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Individuals with adaptive expertise possess the skills to deal with novel problems. Whereas this concept has been around
since the mid-1980s, no instrument exists that provides a good operationalization of the theoretical construct. This inhibits
the further development of research on adaptive expertise and the evaluation of employees’ adaptive expertise levels.
Adaptive expertise has been unanimously described as a composition of domain-specific and innovative skills. Some
researchers argue that metacognitive skills are also crucial. This study aimed to establish whether an instrument measuring
adaptive expertise is composed of these three dimensions. In addition, it was tested whether such an instrument is
influenced by task variety and work experience, as previously reported in literature. A sample of 383 professionals and
graduates were used to test the Adaptive Expertise Inventory. Through exploratory factor analysis (EFA), (E/CFA), and
confirmatory factor analysis (CFA), the quality of the instrument was evaluated. Good model fit was achieved. The final
instrument consisted of two dimensions—i.e., domain-specific and innovative skills—with five items each. Regression
analysis showed that not work experience, but task variety is related to level of adaptive expertise. The Adaptive Expertise
Inventory proved to be a valid instrument for measuring adaptive expertise.

Keywords: adaptive expertise; innovative skills; task variety; validation; CFA

Employees with adaptive expertise are able to effectively
deal with situations which are uncommon to their work
domain; while doing so, moreover, they create new
knowledge and methods (Barnett & Koslowski, 2002;
Hatano & Oura, 2003; Mylopoulos & Regehr, 2009).
Companies need employees with adaptive expertise,
because the frequent creation of new knowledge and
methods helps them maintain their competitive advantage
(Nahapiet & Ghoshal, 1998). However, the fact that
employees are not fully aware of their adaptive expertise
(Mylopoulos & Scardamalia, 2008) and therefore do not
adequately share the newly created knowledge and meth-
ods with colleagues constitutes a challenge.

According to the literature, adaptive expertise has
three components: (1) domain-specific skills, (2) metacog-
nitive skills, and (3) innovative skills (Crawford, Schlager,
Toyama, Riel, & Vahey, 2005; Hatano & Inagaki, 1986;
Hatano & Oura, 2003). It has often been contrasted with
routine expertise (Hatano & Inagaki, 1986), which is
expert performance without the ability to perform at a
very high level in situations that are not representative of
their domain.

In the workplace literature, several instruments that
measure some form of adaptability on the job have been
described. These instruments measure the ability to adjust

behaviour in response to changes in the situation, but do
not measure adaptive expertise. Charbonnier-Voirin and
Roussel (2012) and Pulakos, Arad, Donovan, and
Plamondon (2000), for example, developed instruments
with which the ability to adapt to changes in the work
environment could be assessed. These instruments assess
the adaptation to various forms of change (e.g., physical
adaptation, interpersonal adaptation). They address a great
many sources of change, ranging from simple fluctuations
in the amount of work (e.g., the ability to handle work
stress) to common sources of change (e.g., interpersonal
adaptability). Hence, these instruments fall short of mea-
suring adaptive expertise, because they do not specifically
measure adaptation to non-standard situations.

van der Heijden (2000) developed an instrument that
measures expert performance. While this instrument
addresses the dimension of expertise, the author perceived
that meeting and even exceeding achievement standards is
of utmost importance to experts. This leaves less scope for
the acquisition of new knowledge and skills, which is
crucial for the development of adaptive expertise
(Hatano & Inagaki, 1986).

In the educational literature, Fisher and Peterson
(2001) documented on an instrument that measures atti-
tudes towards adaptive expertise. Whereas, at face value,
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this instrument may seem to measure adaptive expertise, it
actually provides information about how an individual
feels about the need to be adaptive, not about whether
the individual is able and willing to adapt his or her
knowledge and methods to solve the situation.

To conclude, present-day instruments do not attempt to
measure adaptive expertise, as they fail to satisfy the
theoretical conceptualization of adaptive expertise. The
aim of developing an instrument that does meet this
requirement, therefore, is twofold: (1) to further the
research on adaptive expertise by providing an instrument
that makes the three dimensions of adaptive expertise (i.e.,
domain-specific, metacognitive, and innovative skills)
operational, and (2) to help companies measure their
workforce’s readiness to deal with situations that are not
representative of their domain. In the following sections,
the concept of adaptive expertise and its three dimensions
will be further explained. The ensuing framework is con-
sequently used to analyse the existing instruments that
measure adaptation at the workplace. The same frame-
work is used to guide the creation of the new instrument.
Through several analyses, the instrument’s construct valid-
ity will be assessed. The paper concludes with an appraisal
of the instrument’s potential to measure adaptive expertise
and with recommendations for further research.

Adaptive expertise

Employees with a high level of adaptive expertise are experts
who “can be characterized by their flexible, innovative, and
creative competencies within the domain” (Hatano & Oura,
2003, p. 28). They are able to detect anomalies in their tasks
and are consequently alerted when the skills and rule-based
behaviour that guide their decision-making are likely to result
in suboptimal behaviour (Olsen & Rasmussen, 1989).
Individuals who do not show adaptive expertise, but who
are still experts in their domains, are said to possess routine
expertise (Hatano & Oura, 2003). Adaptive expertise is built
on routine expertise, as both forms of expertise contain the
ability to perform standard tasks in the domain without errors.
The difference only becomes apparent when confronted with
a non-standard situation: Individuals with adaptive expertise
possess a more extensive and integrated knowledge base than
do individuals with routine expertise (Hatano & Inagaki,
1986). This helps them to determine when not to rely on
their automatic processes; when this happens, they can
“slow down” and make conscious efforts to deal with the
problem. It follows that they abandon skill- and rule-based
decision-making (Olsen & Rasmussen, 1989; Sonnentag,
Niessen, & Volmer, 2006) and spend time building a mental
model of the situation, in which they draw analogies between
standard and novel situations (Barnett & Koslowski, 2002;
Chi, 2011; Gentner et al., 1997; Wineburg, 1998).

