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Thomas B. Götz� Alain Hecq
Jean-Pierre Urbain

Maastricht University, SBE, Department of Quantitative Economics

January 17, 2013

Abstract

This paper proposes a new way for detecting the presence of common cyclical features
when several time series are observed/sampled at different frequencies, hence generalizing
the common-frequency approach introduced by Engle and Kozicki (1993) and Vahid and
Engle (1993). We start with the mixed-frequency VAR representation investigated in Ghy-
sels (2012) for stationary time series. For non-stationary time series in levels, we show
that one has to account for the presence of two sets of long-run relationships. The first set
is implied by identities stemming from the fact that the differences of the high-frequency
I(1) regressors are stationary. The second set comes from possible additional long-run re-
lationships between one of the high-frequency series and the low-frequency variables. Our
transformed VECM representations extend the results of Ghysels (2012) and are very im-
portant for determining the correct set of variables to be used in a subsequent common
cycle investigation. This has some empirical implications both for the behavior of the test
statistics as well as for forecasting. Empirical analyses with the quarterly real GNP and
monthly industrial production indices for, respectively, the U.S. and Germany illustrate our
new approach. This is also investigated in a Monte Carlo study, where we compare our pro-
posed mixed-frequency models with models stemming from classical temporal aggregation
methods.
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1 Introduction

Time series are collected and observed at different sampling frequencies. For instance, national
account variables such as the gross domestic product (GDP) are often available on a quarterly
basis whilst many other indicators such as the industrial production index, the unemployment
rate or price indices are supplied at a monthly frequency. Several variables are only reported
annually (e.g. CO2 emission, health outlook, etc.) whilst most financial time series (stock
prices, interest rates, exchange rates, etc.) are recorded almost continuously and are easily and
at least freely obtained at a daily frequency. In this situation it is common in macroeconomics
to focus on the lower frequency unless a good proxy for the variable of interest is available at
higher frequency. For instance, if one wants to estimate a vector autoregressive model (VAR)
with GDP included, one would probably run a VAR model on quarterly time series. The
higher frequency variables (monthly, daily,..) are either averaged over quarters (usually for flow
variables) or matched at the end of each quarter (usually for stock variables).

More recently, researchers have developed techniques for modeling, in a unified framework,
variables sampled at different frequencies (see notably the MIDAS approach in Andreou, Ghy-
sels and Kourtellos, 2010). Most of the mixed-frequency literature which relies on what Ghy-
sels (2012) calls observation-driven models1 (as introduced in Cox, 1981) is concerned with a
regression framework where the dependent variable is the low-frequency variable and the high-
frequency variables are in the regressors. Only few papers have extended the analysis towards
a multivariate setting, examples are Qian (2010) and Ghysels (2012). We refer the reader to
Foroni, Ghysels and Marcellino (2012) for a current survey on this topic.

Qian (2010) deals with a mixed-frequency VAR in which some variables are possibly unob-
served to account for the fact that some series may be observed at lower frequencies. Ghysels
(2012), in contrast, stacks the high- and low-frequency variables into a vector and formulates
a VAR in terms of this vector. Interestingly, the model does not involve any latent variables,
and thereby no latent shocks, but is formulated exclusively in terms of observable data explain-
ing the term ”observation-driven model”. Note that due to its observation-driven nature, the
model’s related impulse response functions are entirely driven by observable shocks. As pointed
out by Foroni et al. (2012) the mixed-frequency VAR à la Ghysels (2012) jointly specifies the
dynamics of all variables concerned without imposing any a-priori restrictions. Furthermore,
its ability to apply standard tools of the VAR literature, e.g. impulse response functions, to
a mixed-frequency setting gives it a significant edge over univariate approaches such as the
aforementioned MIDAS approach.

Note that the setup proposed in Ghysels (2012) acts as a starting point for this work,
implying that we deal with observation-driven instead of parameter-driven models.2However,

1In contrast to the parameter-driven models such as state spate models à la Zadrozny (1988). See Seong, Ahn
and Zadrozny (2012) for VECMs in state-space forms.

