xij1, Xij2)′ ∼ N
(

(−0.5, 0.5)′,
[
(0.332, 0.1)′, (0.1, 0.332)′

])
,

σ = 0.2, β0 = 2.2, d = 3

β1 β2 Tθθθ NTθθθ P
[
θθθ ∈ RTθθθ

]
‖θ̂θθTθθθ − θθθ‖ Tβββ NTβββ P

[
βββ ∈ QTβββ

]
‖β̂ββTβββ − βββ‖

Variable ki ∈ {10, 15, 25} and c = 20

0.0 0.0 105.9 1587.9 0.964 0.92 89.9 1348.0 0.956 0.98

0.5 -1.0 77.1 1157.0 0.976 0.91 66.0 989.9 0.968 0.93

1.0 -1.0 61.4 920.9 0.983 0.86 52.7 791.7 0.984 0.90

1.0 -2.0 53.3 799.8 0.984 0.86 46.0 690.3 0.977 0.88

2.0 -2.0 49.4 742.0 0.989 0.85 42.7 641.8 0.978 0.89

Let d1 > · · · > dK represent the pre-specified values of d for a fixed K ≥ 1 such that
di → 0 and di/di′ → 1 for all i, i′ = 1, . . . ,K. For example, set di = d+ ai(o(d)) where
ai, i ≥ 1, are decreasing scalars. Let Tθθθ, i = Tθθθ and Tγγγ, i = Tγγγ when d = di where Tθθθ and
Tγγγ are defined in (4) and (7). Observe that Tθθθ,1 ≤ · · · ≤ Tθθθ,K and Tγγγ,1 ≤ · · · ≤ Tγγγ,K .
When estimating γγγ, sample clusters until the following stopping time

T̃γγγ = max
{
Tγγγ, iI{Tγγγ, i≤N}, i = 1, . . . ,K

}
+ Tγγγ, 1I{Tγγγ, 1>N}, (8)

and compute the fixed size region RT̃θθθ
defined in (5). Similarly, when estimating θθθ,

sample until T̃θθθ = max{Tθθθ, iI{Tθθθ, i≤N}, i = 1, . . . ,K} + Tθθθ, 1I{Tθθθ, 1>N}, and compute the

fixed size regionQT̃γγγ defined in (6). Then, Theorem 1 applies to T̃θθθ and T̃γγγ and Theorem 2
applies to RT̃θθθ

andQT̃γγγ , that is, both RT̃θθθ
andQT̃γγγ have asymptotic coverage probabilities

equal to 1 − α, and maximum width di corresponding to T̃θθθ = Tθθθ, i or T̃γγγ = Tγγγ, i,
respectively. The proof of these results is postponed to the Appendix.

6 Illustrative Example

In this section we illustrate the application of the confidence regions using data from
a longitudinal clinical trial comparing two oral treatments for toenail infection (der-
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matophyte onychomycosis), see Backer et al. (1998). Patients were evaluated for the
degree of onycholysis (the degree of separation of the nail plate from the nail-bed) at
baseline (week 0) and at follow-up visits in weeks 4, 8, 12, 24, 36, and 48. The binary
outcome variable, onycholysis (none or mild versus moderate or severe), was recorded
for 146 and 148 patients assigned to treatments A and B, respectively, (data source
http://www.blackwellpublishing.com/rss/ datasets/C4827r.txt). A question of interest
was whether the percentage of severe infections decreased over time, and whether this
evolution was different for the two treatment groups. Model (1) is a standard model for
analyzing the presence of mild/severe onycholysis (represented by Yij = 1). The vector
of covariates Xij consists of Treatment (coded 1 for A and 0 for B), Time (exact time of
the visit in months) and Treatment×Time. The correlations among repeated measures
on the same patient are modeled by the random effects ui. The parameters of interest
are γγγ = (β2, β3)

′ corresponding to Time and Treatment×Time.

We set c = 30 and adopted the approach of Section 5 with d1 = 0.5, d2 = 0.4, d3 = 0.2
and d4 = 0.1. Using the glmmML package, we sequentially sampled T̃γγγ = Tγγγ, 3 = 276
subjects corresponding to d3 = 0.2, as defined in (8). While Tγγγ, i, i = 1, 2, 3 stopped

before N = 294, Tγγγ, 4 did not. The MLE of θθθ = (β0, β1, β2, β3, σ
2) is θ̂θθTγγγ, 3 = (−2.580,

−0.258,−0.401, −0.117, 4.590). The elements of the matrix Ω̂Tγγγ, 3 defined in (6) are