This description of adaptive expertise indicates that it
is situated within the field of research on professional

expertise, not on traditional expertise. It is a developmen-
tal process that is being propelled by problem-solving
skills (Tynjälä, Nuutinen, Eteläpelto, Kirjonen, & Remes,
1997). The concept of adaptive expertise focuses on one
of the aspects of professional expertise (e.g., growth) and
does not touch upon other aspects (e.g., social recognition)
(Bohle Carbonell, Stalmeijer, Könings, Segers, & Van
Merriënboer, 2014). Consequently, characteristics of tradi-
tional expertise research (e.g., repeated high performance,
standardized tasks) play a lesser role compared to the need
for non-standard but realistic tasks that elicit the problem-
solving skills of individuals with adaptive expertise.

To better understand the problem-solving skills of indi-
viduals with adaptive expertise, insights from the cognitive
perspective on professional decision-making are used. One
important factor is domain validity, which refers to the
presence or absence of regularities in a domain
(Kahneman & Klein, 2009; Shanteau, 1992). Domains
that are characterized by a high frequency of valid cues
coupled with quick feedback provide experts with a greater
amount of learning experiences. In such a high-validity
environment, experts can be certain that the presence of
one or more specific cues will lead to specific conse-
quences. This causal structure benefits the development of
fast and automated decision-making skills, characteristic of
individuals with routine and adaptive expertise.

However, in moving from routine expertise to adaptive
expertise, high-validity environments slow down the
development of adaptive expertise, as individuals working
in those environments are infrequently presented with
non-standard situations and thus are not presented with
opportunities to reflect on their expertise and its match
with the problem at hand (Dane, 2010) and the need to
develop new performance standards (Bransford &
Schwartz, 2009). Therefore, experts in those domains
develop a penchant for perceiving expert knowledge as
“static”. They do not have the epistemological perspective
of individuals with high levels of adaptive expertise who
regard expertise knowledge as “dynamic” and evolving.

The dimensions of adaptive expertise

The concept of adaptive expertise consists of three dimen-
sions, as depicted in Figure 1: domain-specific skills,
metacognitive skills, and innovative skills. The first two

Figure 1. Dimensions of adaptive expertise.
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dimensions are said by several researchers to be the foun-
dations for adaptive expertise, as domain-specific skills
and metacognitive skills are already basic components of
routine expertise (Feltovich, Prietula, & Ericsson, 2006),
which is a prerequisite for adaptive expertise. The litera-
ture on adaptive expertise, however, is not clear on the
exact role metacognitive skills play in the development of
adaptive expertise. While some judge it to be a part of
routine expertise (Hatano & Oura, 2003; Varpio, Schryer,
& Lingard, 2009), others suggest that individuals with
adaptive expertise possess better metacognitive skills
than those with routine expertise (Crawford et al., 2005;
Fisher & Peterson, 2001; Martin, Petrosino, Rivale, &
Diller, 2006; Martin, Rivale, & Diller, 2007; Mylopoulos
& Woods, 2009). Unfortunately, no evidence exists for
either one of these positions (Bohle Carbonell et al.,
2014). Nevertheless, what is clear from the literature is
that routine and adaptive expertise do not oppose each
other; rather, adaptive expertise builds on routine expertise
(Schwartz, Bransford, & Sears, 2005).

A difference noted by researchers in domain-specific
skills between individuals with adaptive and routine exper-
tise is their epistemological stand. Individuals with adaptive
expertise view their body of knowledge as dynamic and
evolving, whereas individuals with routine expertise per-
ceive it as static (Crawford et al., 2005; Fisher & Peterson,
2001). Consequently, individuals with routine expertise
focus less on the continuous acquisition of new domain
knowledge and skills. Individuals with adaptive expertise
do not mind making errors (Hatano & Inagaki, 1986), as
these may lead to more extensive and integrated domain
knowledge; it also teaches them what not to do in particular
situations. Making errors provides individuals with oppor-
tunities to learn, especially when they understand the
sources of their errors and hence learn how to avoid them
(Bell & Kozlowski, 2008; Hughes et al., 2013).

With respect to the dimension of innovative skills,
studies have reported that individuals with adaptive exper-
tise possess high cognitive flexibility and deep thinking
skills (Allworth & Hesketh, 1999; Barnett & Koslowski,
2002; Bell & Kozlowski, 2008; Reder & Schunn, 1999;
Stokes, Schneider, & Lyons, 2010). These skills enable
individuals with adaptive expertise (1) to view situations
outside of their context and thus to draw analogies to other
situations they have experience with, and (2) to decom-
pose their knowledge into its smallest building blocks in
order to be able to reassemble these differently in order to
deal with novel situations.

An outcome of adaptive expertise is the creation of
new knowledge or methods. As described above, adaptive
expertise is the ability to excel in situations that are not
representative of the individual’s domain. To be able to
solve non-standard problems, individuals have to trans-
form their current body of knowledge and methods of
working. As a result of this, adaptive expertise leads to

the creation of something new. This may be new knowl-
edge (declarative, procedural, or conditional; Alexander,
Schallert, & Hare, 1991) or a new method of working.

Existing instruments and their limitations

In order to measure adaptive expertise properly, an instru-
ment should meet several criteria. Such criteria for the
assessment of an instrument’s robustness include the num-
ber and content of subscales and the wording of items.

Regarding the subscales, an instrument that assesses
adaptive expertise should contain at least two of these: one
for the domain-specific skills and one for innovative skills.
Given the current uncertainty about the place of metacog-
nitive skills in the concept of adaptive expertise, it is
argued that metacognitive skills can be part of an instru-
ment that measures adaptive expertise, but this is not
imperative.

