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Abstract

Much of the information available on the World Wide Web cannot effectively be found by

the help of search engines because the information is dynamically generated on a user’s re-

quest. This applies to online decision support services as well as Deep Web information. We

present in this paper a retrieval system that uses a variant of structured modeling to describe

such information services, and similarity of models for retrieval. The computational complex-

ity of the similarity problem is discussed, and graph algorithms for retrieval on repositories

of service descriptions are introduced. We show how bounds for combinatorial optimization

problems can provide filter algorithms in a retrieval context. We report about an evaluation of

the retrieval system in a classroom experiment and give computational results on a benchmark

library.

Keywords: Information Systems: Analysis and Design, Decision Support Systems, Networks/graphs:

Heuristics, Matchings.

1 Introduction

The World-Wide-Web (WWW) as a global repository for information is a big improvement for

the quality of life of people around the world: Organizing a journey, buying or selling goods, or
�Corresponding author
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just searching detailed and up-to-date product and service information becomes cheaper, faster,

and easier. It remains however a big problem to find suitable Web pages and services. Research to

solve this problem brought up a lot of different technologies, e.g. to better describe the content of

Web pages by the resource description framework (RDF), World Wide Web Consortium (1999),

and the business driven Universal Description, Discovery and Integration of Business for the Web

(UDDI), UDDI community (2002), or elaborated index and search strategies like pagerank, Page

et. al (1998), which is used by google.com.

Of particular interest for the field of Operations Research and Management Science is the

growing number of sites which offer libraries of decision support models in various modeling lan-

guages (AMPL, Fourer, Gay and Kernighan (1993), see below, GAMS (1998) at www1.gams.com/-

modlib/modlib.htm, Excel spreadsheets, Ragsdale (2000), at www.j-walk.com/ss/excel/links/xllinks4.htm).

For example, NetLib (1995) and a Princeton Web server, Vanderbei (2000), contain about 900

AMPL models. Remotely stored models together with suitable solvers can operate as on-demand

decision support services, Bhargava, Krishnan and Müller (1997). So does NEOS offer to sub-

mit and solve AMPL and GAMS instances, NEOS project (2000). These services are likely the

beginning of a market of OR-based Internet services, as projected by Fourer and Goux (2001).

Using those services requires again means to retrieve the appropriate model towards a given de-

cision problem. However, not much retrieval functionality is available. This is in part due to the

lack of appropriate service descriptions, and as a consequence, of appropriate retrieval algorithms

for repositories of such descriptions. Retrieval on model libraries can currently only be done by

directed search based on a classification index, or by full text retrieval.

In this paper we describe a completely new approach in which Structured Service Models

SSM, a special class of acyclic directed graphs, are used for service representation. A query model

from a user is checked for similarity with models in a repository and models being most similar
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are reported as retrieval result. Our approach is based on Structured Modeling, Geoffrion (1987),

a modeling approach for decision support that made a significant contribution to the theory of

modeling in Management Science. Broadly spoken a structured model is an acyclic, directed graph

whose nodes represent components of the model (entities, decision variables, etc.) and whose

directed edges represent definitional dependencies between components. Structured Modeling

has proven to have the potential to capture the essential characteristics of a model in the field of

Management Science, Jones (1990a). This motivates to represent decision support services by

structured models and to use this representation for retrieval.

The approach described in this paper turns out to be applicable to a much broader class of

services than decision support. The WWW contains a lot of information that are not explicitly

made persistent in a Web-accessible manner as HTML pages. Rather, these pages are dynamically

constructed by scripts or servlets. Based on user input, e.g. travel destinations, or product names,

these generate HTML pages from a result of a query to an underlying information system, mostly

a relational database. The set of those pages is called the Deep Web. Information providers use

dynamic pages when they have to handle a mass of related information that is well structured and

rapidly changing over time.

Dynamic pages are usually not found by automatic indexing. Spiders and other indexing

agents can only follow hyper-links, but not generate user input to scripts that are the entry point to

deep web sites. (Typically, such scripts are CGI scripts, active server pages, or Java server pages).

Thus they do not index all pages that result from queries to the site. (A little more is possible if the

dynamic pages are created by extending URLs by queries, and if pages with such URLs exist on

static pages. In this case a search engine could enter a Deep Web site from such a static page and

continue to generate and index dynamically essential parts of the site as long as it finds pages with

hyper-links to other dynamic pages.) The static entry points to the Deep Web contain at most a
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textual description of the site, which misses to represent the types of information behind the entry

point, and how this information is structured. To give an example, suppose we are interested in

demographic information in order to prepare a business investment in Flint, Michigan. A query to

www.google.com with this sentence gives a large list of documents in which these key words are

present, but not an entry point to a deep web site which can provide the information that we are

interested in.

It is interesting to see that structural information (lost when a user’s question is transformed

to a set of keywords) is actually used to manage the information of the Deep Web: Most of the

sites offering dynamic Web pages store their data within relational databases for which Entity-

Relationship diagrams (ER diagrams), Chen (1975), accurately describe the content and relations.

ER diagrams are abstract enough to deliver information about the stored data without using the data

itself. Imagine a search engine that indexes the internal ER diagrams of Deep Web information

systems and provides a front end to formulate queries in a structural manner like ER modeling.

