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a b s t r a c t

In this paper we consider the issue of unit root testing in cross-sectionally dependent panels.We consider
panels that may be characterized by various forms of cross-sectional dependence including (but not
exclusive to) the popular common factor framework. We consider block bootstrap versions of the group-
mean (Im et al., 2003) and the pooled (Levin et al., 2002) unit root coefficient DF tests for panel data,
originally proposed for a setting of no cross-sectional dependence beyond a common time effect. The
tests, suited for testing for unit roots in the observed data, can be easily implemented as no specification
or estimation of the dependence structure is required. Asymptotic properties of the tests are derived for
T going to infinity and N finite. Asymptotic validity of the bootstrap tests is established in very general
settings, including the presence of common factors and cointegration across units. Properties under the
alternative hypothesis are also considered. In a Monte Carlo simulation, the bootstrap tests are found to
have rejection frequencies that are much closer to nominal size than the rejection frequencies for the
corresponding asymptotic tests. The power properties of the bootstrap tests appear to be similar to those
of the asymptotic tests.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

The use of panel data to test for unit roots and cointegration
has become very popular recently. A major problem with tests for
unit roots (and cointegration) in univariate time series is that they
lack power for small sample sizes. Therefore one of the reasons
people have turned to panel data, is to utilize the cross-sectional
dimension to increase the power. Another reason to use panel
data is that one might be interested in testing a joint unit root
hypothesis for N entities. The so-called first-generation panel unit
root tests such as the tests proposed by Levin et al. (2002) and Im
et al. (2003) are examples where the cross-sectional dimension
is used to construct tests that have higher power than individual
unit root tests. However, all the first-generation tests rely on
independence along the cross-sectional dimension.

It was soon realized that cross-sectional independence is a
highly unrealistic assumption for most settings encountered in
practice, and it has been shown that the first-generation tests
exhibit large size distortions in the presence of cross-sectional
dependence (e.g. O’Connell, 1998). Therefore, the so-called second-
generation panel unit root tests have been constructed to take
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the cross-sectional dependence into account in some way. These
second-generation tests assume specific forms of the cross-
sectional dependence as their application depends on modelling
the structure of the dependence. Most tests model the cross-
sectional dependence in the form of common factors, although
the way the common factors are dealt with differs for each test.
Examples of second-generation panel unit root tests are Bai and
Ng (2004), Moon and Perron (2004), and Pesaran (2007). An
extensive Monte Carlo comparison of these tests can be found
in Gengenbach et al. (2010). Breitung and Das (2008) provide an
analytical comparison of several first- and second-generation tests
in the presence of factor structures.

While the second-generation panel unit root tests can deal with
common factor structures and contemporaneous dependence,
they cannot deal with other forms of cross-sectional dependence,
with the exception of Pedroni et al. (2008). Of particular interest for
practical applications are dynamic interrelationships (an example
of which is Granger causality). Our goal in this paper is to
present panel unit root tests that can deal not only with common
factors, but also with a wide range of other plausible dynamic
dependencies.

The tool we use to achieve this is the block bootstrap. Two very
useful features of the block bootstrap are that one does not have
to model the dependence (both temporal and cross-sectional) in
order to apply it, and that it is valid to use under a wide range
of possible data generating processes (DGPs). This makes it an
appropriate tool to use in this setting with N fixed, possibly large,
and large T asymptotics.

http://dx.doi.org/10.1016/j.jeconom.2010.11.010
http://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
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Of course, the idea to use the bootstrap in cross-sectionally
dependent panels is not new and has already been proposed by
Maddala and Wu (1999),1 but so far no one has considered the
theoretical properties of the block bootstrap in this setup. There
are theoretical results available for other bootstrap and related
resampling methods. Chang (2004) considers sieve bootstrap unit
root tests, but the sieve bootstrap can only be applied in panels
under restrictive assumptions on the cross-sectional dependence.
Kapetanios (2008) proposes a bootstrap resampling schemewhich
resamples in the cross-sectional dimension instead of the usual
time dimension, but this is based on cross-sectional independence.
Choi and Chue (2007) consider subsampling, which does allow
for more general dependence, but as the authors themselves state
(p. 235) ‘‘Notwithstanding these nice features of the subsampling
approach, depending on the nature of the problem at hand, other
methods like bootstrapping may work better in finite samples’’.

Hence, the properties of the block bootstrap are still largely
unknown in this setting, while in fact the block bootstrap is quite
popular among practitioners. We try to fill this gap by providing
theoretical results, mainly about asymptotic validity, of block
bootstrap panel unit root tests. The block bootstrap method we
consider here is the moving-blocks bootstrap (Künsch, 1989), and
is an extension of the univariate bootstrap unit root test proposed
by Paparoditis and Politis (2003). We will consider a very general
DGP that can capturemanydifferent interesting and relevant forms
of cross-sectional and time dependence.

Our results provide the theoretical justification, supported by
Monte Carlo evidence, for the use of the proposed panel unit root
tests in applications where one is interested in testing for a unit
root in the observed data, and where cross-sectional dependence
of possibly unknown form might be present in the data. The tests
can be easily implemented, as they do not require the specification
and estimation of the cross-sectional dependence structure. For
example, it is not necessary to know the number of common
factors, nor to estimate these factors. It is not even necessary to
know whether common factors are present in the data at all.

The structure of this paper is as follows. Section 2 explains the
model and assumptions. The test statistics and the construction
of the bootstrap versions are discussed in Section 3. We establish
the asymptotic validity of the bootstrap tests (for T → ∞

and N fixed) for various settings in Section 4. Finite sample
performance, including block length selection, is investigated in
Section 5. Section 6 concludes. All proofs and preliminary results
are contained in the Appendix.

Finally, a word on notation. We use | · | to denote the Euclidean
norm for vectors andmatrices, i.e. |v| = (v′v)1/2 for a vector v and
|M| = (trM ′M)1/2 for amatrixM . ⌊x⌋ is the largest integer smaller
than or equal to x. Convergence in distribution (probability) is
denoted by

d
−→ (

p
−→). Bootstrap quantities (conditional on the

original sample) are indicated by appending a superscript ∗ to the
standard notation.

2. Cross-sectionally dependent panels

Let us first describe the model that we use for panels with
possible unit roots and that allows for various types of cross-
sectional and temporal dependence.

Let yt = (y1,t , . . . , yN,t)
′ (t = 1, . . . , T ) be generated as

yt = ΛFt + wt , (1)

where Λ = (λ1, . . . , λN)′, Ft = (F1,t , . . . , Fd,t)′ and wt =

(w1,t , . . . , wN,t)
′. Hence, Ft are common factors (d in total), Λ are

1 Also see Fachin (2007) and Di Iorio and Fachin (2008) for some successful
applications of the block bootstrap in testing for cointegration in panels.
the (non-random) factor loadings, and wt are the idiosyncratic
components. Let y0 = 0.

We let the factors and the idiosyncratic components be gener-
ated by

Ft = ΦFt−1 + ft ,
wt = Θwt−1 + vt ,

(2)

where Φ = diag(φ1, . . . , φd) and Θ = diag(θ1, . . . , θN).
Furthermore, we let ft and vt be constructed as[

vt
ft

]
= Ψ (L)εt =

[
Ψ11(L) Ψ12(L)
Ψ21(L) Ψ22(L)

] [
εv,t
εf ,t

]
, (3)

where Ψ (z) =
∑

∞

j=0 Ψjz j (Ψ0 = I). We also partition Ψ (z) as
Ψ (z) = (Ψ1(z)′, Ψ2(z)′)′ where Ψi(z) = (Ψi1(z), Ψi2(z)), i = 1, 2.

We only need some mild conditions on Ψ (z) and εt .

Assumption 1.

(i) det(Ψ (z)) ≠ 0 for all {z ∈ C : |z| = 1} and
∑

∞

j=0 j|Ψj| < ∞.
(ii) εt is i.i.d. with E εt = 0, E εtε

′
t = Σ and E |εt |

2+ϵ < ∞ for
some ϵ > 0.

Our null hypothesis isH0: yi,t has a unit root for all i = 1, . . . ,N .
As in Bai and Ng (2004) and Breitung and Das (2008), we discern
three different settings under which this can occur.

(A) θi = φj = 1 for all i = 1, . . . ,N and j = 1, . . . , d: both the
common factors and the idiosyncratic components have a unit
root. This is our first main setting.

(B) |θi| < 1 for all i = 1, . . . ,N, φj = 1 for all j = 1, . . . , d:
the common factors have a unit root while the idiosyncratic
components are stationary. In this setting the units are cross-
sectionally cointegrated. In accordance with most of the
literature we shall call this cross-unit cointegration. We also
discuss this case in detail.2

(C) θi = 1 for all i = 1, . . . ,N, |φj| < 1 for all j = 1, . . . , d:
the common factors are stationary while the idiosyncratic
components have a unit root. We shall not discuss this case in
detail in Section 4 but its properties can easily be derived from
the previous two cases.

Note that in this paper we are not interested in which of the three
settings occurs, insteadwe simply want to test if yi,t has a unit root
for all i.

We can discern different alternative hypotheses.3 The following
two are of interest to us.

• Ha
1 : yi,t is stationary for all i = 1, . . . ,N . This implies that

|θi| < 1 for all i = 1, . . . ,N and |φj| < 1 for all j = 1, . . . , d.
• Hb

1 : yi,t is stationary for a portion of the units. This implies that
|φj| < 1 for all j = 1, . . . , d; while |θi| < 1 for all i ∈ I1
and θi = 1 for all i ∈ I2, with I1 ∪ I2 = {1, . . . ,N} and
n1/N = κ > 0, where n1 is the number of elements of I1.4

2 We could also easily think of a setting in between settings (A) and (B), i.e. one
where |θi| < 1 for all i ∈ I1 and θi = 1 for all i ∈ I2 (with I1 ∪ I2 = {1, . . . ,N}).
In other words, where part of the units are cointegrated and others are not. We will
not analyze this setting in detail as it is basically contained in the analysis of settings
(A) and (B).
3 Di Iorio and Fachin (2008) discuss several alternative hypotheses that are

relevant when testing for the null of no panel cointegration. They also argue that
the choice of the test statistic should depend on the alternative hypothesis. Their
arguments are valid for the unit root setting as well.
4 In principle we could also let some of the factors be I(1) provided they have

zero loadings on the units in I1 .
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In setting (B) we need an additional assumption on the factor
loadings. In particular, we need to assume that for each unit at least
one of the loadings on the factors is not equal to zero. If all loadings
for one unit are equal to zero, this unit would be stationary and
therefore the null hypothesis would be violated. This is formalized
in Assumption 2.

Assumption 2. If setting (B) holds, then λ′

iλi > 0 for all i =

1, . . . ,N .

While this seems an additional and unverifiable assumption,
this is not really the case. In fact, Assumption 2 is not really an
assumption on the DGP as it is implied by our null hypothesis
and in particular setting (B). One does therefore not have to verify
whether this assumption holds when applying the test: under the
null hypothesis it must hold by construction in setting (B), while in
settings (A) and (C) it has no impact on the test.

Remark 1. Note that while the setting we adopt is fairly com-
parable to factor models such as those considered in Bai and Ng
(2004) and Breitung and Das (2008), it is more general in several
ways. First, it is common to assume Ψ12(z) = 0, Ψ21(z) = 0 and
Σ12 = 0, Σ21 = 0 such that the factors are independent of the id-
iosyncratic components. There is however no need to do so in order
to obtain our theoretical results, and therefore we will not make
this assumption in general. Whenever this assumption is made,
this will be explicitly mentioned.

Moreover, andmore importantly, in most common factor mod-
els only weak dependence between the idiosyncratic components
is allowed. We do not make this assumption; instead we allow for
a wide array of possible dependencies between the idiosyncratic
components, both through Σ and Ψ (z). Especially the lag polyno-
mial allows for a wide range of dependencies, including all sorts of
dynamic dependencies.

Therefore setting (A) is our main setting of interest, as simply
setting λi = 0 for all i = 1, . . . ,N results in a model
without common factors, where the cross-sectional dependence is
completely generated by Σ and Ψ (z). This setting is therefore the
most general. We also analyze setting (B) as it has generated a lot
of attention in the literature (mainly due to Bai and Ng, 2004), but
it is in fact a very specialized setting that lacks the generality of
setting (A).

The DGP employed by Chang (2004) is also a special case of our
DGP: in setting (A), one can obtain this DGP by setting λi = 0 for all
i = 1, . . . ,N and making Ψ (L) diagonal and obey an invertibility
condition.

Remark 2. One might wonder whether we can actually call wt
idiosyncratic components given the degree of interdependence
that we allow for, as Σ11 and Ψ11(z) might be non-diagonal
without restrictions beyond full rank and Ψ12(z) might be non-
zero. In fact, one could even raise the question whether the
distinction between factors and idiosyncratic components makes
sense in our model with finite N . After all, the distinction between
strong and weak dependence (that gives meaning to factors
and idiosyncratic components) depends on the weak dependence
disappearing as N grows (see for example Chudik et al., 2009).

As a consequence of this the long-run covariance matrix will
always have full rank in setting (A) irrespective of whether factors
are present. Therefore we could use a VMA model for 1yt instead.
We could even use this for setting (B), for which we currently
use the orders of integration of the factor structure and the
idiosyncratic components to distinguish it from the other settings.
To be precise, we could assume under the null hypothesis that

1yt = Ψ (L)εt .

