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Abstract. We study characterizations of implementable allocation rules
when types are multi–dimensional, monetary transfers are allowed, and
agents have quasi–linear preferences over outcomes and transfers. Every
outcome is associated with a continuous valuation function that maps an
agent’s type to his value for this outcome. Sets of types are assumed to be
convex. Our main characterization theorem implies that allocation rules
are implementable if and only if they are implementable on any two-
dimensional convex subset of the type set. For finite sets of outcomes,
they are implementable if and only if they are implementable on every
one-dimensional subset of the type set.

Our results complement and extend significantly a characterization re-
sult by Saks and Yu (2005), as well as follow-up results thereof. Contrary
to our model, this stream of literature identifies types with valuation vec-
tors. In such models, convexity of the set of valuation vectors allows for a
similar characterization as ours. Furthermore, implementability on one-
dimensional subsets of valuation vectors is equivalent to monotonicity.
We show by example that the latter does not hold anymore in our more
general setting.

Our proofs demonstrate that the linear programming approach to mech-
anism design, pioneered in Gui et al (2004) and Vohra (2011), can be
extended from models with linear valuation functions to arbitrary con-
tinuous valuation functions. This provides a deeper understanding of the
role of monotonicity and local implementation. In particular, we provide
a new, simple proof of the Saks and Yu theorem, and generalizations
thereof.

Modeling multi-dimensional mechanism design the way we propose it
here is of relevance whenever types are given by few parameters, while
the set of possible outcomes is large, and when values for outcomes are
non-linear functions in types.
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1 Introduction

We investigate the following basic setting of asymmetric information, which ap-
pears in various forms in the theory of incentives. There are a single agent and
a principal. The agent holds private information t from some set T . We call t
the type of the agent, and T the type set. Depending on the agent’s type the
principal wants to select an allocation, or take an action, a from some set A.
We call the function f : T → A which determines this selection the allocation
rule. We allow for monetary transfers given by a payment function p : T → R
which the principal uses in order to orchestrate incentives. The agent has cardi-
nal preferences for allocations parameterized by his type, given by a valuation
function v : A × T → R, and quasi-linear utility for allocations and payments.
We assume that the agent and the principal interact by a revelation mechanism
in which the agent announces a type t, which may be different from his true
type s, and the principal allocates f(t) and makes transfer p(t), yielding utility
v(f(t), s) + p(t) for the agent. We call f implementable if there exists a p that
makes truthful reports of the agent a weakly dominant strategy, that is, for all
s, t in T :

v(f(s), s) + p(s) ≥ v(f(t), s) + p(t). (1)

Equivalent to using a revelation mechanism, the principle could set a price menu
for A satisfying (1) and let the agent choose an action that maximizes his utility
1. Note that participation constraints, requiring that an agent gets at least as
much utility from truthful reports as under non-participation, can be captured
by (1) by adding some (artificial) type t0 with v(a, t0) being equal to the value
of the outside option for all a ∈ A, and setting p(t0) = 0. We call the triple
(T,A, v) an environment.

Such environments occur as building block in numerous applications in the
theory of incentives. In particular they have been studied in the context of mech-
anism design. Though mechanism design deals typically with more than one
agent, an environment as defined above can be used to grasp the perspective of
each individual agent. For example, if we are interested in dominant strategy im-
plementable allocation rules f , we get an environment for each select agent and
for each possible type report of all other agents. The allocation rule describes the
influence of the selected agent’s type reports, given the reports of other agents.
Similar does the payment rule determine his payment for outcomes, given the
report of the other agents. If we are interested in Bayesian Nash Implementation,
the allocation rule maps types of a selected agent to a distribution of outcomes,
induced by the distribution of truthful type reports of other agents.

1 The taxation principle which is readily derived from (1), forces equal prices for types
that yield the same allocation.



Central questions in many applications in the theory of incentives are (1) a
characterization of all implementable allocation rules f , (2) ways to construct
payments p, and (3) conditions on when p is unique up to a constant. The latter
property is called revenue equivalence due to its applications in auctions. Having
such insights at hand is, for example, instrumental to solve optimal mechanism
design problems. Given a distribution on T , optimal mechanism design trys to
find among all implementable f one that minimizes expected payments to agents
(or, equivalently maximizes expected payments to the principal). A characteriza-
tion of all implementable f allows for a compact encoding of all feasible solutions
of this optimization problem, and an explicit representation of p allows to for-
mulate the objective expected revenue as a function of an encoding of f . In
the best case this yields an optimization problem with a closed form solution,
with Myerson’s optimal single-item auction being the most prominent example
(Myerson, 1981).

Some answers to the three questions above are available without making
any assumptions on the environment. As for (1), Rochet’s cyclic monotonicity
condition provides a complete characterization of implementable allocation rules
(Rochet, 1987). Gui et al (2004) provide a network interpretation of cyclic mono-
tonicity by defining so-called type or allocation graphs. A type graph has a node
for each t ∈ T and directed edges in both directions between any two types with
a particular length that reflects benefits of false type reports. Cyclic monotonic-
ity tells that these graphs must not have any cycle of negative length. As for
(2), Rochet’s proof is constructive in the sense that it provides a recipe how to
compute p, which, in network terms, translates into computing shortest paths
from some source node to any other node in terms of the edge length. As for
(3), Heydenreich et al (2009) show that payments are unique up to a constant if
and only if shortest path lengths are anti-symmetric, that is, for any two types
s, t in the network the length of the shortest path from s to t equals minus the
length of the shortest path from t to s. Kos and Messner (2012) generalize this
insight by showing that generally payments form – up to normalization – a lat-
tice in which shortest path lengths from and to a particular type form minimal
and maximal points.