We will see that Structured Service Models can provide such a search engine due to the fact that

the entity relationship diagrams can be converted into structured service models, and our retrieval

techniques can be applied to these models. Furthermore, current efforts by the World Wide Web

consortium (W3C) to establish a so-called semantic web rely partly on graphical descriptions of

web services by so-called RDF graphs, Decker (2001). We will see in Section 3 that our system

of Structured Service Model repositories and retrieval algorithms can provide the kernel for any

retrieval system for graphical structures as long as these structures can be mapped into our models.

While we did not define such a mapping yet for RDF graphs, it can be expected to be as simple as

for ER diagrams, Müller, Schimkat and Müller (2002).

The rest of the paper uses the term (Web) service to summarize services like online model

repositories, online decision support, and Deep Web services. Müller and Schimkat, (2001), have
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shown that our retrieval approach has applications in software retrieval, too. Furthermore, other

kind of information services that can be represented by structured service models may benefit of

our retrieval approach. For simplicity, we decided however to restrict the motivation for this paper

to the two applications discussed above. In section 2 we will introduce our modeling paradigm in

the context of decision support models, and at the end of the section we briefly mention how the

extension to entity relationship diagrams has been done.

Our retrieval techniques use Operations Research methods. We define the similarity of two

models as a property on pairs of graphs. Computing the similarity is a combinatorial optimization

problem that is related to graph isomorphism. Computing the similarity exactly is shown to be NP-

complete, but the structure of models supports the design of exact or heuristic algorithms, as will

be shown in Section 4. Computationally very efficient lower bounds on the similarity can be used

for filter algorithms, which is the topic of Section 5. But before we elaborate the mathematical

part of our paper, Section 3 presents the prototype implementation. This should give the reader

a fair understanding of the context in which the algorithms are used. Also, Section 3.1 further

motivates our approach by stimulating results from a small class room experiment with entity

relationship diagrams. Section 6 is devoted to computational results. Section 7 gives an overview

of other approaches to search for Deep Web information and other Web services, before Section 8

summarizes and concludes.

Parts of this paper have been presented at the Workshop of Information Technology and Sys-

tems, Müller and Müller (2000), and the 2nd International Workshop on Web Dynamics, Müller,

Schimkat and Müller (2002). Publication in the proceedings of these workshops did not exclude

journal publication. Furthermore we extend these papers by giving detailed proofs in this paper.
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2 Models for Web Services

2.1 Structured Service Models

A Structured Service Model (SSM) describes a service by the type of information that is input to

the service, the type of information that is computed by the service, and relations between input

and output. The approach is based on Structured Modeling by Geoffrion (1987, 1989), which was

designed to define decision models in Management Science, but which has shown its potential in

representing models from other fields as well, e.g., data base models, Chari and Sen (1997, 1998).

Our Structured Service Modeling can be viewed as a restricted version of Structured Modeling in

order to facilitate the use of the later for service retrieval. Restrictions simplify usage and open the

door towards efficient retrieval algorithms on model libraries (see Section 4).

A SSM is a directed, acyclic graph with textual node labels describing node semantics. Every

node represents an item, every arc represents a definitional dependency between items. A SSM

distinguishes 6 types of nodes.

An entity node represents a primitive item whose definition does not depend on other items.

A parameter node represents an attribute describing an entity, or combinations of entities, and

whose value is an input to the service. A variable node stands for an attribute whose value is

computed by the service. In a decision model we can think of it as a decision variable. The

definition of parameters and variables are dependent on the definition of the entities they describe.

A function represents a rule to compute a value from variables and parameters, in a decision model

it represents for example the objective. A test is a function that evaluates with true or false. It is an

expression that defines a constraint on a combination of parameters and variables. A multi-test is a

collection of tests. It represents the fact that a constraint has to be valid for a range of combinations

of parameters and variables. We illustrate this in more detail in an example below. The distinction

between parameters and variables, as well as between tests and multi-tests extends concepts of
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Structured Modeling. These extensions have been introduced to ease the automated construction

of SSM for models written in other widely used modeling language, e.g. AMPL (see Section 6).

The SSM graph contains directed edges ��� �� for all nodes � and � for which the definition

of the item represented by node � depends on the definition of the item represented by node �.

For example, if a node � stands for a parameter that is associated with an entity, represented by

node �, an arc ��� �� is added. Or, if � represents a test, we add directed edges pointing to � from

all variable and parameter nodes that are input to that test.

Edges are only allowed between specific types of nodes: (1) from entities to variables and

parameters, (2) from variables and parameters to functions, tests and multi-tests. Thus, SSM are

acyclic directed graphs with three layers of nodes: a layer of entities, a layer of parameters, and

variables, and a layer of functions, tests, and multi-tests. This restricts structured modeling, as

the later would allow, e.g., dependencies between functions, too. As we will see in Section 4 the

restriction supports the computation of similarity of models. (It does not restrict too much the

expressiveness of SSM. Indeed, edges between functions represent intermediate steps which help

to modularize the model, rather than capturing semantics. Choices of modularization might be

rather arbitrary. This could even negatively influence the quality of retrieval.)

Figure 2.1 shows the SSM for the Hitchcock-Koopman transportation model. The decision

model describes the situation where we have a collection of plants and customers, represented by

the entities PLANT and CUST. Each plant has a supply and each customer has a demand, mod-

eled by parameters SUP and DEM. For each combination of plant and customer we observe per

unit transportation cost from plant to customer, modeled as parameter COST. Decision variables

are amounts of shipment between every plant and every customer, given by the variable FLOW.

Total shipment to a customer has to satisfy demand, and total shipment from plant may not exceed

supply. These constraints are modeled by multi-tests T-SUP and T-DEM. The objective is to
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maximize revenue. It is represented by the function REV.