Setting (B) would result from this by assuming that the rank of
Ψ (1) is equal to d. By the Beveridge–Nelson decomposition we
would then have
1yt = Ψ (1)εt + Ψ̃ (L)1εt ,

which, by writing Ψ (1) = Λβ ′ and letting 1Ft = β ′εt , could be
rewritten as

yt = ΛFt + Ψ̃ (L)εt .

The correspondence between this model and ours is obvious from
this representation (thismodel could even be seen as a special case
of ours with the differenced factors being white noise). The crucial
point is that both this and our model allow us to deal with setting
(B), where most existing tests fail.5

However, we stick to the factor structure model and terminol-
ogy for two reasons. First, we want to stay close to the usual non-
stationary panel models, such that our results remain comparable
to the main strand of the literature. Also, from our model one can
easily reach a ‘‘true’’ factor setup by imposing restrictions on the
lag polynomial and the covariance matrix of the errors.

The second reason is for clarity. As mentioned above, we could
do without the factor structure andmodel everything in terms of a
VARMA for yt . However, we would still need restrictions (such as
on the rank) and the caseswould therefore still need to be analyzed
separately, as illustrated above. Therefore, little would be gained
from this approach while we believe that the intuitive appeal of
our setup and the interpretability would be lost.

3. Bootstrap unit root tests in panels

3.1. Test statistics

Wewill consider bootstrapping simplified versions of the Levin
et al. (2002, LLC) and Im et al. (2003, IPS) test statistics. The first
simplification is that we take the test statistics before corrections
formean and variance. The reason is that adding ormultiplying the
original test statistic and the bootstrap test statistic with the same
numberwill obviously not have an effect on the performance of the
tests. This is therefore a completely harmless simplification.

The second simplification is that we consider DF instead of ADF
tests. Usually, the main reason to use ADF type of tests is to obtain
asymptotically pivotal statistics. However, in the presence of
complicated cross-sectional dependence it is often not possible to
obtain asymptotically pivotal statistics anyway. There is therefore
little reason (at least asymptotically) to use ADF instead of DF tests.

The third simplification is that we look at the DF coefficient
test rather than the t-test. The main reason for this is that block
bootstrapping naively studentized statistics may lead to serious
problems in terms of accuracy of the tests as discussed for example
in Section 3.1.2 of Härdle et al. (2003). As this is a second order
problem, it does not lead to invalidity of the bootstrap, but it may
cause the bootstrap to converge at a slower rate than the standard
asymptotic approximation, although the evidence of this effect in
finite samples is not always present.6

Given all thesemodifications, we prefer to call our test statistics
‘‘pooled’’ and ‘‘group-mean’’ instead of LLC and IPS, respectively.
Note though that the essence of the LLC and IPS tests remains in our
tests and that our methods can be trivially extended to the original
LLC and IPS statistics if one so desires.7

5 Notable exceptions are Choi and Chue (2007) and Chang and Song (2009).
6 As pointed out by one of the referees, Gonçalves and Vogelsang (forthcoming)

provide an asymptotic framework that can be used as an alternative to the
framework based on Edgeworth expansions to explain their observation that
naively studentized statistics actually perform better than corrected studentized
statistics in finite samples.
7 Note that these tests could also be implemented when we have an unbalanced

panel with different numbers of observations Ti over time, provided of course the
number of observations increases. The implementation of the block bootstrap in
such a setting, while possible, becomes considerably more complicated.
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We define the pooled statistic as the Dickey–Fuller coefficient
statistic from the pooled regression of 1yi,t on yi,t−1. Then we can
write the pooled statistic as

τp = T

N∑
i=1

T∑
t=2

yi,t−11yi,t

N∑
i=1

T∑
t=2

y2i,t−1

. (4)

We define our group-mean statistic as the average of the DF
coefficient statistics from the individual regressions of 1yi,t on
yi,t−1 for each i = 1, . . . ,N . We can then write the group-mean
statistic as

τgm =
1
N

N−
i=1

T

T∑
t=2

yi,t−11yi,t

T∑
t=2

y2i,t−1

. (5)

3.2. Bootstrap algorithm

We employ the following block bootstrap algorithm, which is
a multivariate extension of the algorithm proposed by Paparoditis
and Politis (2003) to test for unit roots in univariate time series.

Bootstrap Algorithm.
1. Let

ûi,t = yi,t − ρ̂iyi,t−1 −
1

T − 1

T−
t=2

(yi,t − ρ̂iyi,t−1), (6)

where

ρ̂i =

T∑
t=2

yi,t−1yi,t

T∑
t=2

y2i,t−1

for all i = 1, . . . ,N. (7)

Let ût = (û1,t , . . . , ûN,t)
′.

2. Choose a block length b (smaller than T ).8 Draw i0, . . . , ik−1
i.i.d. from the uniform distribution on {1, 2, . . . , T − b}, where
k = ⌊(T − 2)/b⌋ + 1 is the number of blocks.

3. Construct the bootstrap errors u∗

2, . . . , u
∗

T as

u∗

t = ûim+s, (8)

where m = ⌊(t − 2)/b⌋ and s = t − mb − 1.
4. Let y∗

1 = y1 and construct y∗
t for t ≥ 2 recursively as

y∗

t = y∗

t−1 + u∗

t . (9)
5. Calculate the bootstrap versions of the group-mean and pooled

statistics, that is, calculate

τ ∗

p = T

N∑
i=1

T∑
t=2

y∗

i,t−11y∗

i,t

N∑
i=1

T∑
t=2

y∗2
i,t−1

, (10)

and

τ ∗

gm =
1
N

N−
i=1

T

T∑
t=2

y∗

i,t−11y∗

i,t

T∑
t=2

y∗2
i,t−1

. (11)

8 Block lengths will be discussed in detail below.
6. Repeat Steps 2–5 B times, obtaining bootstrap test statistics
τ ∗b
κ , b = 1, . . . , B, κ = p, gm, and select the bootstrap critical
value c∗

α as c∗
α = max{c : B−1∑B

b=1 I(τ
∗b
κ < c) ≤ α},

or equivalently as the α-quantile of the ordered τ ∗b
κ statistics.

Reject the null of a unit root if τκ , calculated fromEq. (4) if κ = p
or Eq. (5) if κ = gm, is smaller than c∗

α , where α is the nominal
level of the test.

Note that a crucial role in the analysis of our block bootstrap
method will be played by the series

ui,t = yi,t − ρiyi,t−1. (12)

As in Paparoditis and Politis (2003), ρi = 1 should correspond to
a unit root in yi,t , while ρi < 1 should correspond to yi,t being
stationary. Given our estimation of ρ̂i in Step 1, ρi is implicitly
defined as

ρi = lim
t→∞

E(yi,t−1yi,t)
E(y2i,t−1)

, (13)

which fulfills these correspondences (Paparoditis and Politis,
2003, Example 2.1).9 Note that underH0 we simply have that ui,t =

yi,t − yi,t−1 for all i = 1, . . . ,N or in vector notation ut = 1yt .
We need that the estimator in Step 1 satisfies the properties

ρ̂i − ρi = Op(T−1) if ρi = 1 and ρ̂i − ρi = op(1) if ρi < 1. Our OLS
estimator satisfies these properties.10

We also need the following assumption on the block length.

Assumption 3. Let b → ∞ and b = o(T 1/2) as T → ∞.

Remark 3. While we do not consider deterministic components,
our tests can be modified to account for them in the same way as
discussed by Levin et al. (2002) and Im et al. (2003). The crucial
issue regarding the bootstrap tests is to implement exactly the
same deterministic specification in the calculation of both the test
statistic on the bootstrap sample and of the test statistic on the
original sample. The only further modification of the bootstrap
algorithm would be to include the appropriate deterministic
components in Step 1 as well.

We will not discuss deterministic components in detail in
this paper as it would detract from our main objective to deal
with cross-sectional dependence. There is a vast literature on
deterministic components and their impact. Part of the literature,
for example on the local power of panel unit root tests in the case of
incidental trends (Moon et al., 2007), depends on N → ∞ and will
therefore not apply here, although in finite samples these results
will most likely have an impact on our tests as well.

We would like to stress that the bootstrap will not solve any
issues that arise in the presence of deterministic components.
Smeekes (2009) shows for univariate unit root testing that
common methods of detrending can be applied to the bootstrap
sample such that the asymptotic properties of the tests are
correctly replicated as long as the method of detrending in the
original sample and the bootstrap sample is the same. Moreover,
by simulation it is found there that the properties of the bootstrap
tests in finite samples closely follow the asymptotic tests they are
based on. Therefore, deterministic components can be analyzed
separately from the bootstrap.

9 Given our definition of ρi it is clear that under stationarity we will always have
|ρi| < 1. Paparoditis and Politis (2003, Example 2.2) show that if one estimates and
hence implicitly defines ρi differently, for example through an ADF regression, it is
not always the case that ρi > −1.
10 This is similar to the conditions needed by Paparoditis and Politis (2003, Remark
2.3). Although they always include an intercept in the regression, the rates of
convergence are the same because we assume zero drift (see for example Davidson,
2000, Chapter 14).
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Remark 4. Unlike the methods considered by Moon and Perron
(2004) and Pesaran (2007), which are essentially tests of the
presence of a unit root in the idiosyncratic components as pointed
out by Bai and Ng (2010), our methods are tests of the presence of
a unit root in the observed data. Therefore in our setup there is no
need to consider the properties of the common factors separately.

4. Asymptotic properties

In this section we will investigate the asymptotic properties
of our (bootstrap) test statistics by letting T go to infinity while
keeping N fixed. We study only T asymptotics for two reasons.
First, it is standard practice in studies on resampling methods; see
for example Chang (2004) and Choi and Chue (2007). Second, it is
very difficult to obtain meaningful theoretical results for infinite N
with our general model without making additional assumptions.
However, as neither our bootstrap method nor our proofs of
asymptotic validity depend on the finiteness of N , there is no
reason to expect that asymptotic validity breaks downwith joint T
and N asymptotics.

4.1. Asymptotic properties under the main null hypothesis

In this section we investigate the validity of the bootstrap
procedure proposed above in setting (A), i.e. where φj = 1 for all
j = 1, . . . , d and θi = 1 for all i = 1, . . . ,N or equivalently Φ = Id
and Θ = IN .

Note that under this null hypothesis we can write

ut = 1yt = Γ ′xt , (14)

where Γ = (IN , Λ)′, and

xt = (v′

t , f
′

t )
′
= Ψ (L)εt . (15)

4.1.1. Asymptotic properties of the test statistics
We start by presenting the asymptotic distributions for the

original series. After all, the bootstrap test statistics should mimic
these distributions. The first step is the invariance principle, or
functional central limit theorem.

Lemma 1. Let yt be generated under H0 setting (A) and let Assump-
tion 1 hold. Then, as T → ∞,

ST (r) = T−1/2
⌊Tr⌋−
t=1

ut
d
−→ B(r),

where B(r) = Γ ′Ψ (1)Σ1/2W (r) and W (r) denotes an (N + d)-
dimensional standard Brownian motion.

Next define

Ω = lim
T→∞

T−1 E


T−

t=1

ut


T−

t=1

ut

′

and

Ω0 = lim
T→∞

T−1
T−

t=1

E(utu′

t).

The limiting distributions now follow straightforwardly.

Theorem 1. Let yt be generated under H0 setting (A) and let As-
sumption 1 hold. Then, as T → ∞,

τp
d
−→

N∑
i=1

 1
0 Bi(r)dBi(r) +

1
2 (ωi − ω0,i)


N∑
i=1

 1
0 Bi(r)2dr
and

τgm
d
−→

1
N

N−
i=1

 1
0 Bi(r)dBi(r) +

1
2 (ωi − ω0,i) 1

0 Bi(r)2dr
,

where Bi(r) is the ith element of B(r) = Γ ′Ψ (1)Σ1/2W (r) and
ωi (ω0,i) is the (i, i)th element of Ω (Ω0).

Remark 5. To see how the Brownian motion B(r) depends on the
idiosyncratic components and on the factors, consider the follow-
ing. Let Bv(r) = Ψ1(1)Σ1/2W (r) be the Brownian motion gener-
ated by the idiosyncratic components and Bf (r) = Ψ2(1)Σ1/2W (r)
the Brownian motion generated by the common factors. With this
definition B(r) = Bv(r)+ΛBf (r). Note that ifΨ12(L) = Ψ21(L) = 0
and Σ12 = Σ21 = 0 we can write Bv(r) = Ψ11(1)Σ

1/2
11 W1(r)

and Bf (r) = Ψ22(1)Σ
1/2
22 W2(r) whereW1(r) is of dimension N and

W2(r) is of dimension d. For the ith element of B(r), Bi(r), we can
then write Bi(r) = Bv,i(r) + λ′

iBf (r). Note however that, given the
points raised in Remark 2, it is not possible to identify Bv from Bf ,
and in that sense the distinction between the two is conceptual
only.

4.1.2. Asymptotic properties of the bootstrap test statistics
Next we turn to the bootstrap test statistics. The first step is the

bootstrap invariance principle.

Lemma 2. Let yt be generated under H0 setting (A). Let Assump-
tions 1 and 3 hold. Then, as T → ∞,

S∗

T (r) = T−1/2
⌊Tr⌋−
t=1

u∗

t
d∗

−→ B(r) in probability.

Lemma2 shows that the bootstrap partial sumprocess correctly
mimics the original partial sum process. The limiting distributions
of the bootstrap test statistics now follow as given below.