Ω̂Tγγγ, 3(1, 1) = 713.639, Ω̂Tγγγ, 3(1, 2) = 284.414, and Ω̂Tγγγ, 3(2, 2) = 314.904, and its smallest

eigenvalue δ̂Tγγγ, 3 = 166.940. The resulting fixed size confidence region for γγγ = (β2, β3)
with a 95% confidence level and maximum width 2d3 = 0.4 is given by QTγγγ, 3 in (6) and it
is displayed in Figure 1. Observe that the MLEs of β2 and β3 are negatively correlated.
Moreover, QTγγγ, 3 contains β3 = 0 and only negative values of β2. We therefore conclude
at a 5% experimentwise significance level that the percentage of severe infections declines
with time and that the rate of decrease over time is the same for both treatments.

b2

b 3

-0.6 -0.5 -0.4 -0.3 -0.2

-0
.3

-0
.2

-0
.1

0.
0

0.
1

Figure 1: 95% confidence region with maximum width 0.4 for b2 & b3

7 Conclusion

We introduced fixed size confidence regions for the set of parameters of the mixed effects
logistic regression model. The regions, which can be readily computed using the glmmML
package in R, allow the experimenter to control both the precision and the familywise
confidence level in estimating the fixed and random effects parameters of the model
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or their linear combinations. These results extend existing methods to the analysis of
clustered data such as longitudinal and hierarchical data. Suggestions about the selection
of the stopping time moderating constant, c, and the maximum width of the confidence
region, d, are provided to improve the performance of the procedure.
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8 Appendix

8.1 Computation of the score function and the Fisher information
matrix

The full likelihood function of (YYY 1, u1), . . . , (YYY n, un), given X1, . . . ,Xn, is

n∏
i=1

Li(θθθ, uiYYY i)

= exp


n∑
i=1

ki∑
j=1

[
Yij ln

(
µij

1− µij

)
+ ln(1− µij)

] exp

{
− 1

2σ2

n∑
i=1

u2i

}
σ−n

(2π)n/2

= exp


n∑
i=1

ki∑
j=1

[
Yij
(
X′ijβββ + ui

)
− ln

(
1 + exp

(
X′ijβββ + ui

))]
− 1

2σ2

n∑
i=1

u2i

 σ−n

(2π)n/2
.(9)

The MLE of θθθ is obtained by integrating out u1, . . . , un in (9), then approximating the

logarithm of the integral using a Laplace quadrature, i.e.,

l (θθθ,YYY 1, . . . ,YYY n) =
n∑
i=1

ln

∫ +∞

−∞
Li (θθθ, ui,YYY i) dui

≈
n∑
i=1

ln
[√

2πω̂iLi (θθθ, ûi(θθθ),YYY i)
]

(10)

where ûi(θθθ) is the maxima of gi
(
θθθ, u,YYY i

)
= lnLi(θθθ, u,YYY i

)
w.r.t. u for fixed θθθ, that is,

∂

∂u
gi (θθθ, ûi(θθθ),YYY i) = 0, and ω̂i = ω̂i (θθθ) =

[
− ∂2

∂u2
gi (θθθ, ûi (θθθ) , Yi)

]−1/2
.



Electronic Journal of Applied Statistical Analysis 11

After straightforward calculations we find the following expressions of the score function

and hessian of (10). The score function is

∂

∂θθθ
l (θθθ,YYY 1, . . . ,YYY n) =

n∑
i=1

[
−

∂3

∂u2∂θθθ
gi (θθθ, ûi,YYY i)

2 ∂2

∂u2
gi (θθθ, ûi,YYY i)

+
∂

∂θθθ
gi (θθθ, ûi,YYY i)

]
(11)

=

n∑
i=1

Zi (θθθ,YYY i)

where Zi
(
θθθ,YYY i

)
is the summand term in the right hand side (r.h.s.) of (11). The hessian

of (10) is

Σn =
∂2l(θθθ,YYY 1, . . . ,YYY n)

∂θθθ∂θθθ′
=

n∑
i=1

Ouuθθθθθθ′gi (θθθ, ûi,YYY i)Ouugi (θθθ, ûi,YYY i)− Ouuθθθ′gi (θθθ, ûi,YYY i) [Ouuθθθgi (θθθ, ûi,YYY i)]
′

2 [Ouugi (θθθ, ûi,YYY i)]
2

+
n∑
i=1

Oθθθθθθ′gi (θθθ, ûi,YYY i) =
n∑
i=1

Wi (θθθ,YYY i) (say), (12)

where Ov1...vkf(v1, . . . ,vk) is the differential operator consisting of the kth partial deriva-

tives with respect to the vectors v1, . . . ,vk.

8.2 Proof of theorems 1 and 2

The proof of Theorem 1 relies on the following lemma of Chow and Robbins (Govin-

darajulu, 2004, Lemma 4.7.1, p. 196).