T-DEMREVT-SUP

PLANT

COST FLOW DEMSUP

CUST

Figure 1: Structured Service Model for transportation problem

As a more general example consider an optimization problem given by

��� ����

s.th. ����� � �� � � �� 	 	 	 � 


where � is a vector of decision variables, and �� are functions that model constraints. Assume that

constraints in the model can be grouped into several types, then each type will be represented by a

test or multi-test in the third layer of the SSM. If we further assume that parameters and variables

can be divided into different types, each of these types will have a node on layer 2. Edges between

these attribute nodes and test nodes are included, if an attribute of the first type contributes to the

definition of a constraint of the later type. If the optimization problem is a linear model, edges

between variables and tests indicate areas of non-zero entries in the underlying constraint matrix.

And edges between parameters and tests cluster the coefficients into categories. In particular in a

restricted domain like linear programming models, SSM are therefore able to represent essential

parts of the structure of the problem.
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The task of SSM in a retrieval context is two-fold. First, they can be used as a graphical rep-

resentation of a service that helps a user to decide whether the service meets her requirements.

Second, providers of services can register them in repositories and users can search the reposito-

ries for fitting services. Furthermore robots might automatically create SSM from other service

descriptions, like a description in an algebraic modeling language in case of a decision model.

Retrieval for Web services can make use of SSM in the following way: A user submits a query

to the retrieval system by creating his own SSM, describing the service she is looking for. The

retrieval mechanism returns those SSM that are “close” to the query model. This approach faces

us with the following research questions:

1. How precise can a SSM describe the semantics of a Web service and a user’s request for

such a service? What are appropriate measures for problem similarity?

2. How efficient can we do retrieval on SSM repositories with respect to a similarity measure?

3. Will retrieval based on searching for similar models provide appropriate precision and re-

call?

The first question will be addressed in Section 3.1 after we have described the prototype. We

will give experimental results with students when applying SSM to entity relationship diagrams.

For the application domain of OR/MS models we have done similar experiments with knapsack

models, but with a smaller number of users. Our choice of similarity that led to this positive

answer is discussed in the next section. Questions of efficiency, precision and recall are the topics

of Section 4, 5, and 6.

2.2 Similarity of SSM

The similarity exploits the adjacency structure of SSM graphs. Given two graphs � � ���
� and

�� � �� �� 
��, we look at partial mappings � of the nodes from� onto the nodes of�� which only
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map nodes onto nodes of the same type, and define ���� � ����� �� � 
 � ������ ���� � 
���.

The function � expresses the number of edges in � that are implicitly mapped onto edges in ��,

i.e. edges ��� �� � 
 such that ������ ����� � 
�. The matching quality realized by the mapping

� is defined as ���� � �����
� 	 �
���. The similarity between two graphs is then defined by

the maximum over all matching qualities of mappings from � onto ��. Mappings are always one

to one. The matching quality is a rational number between 
 and � with a value of � indicating

that there exists a mapping between the library graph and the query graph that matches exactly all

edges. As we can assume w.l.o.g. that there are no isolated nodes in a SSM, this is the case if and

only if both graphs are isomorphic.

Recall that SSM consist of three layers, with two types of nodes on the second layer and three

types of nodes on the third layer. Thus an SSM is a 7-tuple � � ��� � �� � �� � �� ��� ��� �
�,

where �� are the entity nodes, �� the parameter nodes, �� the variable nodes, �� the test nodes,

�� the multi-test nodes, �� the function nodes, and 
 the edges. Given two SSM � and ��, we

further require that mappings � of the nodes from � on the nodes of �� map nodes on nodes of

the same type, e.g. nodes in �� on nodes in � �

� . The similarity of SSM � and �� is then defined

as the maximum matching quality achievable by such restricted mappings.

One should mention at this point that the similarity can be defined with respect to any partition

of nodes on layer 1, 2, and 3 into types. The finer the partition can be done in a certain application

domain, the better will the structure represent the semantics of the service. Furthermore, it should

be obvious that identifiers of nodes, like COST or DISTANCE in the transportation model can be

used to further measure the quality of a mapping of a node from the query model on a node of the

repository model. A string comparison of the node labels can be used in this context. This is a

matter of implementation, rather than a conceptual extension of our approach.
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CustomerAccount

Transaction

has

performs

(1,1)

(0,N)

(1,1) (0,N)

Entity Entity Entity

Relationship Relationship

Transaction Account Customer

hasperforms

(1,1) (0,N) (1,1) (0,N)

ER Model SSM

Figure 2: Mapping between ER diagram and SSM

2.3 Extension to ER diagrams

The rest of this section we devote to illustrate how SSM can be used for repositories of entity

relationship diagrams. Towards this end we define a one-to-one mapping between ER diagrams

and SSMs following the rules of (Müller & Schimkat 2001): Different kind of entities become

different kind of nodes of the first layer. Relationships become nodes of the third layer and the

cardinalities inside relationships, e.g., 1 to 
 or � to 
, as well as aggregations become nodes on

the second layer. Figure 2 shows a simple ER diagram and its corresponding SSM. The mapping

rules enforce that SSMs of ER diagrams are again 3-layered graphs. As for the domain of decision

models, each layer consists of different types of nodes, although their semantics is now quite

different. As in the case of SSM, these types are used to restrict the domain of mappings � used

in the definition of the similarity.