Theorem 2. Let yt be generated under H0 setting (A). Let Assump-
tions 1 and 3 hold. Then, as T → ∞,

τ ∗

p
d∗

−→

N∑
i=1

 1
0 Bi(r)dBi(r) +

1
2 (ωi − ω0,i)


N∑
i=1

 1
0 Bi(r)2dr

in probability

and

τ ∗

gm
d∗

−→
1
N

N−
i=1

 1
0 Bi(r)dBi(r) +

1
2 (ωi − ω0,i) 1

0 Bi(r)2dr
in probability.

Theorem 2 establishes the asymptotic validity of the proposed
tests.

4.2. Asymptotic properties of the tests under cross-unit cointegration

In this section we look at setting (B), i.e. where Φ = IN and
θi < 1 for all i = 1, . . . ,N in (2). Note that in this case we may
write

ut = 1yt = Λft + 1wt = Λft + (1 − L)(IN − ΘL)−1vt . (16)
Now let

Ψ̄ (z) =

[
(IN − ΘL)−1Ψ1(z)

Ψ2(z)

]
, (17)

such that[
wt
ft

]
= Ψ̄ (L)εt . (18)

Note that Ψ̄ (z) satisfies Assumption 1 just as Ψ (z).
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4.2.1. Asymptotic properties of the test statistics
We start again by presenting the invariance principle for the

original series.

Lemma 3. Let yt be generated under H0 setting (B). Let Assump-
tions 1 and 2 hold. Then, as T → ∞,

ST (r) = T−1/2
⌊Tr⌋−
t=1

ut
d
−→ B̄(r),

where B̄(r) = ΛBf (r) and Bf (r) = Ψ2(1)Σ1/2W (r).

Note that the resulting Brownian motion B̄(r) has a reduced
rank covariance matrix as it is only generated by the factors and
not the idiosyncratic components.

Define

Ω̄ = lim
T→∞

T−1 E


T−

t=1

ut


T−

t=1

ut

′

and

Ω̄0 = lim
T→∞

T−1
T−

t=1

E(utu′

t).

Now we can derive the asymptotic distributions.

Theorem 3. Let yt be generated under H0 setting (B). Let Assump-
tions 1 and 2 hold. Then, as T → ∞,

τp
d
−→

N∑
i=1

 1
0 B̄i(r)dB̄i(r) +

1
2 (ω̄i − ω̄0,i)


N∑
i=1

 1
0 B̄i(r)2dr

and

τgm
d
−→

1
N

N−
i=1

 1
0 B̄i(r)dB̄i(r) +

1
2 (ω̄i − ω̄0,i) 1

0 B̄i(r)2dr
,

where B̄i(r) is the ith element of B̄(r) and ω̄i (ω̄0,i) is the (i, i)th
element of Ω̄ (Ω̄0).

4.2.2. Asymptotic properties of the bootstrap test statistics
Next we turn to the bootstrap series. Before presenting the

bootstrap invariance principle, some discussion is in order.
As can be seen in Lemma 3, the Brownian motion generated

by the partial sum process has reduced rank as it is only driven
by the factors. In order to properly replicate the structure of the
original series, the same should be true for the bootstrap partial
sum process.

In the proof of Lemma 2 it is shown that the bootstrap series
u∗
t behaves approximately like uim+s, ignoring centering for the

moment. Summing over the variables within one block, we obtain
b−

s=1

uim+s =

b−
s=1

(Λfim+s + 1wim+s) =

b−
s=1

Λfim+s + wim+b − wim ,

as all intermediate terms cancel against each other. This also
happens in the partial sum of the original series and explains why
only the factors contribute to the Brownian motion.

However, summing both over the blocks and within the blocks,
we obtain
⌊(k−1)r⌋−

m=0

b−
s=1

uim+s =

⌊(k−1)r⌋−
m=0


b−

s=1


Λfim+s + wim+b − wim



=

⌊(k−1)r⌋−
m=0

b−
s=1

Λfim+s +

⌊(k−1)r⌋−
m=0

(wim+b − wim),
where now the endpoints of the blocks do not cancel against each
other as the blocks are randomly selected. The first term in this
sum is the partial sum process of the factors, which generates the
Brownian motion in Lemma 3 if we divide by T 1/2.

The second part is the partial sum process of the idiosyncratic
components which generates an (unwanted) Brownian motion by
dividing by k1/2. As this rate is slower than T 1/2 by Assumption 3,
the second part will vanish at rate T 1/2/k1/2, so at rate b1/2.
Therefore, an increasing block length is crucial to make the second
part vanish. In finite samples however one will always have a non-
zero partial sum of the idiosyncratic components, although the
magnitude will depend on both the sample size and the actual
block length. Due to this, the covariance matrix of the resulting
Brownian motion will almost always be of full rank in finite
samples instead of reduced rank as in Lemma 3. It might therefore
be expected that in this setting the block bootstrapmight not work
optimally in finite samples, although it is also clear that large block
lengths should improve the performance of the tests in this case.

Remark 6. The result under the null hypothesis of cross-unit coin-
tegration is closely related to the result obtained by Paparoditis
and Politis (2003, Lemma 8.5) for the difference-based block boot-
strap (DBB) under the alternative. In both cases one bootstraps an
over-differenced series. However, as the result for the DBB is under
the alternative hypothesis, the different bootstrap stochastic order
leads to serious (power) problems, whereas in our setting, under
the null hypothesis, it is what preserves the validity of the boot-
strap tests. The result described above is formalized in Lemma A.9
in the Appendix.

Given the discussion above, it is clear that the bootstrap validity
is preserved in this setting, giving rise to the following bootstrap
invariance principle.

Lemma 4. Let yt be generated under H0 setting (B). Let Assump-
tions 1–3 hold. Then, as T → ∞,

S∗

T (r) = T−1/2
⌊Tr⌋−
t=1

u∗

t
d∗

−→ B̄(r) in probability.

Finally we derive the limiting distributions of the test statistics,
again establishing the asymptotic validity of the bootstrap tests.

Theorem 4. Let yt be generated under H0 setting (B). Let Assump-
tions 1–3 hold. Then, as T → ∞,

τ ∗

p
d∗

−→

N∑
i=1

 1
0 B̄i(r)dB̄i(r) +

1
2 (ω̄i − ω̄0,i)


N∑
i=1

 1
0 B̄i(r)2dr

in probability

and

τ ∗

gm
d∗

−→
1
N

N−
i=1

 1
0 B̄i(r)dB̄i(r) +

1
2 (ω̄i − ω̄0,i) 1

0 B̄i(r)2dr
in probability.

4.3. Asymptotic properties under the alternative hypothesis

Let us start by considering the alternativeHa
1 (stationarity for all

yi,t ).
Let us define

yt = Λ(Id − ΦL)−1ft + (IN − ΘL)−1vt = Γ ′Ψ +(L)εt , (19)
where

Ψ +(L) =

[
(IN − ΘL)−1Ψ1(L)
(Id − ΦL)−1Ψ2(L)

]
. (20)

Note that the lag polynomial Ψ +(z) meets the conditions in
Assumption 1.
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We start by describing the asymptotic properties of our test
statistics.

Lemma 5. Let yt be generated under Ha
1 . Let Assumption 1 hold.

Then, as T → ∞,

T−1τp
p
−→

N∑
i=1

(γi(1) − γi(0))

N∑
i=1

γi(0)

and

T−1τgm
p
−→ N−1

N−
i=1

γi(1) − γi(0)
γi(0)

,

where γi(j) = E(yi,t−jyi,t).

Lemma 5 shows that both test statistics diverge to −∞ under
Ha

1 as γi(1) < γi(0) for all i = 1, . . . ,N . This is a necessary, but not
a sufficient step in showing consistency of the bootstrap tests. The
second step that is needed is to show that the bootstrap tests, and
correspondingly the bootstrap critical values, do not diverge under
Ha

1 .
To this end, let P = diag(ρ1, . . . , ρN) and consequently ut =

(IN − PL)yt . Then

ut = (IN − PL)Γ ′Ψ +(L)εt = Ψ ++(L)εt , (21)

where Ψ ++(L) = (IN − PL)Γ ′Ψ +. Note that the summability
condition from Assumption 1 still holds for this lag polynomial.
Therefore we can give the following theorem.

Theorem 5. Let yt be generated under Ha
1 . Let Assumptions 1 and

3 hold. Then, as T → ∞,

τ ∗

p
d∗

−→

N∑
i=1

 1
0 B+

i (r)dB+

i (r) +
1
2 (ω

+

i − ω+

0,i)


N∑
i=1

 1
0 B+

i (r)2dr
in probability,

and

τ ∗

gm
d∗

−→
1
N

N−
i=1

 1
0 B+

i (r)dB+

i (r) +
1
2 (ω

+

i − ω+

0,i) 1
0 B+

i (r)2dr
in probability,

where B+

i (r) is the ith element of B+(r) = Ψ ++(1)Σ1/2W (r) and
ω+

i and ω+

0,i are the (i, i)th elements of Ω+
= Ψ ++(1)ΣΨ ++(1)′

and Ω+

0 =
∑

∞

j=0 Ψ ++

j ΣΨ ++′

j , respectively.

Note that Lemma 5 and Theorem 5 jointly establish the consis-
tency of our tests.

Let us now consider Hb
1 . Again we first look at the properties of

the test statistics. Let us first without loss of generality assume that
the first n1 units are I(0), while the rest is I(1). Hence, ρi < 1 for
i = 1, . . . , n1 and ρi = 1 for i = n1 +1, . . . ,N . We can then define
ut = yt − Pyt−1, where parts of the ρi are equal to one and the rest
is smaller than one. We may then write that

ut = Ψ #(L)εt , (22)

where the values for Ψ #(L) for the I(1) components are deter-
mined as in the analysis under the null, and for the I(0) com-
ponents as in the analysis above. The summability condition will
clearly still hold for Ψ #(L). The limit behavior of the test statistics
is then given by the following lemma.

Lemma 6. Let yt be generated under Hb
1 . Let Assumption 1 hold.

Then, as T → ∞,
τp
d
−→

n1∑
i=1

(γi(1) − γi(0)) +

N∑
i=n1+1

 1
0 B#

i (r)dB
#
i (r) +

1
2 (ω#

i − ω#
0,i)


N∑
i=n1+1

 1
0 B#

i (r)2dr

and

T−1τgm
p
−→ N−1

n1−
i=1

γi(1) − γi(0)
γi(0)

,

where γi(j) = E(yi,t−jyi,t), B#
i (r) is the ith element of B#(r) =

Ψ #(1)Σ1/2W (r) and ω#
i and ω#

0,i are the (i, i)th elements of Ω#
=

Ψ #(1)ΣΨ #(1)′ and Ω#
0 =

∑
∞

j=0 Ψ #
j ΣΨ #′

j , respectively.

We see that the group-mean statistic diverges to −∞ as it
should. The pooled statistic does not diverge however, which
means that it is not consistent against this alternative. This is in fact
not surprising, given that the pooled test is designed as a large N-
test for homogeneous alternatives (also see Remark 8). The reason
for the inconsistency is that in the denominator the stationary units
vanish (as they should) as T → ∞, but the nonstationary units
remain.

Let us turn to the bootstrap series. Given our expression of ut
above, we can simply combine the proofs for the unit root and
stationary series and directly state the limiting distributions as a
corollary.

Corollary 1. Let yt be generated under Hb
1 . Let Assumptions 1 and

3 hold. Then, as T → ∞,

τ ∗

p
d∗

−→

N∑
i=1

 1
0


B#
i (r)dB

#
i (r) +

1
2 (ω

#
i − ω#

0,i)


N∑
i=1

 1
0 B#

i (r)2dr
in probability,

and

τ ∗

gm
d∗

−→
1
N

N−
i=1

 1
0 B#

i (r)dB
#
i (r) +

1
2 (ω

#
i − ω#

0,i) 1
0 B#

i (r)2dr
in probability.

Note that Lemma 6 and Corollary 1 jointly establish the con-
sistency of the bootstrap group-mean test. Also note that the in-
consistency of the pooled test does not depend on the bootstrap
distribution, but purely on the original test statistic.

Remark 7. It might seem that our bootstrap method does not cor-
rectly reproduce the asymptotic null distribution if the alternative
is true as the nuisance parameters are different from those appear-
ing in Theorem 2 for example, but this is not so straightforward.
It all depends on how the alternative is formulated in relation to
the null. Had we formulated our alternative as yt = Pyt−1 + ut
where ut = Γ ′Ψ (L)εt , the nuisance parameters would have been
the same. The key to understanding this is that the process under
the null corresponding to the process in (1) and (2) with Φ and
Θ implying stationarity is not necessarily the same process with
Φ = Id and Θ = IN .

Remark 8. A few qualifications are in order regarding the incon-
sistency of the pooled test. First, the actual location of the pooled
test can be seen to depend on both the proportion of stationary
units (through n1 in the sums) and the distance from the null
(through the quantity γi(1) − γi(0)). If either becomes larger, the
statistic will become more negative. Second, if T increases, the
denominator will become smaller as the sum over the stationary
units disappears (the biT part in the proof). Hence the test statistic
will grow larger with increasing T , but the denominator will not
go to zero as the nonstationary part does not vanish. Both factors
imply that the actual power of the test can still be non-trivial and
even reach 1.
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5. Small sample performance

In this section we will investigate the small sample properties
of our tests using Monte Carlo simulations. First we perform a
simulation study to investigate the properties of our tests while
fixing the block length to be a function of T only. Next we will
perform a separate and smaller simulation study to investigate the
selection of block lengths.

