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Two-parameter Pareto distribution is not only a potential model for life
testing problems, also established its important role in variety of other prob-
lems such as size of cities, firms and business mortality. In present article,
two-parameter Pareto distribution is considered as the underlying model for
the study. Some Bayes estimators are obtained for shape parameter under
known as well as unknown case of scale parameter. A Progressive Type-II
censored data is considered and performances of the procedures are studied
in terms of relative efficiency, based on simulated and a real life data.

keywords: Pareto Type-II distribution, Bayes estimator, Invariant LINEX
loss function, Progressive Type-II censoring.

1 Introduction

The Pareto distribution plays an important role in analysing areas including city pop-
ulation distribution, stock price fluctuation, oil field locations and military areas. The
decreasing failure rate of present distribution, provides a useful model survival after
some medical procedures. Its close relatives provide a very flexible family of fat-tailed
distributions, which may be applicable for income distribution of higher income group.

The Pareto distribution has established its grate role in variety of other problems dis-
cussed by several authors time to time. For example, Lomax (1954) discussed its ap-
plicability in business mortality, Harries (1967) service time in queuing system, size of
cities and firms by Steindle (1965) and the study of distributions of nuclear particles by
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Freiling (1966).

A lots of literature are available on Pareto model under classical and Bayesian method-
ology, few resents works are discussed herewith. Recently, Prakash (2014 a) obtained
some Bayes estimators for Lomax model under right ordered sample data. Some Statis-
tical inference for generalized Pareto distribution based on Progressive Type-II censored
data with random removals was discussed by Azimi et al. (2014). Okasha (2014) con-
cerned in his article about the using of E-Bayesian method for computing estimates of
the unknown parameter, reliability and hazard functions of Lomax distribution based
on type-II censored data.

Al-Zahrani and Al-Sobhi (2013) was discussed estimation problem of the probability
S = P (Y < X) for Lomax distribution based on general progressive censored data. The
maximum likelihood estimator and Bayes estimators are also obtained using the sym-
metric and asymmetric balanced loss functions. Some Bayes prediction bound length of
intervals for Pareto model has studied by Prakash and Singh (2013). Fu at al. (2012)
discussed about the objective Bayesian analysis of Pareto distribution under progressive
Type-II censoring. Three different types of non-informative priors and two general forms
of second order probability matching prior are used. Li (2011) derived ML and Bayes
estimates for the shape parameter, reliability, and failure rate functions of the Pareto
distribution under progressive Type-II censored samples.

In this paper, Bayesian analysis for the shape parameter of Pareto Type-II distribu-
tions under Progressive Type-II censoring is considered. Two different loss functions
have used for a comparative analysis based on Relative efficiency obtained for Bayes es-
timator when scale parameter is considered to be known as well as unknown. A simulated
and real life data are both analyzed for the purpose of illustration.

2 The Model and Posterior Densities

The probability density function of Pareto Type-II distribution with shape parameter θ
and scale parameter σ is given as

f (x; θ, σ) = θσθ (x+ σ)−θ−1 ; x ≥ 0, θ > 0, σ > 0. (1)

Progressive censoring is more flexible than the ordinary censoring, has now one of the
most popular censoring schemes in life testing. In recent literature about progressive
censoring, both classical and subjective Bayesian approaches are widely utilized in pa-
rameter estimation of various distributions. For a comprehensive recent review of pro-
gressive censoring, see Balakrishnan (2007).

Let us take an experiment with n independent and identical units X1, X2, ..., Xn at
beginning time and first m; (1 ≤ m ≤ n) failure times are observed. At time of each
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failure occurring prior to termination point, one or more surviving units are removed
from the test. The experiment is terminated at the time of mth failure, and all remaining
surviving units are removed from the test (See Prakash (2015) for more detail)

Based on progressively Type-II censoring scheme the joint probability density function

of order statistics X
(R1,R2,...,Rm)
1:m:n , X

(R1,R2,...,Rm)
2:m:n , ..., X

(R1,R2,...,Rm)
m:m:n is defined as

f(X1:m:n,X2:m:n,...,Xm:m:n) (θ, σ|x) = km

m∏
i=1

f
(
x(i); θ, σ

) (
1− F

(
x(i); θ, σ

))Ri . (2)