Several requirements apply to the wording of the
items. First, items referring to domain-specific skills
should be phrased according to the epistemological view-
point that knowledge is dynamic. This accounts for the
social and cognitive perspective of expertise. The first
perspective recognizes that the designation of expert status
and expert decision-making is dependent on peers
(Grenier & Kehrhahn, 2008; Shanteau, 1992). Domain
knowledge is dynamic, as what is considered to be expert
knowledge varies with the individuals working in a
domain and new domain knowledge. The epistemological
standpoint of individuals with adaptive expertise high-
lights their awareness of the fractionation of their expertise
(Kahneman & Klein, 2009). Second, items for all sub-
scales need to refer to the workplace, as individuals with
high levels of adaptive expertise are most likely to demon-
strate this performance in their domain. Third, the items in
the instrument need to refer to novel situations, as indivi-
duals with adaptive expertise demonstrate their ability to
detect irregularities in the environmental cues when con-
fronted with unfamiliar situations.

Four potential instruments are considered: two set out
to measure adaptive performance, one measures attitudes
of adaptive expertise, and the fourth measures professional
flexibility. Table 1 indicates how each instrument aligns
with our conceptualization of adaptive expertise.

First, Pulakos et al. (2000) created an instrument that
measures adaptive performance. Adaptive performance is
the effort of an individual to realign his or her behaviour
with new demands at the workplace (Chan, 2000).
However, if we relate this instrument to the operationali-
zation of adaptive expertise, it becomes clear that the
instrument only meets two out of six criteria: it does not
contain subscales measuring domain-specific skills and
metacognitive skills, nor does it include the epistemologi-
cal perspective of adaptive expertise and the required
focus on novel situations.
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Second, Charbonnier-Voirin and Roussel (2012) devel-
oped a scale with which to measure adaptive performance
in organizations. The instrument is based on the taxonomy
described by Pulakos et al. (2000). While the instrument
clearly aims at the assessment of working professionals’
performance and also includes a subscale about innovative
skills, it does not address domain-specific or metacogni-
tive skills, the epistemological perspective of adaptive
expertise, and the ability to deal with non-standard situa-
tions. As with the instrument by Pulakos et al. (2000),
uncertain and unpredictable situations are its foci.

Third, Fisher and Peterson (2001) created a tool with
which to assess adaptive expertise. The conceptual frame-
work they adopted is one in which adaptive expertise is
based on a “conceptual understanding of the skill” (Chi,
2011, p. 31) and, as the authors state, the focus is on
“adaptiveness” and not on expert performance (Fisher &
Peterson, 2001, p. 2). This position resulted in an instru-
ment that measures “disposition or mindset” (Fisher &
Peterson, 2001, p. 4) when solving problems and neglects
the level of domain-specific skills necessary to be called
an expert. While the instrument developed by Fisher and
Peterson (2001) fulfils four out of our six criteria (inno-
vative and metacognitive skills, epistemological perspec-
tive, and novel situations), it is void of any reference to the
work domain.

Fourth, van der Heijden (2000) documented on an
instrument that measures professional flexibility. The
author of this instrument deemed achievement orientation
an important part of expertise, as she used the degree of

perseverance of employees to create a continuum of exper-
tise. Hence, each scale includes items that are phrased in
line with this orientation. Achievement orientation is char-
acterized by “a willingness to work hard and persistently
on issues that are of particular interest to the individual,
perseverance in the face of obstacles, a high level of
aspiration, competitiveness and ambition” (van der
Heijden, 2000, p. 12). The inclusion of achievement orien-
tation, however, leads to a conceptual framework that
contradicts adaptive expertise, which puts far more weight
on learning than on achieving. Hence, despite the fact that
the instrument includes all the necessary subscales, it fails
to meet the requirement related to the wording of the items
(i.e., epistemological perspective).

The preceding analysis shows that all of the potential
instruments fail to meet at least one criterion. The instru-
ments developed by Fisher and Peterson (2001) and van
der Heijden (2000) provide the closest fit to the concept of
adaptive expertise. Therefore, these two instruments were
selected to serve as the basis for the development of a new
instrument. The research objectives were defined accord-
ingly: the first aim was to create an instrument that mea-
sures adaptive expertise according to its theoretical
conceptualization, as expressed in the six criteria men-
tioned above. This instrument should assess adaptive
expertise by including at least the required subscales of
domain-specific and innovative skills. In addition, the
items should refer to the epistemological perspective, the
workplace, and to novel situations. Second, we aimed to
assess construct validity of the instrument using

Table 1. Critiera for measuring adaptive expertise.

Pulakos et al. (2000)
Charbonnier-Voirin and

Roussel (2012)
Fisher and

Peterson (2001)

van der
Heijden
(2000)

Name of measured concept Adaptive performance Adaptive performance

Attitudes of
adaptive
expertise

Professional
flexibility

Requirements about the number and content of subscales
1. Does it have a subscale referring to

domain skills
No No No Yes

2. Does it contain a subscale referring
to innovative skills

Yes Yes Yes Yes

3. Does it contain a subscale referring
to metacognitive skills (optional)

No No Yes Yes

Requirements about the wording of items
1. Does the wording of the item

include the epistemological
perspective?

No No Yes No

2. Do the items refer to the workplace? Yes Yes No Yes
3. Do the items refer to novel

situations?
No, 1 subscale refers to
uncertain/ unpredictable

situations

No, 1 subscale refers to
uncertain/ unpredictable

situations

Yes Yes, 2 items

Note: The instrument by Pulakos et al. (2000) is not published; thus, judgments are based on the description of subscales.
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exploratory factor analysis (EFA), EFA in the confirma-
tory factor analysis framework (E/CFA), and confirmatory
factor analysis (CFA) to test if the instrument contains two
or three dimensions. This will help determine the role of
metacognitive skills in the acquisition of adaptive exper-
tise. Third, we sought to assess internal reliability using
Cronbach’s alpha.