5.1. Monte Carlo design

We consider the following DGP for the simulation study.

yt = ΛFt + wt , (23)

where Ft is a single (scalar) factor and

Ft = φFt−1 + ft ,
wi,t = θiwi,t−1 + vi,t .

(24)

Furthermore,

vt = A1vt−1 + ε1,t + B1ε1,t−1,

ft = α2ft−1 + ε2,t + β2ε2,t−1,
(25)

where ε2,t ∼ N(0, 1) and

ε1,t ∼ N (0, Σ) ,

where Σ is generated as in Chang (2004):

1. Generate an N × N matrix U ∼ U[0, 1]. Construct H =

U(U ′U)−1/2.
2. Generate N eigenvalues ζ1, . . . , ζN with ζ1 = r, ζN = 1 and

ζi ∼ U[r, 1] for i = 2, . . . ,N − 1.
3. Let Z = diag(ζ1, . . . , ζN). Then let Σ = HZH ′.

We consider both r = 1 (no cross-sectional dependence) and
r = 0.1.

We consider five settings regarding the parameters in equations
(23) and (25) in accordance with Gengenbach et al. (2010).

I No common factor, unit root for all idiosyncratic components:
λi = 0, θi = 1 for all i = 1, . . . ,N .

II Unit root in common factor and idiosyncratic components: φ =

1, θi = 1 for all i = 1, . . . ,N and λi ∼ U[−1, 3].
III Unit root in common factor, stationary idiosyncratic compo-

nents: φ = 1, θi ∼ U[0.8, 1] and λi ∼ U[−1, 3]. This is the
setting of cross-unit cointegration.

IV No common factor, stationary idiosyncratic component: θi ∼

U[0.8, 1] and λi = 0 for all i = 1, . . . ,N . This is under the
alternative hypothesis.11

V Stationary common factor and idiosyncratic component: φ =

0.95, θi ∼ U[0.8, 1] and λi ∼ U[−1, 3]. This is also under the
alternative hypothesis.

We consider two different options for the parameters A1 and
B1:

1. No dynamic dependence: A1 = B1 = 0.
2. Dynamic autoregressive moving-average cross-sectional de-

pendence: A1 and B1 are non-diagonal.
We let A1 = Ξ , where

11 The reported power estimates are not size adjusted. We give raw power as we
believe this is empirically more relevant than the usual size-corrected power; also
see Horowitz and Savin (2000) for a discussion on the empirical relevance of the
usual size-corrected powers in Monte Carlo simulations.
Ξ =


ξ1 ξ1η1 ξ1η

2
1 · · · ξ1η

N−1
1

ξ2η2 ξ2 ξ2η2 · · · ξ2η
N−2
2

...
. . .

...

ξNηN−1
N · · · ξNη2

N ξNηN ξN

 , (26)

where ξi, ηi ∼ U[−0.5, 0.5]. To ensure stationarity and
invertibility we impose that det(IN − A1z) ≠ 0 for {z ∈ C :

|z| ≤ 1.2}.
Furthermore, we let B1 = Ω . We constructΩ inmuch the same
way as Σ . Let M = HLH ′ where H = U(U ′U)−1/2, with U an
N × 1-vector of U[0, 1]-variables, and define L as a diagonal
matrixwith on the diagonal ℓ1, . . . , ℓN where ℓ1 = 0.1, ℓN = 1
and ℓ2, . . . , ℓN−1 ∼ U[0.1, 1]. We then let Ω = 2M − IN . By
generatingΩ this waywe assure that IN +Ω is of full rank. Note
that invertibility is not guaranteed (on purpose).

The parameters of the common factor in (25), α2 and β2, are taken
in accordance with the setting for the idiosyncratic components,
so if the dependence for the idiosyncratic components is of the
ARMA type, then the same will hold for the common factor. Note
that for both Σ and the Ψ (1) matrix derived from A1 and B1 the
eigenvalues are bounded if N → ∞; as such these parameters can
be regarded as weak dependence parameters.

For all combinations of the parameters described above we
consider all combinations of T = 25, 50, 100 andN = 5, 25, 50. As
several parameters in our DGP are chosen randomly, we repeat the
simulations for each setting ten times, and store themean,median,
minimumandmaximum.Weonly report results for themeanhere.
The mean is representative as in general there is little dispersion
between the simulation results. The other results are available
upon request. The results are based on 2000 simulations and the
Warp-Speed bootstrap (Giacomini et al., 2007) is used to obtain
estimates for the rejection frequencies of the bootstrap tests.12 The
nominal level is 0.05. The approximate confidence interval around
0.05 with 2000 simulations is (0.042, 0.058).13

In our simulation study we consider the LLC and IPS tests (with
lag lengths selected by BIC), denoted by τllc and τips respectively,
and the bootstrap pooled and group-mean tests, denoted by τp
and τgm. We also consider a bootstrap test based on the median
of the individual test statistics, denoted by τmed. This test might
be more robust to outlying units than the test based on the mean
(also see the discussion in Di Iorio and Fachin, 2008). While we
do not consider this test explicitly in our theoretical analysis as
the median presents difficulties for asymptotic analysis, it is clear
that a median-based test will be valid as well as we can show
that the joint bootstrap distribution of the individual DF statistics
is asymptotically valid. Block lengths of the bootstrap tests were
taken as b = 1.75T 1/3, which amounts to blocks of length 6, 7 and
9 for sample sizes 25, 50 and 100 respectively, which is within the
range usually considered in the literature. We return to the issue
of block length selection in Section 5.3.

5.2. Monte Carlo results

Table 1 presents results for the settingwithout common factors.
It can be noted in general that the asymptotic tests have poor size
for T = 25, which is mainly caused by the performance of the BIC,
as this tends to select too large lag lengths for T = 25.14 From

12 The Warp-Speed bootstrap greatly reduces the computational cost of perform-
ing the simulations by only drawing one bootstrap replication for each simulation.
Giacomini et al. (2007) show that under quite general conditions the Warp-Speed
bootstrap is capable of calibrating the finite sample coverage of bootstrap confi-
dence intervals if the bootstrap is asymptotically valid (which we show in this pa-
per). Because of the close relation between confidence intervals and hypothesis
testing the method should work properly in our setting as well.
13 This interval only takes into account the randomness of the simulations, not of
theWarp-Speed bootstrap, nor takes into account that we take averages of 10 runs.
14 A similar result was obtained by Hlouskova and Wagner (2006).
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Table 1
Size properties without common factors (setting I).

A1, B1 Σ T N τllc τp τips τgm τmed

Panel A: No short-run dependence

A1 = 0, r = 1 25 5 0.140 0.024 0.141 0.020 0.025
B1 = 0 25 25 0.211 0.001 0.183 0.005 0.009

25 50 0.260 0.000 0.207 0.001 0.002
50 5 0.076 0.031 0.051 0.024 0.033
50 25 0.063 0.004 0.060 0.011 0.014
50 50 0.055 0.000 0.056 0.003 0.004

100 5 0.077 0.032 0.049 0.032 0.035
100 25 0.062 0.009 0.051 0.014 0.020
100 50 0.056 0.001 0.051 0.005 0.010

Panel B: Contemporaneous, but no dynamic dependence

A1 = 0, r = 0.1 25 5 0.151 0.026 0.159 0.022 0.031
B1 = 0 25 25 0.200 0.003 0.197 0.006 0.010

25 50 0.236 0.000 0.215 0.001 0.002
50 5 0.111 0.033 0.070 0.028 0.037
50 25 0.077 0.006 0.072 0.009 0.017
50 50 0.067 0.001 0.069 0.004 0.005

100 5 0.113 0.040 0.066 0.031 0.039
100 25 0.084 0.013 0.064 0.015 0.021
100 50 0.073 0.003 0.067 0.007 0.012

Panel C: No contemporaneous, but dynamic dependence

A1 = Ξ , r = 1 25 5 0.215 0.054 0.207 0.082 0.055
B1 = Ω 25 25 0.235 0.004 0.198 0.032 0.016

25 50 0.280 0.000 0.237 0.010 0.004
50 5 0.154 0.052 0.123 0.097 0.054
50 25 0.113 0.008 0.097 0.032 0.020
50 50 0.109 0.001 0.106 0.023 0.010

100 5 0.152 0.067 0.110 0.099 0.064
100 25 0.130 0.013 0.108 0.028 0.023
100 50 0.117 0.004 0.096 0.026 0.015

Panel D: Contemporaneous and dynamic dependence

A1 = Ξ , r = 0.1 25 5 0.222 0.056 0.212 0.063 0.051
B1 = Ω 25 25 0.252 0.003 0.238 0.020 0.012

25 50 0.265 0.000 0.214 0.007 0.003
50 5 0.197 0.049 0.146 0.059 0.046
50 25 0.144 0.011 0.131 0.052 0.030
50 50 0.127 0.001 0.119 0.018 0.008

100 5 0.187 0.055 0.129 0.094 0.054
100 25 0.158 0.012 0.129 0.029 0.023
100 50 0.143 0.004 0.119 0.027 0.015

A1, B1 and Σ with smallest eigenvalue r are defined in Section 5.1.
τllc = LLC test; τp = pooled bootstrap test; τips = IPS test; τgm = group-mean bootstrap test; τmed = median bootstrap test.
T = 50 on this does not happen anymore. Panel A presents results
for the setting without any dependence (both temporal and cross-
sectional). It can be seen that the asymptotic tests have good size
properties for T = 50 and T = 100, while the bootstrap tests
are undersized increasing in N . Panel B lists results for the setting
where there is only contemporaneous correlation. The asymptotic
tests have slight positive size distortions here, while the bootstrap
tests are somewhat undersized. Panel C and D give results for the
model with autoregressive moving-average errors. It is clear here
that the asymptotic tests are quite oversized, while the bootstrap
tests perform well although there is some undersize increasing
withN . There is little difference between the three bootstrap tests.

Table 2 present the results for the model with a nonstationary
common factor and nonstationary idiosyncratic components. For
all three settings considered the table shows that the bootstrap
tests have good size properties, while the asymptotic tests have
large size distortions increasing with N . The bootstrap tests again
perform very similarly.

Table 3 gives the results for the model with cross-unit cointe-
gration, i.e. with a nonstationary common factor and stationary id-
iosyncratic components. The asymptotic tests have very large size
distortions, andwhile the size distortions of the bootstrap tests are
significantly less, they are still large. As expected it indeed seems
that the bootstrap tests do not perform very well in this setting.
The problem partly arises, especially for the group-mean test, be-
cause for some units the loadingswill be very close to zero, thereby
making that unit effectively stationary and hence inflating the test
statistic. In such a situation we may expect the median-based test
to bemore robust, and indeed it seems to performsomewhat better
than the group-mean test although it still suffers fromconsiderable
size distortions.

Table 4 presents results for the model under the alternative
without a common factor. The power of the bootstrap tests is
satisfactory, and as expected, increases with both T and N . The
only setting in which we can directly compare the power of the
asymptotic and the bootstrap tests is the setting of no dependence
(Panel A), and here power results are very similar. Given that
the bootstrap tests are somewhat undersized, this shows that the
power of the bootstrap tests is good. In the other settings the
power of the bootstrap test is somewhat less than the power of the
asymptotic tests, which can be explained by the size distortions
of the asymptotic tests. Note that the bootstrap tests perform
similarly.

Table 5 gives results for power with a common factor. It can be
seen that the power of the bootstrap tests still increaseswith T and
N , although the power is less than that in Table 4 and especially
the increase in power with N is less. This is not surprising as
the common factor which is present in every unit ensures that
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Table 2
Size properties with common factors (setting II).

A1, B1 Σ T N τllc τp τips τgm τmed

Panel A: No short-run dependence

A1 = 0, r = 1 25 5 0.212 0.029 0.188 0.024 0.030
B1 = 0 25 25 0.288 0.014 0.337 0.015 0.023

25 50 0.352 0.009 0.425 0.013 0.014
50 5 0.165 0.036 0.104 0.030 0.037
50 25 0.218 0.021 0.280 0.022 0.030
50 50 0.263 0.018 0.362 0.020 0.023

100 5 0.160 0.039 0.095 0.030 0.038
100 25 0.213 0.030 0.258 0.025 0.035
100 50 0.253 0.020 0.342 0.022 0.024

Panel B: Contemporaneous, but no dynamic dependence

A1 = 0, r = 0.1 25 5 0.229 0.030 0.204 0.029 0.034
B1 = 0 25 25 0.314 0.025 0.389 0.021 0.027

25 50 0.359 0.023 0.467 0.021 0.024
50 5 0.193 0.036 0.122 0.031 0.036
50 25 0.283 0.032 0.332 0.026 0.031
50 50 0.296 0.027 0.393 0.025 0.028

100 5 0.182 0.040 0.114 0.030 0.036
100 25 0.277 0.034 0.316 0.030 0.038
100 50 0.315 0.031 0.390 0.031 0.035

Panel C: Contemporaneous and dynamic dependence

A1 = Ξ , r = 0.1 25 5 0.269 0.022 0.243 0.023 0.022
B1 = Ω 25 25 0.351 0.012 0.381 0.013 0.016

25 50 0.406 0.007 0.448 0.010 0.011
50 5 0.253 0.025 0.177 0.050 0.024
50 25 0.348 0.015 0.358 0.018 0.020
50 50 0.378 0.013 0.411 0.016 0.021

100 5 0.252 0.032 0.172 0.032 0.031
100 25 0.373 0.023 0.362 0.025 0.028
100 50 0.420 0.023 0.425 0.022 0.028

See Table 1.
Table 3
Size properties with cross-unit cointegration (setting III).