Having environments with additional structure allows for more compact, or
local, characterizations of implementable allocation rules. For example, if T is a
subset of R, A = [0, 1], and v(a, t) = at – e.g. t could be the value of an indivisible
good and a the probability of getting the good – then cyclical monotonicity holds
if and only if f is weakly increasing. In terms of the type graph, this is the case if
and only if all cycles consisting of 2 nodes are non-negative. The latter property is
called (weak) monotonicity or 2–cycle–monotonicity. The special role of 2-cycles
has triggered quite some results on environments where 2–cycle monotonicity
is sufficient for monotonicity (Archer and Kleinberg, 2014; Ashlagi et al, 2010;
Bikhchandani et al, 2006; Mishra et al, 2013; Saks and Yu, 2005). These papers
have in common that they use a different representation of an environment, which
we shall call a domain representation, as opposed to a parameter representation
as given by our model. A domain associates every type with a function, mapping



outcomes to values, as explained next. Both representations are closely linked,
but since convex sets of types in parameter representations do not necessarily
induce convex domains, characterization results on domains do not necessarily
hold for parameter representations.

An environment (T,A, v) induces for each t ∈ T a function v(., t) : A → R,
or, equivalently, a valuation vector x ∈ RA, given by xa = v(a, t) for all a ∈ A
2. Given (T,A, v), we will denote by φ the projection φ : T → RA given by
φ(t)a = v(a, t) for all a ∈ A. We call D = φ(T ) the domain correspond-
ing to the environment (T,A, v). Saks and Yu have shown that for finite A
and convex domains D 2-cycle monotonicity implies cycle-monotonicity. Ash-
lagi et al (2010) strengthened this result in the following way. They consider
randomized allocation rules that map valuation vectors to (sub-)probability
distributions over outcomes, that is they consider functions f : T → Z(A)
and f : T → Z(A), where Z(A) = {z ∈ RA |za ≥ 0,

∑
a∈A za = 1} and

Z(A) = {z ∈ RA |za ≥ 0,
∑

a∈A za ≤ 1}, respectively. Agents are assumed to
be risk neutral with the valuation for an allocation z ∈ Z(A) being defined
as v(z, x) =

∑
a∈A zaxa. Given a finite A, they call a domain a monotonicity

domain if every monotone randomized allocation rule with finite range is imple-
mentable, and a proper monotonicity domain if every monotone allocation rule
f : T → Z(A) with finite range is implementable. Their main result is to show
that a domain D is a proper monotonicity domain if and only if the closure of
D is convex, and a monotonicity domain if and only if its projection on the hy-
perplane {x ∈ RA |

∑
a∈A xa = 1} is a proper monotonicity domain. The finite

range assumption is thereby crucial. Archer and Kleinberg (2014) construct for
any k ≥ 3 a domain for which there exists an allocation rule f with infinite range
that is k-cycle monotone but not (k + 1)-cycle monotone.

While the domain model is easy to work with, it is for many applications
neither natural nor practical. Often T might be finite–dimensional, while A may
be infinite, in which case the previous literature is silent. Even for finite A, a
parametrization by types may allow for a low–dimensional compact representa-
tion of private information, contrary to valuation vectors. Think for example of
additive valuations in multi-item auctions, where a type represents a value for
each of the m items, allowing for types of dimension m, while the corresponding
domain has dimension 2m − 1. In this example the projection φ would still be
linear, which helps to lift results from the domain model. However, in general,
valuation functions may be non–linear functions in types, in which case the pro-
jection φ(T ) of a convex T usually yields a non–convex domain representation.
Non–linear valuation functions appear in particular in behavioral models of util-
ity, like for example in Köszegi and Rabin’s theory of preferences that depend
on endogenous reference points (Köszegi and Rabin, 2006), or Gul’s model of
disappointment aversion (Gul, 1991). Carbajal and Ely (2013) discuss principal
agent problems with non-contractible actions that fall into this category as well.

Another example of a non–convex domain is given by Vohra (2011, Example
4, p. 59). In this example there are two goods a and b, and the agent can be

2 We assume here that |A| <∞ for ease of presentation, see Section 2 for more details.



allocated either good a, good b, or both (that is A = {a, b, ab}). The agent’s
type is a non–negative vector t ∈ R3, where ta and tb are the valuations that
the agent has for receiving either good a or good b, and tab = max{ta, tb}, i.e.
the agent has no additional value when receiving both goods. Vohra shows that
every deterministic monotone allocation rule on this type space is implementable.
However, neither this type space nor its projection on the hyperplane {x ∈
R3 | ta + tb + tab = 1} are convex, and therefore, by the result of Ashlagi
et al (2010), there are monotone allocation rules with finite range that map to
Z(A) which are not implementable. This leads us to the question whether there
are stronger, but still practical conditions that can be used instead of 2-cycle
monotonicity to characterize implementability. In the remainder of the paper
we give a comprehensive answer to this question under the following, very mild
assumptions on the environment. We will assume that T is a convex subset of
Rd for some d. Varying, but very mild assumptions on v are required, as for
example that v(a, .) is continuous on T . For such settings, we show that local
implementability implies implementability, and that, for finite A and continuous
valuation functions, implementability on lines is sufficient for implementability.
The example by Vohra can be translated into our setting of environments with
a convex type space, and we can use our results to show that for allocations
that map into a particular subset of Z(A) monotonicity is still sufficient for
implementability.