Expertise research has provided evidence that the per-
formance of experts is dependent on the validity of their
domain. High-validity environments are domains that pre-
sent frequent and valid cues and thus provide individuals
with ample opportunities to learn the causal relationship
between an environmental cue and its consequences. This
regularity encourages individuals to learn domain-relevant
patterns (Kahneman & Klein, 2009), but decreases the
need for high levels of adaptive expertise. Whether the
need for high levels of adaptive expertise rises with
decreases in validity, however, was the focus of the fourth
research question.

Studies on adaptive expertise have asserted that both
general experience and experience with varied tasks have
a positive impact on the development of adaptive expertise
(Hatano & Inagaki, 1986; Schwartz et al., 2005). Some
evidence exists for this assertion (Barnett & Koslowski,
2002; Martin & Schwartz, 2009). Therefore, our fifth aim
was to measure criterion validity by testing two hypoth-
eses: (1) if working on varied tasks (task variety) has a
positive effect on adaptive expertise, and (2) if number of
years of work experience has a positive effect on adaptive
expertise.

Method

Instrument creation

To design the instrument, we departed from the literature
(Burns et al., 2008). We drew items from the scales
“metacognitive skills” and “growth and flexibility” of
van der Heijden’s (2000) instrument. This created a pool
of items for the optional subscale of metacognitive skills
and the necessary subscale of innovative capacities. We
did not use the author’s subscale of knowledge and skills,
as these items were phrased with an achievement-orienta-
tion slant.

From Fisher and Peterson’s instrument (2001), we
drew items from the scales “multiple perspectives” and
“metacognitive self-assessment”, with which the pool of
items for innovative skills and metacognitive skills was
enlarged. The subscale “epistemology” was not used, as it
referred to knowledge in general and not to domain
knowledge. This yielded a total of 41 initial items. To
bring order to those items, these were grouped into
domain-specific skills, metacognitive skills, and innova-
tive skills. To reduce the length of the instrument and,
with that, the time commitment asked of participants,

items were removed where possible: Six items were
removed for their redundancy and 11 because they did
not fit the concept of adaptive expertise.

The remaining items were analysed for clarity and
common reference category. The instrument by van der
Heijden (2000) related all items to the participant’s work
environment, whereas the instrument by Fisher and
Peterson (2001) used problems or tasks as a reference
category. As the level of adaptive expertise is dependent
on the domain, it was decided to change the reference
category to “work” or “discipline”. The term “work” was
chosen instead of “problem” or “task”, as it comprises the
various tasks an employee has to perform. Besides
rephrasing existing items, we created three new items for
the first dimension (domain-specific skills) as it contained
two items only. As a result, at least five items tapped into
each dimension (Burns et al., 2008).

Finally, all items were analysed one last time for ease
of understanding and uniqueness. This was done by
administering the questionnaire to five professionals with
the request to fill it in and by subsequently discussing with
them the clarity of each item. The ensuing results were
discussed with two senior researchers experienced in
instrument construction and expertise literature. Seven
items were removed due to redundancy and four items
were rephrased for the sake of clarity. The final instrument
consisted of 17 items: items 1–5 tapping into the dimen-
sion of domain-specific skills, items 6–9 measuring meta-
cognitive skills, and items 10–17 capturing innovative
skills. A 5-point Likert scale, ranging from “strongly dis-
agree” to “strongly agree”, was used for all items.

Sample

Data were collected from the graduate population of a
midsized European University and through online profes-
sional networks. A total of 216 graduates and 172 profes-
sionals completed the survey. The mean age was 36.89
(SD = 11.64); 68% were female; and 54.55% were from
Europe (Figure 2). In line with Shanteau (1992), graduates
were considered novices. We specifically selected gradu-
ates for this study, as the necessary epistemological per-
spective can already be present at this early stage of
expertise development. In addition, Hatano and Inagaki
(1986) argue that indicators for high levels of adaptive
expertise can already be present in novices. For this rea-
son, Schwartz et al. (2005) argue for the integration of
unfamiliar problems into educational experiences. The
selected graduates were taking master’s degrees that
mixed the acquisition of domain-specific skills with the
need to be innovative when solving unfamiliar problems.
This means that they had already undergone several
experiences that are necessary for the development of
adaptive expertise.
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Professionals had an average work experience of
15 years (SD = 10), with 22% of them having less than
5 years, 15% between 5 and 10 years, and 63% over
10 years of work experience. According to the European
classification of work domains (EUROSTAT, 2008), most
participants were employed in (or aspired to work in) pro-
fessional, scientific, and technical areas (40.4%), or the
educational realm (34.44%) (Figure 3). The various work
environments were grouped into high-, medium-, and low-
validity environments using Shanteau (1992) as a guide.
Construction, electricity, gas, steam and air conditioning
supply, manufacturing, transportation, and storage sectors
were classified as high-validity environments. Medium-
validity environments were financial and insurance, infor-
mation and communication, other services, and public
administration sectors. Lastly, low-validity domains were
represented by education, human health and social work
sectors, and professional, scientific, and technical activities.

Analysis

As the goal of the analysis was to probe the underlying
structure of the instrument (Fabrigar, Wegener, MacCallum,
& Strahan, 1999), we conducted an EFA and CFA. To do
this, the sample was randomly split in two. Samples 1
(N = 191) and 2 (N = 190) did not differ in background
characteristics (mean age: t (203) = 0.82, p = .41; gender:
χ2 (1) = 0.04, p = .84; professional: χ2 (1) = 0.03, p = .88).

Exploratory factor analysis

The number of factors to be extracted from the EFA was
based on a parallel analysis (Fabrigar et al., 1999; Hayton,
Allen, & Scarpello, 2004). To avoid chances of Type 1
errors and over-factorization, the average of randomly
computed eigenvalues was based on the 95th percentile
(Glorfeld, 1995). The number of factors that had an
adjusted eigenvalue (i.e., eigenvalues corrected for sam-
pling errors due to a small sample size) greater than 0
(Dinno, 2010; Schmitt, 2011) were retained.