A1, B1 Σ T N τllc τp τips τgm τmed

Panel A: No short-run dependence

A1 = 0, r = 1 25 5 0.410 0.129 0.332 0.103 0.102
B1 = 0 25 25 0.629 0.198 0.585 0.173 0.198

25 50 0.698 0.224 0.643 0.173 0.216
50 5 0.612 0.200 0.463 0.169 0.170
50 25 0.782 0.267 0.620 0.259 0.251
50 50 0.816 0.281 0.671 0.282 0.283

100 5 0.674 0.240 0.550 0.333 0.257
100 25 0.798 0.303 0.642 0.282 0.275
100 50 0.845 0.336 0.688 0.399 0.336

Panel B: Contemporaneous, but no dynamic dependence

A1 = 0, r = 0.1 25 5 0.461 0.096 0.356 0.086 0.084
B1 = 0 25 25 0.612 0.128 0.561 0.111 0.126

25 50 0.667 0.166 0.598 0.148 0.177
50 5 0.554 0.141 0.362 0.136 0.137
50 25 0.742 0.179 0.552 0.183 0.184
50 50 0.764 0.184 0.591 0.175 0.183

100 5 0.651 0.171 0.431 0.187 0.149
100 25 0.806 0.177 0.622 0.198 0.176
100 50 0.819 0.211 0.633 0.253 0.210

Panel C: Contemporaneous and dynamic dependence

A1 = Ξ , r = 0.1 25 5 0.427 0.047 0.357 0.049 0.041
B1 = Ω 25 25 0.549 0.062 0.492 0.071 0.064

25 50 0.597 0.067 0.522 0.065 0.068
50 5 0.466 0.085 0.309 0.125 0.089
50 25 0.670 0.098 0.516 0.122 0.092
50 50 0.698 0.089 0.539 0.107 0.087

100 5 0.464 0.100 0.305 0.136 0.115
100 25 0.701 0.117 0.527 0.165 0.104
100 50 0.738 0.109 0.575 0.148 0.101

See Table 1.
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Table 4
Power properties without common factors (setting IV).

A1, B1 Σ T N τllc τp τips τgm τmed

Panel A: No short-run dependence

A1 = 0, r = 1 25 5 0.607 0.507 0.651 0.354 0.337
B1 = 0 25 25 0.829 0.866 0.980 0.894 0.892

25 50 0.875 0.958 0.999 0.996 0.996
50 5 0.754 0.757 0.829 0.810 0.773
50 25 0.995 0.999 1.000 1.000 1.000
50 50 1.000 1.000 1.000 1.000 1.000

100 5 0.905 0.929 0.989 0.974 0.946
100 25 1.000 1.000 1.000 1.000 1.000
100 50 1.000 1.000 1.000 1.000 1.000

Panel B: Contemporaneous, but no dynamic dependence

A1 = 0, r = 0.1 25 5 0.553 0.508 0.608 0.357 0.361
B1 = 0 25 25 0.832 0.827 0.985 0.850 0.854

25 50 0.878 0.919 1.000 0.981 0.980
50 5 0.856 0.630 0.887 0.648 0.633
50 25 0.998 0.989 1.000 1.000 0.999
50 50 1.000 1.000 1.000 1.000 1.000

100 5 0.928 0.943 0.996 0.985 0.950
100 25 1.000 1.000 1.000 1.000 1.000
100 50 1.000 1.000 1.000 1.000 1.000

Panel C: No contemporaneous, but dynamic dependence

A1 = Ξ , r = 1 25 5 0.573 0.491 0.625 0.498 0.391
B1 = Ω 25 25 0.798 0.618 0.972 0.862 0.768

25 50 0.866 0.711 0.998 0.984 0.934
50 5 0.816 0.700 0.865 0.779 0.675
50 25 0.991 0.955 1.000 1.000 0.997
50 50 1.000 0.983 1.000 1.000 1.000

100 5 0.896 0.891 0.975 0.950 0.955
100 25 1.000 0.996 1.000 1.000 1.000
100 50 1.000 0.999 1.000 1.000 1.000

Panel D: Contemporaneous and dynamic dependence

A1 = Ξ , r = 0.1 25 5 0.575 0.354 0.609 0.413 0.361
B1 = Ω 25 25 0.767 0.754 0.949 0.860 0.820

25 50 0.841 0.729 0.997 0.981 0.941
50 5 0.755 0.693 0.814 0.729 0.607
50 25 0.989 0.934 1.000 0.999 0.996
50 50 0.999 0.989 1.000 1.000 1.000

100 5 0.985 0.762 0.994 0.884 0.830
100 25 0.999 0.995 1.000 1.000 1.000
100 50 1.000 1.000 1.000 1.000 1.000

See Table 1.
the information on the order of integration is not increased by
much by the addition of units in the panel. The fact that the
power of the asymptotic tests is higher than the power of the
bootstrap tests can be explained by the large size distortions of the
asymptotic tests in this case. The bootstrap tests all have similar
power properties, although the median-based test seems to be
somewhat less powerful than the group-mean test.

To conclude,we can see that the bootstrap tests have reasonable
finite sample properties, with the exception of the oversize in
the cross-unit cointegration setting and, to a lesser extent, the
undersize in the setting without common factors for increasing
N .15

15 In order to compare the finite sample performance of our tests to that of
factor-based tests, we consider the simulation study of Gengenbach et al. (2010),
which uses a DGP that is fairly similar to ours (with the exception of the short-
run dynamics). We see that many of the tests considered there also suffer from
size distortions, even in the setting with both factors and idiosyncratic components
I(1). In the cross-unit cointegration setting most tests, with the exception of the
tests by Bai and Ng (2004), suffer from severe size distortions. It seems that no
test considered in that simulation study generally outperforms our bootstrap tests,
both in terms of size and power. We can also compare the bootstrap tests to the
subsampling tests of Choi and Chue (2007),which in away are the only tests that are
directly comparable to ours in terms of underlying assumptions. Their simulation
study shows that the subsampling tests have good size properties, and they clearly
5.3. Block length selection

The Monte Carlo experiment in the previous section was done
with fixed block lengths. It is well known from the literature on
block bootstrap that the block length selected can have a large
effect on the performance of any kind of application of the block
bootstrap. That is of course valid here as well. Added to the
usual issues relating to the structure of the temporal dependence,
block length selection is also important in our setting in the
case of cross-unit cointegration, where one can expect that large
blocks are needed based on the discussion in Section 4.2.2. Our
discussion here mirrors the discussion in Paparoditis and Politis
(2003, Section 6.1), who discuss the selection of block lengths for
univariate unit root tests.

Quite some research has been done on optimal block length
selection in the framework of stationary time series. As noted in
Paparoditis and Politis (2003) in order to talk about optimality
one needs to set a criterion that is to be optimized. This criterion
will depend on the type of application of the bootstrap (variance
estimation, confidence intervals, hypothesis tests, etc.). Using

outperform our bootstrap tests in the case of cross-unit cointegration. However, the
DGPs employed by them are not completely comparable to ours in terms of short-
run dynamics and factor loadings.
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Table 5
Power properties with common factors (setting V).

A1, B1 Σ T N τllc τp τips τgm τmed

Panel A: No short-run dependence

A1 = 0, r = 1 25 5 0.597 0.213 0.512 0.173 0.177
B1 = 0 25 25 0.784 0.345 0.795 0.306 0.344

25 50 0.840 0.377 0.858 0.326 0.365
50 5 0.883 0.505 0.783 0.504 0.474
50 25 0.989 0.677 0.957 0.672 0.658
50 50 0.997 0.723 0.974 0.750 0.722

100 5 0.978 0.822 0.970 0.830 0.802
100 25 1.000 0.944 1.000 0.964 0.933
100 50 1.000 0.956 0.999 0.981 0.961

Panel B: Contemporaneous, but no dynamic dependence

A1 = 0, r = 0.1 25 5 0.590 0.189 0.506 0.140 0.148
B1 = 0 25 25 0.767 0.265 0.772 0.236 0.263

25 50 0.822 0.271 0.812 0.234 0.266
50 5 0.828 0.415 0.682 0.423 0.399
50 25 0.981 0.503 0.935 0.487 0.497
50 50 0.994 0.497 0.958 0.509 0.508

100 5 0.963 0.695 0.928 0.792 0.731
100 25 1.000 0.840 0.996 0.883 0.834
100 50 1.000 0.853 0.998 0.912 0.850

Panel C: Contemporaneous and dynamic dependence

A1 = Ξ , r = 0.1 25 5 0.534 0.078 0.480 0.087 0.074
B1 = Ω 25 25 0.707 0.096 0.674 0.085 0.100

25 50 0.753 0.124 0.720 0.126 0.124
50 5 0.801 0.243 0.669 0.244 0.190
50 25 0.953 0.270 0.876 0.329 0.253
50 50 0.972 0.272 0.903 0.328 0.276

100 5 0.967 0.482 0.904 0.619 0.454
100 25 0.998 0.527 0.987 0.712 0.494
100 50 0.999 0.596 0.989 0.756 0.564

See Table 1.
higher order asymptotics, it has been found for stationary series
that an optimal block length bopt is of the form

bopt = CT 1/κ , (27)

where κ is a known integer depending on the type of application
and C is usually unknown and depends on the data. Härdle et al.
(2003) and Lahiri (2003) give an overview on optimal block lengths
in stationary time series.

Several methods have been proposed in the setting where one
can describe bopt as in (27). Some are based on the estimation of
C by exploiting the dependence of C on certain quantities that
can be estimated. Bühlmann and Künsch (1999) and Politis and
White (2004) are examples of suchmethods that are applicable for
variance estimation. Lahiri et al. (2007) propose a plug-in method,
based on the jackknife-after-bootstrap, that is also applicable for
confidence intervals and hypothesis tests.

A different method is the subsampling approach by Hall et al.
(1995). The attractive feature of this method is that it avoids the
estimation of C . This feature, as well as the ease of its implementa-
tion, has made this method a popular choice among practitioners.
It does however require knowledge of κ to implement it.

The problem with nonstationary time series is that κ is
unknown here, as the required asymptotic expansions have not
been developed yet. This makes it very difficult to implement any
of the methods discussed above using a well founded choice of κ .
Paparoditis and Politis (2003) discuss this issue and suggest some
heuristic ideas to determine κ .

Alternative strategies to the methods discussed above are pro-
vided by the minimum volatility method and calibration method
proposed by Politis et al. (1999). These methods do not require
knowledge of κ . The minimum volatility method involves calcu-
lating critical values using a range of block lengths and selecting
the optimal one in the region where the critical values have the
lowest volatility.
We will focus here on the calibration method.16 In particular,
we will consider the Warp-Speed calibration method, which is a
modification of the original calibration method by Giacomini et al.
(2007) for the purpose of constructing confidence intervals. We
present the procedure for hypothesis tests below for completeness
(also see Remark 9).
Block length selection by Warp-Speed calibration

1. Choose a starting value b0 for the block length. Using this value,
generate K bootstrap samples: ({y1t }, . . . , {y

K
t }). Calculate the

statistic of interest for each bootstrap sample, say θ̂ k(b0) for
k = 1, . . . , K . Using the empirical distribution of the statistics,
calculate the bootstrap critical value c(b0).

2. Let (b1, . . . , bM) be the candidate block lengths. For each i =

1, . . . ,M and k = 1, . . . , K , construct one bootstrap resample
from the bootstrap sample {ykt } using block length bi, call this
{ykt (i)}. Using each resample calculate the statistic of interest,
say θ̂∗k(bi).

3. Using the distribution of θ̂∗k(bi) for k = 1, . . . , K , calculate the
bootstrap resample critical value c∗(bi) for all i = 1, . . . ,M .

4. Select the optimal block length bopt such that

bopt = arg min
bi,i=1...,M

|c∗(bi) − c(b0)|. (28)

To reduce the dependence on b0 one can apply this algorithm
iteratively, by using bopt as the starting block length in the next
iteration and continuing until convergence.

16 We also considered the minimum volatility method, the subsampling method
by Hall et al. (1995) and the plug-in method by Lahiri et al. (2007), the latter two
with the value for κ based on the results for stationary time series, but all these
methods were inferior to the calibration method; see Remark 10.
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Table 6
Size properties with block length selection.