Additional structure allows as well to provide explicit representations of pay-
ments in terms of path integrals of a particular vector field, yielding general-
izations of the Mirrlees representation of indirect utility (Mirrlees, 1971). For
valuation functions that are differentiable in types Milgrom and Segal (2002)
show that this follows from the envelope theorem. Krishna and Maenner (2001)
prove a similar representation to hold for convex valuation functions. Mirrlees’
representation can be used for characterization purposes as well. For example,
Jehiel et al (1999)) and Jehiel and Moldovanu (2001) apply this to auction envi-
ronments with linear valuation functions. They show that existence and path–
independence of these integrals provides necessary and sufficient conditions for
implementation. This approach has been simplified by Archer and Kleinberg
(2014) who show that for convex type set T and linear valuation functions path-
integrals on line-segments and path-independence along the border of triangles
is sufficient for implementation. Furthermore, they show that any rule that is
implementable in some small enough neighborhood around each type t, is imple-
mentable on all of T . Based on this they provide an alternative proof for Saks
and Yu’s theorem, and at the same time generalize it to environments with con-
vex T and linear valuation functions. Berger et al (2009) generalize this result to
convex valuation functions and monotone allocation rules which satisfy the ad-
ditional property decomposition monotonicity. In the following we significantly
extend the approach by Archer and Kleinberg (2014) and Berger et al (2009). To
do so, we disentangle the characterization question from the Mirrlees represen-
tation. Contrary to Carbajal and Ely (2013), who show how for settings without
revenue equivalence a weaker form of Mirrlees representation can be achieved



by integration of correspondences, we choose a network approach that is purely
based on measuring distances along line segments in type graphs. When alloca-
tion rules satisfy revenue equivalence, such distances provide unique payments
up to a constant.

Carroll (2012) has investigated the role of local implementability as well, and
shows in which cases local subsets of incentive constraints (1) are sufficient for
implementability. While he derives characterizations in terms of local properties
of an allocation rule and a payment rule, ours, as those of Archer and Kleinberg
(2014) and Berger et al (2009), yield characterizations in terms of local prop-
erties of just the allocation rule. At the same time, his results are more general
as they cover ordal as well as polyhedral type spaces.

Organization & Results. First, in Section 2, we define our setting and intro-
duce necessary notation. In that section we also describe the above described
relationship between domain and parameter representations in more detail. We
present our main characterization of implementability (Theorem 4) in Section 3.1.
Then we provide extensions of the results of Archer and Kleinberg (2014) about
local implementability (Theorem 5, Section 3.2) and of Saks and Yu (2005) for
finite outcome space (Theorem 6, Section 3.3). In Section 4 we apply our results
to an example given in Vohra (2011).

2 Incentive Compatibility, Cyclic Monotonicity and
2-Cycle Monotonicity

In this section we provide precise definitions and recall the network approach
for our basic model. Next we establish the relation between parameter repre-
sentations and domain representations. In the first part, we need to make no
assumptions on the environment, the second part applies to finite A.

We consider environments (T,A, v), where T is a set of types, A is a set of
allocations, and v : A× T → R is a valuation function. We assume quasi linear
utilities, so the utility of an agent of type t ∈ T for some outcome a ∈ A and
payment π is equal to v(a, t) + π.

Definition 1. A direct mechanism (f, p), consisting of an allocation rule f :
T → A and a payment function p : T → R is called incentive compatible (IC) if
for all s, t ∈ T :

v(f(s), s) + p(s) ≥ v(f(t), s) + p(t). (2)

An allocation rule f is called implementable if there exists a payment function
p that makes the mechanism (f, p) IC.

It is straightforward to see that adding a constant to a payment rule p of an
IC mechanism yields again an IC mechanism. If payment rules are unique up to
such modifications, we say that revenue equivalence holds:

Definition 2. An implementable allocation rule f satisfies revenue equivalence
if for any two incentive compatible mechanisms (f, p) and (f, p′) there exists



c ∈ R such that p(t) = p′(t) + c for all t ∈ T . An environment (T,A, v) sat-
isfies revenue equivalence, if all implementable allocation rules satisfy revenue
equivalence.

Rochet (1987) identified a property called cyclical monotonicity that charac-
terizes implementable allocation rules. It has later been related to node potentials
in type graphs by Gui et al (2004). Here, and further on, a graph consists of a
set of nodes and a set of (directed) arcs between pairs of nodes.

Given an allocation rule f , the set of nodes of the type graph Tf is equal to
T . Every pair of types s, t ∈ T is connected by arcs from s to t and from t to
s. We define arc lengths lu(s, t) for arcs of Tf as follows (and call them u-length
between types s, t ∈ T ):

lu(s, t) = v(f(t), t)− v(f(t), s).

A path from node s to node t in Tf , or (s, t)-path for short, is defined as P =
(s = s0, s1, ..., sk = t) such that si ∈ T for i = 0, ..., k. The u-length of P is
defined as

lengthu(P ) =

k−1∑
i=0

lu(si, si+1).

A cycle is a path with s = t. For any t, we regard the path from t to t without
any arcs as a (t, t)-path and define its length to be 0. Let P (s, t) be the set of
all (s, t)-paths. The u-distance from s to t is defined as

distu(s, t) = inf
P∈P (s,t)

lengthu(P ).

A node potential π with respect to u-length is a function π : T → R such
that for all s, t ∈ T we have

π(t) ≤ π(s) + lu(s, t).