Like other researchers (Mattsson, 2012) we have used
a polychoric correlation to calculate the factor structure.
The reason for this choice was that the survey employed a
5-point Likert scale as answer format. While the under-
lying latent construct of adaptive expertise may be thought
of in continuous terms, it is measured through discrete
categories, which take on an ordinal form. For this type of
data, polychoric correlations have shown to produce more
accurate results than Pearson correlations (Holgado–Tello,
Chacón–Moscoso, Barbero–García, & Vila–Abad, 2010).
The factor analysis was conducted using weighted least
square (WLS) method, which is based on polychoric cor-
relation and therefore accounts for the ordinal data struc-
ture (Schmitt, 2011).

In our decision of the factor structure, we allowed
factors to correlate with each other. This lenience can be
justified by theory, as higher levels of expertise are gen-
erally accompanied by a corresponding rise in metacogni-
tive skills. While theory provides less justification for a
correlation between innovative skills and domain-specific
skills or metacognitive skills, a case is made for the use of
oblique rotation, as it produces a more statistically sound
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factor structure (Schmitt, 2011). As the instrument was
based on existing validated instruments, a simple structure
was expected with few cross-loadings. Therefore, Bentler-
Q rotation was used.

Confirmatory factor analysis

As with EFA, the confirmatory analysis was conducted
using WLS, which is based on polychoric correlation. The
factor structure ensuing from the EFA and theory was
consequently tested by the CFA. When the EFA yields a
final model with good fit criteria but with a few items with
significant cross-loadings and similar loadings, theory dic-
tates that such items be attributed to the factor. Once a
model had been established, the factor structure was com-
pared between professionals and graduates by testing for
weak and strong invariance (van de Schoot, Lugtig, &
Hox, 2012). Weak invariance indicates that the factor
loadings are the same across groups and, consequently,
that both groups attach the same meanings to the items.
Strong invariance points to the equality of intercepts
across groups; it indicates whether one group scores sys-
tematically higher or lower on item responses compared to
the other group.

Following recommendations by Schmitt (2011) and
Fabrigar et al. (1999), several indices were used to assess
model fit: root mean square error of approximation
(RMSEA), standardized root mean square residual
(SRMR), and the Tucker Lewis index (TLI). RMSEA
should not be higher than .06, whereas SRMR should
be below .08 (Schmitt, 2011). A TLI above .90 reflects
an acceptable fit, and values above .95 indicate an excel-
lent fit to data (Marsh, Liem, Martin, Morin, &

Nagengast, 2011). Given the discussion on criteria for
cut-off values (Marsh, Hau, & Wen, 2004), such criteria
should not be regarded as golden rules. More emphasis
should be placed on a comparison of indices between
alternative models.

Results

Instrument descriptive

Insight into the quality of the instrument was first
gained through a descriptive analysis (see Table 2).
Items 14 and 15 were negatively worded and reversed
for ease of interpretation. Important for the following
analytical step is to note that all items were positively
skewed.

With moderate levels of non-normality (defined as
skewness of 1.25 and kurtosis of 3.75; Flora & Curran,
2004) and a sample size of at least 185 responses (deter-
mined by (k + 1)(k + 2)/2; Flora & Curran, 2004), full
WLS can be used. However, as some items revealed
higher absolute levels of skewness or kurtosis, we used
robust WLS in order to obtain better estimates (Flora &
Curran, 2004). To analyse polychoric correlation, each
variable needs to have the same amount of response
categories. As in some cases the lowest response cate-
gory (i.e., the value 1) was not used, for the remaining
cases the two lowest response categories (i.e., the values
1 and 2) were merged.

Exploratory factor analysis

The outcome of the parallel analysis suggested extracting
four factors (Figure 4). As theory commands the use of

Table 2. Item descriptives.

Min Max Mean SD Skewness Kurtosis Normtest.W Normtest.p

Item 1 1.00 4.00 3.18 0.78 −0.73 0.13 0.81 0.00
Item 2 1.00 4.00 2.86 0.85 −0.34 −0.53 0.86 0.00
Item 3 1.00 4.00 3.22 0.64 −0.58 0.90 0.76 0.00
Item 4 1.00 4.00 3.40 0.70 −0.92 0.23 0.75 0.00
Item 5 1.00 4.00 3.52 0.67 −1.38 1.80 0.69 0.00
Item 6 1.00 4.00 2.89 0.82 −0.36 −0.44 0.85 0.00
Item 7 1.00 4.00 2.79 0.77 −0.30 −0.23 0.85 0.00
Item 8 1.00 4.00 2.68 0.77 −0.32 −0.22 0.85 0.00
Item 9 1.00 4.00 2.89 0.80 −0.59 0.12 0.83 0.00
Item 10 1.00 4.00 2.88 0.83 −0.61 0.01 0.83 0.00
Item 11 1.00 4.00 3.37 0.72 −0.92 0.39 0.76 0.00
Item 12 1.00 4.00 2.94 0.83 −0.39 −0.46 0.85 0.00
Item 13 1.00 4.00 3.08 0.76 −0.49 −0.20 0.83 0.00
Item 14 1.00 3.00 1.17 0.45 2.72 6.80 0.41 0.00
Item 15 1.00 4.00 2.16 0.86 −0.06 −1.21 0.83 0.00
Item 16 1.00 4.00 2.73 0.71 −0.79 0.61 0.77 0.00
Item 17 1.00 4.00 3.02 0.68 −0.42 0.41 0.80 0.00

Note: To calculate polychoric correlations, the response categories 1 and 2 have been collapsed, as for some variables the lowest answer option (1) was not used.
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three factors, the model analysis was done with three and
four factors to determine which provided the best fit.