A1, B1 Σ T N τp τgm

RF AvB OpB OpRF RF AvB OpB OpRF

Panel A: No common factors (setting I)

A1 = 0, r = 1 25 5 0.022 3.992 1 0.038 0.018 4.172 1 0.038
B1 = 0 25 25 0.002 2.778 1 0.012 0.012 2.762 2 0.038

50 5 0.028 6.472 5 0.050 0.020 6.468 2 0.050
50 25 0.012 3.610 1 0.020 0.014 3.760 1 0.038

r = 0.1 25 5 0.044 4.414 4 0.050 0.014 4.378 2 0.050
25 25 0.010 2.944 1 0.014 0.012 2.912 1 0.062
50 5 0.034 6.990 1 0.052 0.034 6.482 5 0.054
50 25 0.016 3.658 1 0.024 0.014 3.672 3 0.038

A1 = Ξ , r = 1 25 5 0.032 4.056 2 0.038 0.012 4.504 2 0.044
B1 = Ω 25 25 0.002 2.304 1 0.008 0.008 2.332 2 0.032

50 5 0.042 7.968 6 0.052 0.024 9.906 13 0.050
50 25 0.006 2.918 3 0.010 0.046 4.144 5 0.052

r = 0.1 25 5 0.024 4.502 4 0.048 0.042 5.066 10 0.042
25 25 0.008 2.578 1 0.024 0.028 2.968 3 0.032
50 5 0.042 7.212 6 0.054 0.036 7.092 4 0.050
50 25 0.008 3.314 5 0.012 0.010 3.434 2 0.020

Panel B: Common factors (setting II)

A1 = 0, r = 1 25 5 0.022 4.878 2 0.046 0.020 4.950 2 0.052
B1 = 0 25 25 0.018 3.510 2 0.042 0.008 3.286 1 0.060

50 5 0.018 8.850 12 0.050 0.034 7.086 5 0.050
50 25 0.018 5.566 2 0.046 0.024 5.064 1 0.050

r = 0.1 25 5 0.028 5.494 6 0.046 0.020 4.938 1 0.048
25 25 0.016 3.978 1 0.038 0.004 4.154 2 0.048
50 5 0.020 10.292 5 0.048 0.032 8.892 2 0.056
50 25 0.044 7.154 4 0.050 0.038 6.098 4 0.048

A1 = Ξ , r = 0.1 25 5 0.006 4.946 3 0.020 0.004 5.128 5 0.014
B1 = Ω 25 25 0.000 4.572 3 0.038 0.006 4.558 6 0.026

50 5 0.010 8.606 2 0.036 0.012 8.802 7 0.028
50 25 0.014 6.270 3 0.018 0.016 5.532 6 0.024

Panel C: Cross-unit cointegration (setting III)

A1 = 0, r = 1 25 5 0.098 5.442 16 0.054 0.128 5.038 16 0.076
B1 = 0 25 25 0.192 4.208 17 0.078 0.144 3.976 19 0.070

50 5 0.126 9.266 30 0.050 0.108 8.056 27 0.052
50 25 0.230 5.984 37 0.090 0.266 5.140 33 0.114

r = 0.1 25 5 0.024 6.626 5 0.046 0.018 6.394 1 0.052
25 25 0.152 4.296 15 0.056 0.102 4.122 15 0.052
50 5 0.044 11.222 10 0.048 0.038 9.448 26 0.052
50 25 0.180 7.512 35 0.062 0.132 6.572 24 0.076

A1 = Ξ , r = 0.1 25 5 0.046 5.140 5 0.050 0.044 4.756 8 0.052
B1 = Ω 25 25 0.082 4.044 10 0.046 0.114 3.734 14 0.050

50 5 0.032 9.536 6 0.048 0.018 8.686 3 0.040
50 25 0.070 7.192 1 0.052 0.086 6.266 20 0.052

RF = rejection frequency with block length selection; AvB = average block length selected; OpB = optimal block length (such that the corresponding rejection frequency is
as close as possible to 0.05); OpRF = rejection frequency corresponding to the optimal block length.
To analyze the performance of the method, we performed a
smallMonte Carlo experiment using the sameDGP as in Section 5.1
applying the tests τp and τgm. Based on 500 simulations, we let the
block length be selected by the Warp-Speed calibration method,
and using the same seed, we run the tests for a wide range of fixed
block lengths (up to 0.75 times the sample size) to determine the
optimal block length. As starting block lengths we take the fixed
block lengths from the previous section, while we take K = 199.
Due to computational costs we do not iterate the algorithm.

Results for size are given in Table 6. Optimal block lengths
are determined as those block lengths which give an empirical
rejection frequency the closest to the nominal level (5%). It can
be seen that while the optimal rejection frequencies are not
obtained using the block length selection method, the rejection
frequencies for setting I and II are reasonably close. However,while
the selected block lengths do increase for setting III, they do not
increase sufficiently compared to the optimal block lengths and
size distortions persist.

Results for power are presented in Table 7. Optimal block
lengths here are selected as the block lengths that give the highest
power possible. One should regard this with caution, as optimal
block lengths under the alternative hypothesis are difficult to
define, as higher power could come at the expense of good size
properties under the null. It is therefore not clear whether high
power is the criterion that should be optimized.17 What is clear
though, is that choosing an unnecessarily large block length will
decrease power.18 The results show that the calibration method
performs reasonably satisfactorily.

To conclude, using the calibration method improves on using a
fixed block length, but it is not optimal. A lot of work still needs to
be done on this topic, especially from a theoretical perspective.

Remark 9. The equivalent for hypothesis testing of the method
proposed by Giacomini et al. (2007) for confidence intervals would

17 Note that even when using size-adjusted power this problem would still be
present.
18 As pointed out by one of the referees, this may be due to the fact that for a
large block length the possible bootstrap samples, and correspondingly the possible
bootstrap statistics will be more alike to each other and to the original sample
(statistics). This will lead to a poorer approximation of the bootstrap distribution,
and eventually to a loss of power.
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Table 7
Power properties with block length selection.

A1, B1 Σ T N τp τgm

RF AvB OpB OpRF RF AvB OpB OpRF

Panel A: No common factors (setting IV)

A1 = 0, r = 1 25 5 0.218 4.088 2 0.436 0.186 4.060 2 0.244
B1 = 0 25 25 0.916 2.928 1 0.964 0.986 2.596 1 0.990

50 5 0.740 5.974 5 0.856 0.884 5.438 4 0.948
50 25 1.000 3.732 1 1.000 1.000 3.168 1 1.000

r = 0.1 25 5 0.686 4.530 4 0.816 0.340 4.194 1 0.636
25 25 0.984 2.868 1 0.992 0.966 2.606 2 0.976
50 5 0.652 6.592 5 0.792 0.748 5.730 3 0.850
50 25 1.000 3.766 1 1.000 1.000 3.118 1 1.000

A1 = Ξ , r = 1 25 5 0.102 3.788 6 0.132 0.192 3.908 4 0.270
B1 = Ω 25 25 0.476 2.458 4 0.428 0.756 2.390 3 0.860

50 5 0.582 7.586 4 0.682 0.570 7.412 1 0.798
50 25 0.988 3.192 2 0.992 1.000 2.850 1 1.000

r = 0.1 25 5 0.234 4.076 4 0.330 0.250 3.966 3 0.400
25 25 0.642 2.414 2 0.704 0.784 2.390 3 0.880
50 5 0.264 6.976 3 0.410 0.198 6.702 4 0.354
50 25 0.998 3.362 2 1.000 1.000 2.994 1 1.000

Panel B: Common factors (setting V)

A1 = 0, r = 1 25 5 0.118 4.712 1 0.300 0.138 4.386 1 0.254
B1 = 0 25 25 0.328 3.802 1 0.550 0.242 3.608 2 0.402

50 5 0.340 8.188 3 0.486 0.372 6.868 3 0.438
50 25 0.538 6.338 1 0.682 0.484 5.638 2 0.684

r = 0.1 25 5 0.226 4.652 2 0.406 0.160 4.484 1 0.268
25 25 0.182 4.342 1 0.250 0.100 4.276 2 0.240
50 5 0.182 9.964 3 0.292 0.214 8.812 1 0.364
50 25 0.414 7.096 1 0.508 0.580 5.858 1 0.752

A1 = Ξ , r = 0.1 25 5 0.064 5.120 8 0.120 0.058 4.574 2 0.136
B1 = Ω 25 25 0.058 4.638 3 0.092 0.042 4.108 5 0.096

50 5 0.110 8.774 2 0.184 0.098 8.166 3 0.158
50 25 0.200 6.424 7 0.286 0.258 5.508 8 0.288

See Table 6.
involve a criterion thatminimizes size distortions instead of critical
values as we do. To be more specific, after Step 3 of the algorithm
calculate the rejection frequency given block length bi using the
bootstrap critical value c∗(bi) and the test statistics θ̂ k(b0). Then
the optimal block length can be selected as that block length that
makes the rejection frequency the closest to the nominal level.

While this criterion may seem to differ from our criterion, it is
actually the same. We suggest minimizing the distance to c(b0),
which is actually that value which, if used as a critical value,
will exactly give a rejection frequency equal to the nominal level.
Therefore, both criteria minimize the same thing.19 Moreover, our
criterionmay perform better if only a small number of replications
is considered. For a small number of bootstrap replications, there
are also only a limited number of values the rejection frequencies
can take, with the consequence that the rejection frequency for
several candidate block lengths will be the same and a number of
block lengths may turn out to be optimal. Our criterion does not
suffer from that problem, as the critical values are not restricted in
this way.

Remark 10. As mentioned before, we compared the calibration
method to the subsampling approach of Hall et al. (1995),
the plug-in method of Lahiri et al. (2007) and the minimum
volatility method. The subsampling method tends to select block
lengths in a somewhat unpredictable way, although the obtained
rejection frequencies are reasonably close (but somewhat inferior)
to those obtained with the calibration method. The plug-in
method generally favors too small block lengths, regardless of

19 Loosely speaking, we can describe this situation as a p-value approach versus a
critical value approach, where both obviously lead to the same conclusion.
the underlying DGP. The minimum volatility method selects block
lengths almost uniformly over the range of allowed lengths,
thereby selecting too large block lengths in general. The results are
available on request.

6. Conclusion

We have established the asymptotic validity of two block
bootstrap panel unit root tests for a model that includes various
kinds of cross-sectional and temporal dependence. This includes
a common factor structure and possibly cross-unit cointegration.
The tests are simple pooled and group-mean tests based on the
popular LLC and IPS tests. The finite sample properties of our test
statistics have also been investigated and shown to be satisfactory
in general. There also seems to be little difference between the
bootstrap tests considered.

While for most specific settings (in particular cross-unit
cointegration) some tests can be found that perform better for
that particular setting, it is a lot more difficult to find a test
that is valid for all the settings for which our bootstrap tests
are valid. Moreover, there are currently very few tests that are
valid in the empirically relevant case of dynamic cross-sectional
dependence, while our tests are valid even in that setting. Our
tests are very easy to implement as no specification and estimation
of the dependence structure is necessary, and will therefore be
very useful for practice when the true form of the cross-sectional
(and temporal) dependence is not known and robustness to the
unknown cross-sectional dependencematters. In fact, quite a lot of
practitioners already use the block bootstrap to account for cross-
sectional dependence for the reasons listed above.Hence, thiswork
provides the necessary theoretical justification.

On the basis of the theoretical and simulation results in this
paper, we conclude that it is legitimate to use the proposed tests
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in practice when testing for unit roots in the observed data of a
panel of fixed N entities, in the presence of various forms of cross-
sectional dependence. The block bootstrap algorithm described
in Section 3 can be straightforwardly implemented whereby
block lengths can be selected using the Warp-Speed calibration
method.

This study still leaves several ends open. First, while we briefly
considered the subject of block length selection,much still needs to
be done as at the moment there does not exist a fully satisfactory
method to select block lengths. Second, while our derivations do
not depend on smallN in anyway, it will be interesting to seewhat
happens if N → ∞. As explained, such a theoretical analysis is
difficult in our setting but it is certainly worth further research.
Third, the specification of deterministic components remains an
open issue. While a ‘‘naive’’ implementation of deterministic
components is quite straightforward, and can even be seen to
be valid without too much difficulty, experience has shown that
including ‘‘naive’’ deterministic terms in panels is hardly ever
a good solution. Thus, further investigation of this issue is also
merited. Finally, the block bootstrap may also be used for the
analysis of panel cointegration, as done by Fachin (2007) and Di
Iorio and Fachin (2008). To develop the appropriate theoretical
foundations in that setting would be a logical generalization of this
work.
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Appendix

Proof of Lemma 1. Note that by Assumption 1 WT (r) = T−1/2∑⌊Tr⌋
t=1 εt

d
−→ Σ1/2W (r). Then it follows from standard asymptotic

theory for linear processes (see for example Phillips and Solo, 1992)
that, uniformly in r ,

T−1/2
⌊Tr⌋−
t=1

xt = Ψ (1)WT (r) + op(1),

and consequently T−1/2∑⌊Tr⌋
t=1 xt

d
−→ Ψ (1)Σ1/2W (r). The result

then follows by the continuous mapping theorem. �

To prove Theorem 1we need somemoments that appear in the
asymptotic distributions.

Lemma A.1. Let yt be generated under H0 setting (A). Let Assump-
tion 1 hold. Then

(i) Ω = limT→∞ T−1 E
∑T

t=1 ut

 ∑T
t=1 ut

′

= Γ ′Ψ (1)ΣΨ (1)′Γ ,
(ii) Ω0 = limT→∞ T−1∑T

t=1 E utu′
t =

∑
∞

j=0 Γ ′ΨjΣΨ ′

j Γ .
Proof of Lemma A.1. For part (i), note that

Ω = lim
T→∞

T−1
T−

s=1

T−
t=1

E usu′

t

= lim
T→∞

T−1
T−

s=1

T−
t=1

∞−
i=0

∞−
j=0

Γ ′Ψi E εs−iε
′

t−jΨ
′

j Γ

=

∞−
i=0

∞−
j=0

Γ ′ΨiΣΨ ′

j Γ = Γ ′Ψ (1)ΣΨ (1)′Γ .

For part (ii) we have

Ω0 = lim
T→∞

T−1
T−

t=1

E


∞−
j=0

Γ ′Ψjεt−j


∞−
j=0

Γ ′Ψjεt−j

′

= lim
T→∞

T−1
T−

t=1

∞−
i=0

∞−
j=0

Γ ′Ψi E εt−iε
′

t−jΨ
′

j Γ

=

∞−
i=0

Γ ′ΨiΣΨ ′

i Γ .