2Foroni et al. (2012) stress that only under the ideal circumstances of ignored parameter estimation errors
and assumed correct specification of the model are the state-space models unrivalled. These ideal conditions
are often, however, difficult to meet. As an example, correct specification of the model in high-frequency is
unusually complex due to the missing observations in the regressand. Furthermore, properly specifying some
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it exclusively copes with covariance-stationary variables whilst many macroeconomic variables
are non-stationary and possibly cointegrated. Hence, an extension of a mixed-frequency VAR
model along these lines is of important relevance. We show that for non-stationary time series
in levels, one has to account for the presence of two sets of long-run relationships. The first set is
characterized by identities stemming from the fact that the differences of the high-frequency I(1)
regressors are stationary. The second set comes from additional long-run relationships between
one of the high-frequency series and the low-frequency variables. Without this latter set of long-
run relationships, the VAR in first differences looks very much like in Ghysels (2012). However,
we point out additional zero-restrictions that are relevant for our new common cyclical feature
framework. These transformed VECM representations allow us to extend the common cyclical
feature analysis (see Engle and Kozicki, 1993, or Vahid and Engle, 1993) to a mixed-frequency
setup. As such, these mixed-frequency VARs present an alternative to temporally aggregating
the high-frequency variable in order to obtain a VAR in a common frequency (Marcellino, 1999,
or Hecq, 1998).

The rest of the paper is organized as follows. We start with the stacked VAR representation
proposed in Ghysels (2012) and show how to extend it to account for I(1), possibly cointegrated,
variables. In Section 3 we propose to formalize an alternative VAR representation proving
useful for testing for the presence of common cyclical features. A corresponding likelihood
ratio type test, for which the choice of which dynamic variables to include has been carefully
discussed in Section 3, is proposed in Section 4. Notice that our new approach is set up in
a maximum likelihood framework such that it is best for a small number of variables and for
a relatively small observation frequency. In Section 5, empirical analyses with the quarterly
GNP and monthly IPIs for, respectively, the U.S. and Germany are presented to illustrate
our approach. Section 5 also contains a small forecasting exercise emphasizing its potential
usefulness over classical temporal aggregation methods. Section 6 presents a Monte Carlo
study investigating the frequencies with which information criteria detect different lag lengths
and rejection frequencies of the aforementioned likelihood ratio type test for both, our proposed
mixed-frequency and temporal aggregation based models. Section 7 concludes.

2 A mixed-frequency VECM

Let us start from a two variable mixed-frequency system3, where yt, t = 1...T is the low-

frequency variable and x
(m)
t−i/m the high-frequency variables with m high- frequency observations

per low-frequency period t. In a year/month-example m = 12 and the value of i indicates the

specific month under consideration, ranging from January (x
(m)
t−11/m) until December (x

(m)
t ).

Obviously, x
(m)
t−m/m = x

(m)
t−1. Note that as far as lag operators, L, or difference operators, ∆,

high-frequency variables may be so demanding that related ”specification errors in one equation spread to the
entire system” (Foroni et al., 2012). As a consequence, this paper does not concern itself with state-space forms
or Kalman filtering, a formal comparison of such parameter-driven models to our approach is left for future
research.

3An extension to higher dimensional multivariate systems is straightforward.
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are concerned, we make a distinction between high- and low-frequency operators. To be more

precise, L denotes the low-frequency lag operator, i.e., Lyt = yt−1 or Lx
(m)
t−i/m = x

(m)
t−1−i/m,

whereas Lm denotes the high-frequency counterpart which is only applicable to the high-

frequency variables, i.e., Lmx
(m)
t−i/m = x

(m)
t−i/m−1/m = x

(m)
t−(i+1)/m. Similar rules apply for the

difference operators, ∆ and ∆m. Finally, note that Lmx
(m)
t−(m−1)/m = x

(m)
t−1 and, by the same

logic, ∆mx
(m)
t−(m−1)/m = x

(m)
t−(m−1)/m − x

(m)
t−1. These notational conventions are similar to the

ones used in Clements and Galvão (2007, 2009) or Götz, Hecq and Urbain (2012a, 2012b). The
following table illustrates the notation for a year/month-example:

Notation t = 2011, m = 12

x
(m)
t+1−(m−1)/m = x

(12)
t+1/12 x

(12)
2012,Jan

x
(m)
t x

(12)
2011,Dec

x
(m)
t−1/m x

(12)
2011,Nov

...
...

x
(m)
t−(m−1)/m = x

(12)
t−11/12 x

(12)
2011,Jan

x
(m)
t−m/m = Lmx

(12)
t−11/12 = x

(12)
t−1 x

(12)
2010,Dec

x
(m)
t−1−1/m x

(12)
2010,Nov

Considering each high-frequency variable such that X
(m)
t = (x

(m)
t , x

(m)
t−1/m, ..., x

(m)
t−(m−1)/m)′,

Ghysels (2012) proposes to consider, after achieving stationarity of I(1) series (e.g. quarterly
growth rate of output and the monthly growth rate of the production index), the VAR(p):

Zt = Γ1Zt−1 + ...ΓpZt−p + εt, (1)

where Zt = (yt, X
(m)′

t )′ and εt ∼ i.i.d.N(0, Im+1).4 In other words, the high-frequency obser-
vations per low-frequency period are treated as different low-frequency variables and stacked in
a vector, together with the low-frequency variable yt, to form a VAR. This particular composi-
tion implies that our work is related to a periodic framework introduced by Gladyshev (1961).
Note that compared to Ghysels (2012) we place the low-frequency variable first to facilitate the
interpretation of the presence of common cycles we develop in Section 4.

Equation (1) is easy to estimate on small systems but relies on the assumption that the
time series are genuinely stationary. Now, assuming that series in Zt are I(1) and that there
exists some cointegration between the variables, (1) in first differences is not correctly specified.
This can be seen by computing the VECM representation of (1) when both the high- and
low-frequency variables are I(1) such that

∆Zt = Γ̃1∆Zt−1 + ...Γ̃p−1∆Zt−p+1 + ΠZt−1 + εt, (2)

4It is possible to include deterministic components such as a constant, trends or seasonal dummies here as
well. For illustrative purposes we skip it in the theoretical sections of the paper. In the application and Monte
Carlo study, however, a vector of intercepts is included.
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with Γ̃i = −
∑p

k=i+1 Γk, i = 1, ..., p − 1 and Π = −(I −
∑p

j=1 Γj) = αβ′ with rank(Π) =
(r0 + r1) < m+ 1.

Let us focus on the rank of Π in the presence and absence of cointegration between the
low- and high-frequency variables. r0 denotes a first set of known or prespecified cointegrat-
ing vectors stemming from the fact that first differences of the high-frequency I(1) variables
are stationary. r1 will denote the potential additional long-run relationship between the two
different series. Note that in case of cointegration it is sufficient to consider only one relation-

ship between yt and one of the various x
(m)
t−i/m’s. The reason is that if cointegration is present

between the two variables, y is cointegrated with each of high-frequency x’s falling into the
respective t-period. Hence, it does not matter which of these high-frequency candidates is used
to capture the cointegrating relationship as long as one is used (see Götz et al., 2012a, for
details). For simplicity, we model cointegration employing the end-of-period observation of the

high-frequency variable, i.e., x
(m)
t .

Anticipating the results of the empirical section, while r0 and the associated cointegrating
vectors are known, a test on r1 will be determined using the approach of Horvath and Watson
(1995) for testing for cointegration when some of the cointegrating vectors are prespecified.5

In particular, we will test the null hypothesis H0 : rank(Π) = r0 against HA : rank(Π) =
r0 + r1, where the cointegrating vectors imposed under the null are precisely the prespecified
ones discussed above. The test itself is a likelihood ratio test, where, under the alternative
model, additional unknown cointegrating vectors, the parameters of which being chosen so as
to maximize the log-likelihood function, are added to the identities. In our case, only one
unknown cointegrating vector to capture potential cointegration between the low- and high-
frequency variables is added and is of the form (1 : −θ : 01×(m−1)), where the coefficient of y is
normalized to one and θ is the cointegrating coefficient.