By the definition of u-length, implementability of an allocation rule f is
equivalent with the existence of node potentials with respect to u-length. Fur-
thermore, revenue equivalence coincides with uniqueness of node potentials with
respect to u-lengths up to a constant.

It is straightforward that if Tf has a node potential it cannot have a negative
cycle. The opposite holds as well, as in the absence of negative cycles we can
fix a type s and take distances from s to any type t to yield the node potential
p(t) := distu(s, t). This motivates Rochet’s definition of cyclical monotonicity
and yields his characterization of implementability.

Definition 3. An allocation rule f : T → A is called cyclical monotone, if for
all cycles C, lengthu(C) ≥ 0. f is called 2-cycle monotone3, if for all s, t ∈ T it
holds that:

lu(s, t) + lu(t, s) ≥ 0.

3 In the literature, the terms weakly monotone, or just monotone is often used instead
of 2-cycle monotone. For readability purposes we prefer to use the longer name
2-cycle monotone.



Theorem 1 (Rochet (1987)). An allocation rule f : T → A is implementable
if and only if it is cyclical monotone.

For later reference we state Rochet’s theorem in terms of distances and combine it
with a relation between distances and payment differences that is straightforward
to prove.

Corollary 1. An allocation rule f : T → A is implementable if and only if for
any s, t ∈ T :

distu(s, t) + distu(t, s) ≥ 0. (3)

In this case, every payment p satisfies:

−distu(t, s) ≤ v(f(t), t) + p(t)− v(f(s), s)− p(s) ≤ distu(s, t). (4)

Finally, a characterization of revenue equivalence due to Heydenreich et al
(2009) is a direct consequence of what has been said so far:

Theorem 2 (Heydenreich et al (2009)). Let f be an allocation rule that
is implementable. Then f satisfies revenue equivalence if and only if for any
s, t ∈ Tf :

distu(s, t) + distu(t, s) = 0. (5)

Combining Theorem 2 and Corollary 1 yields the following.

Corollary 2. An allocation rule f : T → A is implementable and satisfies rev-
enue equivalence if and only if for any s, t ∈ T :

distu(s, t) + distu(t, s) = 0 (6)

In this case, every payment p satisfies:

distu(s, t) = v(f(t), t) + p(t)− v(f(s), s)− p(s). (7)

As we have mentioned in the introduction, our intention is to derive for
environments similar characterizations of implementable allocation rules as for
domain representations, to the extend this is possible. In order to connect more
easily to the previous literature on domain representations, we assume for the
remainder of this section that A is finite, though part of the results hold as well
for infinite A.

We define a projection φ : T → RA and a domain D ⊆ RA as follows. For
a type t ∈ T we define φ(t)a = v(a, t) for all a ∈ A and let D = φ(T ). In the
following we assume that φ is one-to-one. This assumption means that there
are no two types in T which have the same valuation for each outcome. This is
a reasonable assumption since two such types would be indistinguishable from
the viewpoint of the principal4. Let Z(A) = {z ∈ RA|za ≥ 0,

∑
a∈A za = 1}

4 At the cost of some technical care results can be extended to the case where φ is not
one-to-one. The issue to be dealt with is that allocation rules on T may not have a
unique counterpart on φ(T ).



and Z(A) = {z ∈ RA|za ≥ 0,
∑

a∈A za ≤ 1}. Note that valuations on A can be

straightforwardly extended to Z(A) by setting v(z, t) =
∑

a∈A zav(a, t). Again,
in order to connect more easily to previous literature, we let allocation rules map
from T into Z(A) or Z(A). An allocation rule is said to have finite range if f(T )
is finite.

For any allocation rule f : T → Z(A) we can identify a corresponding allo-
cation rule g : D → Z(A) by letting g(x) := f(φ−1(x)) for x ∈ D.

Lemma 1. Let (T,A, v) be an environment with finite A. Let f : T → Z(A) be
an allocation rule and g : φ(T ) → Z(A) be the corresponding allocation rule on
the domain induced by (T,A, v). Then f is cyclical monotone (2-cycle monotone)
if and only if g is cyclical monotone (2-cycle monotone).

Proof. We show that the u–length between any pair of types is the same for f
and for g. For this purpose let s, t ∈ T and let zs = f(s) and zt = f(t). Then

lu(s, t) = v(f(t), t)− v(f(t), s) =
∑
a∈A

ztav(a, t)−
∑
a∈A

ztav(a, s)

=
∑
a∈A

ztaφ(t)a−
∑
a∈A

ztaφ(s)a = v(g(φ(t)), φ(t))−v(g(φ(t)), φ(s)) = lu(φ(s), φ(t)).

ut

Lemma 1 allows to apply the following results by Ashlagi et al (2010).

Theorem 3 (Ashlagi et al (2010)). Let D ⊆ RA and |A| ≥ 2. Then every 2-
cycle monotone allocation rule f : D → Z(A) with finite range is implementable
if and only if the closure of D is convex.

Moreover, every 2-cycle monotone allocation rule f : D → Z(A) with finite
range is implementable if and only if the projection of D onto the hyperplane
{x ∈ RA |

∑
a∈A xa = 1} is convex.

From the above theorem and Lemma 1 we immediately conclude the following
corollary for general environments.

Corollary 3. Let (T,A, v) be an environment where A is finite, |A| ≥ 2, and
let D = φ(T ) be defined as above. Moreover, assume that φ is one–to–one.

Then every 2-cycle monotone allocation rule f : T → Z(A) with finite range
is implementable if and only if the closure of D is convex.