Lemma 1 Let U1, U2, . . . be any sequence of random variables such that Un > 0 a.s. and

limn→+∞ Un = 1. Also, let an be a sequence of integers such that an > 0, limn→+∞ an =

+∞ and limn→+∞ an/an−1 = 1. Define N = N(t) = inf
{
k ≥ 1 : Uk ≤ ak/t

}
, then

1. N is well defined and non-decreasing as a function of t,

2. limt→+∞N(t) = +∞ a.s.,

3. limt→+∞ E
(
N(t)

)
= +∞,

4. limt→+∞ aN/t = 1 a.s.

Proof of Theorem 1: The stopping time Tθθθ may be written as

Tθθθ = inf
{
n ≥ 2 : d2λ̂n ≥ cn

}
= inf

{
n ≥ 2 :

nλ

λ̂n
≤ nλ

cn
d2
}

= inf
{
n ≥ 2 : Un ≤

an
t

}
,
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where Un = nλ/λ̂n, an = nλ/cn, and t = d−2 which satisfy the conditions of Lemma 1.

Proof of Theorem 2: Note that the second and third results of the theorem are direct

consequences of the first result. Thus, we will only prove the first result.

By expanding the score function (11) w.r.t. θ̂θθn and, by the property of the MLE,

setting the first term of the expansion to zero, we get

n∑
i=1

Zi (θθθ,YYY i) = ∆̃∆∆n

(
θ̂θθn − θθθ

)
where ∆̃∆∆n =

n∑
i=1

Wi

(
θ̃θθn,YYY i

)
, (13)

and θ̃θθn is between θθθ and θ̂θθn. Observe that Zi
(
θθθ,YYY i

)
, i ≥ 1, are i.i.d. and, by the property

of score functions, E
[
Zi
]

= E
[
Zi
(
θθθ,YYY i

)∣∣Xi] = 000 and Var
[
Zi
(
θθθ,YYY i

)]
< +∞. This implies

that n−1
∑n

i=1 Zi
(
θθθ,YYY i

)
are uniformly continuous in probability. Since by Theorem 1,

Tθθθ → +∞, as d→ 0, then by Anscombe’s Theorem,

T
−1/2
θθθ Σ−1/2

Tθθθ∑
i=1

Zi
L−→ N (0, Ip+1) . (14)

Observe that

Σ̂
1/2
Tθθθ

(
θ̂θθTθθθ − θθθ

)
= Σ̂

1/2
Tθθθ

∆̃∆∆
−1
Tθθθ

∆̃∆∆Tθθθ

(
θ̂θθTθθθ − θθθ

)
= Σ̂

1/2
Tθθθ

∆̃∆∆
−1
Tθθθ

Tθθθ∑
i=1

Zi

=

[(
T−1θθθ Σ̂Tθθθ

)1/2 (
T−1θθθ ∆̃∆∆Tθθθ

)−1
− Σ−1/2

]
T
−1/2
θθθ

Tθθθ∑
i=1

Zi + T
−1/2
θθθ Σ−1/2

Tθθθ∑
i=1

Zi.

(15)

The first term on the r.h.s. of (15) converges to 0 in probability, as d→ 0, because(
T−1θθθ Σ̂Tθθθ

)1/2(
T−1θθθ ∆̃∆∆Tθθθ

)−1
− Σ−1/2 → 0

in probability and T
−1/2
θθθ

∑Tθθθ
i=1 Zi converges in distribution. The second term on the

r.h.s. converges in distribution to N
(
0, Ip+1

)
by (14).

8.3 Proof of the results of Section 5

Proof of the Results of Theorem 1 for T̃θθθ and T̃γγγ : The proofs for T̃θθθ and T̃γγγ are identical,

therefore we will only show the proof for T̃θθθ. Observe that Tθθθ, 1 ≤ T̃θθθ ≤ Tθθθ,K . Result (i)

follows from P [Tθθθ < +∞] ≥ P [Tθθθ, 1 < +∞]→ 1 as d1 → 0. Results (ii) and three follow
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from T̃θθθ ≥ Tθθθ, 1 → +∞ a.s. and E[T̃θθθ] ≥ E[Tθθθ, 1] → +∞ as d1 → 0. Result (iv) follows

from

lim
d1→0

d̃ cTθθθ, 1
d1 cT̃θθθ

Tθθθ, 1λd1

cTθθθ, 1
≤ lim

d1→0

T̃θθθλd̃

cT̃θθθ
≤ lim

d1→0

d̃ cTθθθ,K
dK cT̃θθθ

Tθθθ,KλdK
cTθθθ,K

(16)

where d̃ is equal to di such that T̃θθθ = Tθθθ, i. Both the r.h.s and l.h.s of (16) converge to 1

a.s.

Proof of the Results of Theorem 2 for RT̃θθθ
and QT̃γγγ : The proof of Theorem 2 remains

unchanged as long as the result of Theorem 1 applies to T̃θθθ and T̃γγγ , and di is independent

of the data (YYY j , uj ,Xj), j ≥ 1.