Here, km be the Progressive normalizing constant. Simplifying Eq.(2), the joint proba-
bility density function is obtained as:

f(X1:m:n,X2:m:n,...,Xm:m:n) (θ, σ|x) = km

m∏
i=1

(
θσθ

(
x(i) + σ

)−θ−1)( σ

x(i) + σ

)θRi
⇒ f(X1:m:n,X2:m:n,...,Xm:m:n) (θ, σ|x) = kmθ

m e−θTm(x;θ,σ)e−T0(x;σ); (3)

where T0 (x;σ) =
∑m

i=1 log
(
x(i) + σ

)
and Tm (x; θ, σ) =

∑m
i=1 (Ri + 1) log

(
x(i) + σ

)
− n

logσ.

The two-parameter Gamma distribution is considered as the conjugate family of prior
density for the shape parameter θ when scale parameter σ is known. The probability
density function of Gamma density is given as

π(θ) =
βα

Γ(α)
θα−1e−βθ ; θ > 0, α > 0, β > 0. (4)

Now, the posterior density for the parameter θ is defined as

π∗ (θ|x) =
f(X1:m:n,X2:m:n,...,Xm:m:n) (θ, σ|x) · π(θ)∫

θ f(X1:m:n,X2:m:n,...,Xm:m:n) (θ, σ|x) · π(θ)dθ
(5)

Using Eq. (3) & Eq. (4) in Eq. (5) we get

π∗ (θ|x) ∝ θm exp (−θTm (x; θ, σ)− T0 (x;σ)) · θα−1e−βθ∫
θ θ

m exp (−θTm (x; θ, σ)− T0 (x;σ)) · θα−1e−βθdθ

⇒ π∗ (θ|x) =
(Tm (x; θ, σ) + β)m+α

Γ(m+ α)
θm+α−1 e−θ(Tm(x;θ,σ)+β). (6)

When scale parameter σ is consider as a random variable, the joint prior density is thus
defined as

π1 (θ, σ) = π∗1 (θ|σ) · π∗1(σ).
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Following Prakash (2014 b), the joint prior density for the parameters θ and σ is thus
obtained as

π1 (θ, σ) =
γβ

Γ(β)Γ(α)
θα−1e−σθσα+β−1e−γσ. (7)

Using Eq.(7) in Eq. (5), the joint posterior density when both parameters is considered
to be unknown is obtained as

π∗∗ (θ, σ|x) =
f(X1:m:n,X2:m:n,...,Xm:m:n) (θ, σ|x) · π1(θ, σ)∫

θ

∫
σ f(X1:m:n,X2:m:n,...,Xm:m:n) (θ, σ|x) · π1(θ, σ)dσdθ

=
θm+α−1exp (−θ (Tm (x; θ, σ) + σ)) exp (−T0 (x;σ)− γσ)σα+β−1∫

σ exp (−T0 (x;σ)− γσ)σα+β−1
(∫
θ θ

m+α−1exp (−θ (Tm (x; θ, σ) + σ)) dθ
)
dσ

⇒ π∗∗ (θ, σ|x) =
θm+α−1e−θT̂m(x;θ,σ) e−T̂0(x;σ)σα+β−1

Γ(m+ α)σ̄
(8)

where T̂m (x; θ, σ) = Tm (x; θ, σ) + σ, σ̄ =
∫
σ
e−T̂0(x;σ)σα+β−1

T̂m(x;θ,σ)α+m
dσ and T̂0 (x;σ) = T0 (x;σ)

+γσ.