This completes the proof. �

Lemma A.2. Let yt be generated under H0 setting (A). Let Assump-
tion 1 hold. Then, as T → ∞, we have for i = 1, . . . ,N,

(i) T−1∑T
t=1 yi,t−11yi,t

d
−→
 1
0 Bi(r)dBi(r) +

1
2 (ωi − ω0,i),

(ii) T−2∑T
t=1 y

2
i,t−1

d
−→
 1
0 Bi(r)2dr,

where convergence also holds jointly.

Proof of Lemma A.2. The proof follows directly from Lemmas 1,
A.1 and the continuous mapping theorem. Joint convergence
can be established using the Cramér–Wold device (cf. Davidson,
2002, Theorem 25.5). �

Proof of Theorem 1. The proof follows immediately from
Lemma A.2. �

In order to derive the bootstrap invariance principle we need
three preliminary lemmas that build on each other. We exploit
the linearity of the processes in our derivation. As for the original
series, we first derive the properties for the bootstrap equivalent
of εt which we then extend to u∗

t .
Lemma A.3 establishes some moments for this series, while

Lemma A.4 establishes the corresponding invariance principle.
Lemma A.5 then extends this to u∗

t .

Lemma A.3. Define H∗
m = b−1/2∑b

s=1(εim+s−E∗ εim+s). If Assump-
tions 1 and 3 hold, we have

(i) E∗ H∗
m = 0,

(ii) E∗ H∗
mH

∗′
m = Σ + op(1).

Proof of Lemma A.2. Statement (i) is trivial. To prove statement
(ii), write

E∗ H∗

mH
∗′

m = b−1
b−

s1=1

b−
s2=1


E∗ εim+s1ε

′

im+s2 − E∗ εim+s1 E
∗ ε′

im+s2


=

1
b(T − b)

b−
s1=1

b−
s2=1

T−b−
t=1

εt+s1ε
′

t+s2

− b−1


1

T − b

b−
s=1

T−b−
t=1

εt+s


1

T − b

b−
s=1

T−b−
t=1

εt+s

′

= AT + BT .
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Let us first look at BT . Note that

1
T − b

b−
s=1

T−b−
t=1

εt+s =
b
T

T−
t=1

εt +
b2

T (T − b)

T−
t=1

εt

−
1

T − b

b−
s=1

s−1−
t=1

εt −
1

T − b

b−
s=1

T−
t=T−b+s+1

εt

= Op(bT−1/2) + Op(b2T−3/2) + Op(b3/2T−1) + Op(b3/2T−1),

from which we can conclude that BT = Op(bT−1).
Next we look at the first term. We have

AT =
1

b(T − b)

b−
s=1

T−b−
t=1

εt+sε
′

t+s

+
1

b(T − b)

b−
s1=1

b−
s2=1,s1≠s2

T−b−
t=1

εt+s1ε
′

t+s2

= T−1
T−

t=1

εtε
′

t + Op(bT−1/2) = Σ + op(1).

This concludes the proof of part (ii). �

Lemma A.4. Let Assumptions 1 and 3 hold. Then, as T → ∞,

W ∗

T (r) = T−1/2
⌊(k−1)r⌋−

k=0

b−
s=1

(εim+s − E∗ εim+s)

d∗

−→ Σ1/2W (r) in probability.

Proof of Lemma A.4. First note that

T−1/2
⌊(k−1)r⌋−

m=0

b−
s=1

(εim+s − E∗ εim+s) = k−1/2
⌊(k−1)r⌋−

m=0

H∗

m.

It is easily seen that the conditions of Corollary 2.2 of Phillips
and Durlauf (1986) hold for the H∗

m terms, by which the result
follows. �

Lemma A.5. Let yt be generated under H0 setting (A). Let Assump-
tions 1 and 3 hold. Then, as T → ∞,

T−1/2
⌊(k−1)r⌋−

m=0

b−
s=1

(uim+s − E∗ uim+s)
d∗

−→ Γ ′Ψ (1)Σ1/2W (r).

Proof of Lemma A.5. As

T−1/2
⌊(k−1)r⌋−

m=0

b−
s=1

(uim+s − E∗ uim+s)

= T−1/2
⌊(k−1)r⌋−

m=0

b−
s=1

(Γ ′xim+s − E∗ Γ ′xim+s)

= Γ ′


T−1/2

⌊(k−1)r⌋−
m=0

b−
s=1

(xim+s − E∗ xim+s)


, (29)

we focus on T−1/2∑⌊(k−1)r⌋
m=0

∑b
s=1(xim+s − E∗ xim+s).
Using the Beveridge–Nelson decomposition we have

T−1/2
⌊(k−1)r⌋−

m=0

b−
s=1

(xim+s − E∗ xim+s)

= T−1/2
⌊(k−1)r⌋−

m=0

b−
s=1

Ψ (1)(εim+s − E∗ εim+s)

− T−1/2
⌊(k−1)r⌋−

m=0

((Ψ̃ (L)εim+b − E∗ Ψ̃ (L)εim+b)

× (Ψ̃ (L)εim − E∗ Ψ̃ (L)εim)),

where Ψ̃ (z) =
∑

∞

j=0 Ψ̃jz j, Ψ̃j =
∑

∞

i=j+1 Ψj.

We will show that T−1/2∑⌊(k−1)r⌋
m=0 (Ψ̃ (L)εim+b − E∗ Ψ̃ (L)εim+b)

= o∗
p(1). First note that

P∗

T−1/2
⌊(k−1)r⌋−

m=0


Ψ̃ (L)εim+s − E∗ Ψ̃ (L)εim+s

 > ϵ



≤
1
ϵ2

E∗

T−1/2
⌊(k−1)r⌋−

m=0


Ψ̃ (L)εim+s − E∗ Ψ̃ (L)εim+s


2

=
1
ϵ2

E∗
G∗

T ,s

2
for s = 0, b by theMarkov inequality. Then, letting ξ ∗

t = εt −E∗ εt ,

E∗
G∗

T ,s

2 = T−1
⌊(k−1)r⌋−
m1=0

⌊(k−1)r⌋−
m2=0

E∗


∞−
j=0

Ψ̃jξ
∗

im1+s−j

′

×


∞−
j=0

Ψ̃jξ
∗

im2+s−j



= T−1
⌊(k−1)r⌋−

m=0

E∗

 ∞−
j=0

Ψ̃j

εim+s−j − E∗ εim+s−j


2

,

using the independence of the blocks. Now, by Minkowski’s
inequality, we have uniformly in r ,

E∗
G∗

T ,s

2
≤ T−1

⌊(k−1)r⌋−
m=0


∞−
j=0

Ψ̃j
 E∗

εim+s−j − E∗ εim+s−j
21/22

≤ 4kT−1


∞−
j=0

Ψ̃j
2

max
j

1
T − b

T−b−
t=1

εt+s−j
2 .

A sufficient condition for
∑

∞

j=0

Ψ̃j
 < ∞ is that

∑
∞

j=0 j
Ψj
 <

∞; see Phillips and Solo (1992, Lemma 2.1). This holds by
Assumption 1. We also have that

1
T − b

T−b−
t=1

|εt+s−j| = Op(1)

by the moment conditions in Assumption 1. Therefore E∗
G∗

T ,s

2 =

Op(b−1) for s = 0, b from which it follows that, uniformly in r ,

T−1/2
⌊(k−1)r⌋−

m=0

b−
s=1

(xim+s − E∗ xim+s) = Ψ (1)W ∗

T (r) + o∗

p(1) (30)

and therefore
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T−1/2
⌊(k−1)r⌋−

m=0

b−
s=1

(xim+s − E∗ xim+s)

d∗

−→ Ψ (1)Σ1/2W (r) in probability (31)

by Lemma A.4. The proof is concluded by referring to (29) and
applying the continuous mapping theorem. �

Proof of Lemma 2. Note that

S∗

T (r) = T−1/2y1 + T−1/2
Mr−1−
m=0

b−
s=1

ûim+s + T−1/2
Nr−
s=1

ûiMr +s,

where Mr = ⌊(⌊Tr⌋ − 2)/b⌋ and Nr = ⌊Tr⌋ − Mrb − 1. As
T−1/2y1 = Op(T−1/2), we write

S∗

T (r) = T−1/2
Mr−
m=0

b−
s=1

ûim+s − T−1/2
b−

s=Nr+1

ûiMr +s + Op(T−1/2).

It now follows from applying the proof of Theorem 3.1 of Paparodi-
tis and Politis (2003) to each element of S∗

T (r) that, uniformly in r ,

S∗

T (r) = T−1/2
⌊(k−1)r⌋−

m=0

b−
s=1

(uim+s − E∗ uim+s) + o∗

p(1). (32)

The proof is then concluded by applying Lemma A.5. �

The next step is to determine the moments of the bootstrap
series corresponding to the moments in Lemma A.1.

Lemma A.6. Let yt be generated under H0 setting (A). Let Assump-
tions 1 and 3 hold. Then, as T → ∞,

(i) Ω∗
= T−1

[
E∗

∑T
t=1 u

∗
t

 ∑T
t=1 u

∗
t

′

− E∗

∑T
t=1 u

∗
t


E∗

∑T
t=1 u

∗
t

′
]

= Γ ′Ψ (1)ΣΨ (1)′Γ + op(1),

(ii) Ω∗

0 = T−1∑T
t=1


E∗(u∗

t u
∗′
t ) − E∗ u∗

t E
∗ u∗′

t


=
∑

∞

i=0 Γ ′ΨiΣΨ ′

i Γ + op(1).

Proof of Lemma A.6. We start with part (i). Using the arguments
in the proof of Lemma 2 (take r = 1) we can show that

T−1/2
T−

t=1

u∗

t = T−1/2
k−1−
m=0

b−
s=1

(uim+s − E∗ uim+s) + o∗

p(1). (33)

Therefore E∗


T−1/2∑T

t=1 u
∗
t


= op(1) and

Ω∗
= T−1 E∗


k−1−
m=0

b−
s=1

(uim+s − E∗ uim+s)



×


k−1−
m=0

b−
s=1

(uim+s − E∗ uim+s)

′

+ op(1).

Using the Beveridge–Nelson decomposition, we can show, as in the
proof of Lemma A.5, that

T−1/2
k−1−
m=0

b−
s=1

(uim+s − E∗ uim+s)

= T−1/2Γ ′Ψ (1)
k−1−
m=0

b−
s=1

(εim+s − E∗ εim+s) + o∗

p(1).
Consequently

Ω∗
= T−1Γ ′Ψ (1) E∗


k−1−
m=0

b−
s=1

(εim+s − E∗ εim+s)



×


k−1−
m=0

b−
s=1

(εim+s − E∗ εim+s)

′
Ψ (1)′Γ + op(1)

= Γ ′Ψ (1)ΣΨ (1)′Γ + op(1),

which follows from the independence of the blocks and LemmaA.3.
This concludes the proof of part (i).

The proof of part (ii) is similar to part (i). As in the proof of
Lemma 2 we have that

Ω0 = T−1
k−1−
m=0

b−
s=1

E∗

uim+s − E∗ uim+s

 
uim+s − E∗ uim+s

′
+ op(1).

Then, using that uim+s =
∑

∞

j=0 Γ ′Ψjεim+s−j, we can write

Ω∗

0 = T−1
k−1−
m=0

b−
s=1

E∗


∞−
j=0

Γ ′Ψj(εim+s−j − E∗ εim+s−j)



×


∞−
j=0

Γ ′Ψj(εim+s−j − E∗ εim+s−j)

′

+ op(1)

= T−1
k−1−
m=0

b−
s=1

∞−
i=0

∞−
j=0

Γ ′Ψi
1

T − b

×

T−b−
t=1


εt+s−iε

′

t+s−j


Ψ ′

j Γ

− T−1
k−1−
m=0

b−
s=1

∞−
i=0

∞−
j=0

Γ ′Ψi
1

T − b

×

T−b−
t=1

εt+s−i
1

T − b

T−b−
t=1

ε′

t+s−jΨ
′

j Γ + op(1)

= AT + BT + op(1).

Note that

|BT | ≤ b max
1≤s≤b

 1
T − b

T−b−
t=1

εt+s


2

|Γ |
2

×

∞−
i=0

∞−
j=0

|Ψi||Ψj| = bOp(T−1)O(1) = Op(k−1),

while

AT =
1

(T − b)b

T−b−
t=1

b−
s=1

∞−
i=0

Γ ′Ψi(εt+s−iε
′

t+s−i)Ψ
′

i Γ + op(1),

and as 1
(T−b)b

∑T−b
t=1

∑b
s=1 εt+s−iε

′

t+s−i = Σ + op(1), we can
conclude that Ω∗

0 =
∑

∞

i=0 Γ ′ΨiΣΨ ′

i Γ + op(1). �

Lemma A.7. Let yt be generated under H0 setting (A). Let Assump-
tions 1 and 3 hold. Then, as T → ∞, we have for i = 1, . . . ,N,

(i) T−1∑T
t=1 y

∗

i,t−11y∗

i,t
d
−→
 1
0 Bi(r)dBi(r) +

1
2 (ωi − ω0,i),

(ii) T−2∑T
t=1 y

∗2
i,t−1

d
−→
 1
0 Bi(r)2dr,

where convergence also holds jointly.

Proof of Lemma A.7. The result follows from Lemmas 2 and A.6
and the continuousmapping theorem. Joint convergence can again
be established using the Cramér–Wold device. �
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Proof of Theorem 2. The result follows directly from
Lemma A.7. �

Proof of Lemma 3. As in Lemma 1, we have by Assumption 1
that WT (r) = T−1/2∑⌊Tr⌋

t=1 εt
d
−→ Σ1/2W (r). Then it follows

that T−1/2∑⌊Tr⌋
t=1 ft = Ψ2(1)WT (r) + op(1) uniformly in r , and

consequently T−1/2∑⌊Tr⌋
t=1 ft

d
−→ Ψ2(1)Σ1/2W (r).