Neither the three- nor the four-factor model resulted in
a good fit (three-factor solution: RMSEA = .14, TLI = .65,
BIC = −71.87, SRMSR: .08; four-factor solution:
RMSEA = .14, TLI = .67, BIC = −71.85, SRMSR = .06).
In addition, both models appeared to contain weakly
defined factors, as these had only two or three items
loading on them, which signals a factor’s instability
(Costello & Osborne, 2005). Items 9, 10, and 14 were
therefore removed, as these loaded on such an unstable
factor. This improved the model fit substantially (three-
factor solution: RMSEA = .11, TLI = .81, BIC = −114.47,
SRMSR = .07; four-factor solution: RMSEA = .10,
TLI = .82, BIC = −95.08, SRMSR = .06). The factor
structure again showed some complications with the
items referring to metacognitive skills. Items 7 and 8
together loaded on one factor and item 6 did not load
significantly on any factor. To achieve a good model fit,
it was decided to remove items 6, 7, 8, and 9, all of which
referred to metacognitive skills. While some researchers
have suggested that this dimension is a characteristic of
adaptive expertise, not all researchers concurred. What is
more, sound evidence of metacognitive skills being a
crucial dimension of adaptive expertise is still lacking
(Bohle Carbonell et al., 2014).

After having removed a considerable amount of items,
we conducted another parallel analysis, the outcome of
which suggested a two-factor solution. Considering our
previous extraction of three and four factors, we decided
to extract two, three, and four factors. All factor solutions
appeared to fit the model well (two-factor solution:
RMSEA = .09, TLI = .90, BIC = −96.14, SRMSR = .06;
three-factor solution: RMSEA = .07, TLI = .94,
BIC = −84.62, SRMSR = .05; four-factor solution:
RMSEA = .04, TLI = .98, BIC = −67.92, SRMSR = .04).
As regards factor structures, the two-factor one proved to

be the cleanest and best-defined, although the fit criteria
were not the highest. The three-factor solution had two
moderately defined factors, two items that cross-loaded,
and one item with a low loading. The four-factor solution
had one moderately defined factor, one weakly defined
factor, and two items with a low loading.

The two-factor structure depicted in Table 3 (see col-
umns 2 and 3) indicates one factor for domain-specific
skills, as items loading on it only relate to domain-specific
skills (items 2–5). The interpretation of the second factor
is more problematic, as it contains one item for domain-
specific skills (item 1) and five items (items 11–13 and
16–17) measuring innovative skills. The polychoric corre-
lation between these two factors is .45.

EFA within a CFA framework

In order to explore the factor structure further, we con-
ducted an E/CFA. This analysis is similar to EFA in that
it allows all items to load on all factors. Yet, it is
different as it provides more information about signifi-
cance of cross-loadings and therefore aids the develop-
ment of a final factor structure. For each factor, we chose
an anchor item that had a large primary loading and
small cross-loadings (Brown, White, Forsyth, & Barlow,
2004). Based on the EFA, items 4 and 17 were identified
as the anchor items. The model provided an acceptable
fit (χ2 (19.32) = 31.32, p = .04, Satarro Bentler correction
for non-normal data = .62; RMSEA = .06, 90%
CI = 0–.10; TLI = .95, CFI = .88, SRMR = .04). In
the EFA, items 1 and 11 loaded moderately on one factor
and weakly on the other, whereas in the E/CFA, these
exact items appeared to load significantly at p < .01 on
two factors. Item 15, which did not previously load
strongly on any factor, now loaded significantly on the
first factor. The two factors showed a polychoric correla-
tion of .21 (p = .25). The analysis of the modification
indices revealed that none were significant, nor did they
have high power (Schmitt, 2011).

So far, the results seem to indicate that adaptive exper-
tise is composed of two dimensions. The results of the
data analysis, combined with theory, allow for the making
of the careful assumption that metacognitive skills are not
a defining characteristic of individuals with adaptive
expertise. Given the significant cross-loadings, a CFA
model will be fitted which matches the theory of adaptive
expertise.

CFA

Based on the results from the EFA and E/CFA, a model
was fitted to Sample 2. As the E/CFA reported that items
1, 11, and 13 had significant cross-loadings, the decision
as to what factor the item should load on was guided by
theory. Items 1–5 were modelled to load on factor 1

Figure 4. Results of parallel analysis.
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(domain-specific skills) and items 11–13 and 16–17 on
factor 2 (innovative skills). Item 15 was omitted as it had
an insignificant loading for factor 2. To keep total variance
to 1, the variances of items 1 and 13 were fixed at 1. The
model fitted the data adequately (χ2 (34) = 44.24, p = .11,
Satarro Bentler correction for non-normal data = .27;
RMSEA = .04, 90% CI = 0–.07; TLI = .89, CFI = .92,
SRMR = .04). After having analysed the modification
indices, we added the residual covariance between items
16 and 17 to the model. This resulted in a good model fit
(χ2 (33) = 34.57, p = .39, Satarro Bentler correction for
non-normal data = .27; RMSEA = .02, 90% CI = 0–.06;
TLI = .98, CFI = .99, SRMR = .04). The CFA is reported
in Table 4.

The results of the multi-group analysis comparing the
factor structures of graduates and professionals are
reported in Table 5. In model 1, we kept the factor struc-
ture consistent for both groups. An ensuing significance of
model 1 would imply that professionals and graduates
have the same factor structure. In the second model,
both factor structure and item loadings were kept equal
for each group. A comparison between models 1 and 2 did
not yield any significant difference, from which we can
infer that weak invariance exists. Hence, professionals and
graduates did not vary in their factor structure and item
loadings. As regards model 3, we kept item loadings and
intercepts equal across groups. The results of models 2
and 3 varied significantly: Model 3 yielded lower fit
indices. Therefore, it can be concluded that invariance

was not strong. That is, the groups did vary in their factor
loadings and intercepts. Thus, there were systematic dif-
ferences between the responses of professionals and
graduates.