A mapping between SSM and UML (unified modeling language) class diagrams, which are

a part of the de-facto standard for object oriented systems modeling, Object Management Group

(2000), can easily be defined as well, Müller and Schimkat (2001). The same applies to RDF

graphs. Whenever a model translation for a new domain of models has been defined and added to
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the implementation of the system described in the next section, our approach provides the kernel

for a retrieval system for this domain.

3 The FIRESTORM system

Having described our proposals for representing Web services by SSM, we turn now to a descrip-

tion of our prototype implementation. The purpose of the prototype is to validate our proposals,

and to improve them. On the one hand this requires to benchmark the algorithms that will be

described in Section 4 and 5 on large model repositories, on the other hand it requires to make real

users test the system and report their experiences. We therefore implemented a Web-based client-

server system. It consists of a Java applet at the client side that implements the user interface, a

retrieval server with retrieval algorithms, to which the Java applet sends retrieval requests, and a

database with collections of SSM models. FIRESTORM (FIrst a REtrieval SysTem for Operations

Research Models) is the name of our prototype.

We start with an illustration of the user interface as it best describes the functionality of the

system so far realized. After the user has loaded the Java applet from the site

http://firestorm.informatik.uni-tuebingen.de

a FIRESTORM frame opens (left part of Figure 3).

Within this frame the user can edit a SSM. The SSM currently represents, as described in the

previous section, the query to the system. In a future release providers of services can use the

same frame to submit models and thereby extend the collection of models in the FIRESTORM

database. The client provides all funtionalities to insert, delete and move nodes and edges. A

second window (Model Components) lets the user choose which types of nodes she wants to add,

delete or rename. After having created a query model, the user opens the similarity checker for

retrieval (right part of Figure 3). This frame offers activation of the filter algorithms from section
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Figure 3: The FIRESTORM user interfaces

5 and the graph similarity algorithms from section 4 with a possibility to restrict the size of the

query result. It contains functionalities for browsing through the retrieval results and viewing

additional information (e.g. the source model, if the SSM was automatically generated from an

AMPL model).

The retrieval server encapsulates the retrieval algorithms. Retrieval is done in main memory,

all models are currently loaded in the beginning of a user’s session. Through filter and retrieval

algorithms this list is continuously reduced. Available algorithms are the sum norm filter algo-

rithms described in Section 5, a local search for graph similarity, using two-exchanges to define

the neighborhood structure with a best neighbor strategy as search strategy, and an exact method

that enumerates over all assignments of the middle layer nodes (see Section 4).

A more detailed description of the software engineering aspects of the system can be found in

Müller and Schimkat (2001). Important to mention at this point is that the part of the user interface
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for model editing and visualization has been separated from the server along a multi-tier architec-

ture. A mapping from a domain of models, like ER diagrams, to SSM is added to the system by

adding a new model editor and visualizer and connecting this to the server. Communication with

the server will take place on the basis of the SSM representation. This makes the server with its

repositories and algorithms a general purpose device, that easily be extended to new domains.

3.1 Classroom experiment

In order to apply the system for ER diagram repositories, we implemented one-to-one mappings of

ER diagram to SSM as described in Section 2.3. The graphical user interface for ER diagrams lets

a user state queries and visualize the stored SSMs as natural ER diagrams, hiding the underlying

SSM representation completely. With this extension of the FIRESTORM prototype we run a small

classroom experiment that addresses question 1 from the end of section 2.1: how well does the

structure of SSMs capture the semantics of the corresponding application?

Modeling is an art and one may argue that the same real world situation can be modeled

in very different ways leading to different SSMs. The structural retrieval approach reduces the

detection of similarity between different ER diagrams to the graph similarity between their SSMs

but the retrieval quality depends on semantic similarity between ER diagrams. The restrictiveness

in structure and available means to create ER diagrams somehow limits the modeling freedom, but

that does not guarantee by itself that the approach is meaningful.

The focus of our working group at the University of Tübingen (Germany) is on database and

information systems. Part of a database course is to learn how to create ER diagrams that describe

an aspect of the real world to be managed with a database. In this course Firestorm is used by

students to create and manage their ER diagrams. This gave us the opportunity to perform the

following classroom experiment.

The course contains three exercises that require students to design ER diagrams for three
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different real world cases. These cases are formulated as natural language text. The text implies

the naming of entities and relationships so that we can concentrate only on the structure. Some

staff members evaluated the solutions of the students and assigned credit points according to how

well the ER diagrams represent the real world cases. For each exercise a staff member created a

master model representing the expected solution. This made it possible to evaluate whether high

similarity between the students ER diagrams and the master model coincides with a high grade,

which we assume to reflect a certain similarity with the semantics of the modeled real world case.

A positive answer would support our claim that the structural retrieval approach is meaningful for

retrieval, at least for the domain of ER diagrams.

In our evaluation the master models were used as queries to the system with the corresponding

student models building the library. The system computed the (graph) similarity between each

student model and the master model. The similarities were converted into credit points by simply

multiplying the similarities with maximal credit points. The results are encouraging. Figure 4

relates the credit points assigned by the staff members to the credit points assigned by Firestorm.

The differences in credit point assignment are marginal so it seems that graph similarity between

SSMs can be used to determine semantic similarity between ER models (as long as the context is

clear).