Moreover, every 2-cycle monotone allocation rule f : T → Z(A) with finite
range is implementable if and only if the projection of D onto the hyperplane
{x ∈ RA |

∑
a∈A xa = 1} is convex.

Turning back to environments (T,A, v) and allocation rules f : T → A,
Corollary 3 has the following consequences. If the closure of φ(T ) is convex,
any 2-cycle monotone f : T → A with finite range is implementable. To see
this, apply Corollary 3 with A being f(T ), noting that |f(T )| = 1 is trivial. If
the closure of φ(T ) is not convex and |A| ≥ 2, there exists a 2-cycle monotone



f : T → Z(A) with finite range that is not implementable. If the closure of
the projection of φ(T ) (as described in 3) is not convex, there even exists a
monotone f : T → Z(A) with finite range that is not implementable. Even for
convex T ⊂ Rd neither of the two conditions on φ(T ) might hold if the projection
φ is not a linear mapping. This raises the question of a suitable replacement of
the monotonicity condition, which we will answer in the remainder of the paper.

3 Simplifying Rochet’s characterization

In this section we consider environments (T,A, v), where T is a convex subset of
Rd (d ≥ 1), A is an arbitrary set, and v : A×T → R is a valuation function. We
restrict ourselves to allocation rules that satisfy revenue equivalence. We explain
at the end of this section, how this assumption can be omitted and thereby relate
our results to Carbajal and Ely (2013). Throughout, we assume that T is a convex
subset of Rd for some d ≥ 0. The main result is that every allocation rule that
is locally implementable is globally implementable. This allows us to prove that
any allocation rule that is implementable on every line segment and has finite
range is globally implementable. We start by introducing the notion of line-
implementability and showing how it can be used to characterize implementable
rules. Then we present our local implementability result. We conclude with a
treatment of finite outcome spaces.

3.1 Line-implementability

We denote by Ls,t the line segment between s and t in T :

Ls,t = {s+ λ(t− s) : λ ∈ [0, 1]} .

Definition 4. Let T be convex. An allocation rule f : T → A is called line
implementable if for any s, t ∈ T it is implementable on Ls,t.

Obviously, every implementable allocation rule is line-implementable. Further-
more every line-implementable allocation rule is monotone. It is well-known that
for linear valuation functions 2-cycle monotonicity and line-implementability are
equivalent. This follows in particular from Corollary 3. The same Corollary tells
us that this equivalence does not hold in general for non-linear valuation func-
tions, as the projection of the type space into the domain representation might
not be convex. The following example of convex, almost everywhere linear val-
uation functions provides an illustration where even a deterministic allocation
rule can be constructed that is 2-cycle monotone but not implementable.

Example 1. Suppose T = [0, 1] and A = {a, b, c}, and the valuation function is
given by

v(a, t) =

{
0 t ≤ 2

3

3t− 2 t > 2
3 ,



v(b, t) = 3t and

v(c, t) =

{
2− 3t t ≤ 1

3

3t t > 1
3 .

Consider the following allocation rule:

f(t) =


a 0 ≤ t ≤ 1

3

b 1
3 < t ≤ 2

3

c 2
3 < t ≤ 1.

We verify monotonicity by calculating u-length for the following three cases.

i) 0 ≤ s ≤ 1
3 and 1

3 < t ≤ 2
3

lu(s, t) + lu(t, s) = 3(t− s) ≥ 0,

ii) 0 ≤ s ≤ 1
3 and 2

3 < t ≤ 1

lu(s, t) + lu(t, s) = 3s ≥ 0,

iii) 1
3 < s ≤ 2

3 and 2
3 < t ≤ 1

lu(s, t) + lu(t, s) = 0.

However, there is a cycle with negative length:

lu(0, 1) + lu(1,
1

3
) + lu(

1

3
, 0) = −1,

which means f is not implementable.

Archer and Kleinberg (2014) prove that for convex type spaces and linear val-
uation functions, 2-cycle monotonicity of an allocation rule together with path-
independence on triangles of particular integrals defined by f is equivalent with
implementability. Example 1 and Corollary 3 tell that this equivalence cannot
hold for arbitrary valuations. Still, we can show that the same principle, as well
as its consequences, applies if we replace monotonicity by line-implementability.
Thereby, we do not even need integrals, but can fully rely on distances in the
type graph. To do so, we need to define distances on lines.

Definition 5. Let T be convex. For any s, t ∈ T , the Lu−distance from s to t
is defined as

distLu (s, t) = inf
P∈PL(s,t)

lengthu(P ),

where PL(s, t) is the set of all (s, t)-paths contained in Ls,t. For any s ∈ T , we

define distLu (s, s) = 0.



Definition 6. Let T be convex and f : T → A be implementable. We say f
satisfies revenue equivalence on lines, if f|L satisfies revenue equivalence for all
line segments L = Ls,t, s, t ∈ T .

Using these definitions we get the following theorem.

Theorem 4. Let T ⊆ Rd be convex and f : T → A an allocation rule. The
following are equivalent:

1. f is implementable and satisfies revenue equivalence on lines.
2. f is line implementable and for any s1, s2, s3 ∈ T :

3∑
i=1

distLu (si, si+1) = 0, (8)

where s4 = s1 and distances in (8) are taken with respect to Lsi,si+1
.

Proof. (=⇒) Since f is implementable by some payment function p, it is also
implementable on each line segment using the same p. By Corollary 2 and
(7), applied to any L = Ls,t, s, t ∈ T , revenue equivalence on lines implies

distLu (s, t) = v(f(t), t) + p(t)− v(f(s), s)− p(s). By summing up along a triangle
given by types s1, s2 and s3 we get

3∑
i=1

distLu (si, si+1) = 0.