3 Bayes Estimator Under Squared Error Loss (SELF)

The choice of loss function may be crucial in Bayesian analysis. The most commonly
used loss function is a squared error loss function. The Bayes estimator for parameter θ
corresponding to posterior density π∗ (θ|x) under SELF is obtained as

θ̂S1 =
(Tm (x; θ, σ) + β)m+α

Γ(m+ α)

∫
θ
θm+αe−θ(Tm(x;θ,σ)+β)dθ

⇒ θ̂S1 =
m+ α

Tm (x; θ, σ) + β
. (9)

Similarly, the Bayes estimator corresponding to parameter θ for posterior density π∗∗ (θ, σ|x)
is obtained as

θ̂S2 =

∫
σ

∫
θ
θ
θm+α−1e−θT̂m(x;θ,σ)e−T̂0(x;σ)σα+β−1

Γ(m+ α)σ̄
dθ dσ

⇒ θ̂S2 = (m+ α)

(
¯̄σ

σ̄

)
; ¯̄σ =

∫
σ

e−T̂0(x;σ)σα+β−1(
T̂m (x; θ, σ)

)m+α+1dσ. (10)
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A nice close form of the Bayes estimator θ̂S2 is not exist, however a numerical finding
have been presented. The expression of the risks corresponding to SELF is defined as

R(S)

(
θ̂Si; i = 1, 2

)
= ET(x)

(
θ̂2Si

)
− 2θET(x)

(
θ̂Si

)
+ θ2.

Again close forms of the expressions of the risk do not exist. A numerical technique with
help of simulation is applied herewith for drawing relative efficiency for Bayes estimators
corresponding to different loss functions.

4 Bayes Estimator Under Invariant Linex Loss (ILLF)

When overestimation is more serious than underestimation, or vice-versa, or positive
and negative errors have different consequences, the use of SELF is not appropriate in
estimation problems. An invariant LINEX loss function (ILLF) is useful and flexible
(See Singh at al. (2007) for more details) and is given as

L (∆) = ea∂ − a∂ − 1 ; ∂ =
θ̂

θ
− 1.

Here, ′a′ is called as the shape parameter and θ̂ be the any estimate of the parameter θ.

The Bayes estimator θ̂L1 corresponding to ILLF under posterior density π∗ (θ|x) is obtain
by simplify the following equality

E
(
θeaθ̂L1θ

)
= eaE(θ)

⇒
∫
θ
θm+α e−θ(Tm(x;θ,σ)+β−aθ̂L1)dθ = ea

∫
θ
θm+α e−θ(Tm(x;θ,σ)+β)dθ

⇒ θ̂L1 =
a∗

a
(Tm (x; θ, σ) + β) ; a∗ =

(
1− e−a/(m+α−1)

)
. (11)

where Tm (x; θ, σ) =
∑m

i=1 (Ri + 1) log
(
x(i) + σ

)
− n logσ.

Similarly, Bayes estimator θ̂L2 corresponding to posterior density π∗∗ (θ, σ|x) is obtained
as

E
(
θeaθ̂L2θ

)
= eaE(θ)

⇒
∫
σ

∫
θ

θm+α e−θ(T̂m(x;θ,σ)−aθ̂L2) e−T̂0(x;σ) σα+β−1

σ̄
dθdσ
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= ea
∫
σ

∫
θ

θm+α e−θ(T̂m(x;θ,σ)) e−T̂0(x;σ) σα+β−1

σ̄
dθdσ

⇒
∫
σ

e−T̂0(x;σ) σα+β−1(
T̂m (x; θ, σ)− aθ̂L2

)m+α+1dσ = ea
∫
σ

e−T̂0(x;σ) σα+β−1(
T̂m (x; θ, σ)

)m+α+1dσ (12)

The risk corresponding to the Bayes estimators under ILLF is

R(L)

(
θ̂Li; i = 1, 2

)
= e−aET(x)

(
exp

(
a
θ̂Li
θ

))
− aET(x)

(
θ̂Li
θ

)
+ a− 1.

Again, the closes forms of the risks do not exist. A numerical integration method has
been applied here for obtaining their risks.

5 Numerical Analysis

The close form of the risk expressions under both loss functions for all Bayes estimators
do not exists. A numerical integration techniques based on the simulation is applied
here for studying the properties of Bayes estimators. Now, the relative efficiency under
both risks criterion are defined as

RE(S)

(
θ̂Li, θ̂Si; i = 1, 2

)
=
RE(S)

(
θ̂Si

)
RE(S)

(
θ̂Li

)
and

RE(L)

(
θ̂Li, θ̂Si; i = 1, 2

)
=
RE(L)

(
θ̂Si

)
RE(L)

(
θ̂Li

) .
CASE 1. When Scale Parameter Is Known

To assess and study the properties of the Bayes estimator for shape parameter θ, a
simulation study has been performed. The random samples are generated as follows:

1. Generate θ through prior density π(θ) for selected set of prior parameters α and β
as (α, β) = (0.25, 0.50), (4, 2), (9, 3). The selections of prior parametric values meet
the criterion that the prior variance should be unity.