Before analysing the predictors of adaptive expertise,
we assessed the reliability of the instrument. The final
instrument, the Adaptive Expertise Inventory, consists of
two subscales with five items each. Table 6 details the
Cronbach’s alphas for each of these subscales: They range
from .74 to .85. Some of the figures are slightly lower than
the generally acceptable value of .80, but in early stages of
research, such lower levels are permitted (Lance, 2006).

Validity of environments and levels of adaptive expertise

The classification of work domains into low-, medium-,
and high-validity resulted in 14 professionals who were
employed in high-validity, 84 in medium-validity, and 19
in low-validity environments. Fifty-five professionals did
not indicate their work environment. Graduates were
excluded from this analysis considering their lack of rele-
vant work experience.

Figure 5 maps the scores on the Adaptive Expertise
Inventory according to work environment. As expected,
professionals in high-validity environments have the low-
est mean score. However, the mean scores for profes-
sionals in medium- and low-validity environments do not
differ. In all environments, outliers are present. On the
whole, we can conclude that the Adaptive Expertise

Table 3. Latent factor structure: EFA and EFA in CFA framework.

EFA EFA in CFA

Item
Factor
1 (DS)

Factor
2 (IS)

Factor
1 (DS)

Factor
2 (IS) Item wording

1 .31 .44 .25* .32** During past projects, I was able to develop and integrate new knowledge with what
I learned in the past

2 .56 .19 .46** .19 During past projects, I concerned myself with the latest development in the domain
of my discipline

3 .70 .09 .37** .12 During past projects, I gained a better understanding of concepts in my discipline
4 .89 −.14 .52** 0 During past projects, I realized that the knowledge in my discipline keeps on

developing
5 .78 −.05 .43** .04 During past projects, I realized that I need to learn continuously to become and stay

an expert in my field
11 .39 .45 .26** .32** During past projects, I showed that I am willing to keep on learning new aspects

related to my discipline
12 .15 .63 .16 .49** During past projects, I applied my knowledge in new and unfamiliar situations in

areas related to my discipline with a degree of success
13 .35 .45 .27* .35** During past projects, I focused on new challenges
15 −.35 .12 −.25* .05 During past projects, I approached it like other projects I worked on in the past
16 −.18 .80 −.04 .46** During past projects, I was able to keep on performing at a high level when

confronted with unfamiliar situations or tasks
17 −.09 .78 0 .45** During past projects, I was able to apply my knowledge flexible to the different

tasks within the project
Correlation .45 .21

Note: Bold numbers are above the cut-off value of .40; * p < .01, ** p < .001.
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Inventory is able to differentiate between high-validity
domains on the one hand and medium- and low-validity
domains on the other, but not between these latter two
environments. The expectation that the score on the

Adaptive Expertise Inventory increases with decreasing
validity can therefore only be partially supported.

Predictors of adaptive expertise

In order to assess criterion-related validity of the scale,
task variety and years of work experience were regressed
on the scores of the Adaptive Expertise Inventory. Given
the nature of the predictors, this analysis was only con-
ducted with the professional sample. Adaptive expertise
had a mean score of 4.32 (SD = 0.46), ranging from 2.9 to
5.0. The mean score on domain-specific skills was 4.42
(SD = 0.55), ranging from 2.8 to 5.0, whereas innovative
skills had a mean score of 4.22 (SD = 0.52) with a range
of 2.2–5.0. The mean for task variety was 3.47
(SD = 0.94). Adaptive expertise scores had a Pearson
correlation with task variety of .32 (p < .001) and work
experience of .25 (p < .01). Task variety and work experi-
ence correlated at .25 (p < .01). The standardized regres-
sion coefficients of the analysis are reported in Table 7.

Table 4. Latent factor structure: standardized loadings from CFA.

Sample 2 (N = 190) Professionals (N = 172) Graduates (N = 211)

DS IS DS IS DS IS

Item 1 .68 .61 .56
Item 2 .70 .71 .69
Item 3 .68 .72 .68
Item 4 .65 .58 .64
Item 5 .60 .62 .57
Item 11 .74 .65 .71
Item 12 .66 .70 .57
Item 13 .68 .74 .69
Item 16 .50 .36 .60
Item 17 .63 .39 .66
Correlation DS—IS .29 .23 .21
χ2 63.61 31.04

Notes: DS, domain skills; IS, innovative skills.

Table 5. Test of measurement invariance.

χ2 df p CFI RMSEA BIC

Model 1: same factor
structure

138.14 66 .00 0.94 0.08 7914.96

Model 2: same item
loadings

149.09 74 .00 .93 .07 7878.32

Model 3: same item
loadings and
intercepts

195.90 82 .00 .90 .09 7877.55

Test for weak
invariance

ANOVA (model 1 vs.
model 2)

10.95 8 .21

Test for strong
invariance

ANOVA (model 1 vs.
model 3)

57.76 16 .00

Table 6. Cronbach’s alpha for the adaptive expertise inventory
and its subscales.

Complete sample
(N = 383)

Professionals
(N = 172)

Graduates
(N = 211)

Adaptive
expertise

.85 .82 .85

Domain
skills

.79 .79 .77

Innovative
skills

.78 .74 .78

Figure 5. Box plot mapping scores on the adaptive expertise
inventory according to the validity of the domain.
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The model was significant (F (2, 152) = 10.89, p < .0001).
As predicted by theory, task variety had a significant and
positive relationship with the adaptive expertise score
(β = .26, p < .01). Looking deeper into its effect, we
found task variety to correlate positively with both
domain-specific and innovative skills (β = .24, p < .01
and β = .21, p < .01 respectively). Contrary to the expec-
tation that adaptive expertise score would rise with
increased work experience, the latter bore a relation to
domain-specific skills only (β = .20, p < .01) and none
to the adaptive expertise score and innovative skills.