(⇐=) Fix x ∈ T . For every w ∈ T define the payment as:

p(w) = distLu (x,w)− v(f(w), w),

where L = Lx,w. Now for every s, t ∈ T we have:

p(t)− p(s) = distLu (x, t)− v(f(t), t)− distLu (x, s) + v(f(s), s)

≤ distLu (x, t) + distLu (s, x)− v(f(t), t) + v(f(s), s)

= −distLu (t, s)− v(f(t), t) + v(f(s), s)

≤ distLu (s, t)− v(f(t), t) + v(f(s), s)

≤ lu(s, t)− v(f(t), t) + v(f(s), s)

= v(f(s), s)− v(f(t), s),

where the first and the second inequality follows from Corollary 1, the second
equality from (8), and the third inequality from the definition of distu.

If we take s3 = s2 we have:

distLu (s1, s2) + distLu (s2, s1) = 0.

Since s1 and s2 are arbitrary we can conclude according to Theorem 2 that f
satisfies revenue equivalence on lines. ut



A few remarks about the conditions in the above theorem are at place.

Remark 1. Revenue equivalence on lines is a fairly mild assumption. For exam-
ple, it holds when A is countable and valuation functions are equi–continuous
(Chung and Olszewski, 2007; Heydenreich et al, 2009), and for arbitrary A when
valuation functions are differentiable functions of types (Milgrom and Segal,
2002), or convex functions of types (Krishna and Maenner, 2001). Berger et al
(2009) contains a direct proof of the last fact using type graphs.

Remark 2. Line–implementability of an allocation rule has to be verified on a
case by case basis. However, in some situations more structure on the envi-
ronment can make this task easier. One property for an environment that en-
sures line–implementability for any monotone allocation rule is the increasing
differences property (Müller et al, 2007). An environment satisfies this prop-
erty if and only if for all s, t ∈ T and x ∈ Ls,t, and a, b ∈ A, we have that
v(a, t)−v(b, t) ≥ v(a, x)−v(b, x) implies that v(a, x)−v(b, x) ≥ v(a, s)−v(b, s).
Note that this definition is independent of the allocation rule f and therefore
gives an easy way of verifying in which environments line–implementability can
be replaced by monotonicity in Theorem 4.

Remark 3. For certain settings, the distances on lines in the above theorem
can be explicitly computed using line integrals over corresponding vector fields,
in particular when the valuation functions are convex (Archer and Kleinberg,
2014; Berger et al, 2009; Krishna and Maenner, 2001) or differentiable functions
of types (Berger et al, 2009; Milgrom and Segal, 2002).

Remark 4. Carbajal and Ely (2013) show that for particular environments one
can also get a characterization in the flavor of Theorem 4 without requiring
revenue equivalence on lines. The trick is to have sufficient structure in order to
be able to replace distances on lines Ls,t by some function δ(s, t) which satisfies
δ(s, t) ≤ lu(s, t) and δ(s, t) = −δ(t, s) for all s, t in T . Carbajal and Ely show
that integrals on the line segment between s and t with respect to an integrable
correspondence defined by the allocation rule f provide us with such δ, if one
imposes sufficient structure on the environment to guarantee the existence of
the integrals. They also show for their environments that the existence of these
integrals is implied by implementability. The functions δ given by these integrals
satisfy in particular

−distu(s, t) ≤ δ(s, t) ≤ distu(s, t),

which implies that δ(s, t) = distu(s, t) if and only if the allocation rule satisfies
revenue equivalence.

We close this section by a corollary of Theorem 4, which extends a result
by Vohra (2011, Theorem 4.2.11), who has proven it for randomized allocation
rules over finitely many outcomes.

Corollary 4. Let T ⊆ Rd be convex and (T,A, v) be an environment such that
every line implementable allocation rule satisfies revenue equivalence on lines.
Then an allocation rule f : T → A is implementable if and only if it is imple-
mentable on every two-dimensional convex subset of T .



3.2 Local Implementability

Archer and Kleinberg (2014) were the first ones who characterized implementabil-
ity based on local monotonicity. Their proof requires valuation functions to be
linear. Motivated by their results we introduce in this section the notion of local
implementability and extend their results to general valuation functions. The
characterization holds for any outcome space and any valuation function, except
that we will need revenue equivalence on lines.

Definition 7. An allocation rule f : T → A is called locally implementable
if for every t ∈ T there exists an open neighborhood U(t) around t such that
f |T∩U(t) is implementable.

Obviously, implementability guarantees local implementability. To prove the
other direction we need the following lemma.

Lemma 2. Let T ⊆ Rd be convex. If the allocation rule f is line implementable
and satisfies revenue equivalence on lines, then for any s, t ∈ T and x ∈ Ls,t

between s and t:
distLu (s, t) = distLu (s, x) + distLu (x, t).

Proof. Fix s, t ∈ T and x between s and t. Since f is implementable on Ls,t,
according to Corollary 1 and Theorem 2 there exist payments p such that:

distLu (s, t) = p(t) + v(f(t), t)− p(s)− v(f(s), s)

Using the same observation for distLu (s, x) and distLu (x, t) and a simple cal-
culation completes the proof. ut

In the following we denote for s1, s2, s3 ∈ T , all three distinct, by Ns1,s2,s3 the
convex hull of s1, s2, s3 and by Ms1,s2,s3 the path describing the boundary of
Ns1,s2,s3 , i.e Ls1,s2 ∪ Ls2,s3 ∪ Ls3,s1 , with direction s1 → s2 → s3 → s1.