2. Using the values of shape parameter θ obtain from step (1) with considered set of
values of scale parameter σ = 0.50(0.50)2.50; generate 10, 000 random samples of
size N = 30 from model (1).
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Table 1: Censoring Scheme for Different Values of m

Case m Ri ∀ i = 1, 2, ...,m

1 10 1 0 0 3 0 0 1 0 0 1

2 20 1 0 2 0 0 1 0 0 1 0 1 0 1 1 0 1 0 2 0 0

3. The progressively Type-II censored Pareto Type-II data is generated, by the help of
known σ and generated θ of size m, under a given censoring plan Ri; i = 1, 2, ...,m,
according to an algorithm proposed by Balakrishnan and Aggarwala (2000).

4. The progressively Type-II censoring plan for different values of m is presented in
Table 1.

5. The Relative efficiencies between θ̂S1 & θ̂L1 under SELF & ILLF have been obtain
and presented in Tables 2-3 respectively.

6. The RE’s under both risk criterion are presented here for a = 0.25, 0.50, 1.00 at
N = 30.

7. From both the tables, it is observed that the Bayes estimator θ̂L1 performs uni-
formly better than the estimator θ̂S1. The Relative efficiencies are higher for small
scale parameter. The RE decreases when ′a′ is increases.

8. The Relative efficiency further decrease when set of prior parameter is upgraded.
Similar trend also has seen when progressive censoring pattern and size are changed.

Case 2. When Scale Parameter Unknown

When both parameters are considered as the random variable, a simulation study also
has been carried out for studying the properties of Bayes estimators as:

1. The scale parameter σ has been generated for set of values of prior parameter β
and γ chosen as (β, γ) = (0.25, 0.50), (4, 2) and (9, 3) and obtained from the prior
distribution

π′(σ) =
γβ

Γ(β)
e−γσσβ−1.

The selection criterion for the prior parametric values is similar.

2. Using generate values of σ from Step (1) and selected values of α = 0.50(0.50)2.50;
the shape parameter θ has been generated from the prior

π′′(θ|σ) =
σα

Γ(α)
e−σθθα−1.
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Table 2: Relative Efficiency Between θ̂S1 and θ̂L1 Under SELF

N = 30 ← σ →
m a (α, β) ↓ 0.50 1.00 1.50 2.00 2.50

0.25, 0.50 2.2068 2.1526 2.0540 1.9188 1.7565

0.25 04, 02 1.7218 1.6795 1.6026 1.4971 1.3705

09, 03 1.6292 1.5892 1.5164 1.4166 1.2967

0.25, 0.50 1.7583 1.7151 1.6365 1.5288 1.3995

10 0.50 04, 02 1.2988 1.2698 1.2088 1.1293 1.0337

09, 03 1.2819 1.2504 1.1932 1.1147 1.0204

0.25, 0.50 1.6796 1.6383 1.5633 1.4604 1.3369

1.00 04, 02 1.2864 1.2548 1.1973 1.1185 1.0239

09, 03 1.2783 1.1718 1.1036 1.0376 1.0185

0.25, 0.50 1.9234 1.6202 1.5477 1.4800 1.3492

0.25 04, 02 1.7217 1.6172 1.5409 1.3929 1.1378

09, 03 1.5877 1.5791 1.4608 1.3672 1.0923

0.25, 0.50 1.4229 1.3866 1.3635 1.2538 1.2432

20 0.50 04, 02 1.2705 1.2676 1.1964 1.1147 1.0325

09, 03 1.2598 1.2501 1.1598 1.1104 1.0152

0.25, 0.50 1.2278 1.2262 1.2189 1.1413 1.0619

1.00 04, 02 1.2233 1.1954 1.1953 1.0898 1.0195

09, 03 1.2194 1.1608 1.0975 1.0203 1.0142
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Table 3: Relative Efficiency Between θ̂S1 and θ̂L1 Under ILLF