Discussion

This study departed from the desire to fill both a theore-
tical and a practical void: the necessity for an instrument
that measures adaptive expertise and fits its theoretical
conceptualization. Such an instrument is needed not only
to advance the understanding of adaptive expertise, but
also to help organizations assess their workforce’s readi-
ness to deal with non-standard situations. Based on the
literature, three dimensions (domain-specific skills, meta-
cognitive skills, and innovative skills) were hypothesized
to be part of adaptive expertise. The results of the CFA
revealed that an instrument with only two dimensions—
domain-specific and innovative skills—fit the model well.
This two-factor structure matched the empirical evidence
about domain-specific and innovative skills being part of
adaptive expertise. The postulate that metacognitive skills
are a critical dimension of adaptive expertise, however,
could not be confirmed.

The factor structure was stable across the two popula-
tions in the sample (professionals and graduates), provid-
ing evidence that the instrument measures the same
concept in professionals and graduates. In addition, the
instrument proved to be able to differentiate between
professionals and graduates, as shown by the lack of
strong invariance. Graduates are novices (given their
lack of theoretical domain knowledge and work experi-
ence) and thus will have lower scores on the Adaptive
Expertise Inventory than professionals. This seems to

suggest that, although graduates do not perform at an
expert level on regular tasks, the skills needed to achieve
high scores are already present in a rudimentary form.

The results only partially supported the expectation
that the score on the Adaptive Expertise Inventory would
increase with decreasing validity. While experts in high-
validity environments scored lower than their counterparts
in low- and medium-validity environments, a noticeable
difference between experts in low- and medium-validity
environments could not be detected. In addition, the dif-
ference between mean scores was small, indicating that
the instrument could benefit from further refinement.

As task variety had a positive relationship adaptive
expertise score, criterion validity was established. This
provides further evidence that the instrument reliably mea-
sures adaptive expertise. The finding that level of adaptive
expertise is a positive and significant function of task
variety is also important for the development of adaptive
expertise. It indicates that employees are better served by
task variation. In addition, as years of work experience
bore a relationship to domain-specific skills only, and not
to level of adaptive expertise, these findings indicate that
adaptive expertise is not acquired automatically. The
results also imply that, generally, employees who have
several years of work experience can gain adaptive exper-
tise if their innovative skills are stimulated.

Drawing on the conceptualization of adaptive exper-
tise as described by Hatano and Inagaki (1986), the
Adaptive Expertise Inventory aids future research into
adaptive expertise. First, the ability to measure adaptive
expertise allows researchers to look into the degree of
adaptation that adaptive experts can master. The question
then is: Within what range of novelty of a task vis-à-vis
the original task can we still reasonably expect an indivi-
dual with adaptive expertise to complete it? Second, the
ability to measure levels of adaptive expertise, together
with the knowledge that task variety influences it, makes it
possible to evaluate development programmes that aim to
stimulate the development of adaptive expertise in
employees and, by that, contribute to the design of more
effective programmes.

Although the instrument stretches the field of adaptive
expertise further, some of its limitations should be kept in
mind, the first one being its heterogeneous sample and
modest sample size. While the factor structure was stable
across groups of participants (graduates and profes-
sionals), findings were based on responses by a modest
number of professionals. Thus, statistics could have been
dominated by the graduate population. To bolster confi-
dence in the instrument’s validity, future research with a
larger sample size is necessary to eliminate the possibility
of measurement outcomes being affected by the sampling
technique used. Second, reliability figures for the two
subscales are approaching .80. This indicates that there is

Table 7. Results of the regression analysis of task variety and
work years on adaptive expertise (standardized coefficients).

Dependent variable R2 Independent variable β

Adaptive expertise .11*** Task variety .26***
Work experience (in years) .16

Domain skills .12*** Task variety .24*
Work experience (in years) .20*

Innovative skills .05* Task variety .21*
Work experience (in years) .08

Notes: N = 155, *p < .01, ** p < .001, *** p < .0001.
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scope for further improvement. Third, the lowest score on
the Adaptive Expertise Inventory is 2.9. This raises con-
cerns for the instrument’s ability to discriminate between
high and medium levels of adaptive expertise. In addition,
the instrument’s ability to distinguish between the level of
adaptive expertise of professionals working in low-, med-
ium-, and high-validity environments is limited. As we
would expect the level of adaptive expertise to differ
according to the validity of an environment, the instrument
should be able to capture this. Therefore, it is important to
first establish if the factor structure holds for work envir-
onments with different levels of validity.

To improve construct validity, experts should be inter-
viewed about their experience with non-standard tasks.
This would lead to a collection of critical incidents, that
is, situations in which the individual is confronted with an
unfamiliar problem and successful strategies to deal with
these situations. These could subsequently be compared
with the items on the Adaptive Expertise Inventory, pro-
viding opportunity to refine these, if necessary. To assess
criterion validity of the Adaptive Expertise Inventory, it is
necessary to observe individuals performing non-standard
domain tasks with divergent scores on the Adaptive
Expertise Inventory. Domain experts should select these
tasks to ensure that they are indeed unfamiliar. The pro-
posed design would resemble the study by Barnett and
Koslowski (2002) and would allow researchers to com-
pare task performance with the Adaptive Expertise
Inventory score. Experts with higher scores should also
reveal a better performance on these tasks.

Regardless of the strategy chosen, attention has to be
paid to the domain’s level of validity of participating
professionals. This is necessary to develop domain-speci-
fic and innovative skill items that better nuance between
the validity levels of work environments.

The study aimed to create a valid instrument that
measures individual levels of adaptive expertise. The
newly developed Adaptive Expertise Inventory consists
of two scales—domain-specific and innovative skills—
consistent with theory. Its factor structure is stable across
populations in different stages of their career, and also able
to discriminate between novices and experts. It confirms
the superiority of task variety to years of work experience
as regards its importance for adaptive expertise. The
Adaptive Expertise Inventory can benefit both organiza-
tions, by measuring their employees’ readiness to tackle
non-standardized tasks, and researchers, by delivering
them a tool with which to measure adaptive expertise
and consequently gain further insight into the respective
concept.
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