1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

c
r
e
d
i
t
 
p
o
i
n
t
s

student

Exercise 1

staff

system 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3
4
5
6

7

c
r
e
d
i
t
 
p
o
i
n
t
s

student

Exercise 2

staff

system
1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

c
r
e
d
i
t
 
p
o
i
n
t
s

student

Exercise 3

staff

system

Figure 4: Credit point assignment (staff vs. Firestorm)
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4 Similarity Algorithms

In Section 2 we introduced SSM as an approach to model Web services, in particular decision

support services and deep web services. Section 3 described a Web-enabled repository for service

descriptions with retrieval functionality. In this section we present the algorithmic aspects of the

similarity measure used in the retrieval system.

An immediate question is whether we are able to compute in polynomial time the similarity

between two SSM. The answer is unfortunately no. It follows from the following theorem which

shows an even stronger result. Given two graphs � and ��, we define the similarity ������� as

���
�

������ �� � 
 ������� ����� � 
���

�
�	 �
��

with respect to all partial one-to-one mappings � � � � � �. Note that we do not require three

layer graphs here, and accordingly do not have types of nodes.

Theorem 4.1 Given two bipartite graphs � and �� and a number � � �
� �
 the problem to decide

whether the similarity of � and �� is greater than or equal to � is NP-complete.

Proof. The NP-complete problem MAXIMUM BALANCED COMPLETE BIPARTITE SUBGRAPH

(problem GT24, Garey and Johnson (1987), a proof has been published in Johnson, (1987))) can

be reduced to this problem. In this problem we are given a bipartite graph � � ��� ��
� and

an integer � , and we ask whether there exists subsets of nodes �� � � , �� � � that induce a

complete bipartite subgraph and for which ���� � ���� � � . Given an instance of this problem

we construct an instance of the similarity problem as follows. We let � be a balanced complete

bipartite subgraph with �� vertices, and �� � � . We set � � ������� 	 �
���. Then it is

obvious that � is a yes-instance of maximum balanced complete bipartite subgraph if and only if

the similarity of � and �� is greater or equal to �.
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Note that the problem becomes not easier if we restrict the mapping � between two bipartite

graphs � � ��� ��
� and �� � �� �� � �� 
�� in the definition of similarity to mappings that map

� into � � and � into � �, i.e., if we introduce a simple form of types of nodes as we did in the

definition of SSM similarity in section 2.2. This because of the symmetry of the graph � in our

reduction. From that it follows that checking the similarity of two SSM is also NP-hard, because

we have shown that it is NP-hard even if there are only two types of nodes.

Corollary 4.2 Given two SSM graphs � and �� and a number � � �
� �
 the problem to decide

whether the similarity of � and �� is greater than or equal to � is NP-complete.

Although the problem of finding a mapping of optimal quality is �� -hard, the special struc-

ture of our graphs supports us in designing heuristic and exact methods. This is due to the 3

layer structure of our graphs, and the partition of nodes into types. Let us give the layers the new

names ��, ��, and ��, where �� � �� , �� � �� � �� , �� � �� � �� . Given another graph

�� � �� �

�� �
�

�� �
�

�� �
�� a mapping from a subset of nodes of � to nodes of ��, mapping nodes of

same type, decomposes into three mappings �� � �� � � �

� , � � �� �� �. Suppose we fix two of

these mappings, �� and ��, say, and want to change the third in order to increase the matching

quality. How efficient can that be done? The good news are the following

Lemma 4.3 Given a mapping � between two SSM graphs � and ��, decomposing into parts

��� ��, and ��, we can efficiently compute for every � � ��� �� �� a mapping with optimal matching

quality among all mappings �� with ��

	 � �	� � 	� �. Furthermore for fixed �� we can compute a

mapping with optimal matching quality among all mappings �� with ��

� � ��.

Proof. For the first part of the theorem we observe that we can find an optimal ��
 by solv-

ing a weighted bipartite matching problem in an appropriately constructed bipartite graph � �

��� � �� 
�. Indeed, we take � � �
 , � � � � �


 , 
 � ���� ���� �� �� belong to the same type. The
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weight of an arc ��� ��� is set to the number of edges that are realized if � is mapped to ��. A max-

imum weighted matching in� thus corresponds to a best ��
 with respect to fixed ��	 � �	� � 	� �.

For the second part of the lemma observe that for layers 1 and 3 the arc weights in our matching

graph only depend on how the middle layer is mapped. In both cases the optimal matching can be

found in polynomial time (see, e.g., Papadimitriou and Steiglitz (1982)).

Lemma 4.3 is a good base for exact or heuristic search. For an exact approach we can enumer-

ate all feasible mappings of nodes from the second layer and solve for each of them the matching

problems on layers 1 and 3 to optimality. This algorithm is polynomial for a fixed number of nodes

on layer 2, and a has a reasonable running time for small numbers of nodes on layer 2.

As a heuristic we can use a local search framework (see, e.g., Papadimitriou and Steiglitz

(1982)). A feasible solution is given by a mapping �, given by two partial fixes of �: layer 2,

layer 1 and 3. From every feasible solution we can construct two new solutions, by fixing � on

layer 2 and on layer 1 and 3, respectively. In both cases a weighted bipartite matching algorithms

finds a best solution in an exponentially large neighborhood. We can implement different search

strategies on this neighborhood structure, best neighbor, tabu search, or simulated annealing.

Instead of optimizing on the non-fixed layers, and by that generating only two neighbors, one

might be less strict. Having fixed � on layer 2, we might just change the mapping � on pairs

of nodes on layer 1 and 3. This can be done until no further exchange leads to an improvement.

In other words we are using a heuristic to find an approximate solution of the matching problem

identified in Lemma 4.3. In our context this might make sense, because we are not necessarily

interested in the exact similarity, but a lower bound.