Now we are prepared to prove the main theorem of this section.

Theorem 5. Let T ⊆ Rd be convex and assume that every implementable allo-
cation rule satisfies revenue equivalence on lines. Then an allocation rule f is
implementable if and only if it is locally implementable and line implementable.

Proof. (⇒) Implementability of f on T implies implementability on subsets of
T . Therefore f is locally implementable and line implementable.

(⇐) The proof is similar to the proof for linear valuations given in Archer
and Kleinberg (2014), however as we need to apply our more general results
Theorem 4 and Lemma 2 we include it. Let f be locally implementable and
line implementable. Let s1, s2, s3 ∈ T , all three distinct. Since Ns1,s2,s3 is closed
and bounded it is compact. Since f is locally implementable, for any point x
in Ns1,s2,s3 there is an open neighborhood U(x) such that for any x1, x2, x3 ∈
U(x) ∩ T , all three distinct:

3∑
i=1

distLu (xi, xi+1) = 0,



s1

s2

s3

x

U(x)

Fig. 1. Subdividing Ns1,s2,s3 into sufficiently small triangles

where x4 = x1.
Recall that by the Lebesgue Number Lemma for any open covering Λ of a

compact metric space X there is a δ > 0 such that for each subset of X having
diameter less than δ, there exists an element Λ containing it5. This implies that
there is a δ > 0 such that every subset of Ns1,s2,s3 of diameter less than δ is con-
tained in at least one of the neighborhoods in which f is implementable. In partic-
ular, if we subdivide Ns1,s2,s3 into M triangles Ns11,s

1
2,s

1
3
,Ns21,s

2
2,s

2
3
, ...,NsM1 ,sM2 ,sM3

(see Figure1), each of which having diameter less than δ, and orient the boarders
Msj1,s

j
2,s

j
3

consistently with Ms1,s2,s3 , we get

0 =

M∑
j=1

3∑
i=1

distLu (sji , s
j
i+1).

In this formula, the distances along Ms1,s2,s3 appear exactly once. All distances
of sides of Msj1,s

j
2,s

j
3

which are not contained in Ms1,s2,s3 appear exactly once in

each direction and cancel each other out because revenue equivalence holds on
lines. Applying Lemma 2, we have

3∑
i=1

distLu (si, si+1) =

M∑
j=1

3∑
i=1

distLu (sji , s
j
i+1) = 0,

where s4 = s1 and sj4 = sj1. Now according to Theorem 4, f is implementable.
ut

3.3 Finite Outcome Space

We prove in this section a generalization of the Theorem of Saks and Yu. We
make use of a lemma that is of interest by its own as it describes a fairly general
setting for which monotonicity is sufficient for implementability. Ashlagi et al
(2010) have proven a similar lemma for linear valuations and finite set of out-
comes. We show that the result holds in a much more general case. To make
it work, we have to make the assumption that valuation functions v(a, .) are
continuous in t for all a ∈ A.
5 For more information refer to Munkres (2000) or other classic books on topology.



Lemma 3. Let T ⊆ Rd and v : A × T → R be continuous in t for all a ∈ A.
For a ∈ A let

Da := cl(f−1(a)).

If f : T → A is monotone and
⋂

a∈f(T )Da 6= ∅, then f is implementable.6

Proof. Let {s1, . . . , sk} ⊆ T for some k ≥ 3 and t ∈
⋂

a∈ADa. Fix 1 ≤ i ≤ k.
Since t ∈ Df(si+1), there is a sequence (tj)j∈N, such that f(tj) = f(si+1) for
every j ∈ N and limj→∞ tj = t where indices are taken modulo k. Note that for
every j ∈ N

lu(si, si+1) = v(f(si+1), si+1)− v(f(si+1), si)

= v(f(si), si)− v(f(si+1), si) + v(f(si+1), si+1)− v(f(si), si)

= v(f(si), si)− v(f(tj), si) + v(f(si+1), si+1)− v(f(si), si)

≥ v(f(si), tj)− v(f(tj), tj) + v(f(si+1), si+1)− v(f(si), si)

= v(f(si), tj)− v(f(si+1), tj) + v(f(si+1), si+1)− v(f(si), si),

where the inequality follows from monotonicity. By continuity of v in t we get:

lu(si, si+1) ≥ v(f(si), t)− v(f(si+1), t) + v(f(si+1), si+1)− v(f(si), si).

If we sum up all inequalities, we have:

k∑
i=1

lu(si, si+1) ≥
k∑

i=1

v(f(si), t)−v(f(si+1), t)+v(f(si+1), si+1)−v(f(si), si) = 0.

Invoking Theorem 1 completes the proof. ut

Now we simplify Theorem 4 in case of f with a finite range, which yields
a generalization of the result by Saks and Yu (2005) for domain models, and
by Archer and Kleinberg for environments with linear valuation functions. The
theorem simplifies identifying the implementability of an allocation rule f to
verifying whether f is implementable on any one dimensional subset of T .

Theorem 6. Let (T,A, v) be an environment such T ⊆ Rd is convex and v(a, ) :
T → R is continuous in t for all a ∈ A. An allocation rule f : T → A with finite
range is implementable if and only if it is line implementable.

Proof. (⇐) As the range of f is finite and v continuous, it follows from Hey-
denreich et al (2009) that f satisfies revenue equivalence on lines. According to
Theorem 5 it is sufficient to show that f is locally implementable.