Our first results can be summarized in the following lemma and example.

Observation 1 Assume that the high-frequency variables, x
(m)
t−i/m, and the low-frequency vari-

able, yt, are I(1). In case of no cointegration between the low- and high-frequency variables,
rank(Π) = r0. r0 = m − 1 in a bivariate analysis. In case of cointegration between the low-
and high-frequency variables, rank(Π) = r0 + r1. r1 = 1 in a bivariate analysis.

Trivially, each high-frequency variable in the subvector Xt of Zt is cointegrated with the
other high-frequency ones. Since there are m such variables in Zt in a bivariate case, we
have m− 1 prespecified cointegrating relationships r0. We model any additional cointegrating
relationships between the low- and high-frequency variables by considering one relationship

between yt and x
(m)
t as argued before. This adds r1 = 1 to rank(Π) in a bivariate example.

These arguments can straightforwardly be extended to a higher dimensional framework.

5Horvath and Watson (1995) show that accounting for the fact that some cointegrating vectors are prespecified
leads to improved power results in terms of testing for potential further, unknown, cointegrating relationships.
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Example 2 Let us consider a very simple example where the low- and high-frequencies are

assumed to be quarterly and monthly, respectively, and where yt and the elements of X
(m)
t are

defined as

yt = θx
(3)
t + ξt with ξt = ρξt−1 + νt, where |ρ| < 1 and νt ∼ i.i.d.N(0, 1)

x
(3)
t−i/3 = x

(3)
t−(i+1)/3 + u

(3)
t−i/3 for i = 0, 1, 2 and where all u

(3)
t−i/3 ∼ i.i.d.N(0, 1),

implying that cointegration between the low- and high-frequency variables is present. Represent-
ing this in a VAR framework as explained above yields

yt

x
(3)
t

x
(3)
t−1/3

x
(3)
t−2/3

 =


ρ (1− ρ)θ 0 0
0 1 0 0
0 1 0 0
0 1 0 0




yt−1

x
(3)
t−1

x
(3)
t−1−1/3

x
(3)
t−1−2/3

+


θ
∑2

i=0 u
(3)
t−i/3 + νt∑2

i=0 u
(3)
t−i/3

u
(3)
t−1/3 + u

(3)
t−2/3

u
(3)
t−2/3

 .

The corresponding VECM representation looks as follows:
∆yt

∆x
(3)
t

∆x
(3)
t−1/3

∆x
(3)
t−2/3

 =


ρ− 1 (1− ρ)θ 0 0

0 0 0 0
0 1 −1 0
0 1 0 −1




yt−1

x
(3)
t−1

x
(3)
t−1−1/3

x
(3)
t−1−2/3

+


θ
∑2

i=0 u
(3)
t−i/3 + νt∑2

i=0 u
(3)
t−i/3

u
(3)
t−1/3 + u

(3)
t−2/3

u
(3)
t−2/3

 ,

such that rank(Π) = r0 + r1 = 2 + 1 = 3 and with long-run relationships for instance

β′Zt−1 =

 ρ− 1 −(ρ− 1)θ 0 0
0 1 −1 0
0 0 1 −1




yt−1

x
(3)
t−1

x
(3)
t−1−1/3

x
(3)
t−1−2/3

 .