At the time being we have implemented the later version of a local search in our prototype. It

first builds the adjacency matrices of the query graph� and the library graph��, thereby extending

each graph with dummy nodes (nodes with no edges) to ensure that the matrices have the same
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number of nodes for each different category. Then it starts with an arbitrary mapping � of nodes

and calculates the number of realized edges. While there is a pair of nodes in � of the same

category for which an exchange of images under � increases the number of realized edges, this

exchange is done. If no such exchange is found the algorithm reports the reached solution as a

local optimum.

5 Filter Algorithms

We have seen in the previous section that the computation of the similarity of SSM is computation-

ally expensive as it requires to solve an NP-hard optimization problem. Even if the SSM graphs

are small and exact algorithms terminate in reasonable time for a single comparison, the mass of

SSM graphs stored within a library leads to unacceptable response times because the algorithm

must compare each library graph with the query graph. This situation is typical for multimedia

information retrieval systems: A large amount of library objects and a complex distance function

computing the similarity between a query object and the library objects. It is therefore necessary

to reduce in a first step the amount of relevant objects with a fast filter. Such filters are proposed

in this section.

Applying a filter may lead to two types of faults: objects that are relevant are not returned (false

rejects), and objects that are not relevant are returned (false accepts), Baeza-Yates and Ribeiro-

Neto (1999). False rejects are usually not desirable. A filter should therefore be based on a lower-

bound of the actual distance between two objects. The user then specifies the maximum distance

between the query object and the result objects. Objects are rejected because of a too high lower

bound, excluding the possibility of a false reject. A filter with a tight lower bound is able to

significantly reduce the amount of possibly relevant library objects to which the computationally

expensive algorithm has to be applied.
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In our case the “distance” is smallest if the coefficient � is equal to 1. We want to maximize the

similarity, therefore the filter has to compute an upper bound on this similarity. Given the formula

for � this is the same as computing an upper bound on the number of edges that can be matched

by a mapping between the query graph and library graphs.

The structure of the SSM graphs only permits edges between the first and the second, and

between the second and the third layer, respectively. Every edge connects nodes of two different

types. This defines ����� edge types, where � is the maximum number of different node types

on a layer. We expect the number � to be small (in our case � is even only 2) because a large

number of node types would make the modeling task too complex. Let � be the number of edge

types.

For every graph�we can count the edges of each type and define a vector ���� � ���� 	 	 	 � ���

with these numbers. Note that different SSM graphs may have the same vector representation. Ev-

ery mapping between two graphs has to map edges of the same type. Therefore, D(v(G),v(G’)) :=

��
�����
���� �

�

�� is an upper bound on the number of edges that can be matched, and thus

������� ��
� ������ ������

�
�	 �
��

is an upper bound on �������. Note that for two numbers � and ! it is��
��� !� � �	!
��
!�.

Therefore we get

��

���

��
���� �
�

�� � �
�	 �
�� 


��

���

��� 
 �
�

���

which relates our distance to the distance of the vectors � and �� with respect to the sum norm.

For each SSM graph stored in the library we generate its edge type vector ���� once and store

it in the library. We do the same for a query graph and then compare its vector with all in the

library. Considering the number of edge types � as a constant the filter algorithm can determine

������� in constant time for every pair of graphs. Applied to all library graphs the performance

is linear in the number of stored graphs.
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This straight forward bound can be further tightened as follows. For every edge type we might

look at all nodes of the middle layer which are adjacent to an edge of this type, as well as to their

degrees with respect to this edge type. We use this information to compute a better upper bound

than ������� �
�

�� on how many edges of this type can be matched. We construct two vectors with

the degree sequences, ���� ��� 	 	 	 � �	�, ���

�� 	 	 	 � �
�

	�. This means that there are � nodes in �

adjacent to edges of this type, and (w.l.o.g.) the same number of nodes in ��, with degrees as

given by the components of the vectors � and ��. Without loss of generality we may assume that

�� � �� � � � � � �	.

A mapping of node � of � to node ���� of �� achieves at most ��
���� ��

����� edges. The

following lemma shows how to find a mapping � that maximizes the sum over these values.

Lemma 5.1 Given two vectors ���� ��� 	 	 	 � �	� and ���

�� 	 	 	 � �
�

	�, such that �� � �� � � � � �

�	, the expression Æ��� ��
�	

�����
���� �
�

����� is maximized if �� is mapped to the largest ��


 ,

�� to the second largest, and so on.

Proof. Indeed suppose there is an index � such that ��

������ " ��

����. If ��

���� � �� or

���� � �
�

������ an exchange of the images of � and �	� would not change Æ���. If ��

������ � ��

and �� " ��

���� � ���� an exchange yields �� 	 ���� as contribution from � and � 	 � in

Æ���, which is an improvement compared to ��

���� 	 ����. If ��

������ � �� and ���� � ��

����,

exchanging the two yields �� 	 ��

����, which is an improvement compared to ���� 	 ��

����. If

�� " ��

������ and ��

���� � ����, an exchange yields ��

������ 	 ����, versus ��

���� 	 ����.

Finally, if �� " ��

������ " ���� and ���� " ��

����, an exchange yields ��

������ 	 �
�

����, versus

����	�
�

����. Thus in every case an exchange of the images of � and �	� can only improve Æ���.