N = 30 ← σ →
m a (α, β) ↓ 0.50 1.00 1.50 2.00 2.50

0.25, 0.50 3.9529 3.6039 3.4343 3.1326 2.9414

0.25 04, 02 2.8828 2.8813 2.8108 2.5704 2.5036

09, 03 2.7251 2.7211 2.5904 2.3755 2.3714

0.25, 0.50 2.9547 2.8724 2.7496 2.5624 2.3499

10 0.50 04, 02 2.7496 2.6404 2.4251 2.1835 1.8319

09, 03 2.4666 2.3973 2.2813 2.1766 1.8187

0.25, 0.50 2.8158 2.7439 2.6179 2.4429 2.2301

1.00 04, 02 2.5429 2.4856 2.2499 2.1823 1.7714

09, 03 2.4063 2.3962 2.1848 2.1737 1.7705

0.25, 0.50 3.2218 2.7187 2.5973 2.4705 2.2576

0.25 04, 02 2.8754 2.7081 2.5881 2.2576 1.9053

09, 03 2.6582 2.6577 2.4428 2.2513 1.8916

0.25, 0.50 2.3855 2.2951 2.2844 2.0961 2.0802

20 0.50 04, 02 2.2986 2.1976 2.1489 1.9667 1.7234

09, 03 2.1768 2.1294 2.1288 1.8594 1.7059

0.25, 0.50 2.0514 2.0421 1.9411 1.9117 1.7782

1.00 04, 02 2.0357 2.0144 1.9142 1.8249 1.7227

09, 03 2.0048 1.9434 1.8378 1.8059 1.6973
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Table 4: Relative Efficiency Between θ̂S2 and θ̂L2 Under SELF

N = 30 ← σ →
m a (β, γ) ↓ 0.50 1.00 1.50 2.00 2.50

0.25, 0.50 3.0253 2.7541 2.6284 2.5132 2.1198

0.25 04, 02 2.7268 2.6252 2.5143 1.9872 1.1128

09, 03 2.3653 2.2591 1.9856 1.8807 1.1049

0.25, 0.50 2.6177 2.3898 2.3404 1.9613 1.7984

10 0.50 04, 02 2.4404 2.2082 1.9808 1.8623 1.4365

09, 03 2.1666 2.0629 1.9297 1.6714 1.2043

0.25, 0.50 2.5507 2.1001 2.0036 1.8696 1.7685

1.00 04, 02 1.9606 1.9231 1.7259 1.6421 1.3739

09, 03 1.8469 1.8329 1.7214 1.6369 1.3505

0.25, 0.50 2.6501 2.5754 2.3841 2.0795 1.8529

0.25 04, 02 2.2685 2.1722 1.9808 1.9785 1.8219

09, 03 2.2441 2.1348 1.9595 1.8733 1.7734

0.25, 0.50 2.2254 2.1756 2.0836 1.8604 1.5929

20 0.50 04, 02 2.1759 2.1683 1.9648 1.8505 1.5192

09, 03 1.8781 1.8341 1.7491 1.6589 1.1914

0.25, 0.50 1.8737 1.5621 1.4856 1.3631 1.3409

1.00 04, 02 1.8582 1.5479 1.4531 1.3601 1.3187

09, 03 1.5343 1.4879 1.4358 1.3214 1.2997

3. Using other Steps as discussed in previous section, the Relative efficiencies between
θ̂S2 & θ̂L2 under SELF & ILLF have been obtain and presented in Tables 4-5
respectively.

4. From both the tables, it is observed again that the Bayes estimator θ̂L2 performs
uniformly better than the estimator θ̂S2. Other properties have been seen similar
as discussed above.