Now

T−1/2
⌊Tr⌋−
t=1

ut = T−1/2
⌊Tr⌋−
t=1

Λft + T−1/2
⌊Tr⌋−
t=1

1wt

= T−1/2
⌊Tr⌋−
t=1

Λft + T−1/2(w⌊Tr⌋ − w0)

= T−1/2
⌊Tr⌋−
t=1

Λft + Op(T−1/2)

uniformly in r and T−1/2∑⌊Tr⌋
t=1 Λft

d
−→ ΛΨ2(1)Σ1/2W (r). �

The next lemma is the counterpart of Lemma A.1.

Lemma A.8. Let yt be generated under H0 setting (B). Let Assump-
tions 1 and 2 hold. Then

(i) Ω̄ = limT→∞ T−1 E
∑T

t=1 ut

 ∑T
t=1 ut

′

= ΛΨ2(1)ΣΨ2(1)′Λ′,
(ii) Ω̄0 = limT→∞ T−1∑T

t=1 E(utu′
t) =

∑
∞

j=0(ΛΨ2,jΣΨ ′

2,jΛ
′
+

(Ψ̄1,j−Ψ̄1,j+1)ΣΨ ′

2,jΛ
′
+ΛΨ2,jΣ(Ψ̄1,j−Ψ̄1,j+1)

′
+2Ψ̄1,jΣΨ̄ ′

1,j−

Ψ̄1,jΣΨ̄ ′

1,j+1 − Ψ̄1,j+1ΣΨ̄ ′

1,j).
Proof of Lemma A.8. For part (i), note that

Ω̄ = lim
T→∞

T−1 E


T−

t=1

Λft + wT − w0


T−

t=1

Λft + wT − w0

′

= lim
T→∞

T−1
T−

s=1

T−
t=1

Λ E(fsf ′

t )Λ
′
= ΛΨ2(1)ΣΨ2(1)′Λ′,

where the last step follows as in the proof of Lemma A.1 part (i).
For part (ii) we have

Ω̄0 = lim
T→∞

T−1
T−

t=1

E

(Λft + 1wt)(Λft + 1wt)

′


= lim
T→∞


T−1

T−
t=1

Λ E(ft f ′

t )Λ
′
+ T−1

T−
t=1

E(1wt f ′

t )Λ
′

+ T−1
T−

t=1

Λ E(ft1w′

t) + T−1
T−

t=1

E(1wt1w′

t)


= AT + BT + B′

T + CT .

Now

AT =

∞−
j=0

ΛΨ2,jΣΨ ′

2,jΛ
′,

analogous to the proof of Lemma A.1 part (ii). Similarly

BT =

∞−
j=0

(Ψ̄1,j − Ψ̄1,j+1)ΣΨ ′

2,jΛ
′

and

CT =

∞−
j=0


2Ψ̄1,jΣΨ̄ ′

1,j − Ψ̄1,jΣΨ̄ ′

1,j+1 − Ψ̄1,j+1ΣΨ̄ ′

1,j


.

This completes the proof. �
Proof of Theorem 3. Using Lemmas 3, A.8 and the continuous
mapping theoremwe can construct the counterpart of Lemma A.2.
The result then follows. �

Lemma A.9. Let yt be generated under H0 setting (B). Let Assump-
tions 1–3 hold. Then, as T → ∞,

T−1/2
⌊(k−1)r⌋−

m=0

b−
s=1

(uim+s − E∗ uim+s)
d∗

−→ ΛΨ2(1)Σ1/2W (r).

Proof of Lemma A.9. Note that

T−1/2
⌊(k−1)r⌋−

m=0

b−
s=1

(uim+s − E∗ uim+s)

= Λ


T−1/2

⌊(k−1)r⌋−
m=0

b−
s=1

(fim+s − E∗ fim+s)


+ T−1/2

×

⌊(k−1)r⌋−
m=0

(wim+b − E∗ wim+b) − T−1/2
⌊(k−1)r⌋−

m=0

(wim − E∗ wim)

= A∗

T − B∗

T ,0 + B∗

T ,b. (34)

We want to show that B∗

T ,s = O∗
p(b

−1/2) uniformly in r for
s = 0, b. First note that by Eq. (30)

B∗

T ,s = T−1/2
⌊(k−1)r⌋−

m=0

(Ψ̄1(L)εim+s − E∗ Ψ̄1(L)εim+s) + o∗

p(1).

As k−1/2∑⌊(k−1)r⌋
m=0 (Ψ̄1(L)εim+s − E∗ Ψ̄1(L)εim+s) = O∗

p(1), it follows
that B∗

T ,s = O∗
p(b

−1/2) uniformly in r for s = 0, b.
As in the proof of Lemma A.5 we have that

T−1/2
⌊(k−1)r⌋−

m=0

b−
s=1

(fim+s − E∗ fim+s) = Ψ2(1)W ∗

T (r) + o∗

p(1)

uniformly in r and consequently that

T−1/2
⌊(k−1)r⌋−

m=0

b−
s=1

(uim+s − E∗ uim+s)

d∗

−→ ΛΨ2(1)W (r) in probability. �

Proof of Lemma 4. As the order of the ft determines the order of
ut , the proof proceeds as the proof of Lemma 2 such that we have,
uniformly in r ,

S∗

T (r) = T−1/2
⌊(k−1)r⌋−

m=0

b−
s=1

(ui,im+s − E∗ ui,im+s) + o∗

p(1). (35)

The proof is then concluded by applying Lemma A.9. �

We consider the bootstrap moments in the following lemma.

Lemma A.10. Let yt be generated under H0 setting (B). Let
Assumptions 1–3 hold. Then, as T → ∞,

(i) Ω̄∗
= T−1 E

∑T
t=1 u

∗
t

 ∑T
t=1 u

∗
t

′

= ΛΨ2(1)ΣΨ2(1)′Λ′
+

op(1),
(ii) Ω̄∗

0 = T−1∑T
t=1 E(u

∗
t u

∗′
t ) =

∑
∞

j=0(ΛΨ2,jΣΨ ′

2,jΛ
′
+ (Ψ̄1,j −

Ψ̄1,j+1)ΣΨ ′

2,jΛ
′

+ ΛΨ2,jΣ(Ψ̄1,j − Ψ̄1,j+1)
′

+ 2Ψ̄1,jΣΨ̄ ′

1,j −

Ψ̄1,jΣΨ̄ ′

1,j+1 − Ψ̄1,j+1ΣΨ̄ ′

1,j) + op(1).
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Proof of Lemma A.10. We start with part (i). As

T−1/2
T−

t=1

u∗

t = T−1/2
k−1−
m=0

b−
s=1

(uim+s − E∗ uim+s) + o∗

p(1), (36)

we have that

Ω̄∗
= T−1 E∗


k−1−
m=0

b−
s=1

(uim+s − E∗ uim+s)



×


k−1−
m=0

b−
s=1

(uim+s − E∗ uim+s)

′

+ op(1).

Combining the proof of Lemmas A.5 and A.9 we can show that

T−1/2
k−1−
m=0

b−
s=1

(uim+s − E∗ uim+s)

= T−1/2ΛΨ2(1)
k−1−
m=0

b−
s=1

(εim+s − E∗ εim+s) + o∗

p(1).

Consequently

Ω̄∗
= ΛΨ2(1)ΣΨ2(1)′Λ′

+ op(1),

which follows as in the proof of Lemma A.6. This concludes the
proof of part (i).

Next we consider part (ii). As in the proof of Lemma A.6 we can
show that

Ω̄∗

0 = T−1
k−1−
m=0

b−
s=1

E∗

uim+s − E∗ uim+s

 
uim+s − E∗ uim+s

′
+ op(1).

Then we can write

Ω̄∗

0 = T−1
k−1−
m=0

b−
s=1

Λ E∗

fim+s−j − E∗ fim+s−j


×

fim+s−j − E∗ fim+s−j

′
Λ′

+ T−1
k−1−
m=0

b−
s=1

Λ E∗

fim+s−j − E∗ fim+s−j


×

1wim+s−j − E∗ 1wim+s−j

′
+ T−1

k−1−
m=0

b−
s=1

E∗

1wim+s−j − E∗ 1wim+s−j


×

fim+s−j − E∗ fim+s−j

′
Λ′

+ T−1
k−1−
m=0

b−
s=1

E∗

1wim+s−j − E∗ 1wim+s−j


×

1wim+s−j − E∗ 1wim+s−j

′
= A∗

T + B∗

T + B∗′

T + C∗

T .

Then we can show, in the same way as in the proof of Lemma A.6
part (ii), that

A∗

T =

∞−
j=0

ΛΨ2,jΣΨ ′

2,jΛ
′
+ op(1),

as well as

B∗

T =

∞−
j=0

(Ψ̄1,j − Ψ̄1,j+1)ΣΨ ′

2,jΛ
′
+ op(1)
and

C∗

T =

∞−
j=0


2Ψ̄1,jΣΨ̄ ′

1,j − Ψ̄1,jΣΨ̄ ′

1,j+1 − Ψ̄1,j+1ΣΨ̄ ′

1,j


+ op(1).

This completes the proof. �

Proof of Theorem 4. As for Theorem 3we can construct the coun-
terpart of Lemma A.7 using Lemmas 4, A.10 and the continuous
mapping theorem. The result then follows. �

Proof of Lemma 5. We can write

T−1τp =

N∑
i=1

T−1
T∑

t=2
yi,t−11yi,t

N∑
i=1

T−1
T∑

t=2
y2i,t−1

=

N∑
i=1

aiT

N∑
i=1

biT

.

Now as yi,t is a stationary process for all i = 1, . . . ,N , we have that

aiT = T−1
T−

t=2

yi,t−1yi,t − T−1
T−

t=2

y2i,t−1
p
−→ γi(1) − γi(0),

and

biT = T−1
T−

t=2

y2i,t−1
p
−→ γi(0).

Similarly,

T−1τgm = N−1
N−
i=1

aiT
biT

,

from which the result follows. �

Lemma A.11. Let yt be generated under Ha
1 . Let Assumptions 1 and

3 hold. Then, as T → ∞,

T−1/2
⌊(k−1)r⌋−

m=0

b−
s=1

(uim+s − E∗ uim+s)
d∗

−→ Ψ ++(1)Σ1/2W (r).

Proof of Lemma A.11. Using the Beveridge–Nelson decomposi-
tion we can write

T−1/2
⌊(k−1)r⌋−

m=0

b−
s=1

(uim+s − E∗ uim+s)

= T−1/2
⌊(k−1)r⌋−

m=0

b−
s=1

Ψ ++(1)(εim+s − E∗ εim+s)

− T−1/2
⌊(k−1)r⌋−

m=0

((Ψ̃ ++(L)εim+b − E∗ Ψ̃ ++(L)εim+b)

× (Ψ̃ ++(L)εim − E∗ Ψ̃ (L)εim)),

where Ψ̃ ++(z) =
∑

∞

j=0 Ψ̃ ++

j z j and Ψ̃ ++

j =
∑

∞

i=j+1 Ψ ++

j .
Weneed to show that T−1/2∑⌊(k−1)r⌋

m=0 (Ψ̃ ++(L)εim+b−E∗ Ψ̃ (L)++

εim+b) = o∗
p(1), uniformly in r . Completely analogous to the proof

of LemmaA.5 thismeans showing that
∑

∞

j=0

Ψ̃ ++

j

 < ∞ or equiv-
alently

∑
∞

j=0 j
Ψ ++

j

 < ∞. This holds as we remarked that the
summability condition continues to hold. �

Proof of Theorem 5. We can apply the proof of Theorem 3.1 of
Paparoditis and Politis (2003), now for the stationary case, to show
that, uniformly in r ,

S∗

T (r) = T−1/2
⌊(k−1)r⌋−

m=0

b−
s=1

(ui,im+s − E∗ ui,im+s) + o∗

p(1). (37)
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The result now follows by applying Lemma A.11 and the continu-
ous mapping theorem. �

Proof of Lemma 6. We write

τp =

N∑
i=1

T−1
T∑

t=2
yi,t−11yi,t

N∑
i=1

T−2
T∑

t=2
y2i,t−1

=

n1∑
i=1

T−1
T∑

t=2
yi,t−11yi,t +

N∑
i=n1+1

T−1
T∑

t=2
yi,t−11yi,t

T−1
n1∑
i=1

T−1
T∑

t=2
y2i,t−1 +

N∑
i=n1+1

T−2
T∑

t=2
y2i,t−1

=

n1∑
i=1

aiT +

N∑
i=n1+1

ciT

n1∑
i=1

T−1biT +

N∑
i=n1+1

diT

.

The convergence of aiT and biT follow from the proof of Lemma 5.
Furthermore, as in Lemma A.2, we have that

ciT
d
−→

∫ 1

0
B#
i (r)dB

#
i (r),

diT
d
−→

∫ 1

0
B#
i (r)

2dr,

from which the result for τp follows.
For τgm we can write

T−1τgm = N−1
n1−
i=1

aiT
biT

+ N−1
N−

i=n1+1

T−1 ciT
diT

= N−1
n1−
i=1

aiT
biT

+ Op(T−1). �

Proof of Corollary 1. The proof is immediate by combining the
proofs of Theorems 2 and 5. �
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