By Lemma 5.1 an upper bound on the number of mappings can be computed by sorting
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���

�� 	 	 	 � �
�

	�, and then calculate:

Æ ��
	�

���

��
���� �
�

��	

The value Æ has to be computed for every edge type, and all these values have to be added. This

can be done in linear time in terms of the number of nodes on the middle layer, if the number of

edge types is considered to be a constant, and if the vectors � are given. Calculating the vectors

� will require to count edges and to sort, so essentially 
 log 
, if 
 is the number of nodes on the

middle layer.

Note that instead of using the middle layer nodes one might also use the upper and lower layer

nodes for the bound.

6 Computational Results

The retrieval system Firestorm uses the algorithms from the previous two sections in the following

way. Given a query model � and a similarity level � it searches for all graphs �� whose similarity

to � is larger than or equal to �. The filter algorithms can be used to reduce the number of graphs

on which computationally more expensive methods have to be applied. The filters used are fast

algorithms to compute upper bounds on the similarity. These upper bounds would probably not

be very helpful if we want to solve a similarity problem exactly by branch and bound, say. In

our context however bounds prove to be very efficient, as they exclude very fast highly dissimilar

graphs.

In order to verify this a library of 1000 randomly generated benchmark graphs has been cre-

ated. The key characteristics of the benchmark graphs (e.g. the distribution of node types) have

been determined from an existing AMPL model library (see Müller and Müller, (2000), for de-

tails). All benchmarks have been performed on a Sun enterprise 450 with four 250 MHz Ultra-
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Sparc II processors and 1 GB of main memory. In our computational tests all 1000 graphs are

used as queries to the other 999 graphs, and average quality of the algorithms is measured.

Computational tests that we did in preparation of the tests about which we report in this paper

have shown that the second filter is comparable in total running time with the first filter. The

reason is that the overall running time is dominated by the time needed to compute the list of

output graphs1. As the second filter calculates better upper bounds, all our later computational

tests have therefore used this second filter.

Section 6.1 investigates the average number of graphs that the filter can exclude, and the run-

ning time needed for the filter. Section 6.2 gives our results of the precision of the filter algorithm,

which is the number of relevant graphs divided by the number of returned graphs. Section 6.3

shows the overall running time when filter, heuristic, and exact algorithm are combined.

6.1 Effectiveness and Efficiency

For each of the 1000 graphs the effectiveness of the filter algorithm is measured by the amount

of graphs the filter returns for a required minimum similarity. The measure of computational

efficiency is the running time that the filter needs to produce this set of graphs.

Figure 5 contains 2 diagrams. The left diagram shows the average amount of graphs returned

by the filter and the standard deviation of this number for different similarity thresholds. The right

diagram shows the average running time (in ms) and its standard deviation.

It is obvious that the running time depends mostly on the number of graphs returned. This

is due to the fact that for each library graph the necessary data structures can be instantiated at

system boot. The time needed to evaluate the filter on a pair of graphs is therefore much less than

the time needed to create and sort the result2.
1Graphs are sorted by decreasing similarity
2Graphs are sorted by decreasing similarity
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Figure 5: Effectiveness and Efficiency of Filter

6.2 Precision

The precision of a filter algorithm is calculated as follows: Apply the filter algorithm with a chosen

minimal value of similarity. This gives the set of graphs for which the filter algorithm cannot

exclude that the similarity is higher than the chosen value. Then use the exact similarity algorithm

to eliminate those graphs that have a lower similarity. The rest defines the set of relevant graphs.

Their amount divided by the number of graphs returned by the filter gives the precision of the filter.

The running time of the exact algorithm can be very long. Cases where it did not terminate within

10 seconds were considered as in-tractable, and left out from the sample. As mentioned in Section

5, recall is not an issue because the filter algorithm returns all relevant graphs and therefore the

recall is 1. Figure 6 shows the average precision of the filter algorithm and the standard deviation

according to various similarity threshold.

With decreasing required similarity the precision generally decreases, until a minimal preci-

sion is reached. After that point the precision of the filter increases again because the quotient

between irrelevant and relevant graphs decreases rapidly, and thus almost all graphs satisfy the

filter as well as have a similarity at least as large as the threshold.
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Figure 6: Precision of Filter

When comparing the two filter algorithms we see that filter 2 has always a significantly higher

precision than filter 1. Since we saw earlier that it has almost the same running time, we use only

this filter in the combination of filter, heuristic and exact algorithm that is presented in the next

section.

6.3 Combining Filter, Heuristic, and Exact Algorithm

A user is mostly interested in the overall time the system needs for retrieval. In this section

we combine all three algorithms to achieve a good response time for a given similarity thresholds.

First, the filter algorithm excludes all graphs with lower similarity. Second, the heuristic algorithm

proves the threshold for as much graphs as possible. Third, the exact algorithm is applied to the

remaining undecided graphs.

Figure 7 contains 2 diagrams. The left diagram shows the average total running time for

various similarity thresholds. Each pillar is divided into segments that show the average fraction

of the running time that is needed by the filter, the heuristic, and the exact algorithm, respectively.

The right diagram shows the amount of undecided graphs after applying filter and heuristic for

different similarity thresholds.

26



1

10

100

1000

10000

100000

1000000

10000000

0,6 0,7 0,8 0,9

Threshold

R
u
n
n
i
n
g
 
t
i
m
e
 

Exact

Heuristic

Filter

0

50

100

150

200

250

300

0,6 0,7 0,8 0,9

Threshold

A
m
o
u
n
t

Filter

Heuristic

Figure 7: Filter Combination

It is evident that with an increasing similarity threshold the filter algorithm reduces the overall

running time dramatically. The logarithmic scaling for the running time visualizes this fact. With

a similarity threshold of 0.8 total retrieval time was always between 1 and 30 seconds, which is

acceptable for interactive usage.