CASE 3. A Real Life Example

In present section the properties of Bayes estimation are studied under an example
uses real-life data. Lawless (1982) considered data representing the break-down times
(in minutes) of an insulating fluid between electrodes at a voltage of 34 kV. Total 18
observations are given in Table 6. A Progressively Type-II censored sample scheme of
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Table 5: Relative Efficiency Between θ̂S2 and θ̂L2 Under ILLF

N = 30 ← σ →
m a (β, γ) ↓ 0.50 1.00 1.50 2.00 2.50

0.25, 0.50 4.2791 3.7229 3.6994 3.1921 2.9718

0.25 04, 02 3.9375 3.6359 3.2641 3.1277 2.9511

09, 03 3.7768 3.3727 3.2637 2.8429 2.6464

0.25, 0.50 3.1077 2.9608 2.8178 2.6125 2.5449

10 0.50 04, 02 2.8778 2.6956 2.6712 2.4935 2.2663

09, 03 2.5408 2.5402 2.3491 2.2204 1.8533

0.25, 0.50 2.8692 2.7997 2.6759 2.4258 2.2242

1.00 04, 02 2.5115 2.4412 2.3262 2.2149 1.8015

09, 03 2.4563 2.3276 2.2905 2.2112 1.6409

0.25, 0.50 3.2829 2.9701 2.9468 2.7582 2.3441

0.25 04, 02 2.9965 2.7549 2.6723 2.4402 1.9456

09, 03 2.7843 2.7134 2.5956 2.4041 1.9296

0.25, 0.50 2.3076 2.2353 2.1879 2.0877 1.9675

20 0.50 04, 02 2.2419 2.2103 2.1397 2.0041 1.7604

09, 03 2.1818 2.1609 2.1275 1.9085 1.7549

0.25, 0.50 2.0032 1.9808 1.9775 1.9477 1.8944

1.00 04, 02 1.9431 1.9026 1.8505 1.7553 1.6755

09, 03 1.4244 1.4079 1.3725 1.3417 1.2909
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Table 6: The Break-Down Times of An Insulating Fluid Between Electrodes

0.19 0.78 0.96 1.31 2.78 3.16

4.15 4.67 4.85 6.50 7.35 8.01

8.27 12.06 31.75 32.52 33.91 36.71

size m = 10 is selected randomly. The relative efficiency for all the Bayes estimators
under considered risk functions are obtained and presented in the Table 7. The relative
efficiency are obtained for N = 18 and a = 0.50 only. All the properties are seen similar
as discussed above.

6 Conclusions

Pareto Type-II distribution is considered here as the underlying model for study the
properties of Bayes estimator under different loss function. A Progressive Type-II cen-
sored data has been utilised under the SELF and ILLF risk criterion. For known and
unknown both case of scale parameter is taken for obtaining the Bayes estimators for
shape parameter. Since, the close form of the risks under both risks criterion does not
exist, so a numerical technique under a simulation has been carried out for study the
performances of the procedures. We observe that the Bayes estimator under ILLF is
perform better as compare to Bayes estimator under SELF in both cases.
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Table 7: Relative Efficiency Between θ̂S1 and θ̂L1 Under SELF

Relative Efficiency Between θ̂S1 and θ̂L1 Under SELF

← σ →
(α, β) ↓ 0.50 1.00 1.50 2.00 2.50

0.25, 0.50 2.5915 2.2501 2.2115 2.0137 1.8284

04, 02 1.8119 1.8089 1.7428 1.6852 1.6114

09, 03 1.7766 1.7304 1.6783 1.6074 1.4547

Relative Efficiency Between θ̂S1 and θ̂L1 Under ILLF

0.25, 0.50 3.1061 3.0769 2.9506 2.7135 2.6914

04, 02 3.0007 2.8681 2.8189 2.6698 2.1314

09, 03 2.9294 2.7074 2.5115 2.4166 1.9435

Relative Efficiency Between θ̂S2 and θ̂L2 Under SELF

← α→
(β, γ) ↓ 0.50 1.00 1.50 2.00 2.50

0.25, 0.50 2.7847 2.4279 2.3964 2.2639 2.0647

04, 02 2.5947 2.3438 2.1728 2.0109 1.9316

09, 03 2.2091 2.0594 1.9034 1.7273 1.5632

Relative Efficiency Between θ̂S2 and θ̂L2 Under ILLF

0.25, 0.50 3.0332 3.0247 3.0014 2.8498 2.6283

04, 02 2.8303 2.8008 2.5528 2.4072 2.1814

09, 03 2.4607 2.3439 2.1526 2.1501 1.9979
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