Fix t ∈ T . For all a ∈ f(T ) let εa(t) := inf
x∈Da

‖x− t‖2 7. Then,

t ∈ Da ⇔ εa(t) = 0.

6 cl(X) denotes the topological closure of a set X ⊆ Rd.
7 See Lemma 3 for the definition of Da



We show the existence of a neighborhood U(t) around t such that t ∈ Da for
all a ∈ f(U(t)). Set A(t) := {a ∈ f(T ) : εa(t) = 0}. As t ∈ Df(t), we have that

A(t) 6= ∅ and t ∈
⋂

a∈A(t)

Da. If A(t) = f(T ) we let U(t) = Rd. Otherwise let

ε = min{εa(t) : a ∈ f(T ) \A(t)}.

Note that ε > 0. Define U(t) = {x ∈ Rd : ‖x− t‖2 < ε}.
Since line implementability implies monotonicity, we can invoke Lemma 3

to prove that f is implementable on U(t). In other words, f is locally imple-
mentable.

(⇒) is obvious.
ut

Theorem 6 holds as well for allocation rules f : T → Z(A) as we may replace A
by Z(A) at first place, given that we made no assumptions on A and that the ex-
tension of a continuous valuation from A to Z(A) remains continuous. Note that
we cannot replace line–implementability by the weaker condition monotonicity,
despite the fact that monotonicity is all we need to apply Lemma 3. This follows
from Example 1 and Corollary 3.

4 Example

In this section we illustrate by example how our results can be used to identify a
large class of allocation rules on an environment with a non-convex domain for
which monotonicity is sufficient for implementability.

The example is based on Vohra (2011, Example 4, p. 59). Vohra provides in
this example a non–convex domain, in which each deterministic and monotone
allocation rule is implementable. We extend this result by providing a class of
randomized allocation rules with the same property. We model his setting as an
environment with a convex type space and convex valuation functions and then
apply Theorem 6.

We consider a set of outcomes A = {a, b, ab} and the set of all lotteries over
outcomes in A, that is Z(A) = {(pa, pb, pab) : pa + pb + pab = 1, pa, pb, pab ≥ 0}.
The type space is T = [0, 1]2 and the valuations for a type (t1, t2) ∈ T are given
by

v(a, (t1, t2)) = t1

v(b, (t1, t2)) = t2

v(ab, (t1, t2)) = max{t1, t2},

and these are linearly extended to outcomes in Z(A). The domain arising
from this environment (as a subset of R3) is not convex. Moreover, its projection
onto the hyperplane {x ∈ R3 | ta + tb + tab = 1} is also not convex. Therefore,



by the result of Ashlagi (see Theorem 3), there are randomized allocation rules
on this domain which are monotone but not implementable-

However, as Proposition 1 below shows, there is a large class of randomized
allocation rules for which monotonicity implies implementability.

Proposition 1. Let T , A and v : T ×Z(A)→ R be as above. Let f : T → Z(A)
be a monotone allocation rule with finite range such that for any (pa, pb, pab),
(ra, rb, rab) ∈ f(T ) we have that

(pa − ra) · (pb − rb) < 0.

Then f is implementable.

Proof. According to Theorem 6 it is sufficient to show that any monotone
f : T → Z(A) with finite range that satisfies the above condition is line–
implementable. In order to show line–implementability, it is sufficient to show
that the environment (T,A, v) satisfies the increasing differences property (see
Remark 2). In our setting, this property holds, if for all s, t ∈ T , x ∈ Ls,t and
zp = (pa, pb, pab), zr = (ra, rb, rab) ∈ Z(A), we have that

v(zr, t)− v(zp, t) ≥ v(zr, x)− v(zp, x)

implies that
v(zr, x)− v(zp, x) ≥ v(zr, s)− v(zp, s).

The proof involves an extensive case analysis, where the cases depend on the
relative location of s and t. For explanatory purpose we show that the increasing
difference property holds for the case when s = (α, 1) and t = (1, β), where
α, β ∈ [0, 1].

We consider the function v(zr, .)− v(zp, .) on the line segment Ls,t, given by
the parametrization g : [0, 1]→ T , g(λ) = s+λ(t−s). This function is piecewise
linear with one breakpoint.

Moreover,
v(zr, g(0))− v(zp, g(0)) = (1− α)(pa − ra),

and
v(zr, g(1))− v(zp, g(1)) = (1− β)(pb − rb).

Therefore, the condition on the outcomes in the theorem ensures that we
have v(zr, g(λ)) − v(zp, g(λ)) as a function of λ is strictly monotone, and from
this the increasing difference property follows immediately.

ut

5 Conclusions

In this paper, we have characterized implementable allocation rules in multi–
dimensional environments. Our main theorem implies that, for any environment
where revenue on lines holds and where the set of types is convex, allocation rules



are implementable if and only if they are implementable on any two-dimensional
convex subset of the type set. For finite sets of outcomes, they are implementable
if and only if they are implementable on every one-dimensional subset of the type
set. For the latter, revenue on lines holds whenever valuations are continuous.
Our proofs extend the linear programming approach to mechanism design (Gui
et al, 2004; Vohra, 2011) from models with linear valuation functions to arbitrary
continuous valuation functions. This provides a deeper understanding of the role
of monotonicity and local implementation.

It remains a challenging task to develop further techniques that enable us
to verify line–implementability of allocation rules. If the increasing differences
property holds, it is sufficient to verify monotonicity (see Remark 2). But already
for convex, but non-linear valuation functions it is not.
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