With higher similarity thresholds the effect of the filter relative to that of the heuristic improves,

which means that the heuristic can only slightly reduce further the number of graphs that have to

be considered by the exact algorithm. On the other hand the running time of the heuristic decreases

as well so that using it as an intermediate step does not negatively influence the overall running

time.

We may conclude from this section that the combination of the three algorithms gives precise

and complete retrieval results at very reasonable running times.

7 Related work

Searching for information that is hidden in the Deep Web is not a new task. Sites providing

information generated by scripts out of data stored in databases exist nearly as long as the Web
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exists. There are a number of search engines that index those sites and query them according

to some user input. We look at some of those engines and relate them to the structural retrieval

approach.

One of the most popular commercial Deep Web search engines is LexiBot from BrightPlanet,

(2001). It searches among 2200 databases and provides a query interface for simple text or boolean

queries. The users can adjust the search strategies and result presentation to their own preferences.

Also from BrightPlanet is the free search engine CompletePlanet, BrightPLanet (2000). It

contains the addresses of about 103000 databases organized in a directory structure with categories

and subcategories. The search interface allows simple text input.

The LII, Library of California (2001), is a free search engine with an annotated, searchable

subject directory of about 9000 Web resources. The resources are selected and evaluated by li-

brarians for their usefulness to users of public libraries. Simple text and boolean operators are the

means to state queries.

The search engines ProFusion, IntelliSeek (2001b) and InvisibleWeb, IntelliSeek (2001a), re-

semble much the other mentioned directory-based search engines.

Neither of the presented search engines use the database structure of Deep Web information

systems. They describe the content of those systems with keywords and organize them (by hand or

automated) within a directory. Query interfaces require simple text and boolean queries. They are

easier to use than our query interface that is based on ER diagrams. But especially the structural

dependencies between different information units captures much more semantics and therefore

allows a more precise search.

To the best of our knowledge there is no retrieval functionality available that uses the graph

structure of decision support models. In most of the algebraic modelling systems models are stored

as readable text documents, which makes search for keywords and phrases in these documents
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can be applied. On a semantic level models can be classified by classification indices like ACM

classification, ACM (2002), or Guide to Available Mathematical Software, NIST (2002). These

indices classify on the basis of mathematical structure (e.g., flow problem, quadratic optimization,

etc.), but not with respect to applications. Retrieval requires therefore very good mathematical

knowledge, and can only be done by search through the classification hierarchy. For some domains

like queuing and scheduling more detailed classification schemes have been developed. Again they

require a precise knowledge of the mathematical theory, and they do not provide a framework for

the comparison of models.

Graph structures have however played a prominent role in developing modeling systems for

decision support. Besides structured modeling one should mention an implementation of graph

based structured modeling, Chari and Sen (1997, 1998), and the graph-grammar based approach

by Jones (1990b). But these systems do not address the issue of model retrieval in model libraries.

Within the database community there is ongoing work to develop systems for automatic schema

matching. Bernstein, Halevy and Pottinger, (2000), have suggested a high level algebra to perform

operations like merging schemata. In fact they use the graph structure of schemata together with

information about the related data to fulfill the task. An application of this idea for the Web is

the system GLUE, Doan et. al (2002). It uses machine learning techniques to automatically create

mappings between ontologies built upon RDF descriptions. In an example they map elements of

two RDF graphs representing curriculum vitae data from university web sites.

Although our models are not intended to represent RDF graphs, these could be translated into

SSM based upon the rules proposed in Müller and Schimkat, (2001). In contrast to GLUE our

approach would compare two RDF graphs/schemas only by structure and not use the underlying

data to create a mapping between schema elements. The intention of our approach is also different.

Retrieval on RDF repositories along the lines from our paper would allow to find most similar RDF
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schemata in large repositories. This could either support RDF graph design (similar to what we

can support in the context of UML), or it could provide the kernel of an RDF schema based search

engine (similar to our application in the context of decision support). While details cannot be

given here yet, our contribution to this type of retrieval technology should be clear. We suggest an

internal representation, namely SSM, because it provides the basis for robust and efficient retrieval

algorithms. Furthermore, as mentioned before, the presented prototype is easy to extend to a new

domain like RDF graphs.

8 Conclusions

We have described a new retrieval approach for Web services that is based on structured model-

ing. The approach has applications for retrieval of online decision support services, Deep Web

information and other services that can be represented by directed graphs. The retrieval approach

has been implemented in a prototype system and extensively tested. The computational results

are satisfactory, and a class room experiment has shown that similarity reported by the retrieval

system is related to semantic similarity, at least when the context is restricted.

The algorithmic problem of computing the similarity of two structured service models is

shown to be NP-complete. But we also showed how to exploit the structure of the models for

fast heuristic and exact algorithms. Furthermore, fast filter algorithms turn out to be very efficient

in our benchmark.

Yet, the approach leaves many opportunities for improvements. New algorithmic ideas for

heuristic, exact, and filter algorithms can be easily integrated into the retrieval system in order

to improve the running time. A finer system of node types, arranged in type hierarchies, can be

adapted. Such an extension of the system has been suggested in Müller and Schimkat, (2001). It

reduces the running time of the algorithms, and refines the similarity measure. Finally, differences
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of node labels in the model can be measured by string comparison algorithms, and used to refine

the definition of matching quality, and thus the definition of similarity. These extensions are the

topic of forthcoming papers.
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