If, however, no cointegration exists between the low- and high-frequency variables, e.g. both
variables follow random walks,

yt = yt−1 + vt

x
(3)
t−i/3 = x

(3)
t−(i+1)/3 + u

(3)
t−i/3 for i = 0, 1, 2,

where vt and the u
(3)
t−i/3’s are i.i.d. standard normally distributed, we get the following VECM

representation:
∆yt

∆x
(3)
t

∆x
(3)
t−1/3

∆x
(3)
t−2/3

 =


0 0 0 0
0 0 0 0
0 1 −1 0
0 1 0 −1




yt−1

x
(3)
t−1

x
(3)
t−1−1/3

x
(3)
t−1−2/3

+


vt∑2

i=0 u
(3)
t−i/3

u
(3)
t−1/3 + u

(3)
t−2/3

u
(3)
t−2/3

 ,
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such that rank(Π) = r0 = m− 1 = 2 and the (prespecified) long-run cointegrating relationships
are

β′Zt−1 =

(
0 1 −1 0
0 0 1 −1

)
yt−1

x
(3)
t−1

x
(3)
t−1−1/3

x
(3)
t−1−2/3

 .

3 An alternative ”desirable” VAR/VECM representation

The previous example illustrates that, starting from the VAR(p) model in (1), we can compute
its VECM representation in the standard way and get (2). However, we end up with low-
frequency differences of all variables, including the high-frequency ones. For instance, we would
have a VECM between the quarterly growth rate of the GDP and the quarterly growth rate
of the industrial production index. This is not the series that Ghysels (2012) would use in his
investigation of a mixed-frequency VAR neither the ones we would like to consider in our study.

Given that in a unified framework, mixed-frequency error-correction models are character-
ized by low- and high-frequency differences for the low- and high-frequency variables, respec-
tively (Götz et al., 2012a, or Miller, 2011), it is important to transform the VECM accordingly.

We compute the transformed VAR (see Warne, 1993) as e.g. illustrated in Hecq and Jacobs
(2009). In particular, we start from the VECM in (2) where Π = αβ′ such that α and β
are (m + 1) × r matrices with r = r0 + r1 being the number of cointegrating relationships.
To obtain the transformed VAR representation, we introduce the (m + 1) × (m + 1) matrix
C = (My : β : Mx)′, with selection matrices My = (1 01×m)′1(r=m−1) and Mx = (01×m 1)′.
The indicator function in My makes sure we add a corresponding selection row in case y and x
are not cointegrated. Premultiplying both sides of (2) by C gives

C∆Zt = CΓ̃1C
−1C∆Zt−1 + . . .+ CΓ̃p−1C

−1C∆Zt−p+1 + CΠC−1CZt−1 + Cεt

⇔ CZt = (I + CΓ̃1C
−1 + CΠC−1)CZt−1 + (CΓ̃2C

−1 − CΓ̃1C
−1)CZt−2+

. . .+ (−CΓ̃p−1C
−1)CZt−p + Cεt.

(3)

Whether or not there is cointegration between y and x, it is possible to rewrite (3) such that
we finally obtain

∆Z∗t = Φ1∆Z∗t−1 + Φ2∆Z∗t−2 + . . .+ ΦpZ̃t−p + ε̃t, (4)

where

∆Z∗t =



∆yt

∆mx
(m)
t

...

∆mx
(m)
t−(m−2)/m

∆mx
(m)
t−(m−1)/m


, Z̃t =



yt

∆mx
(m)
t

...

∆mx
(m)
t−(m−2)/m

x
(m)
t−(m−1)/m


and ε̃t =



εt,y

∆mε
(m)
t

...

∆mε
(m)
t−(m−2)/m

ε
(m)
t−(m−1)/m


.
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In particular we can write (4) as

∆Z∗t = Φ1∆Z∗t−1 + Φ2∆Z∗t−2 + . . .+ Φ0
pZ̃t−p + Φ1

pZ̃t−p + ε̃t, (5)

where Φ0
p is the matrix with the central part of Φp and with zero-coefficients on the first and

the last column. Then Φ0
pZ̃t−p = Φ0

p∆Z
∗
t−p only has coefficients for ∆mxt−p,m, . . . ,∆mxt−p,2

such that the pth lags of yt and xt,1 are not present. In the presence of additional (unknown)
r1 cointegrating vectors Φ1

p = Φp − Φ0
p is of rank r1 > 0. In the absence of such cointegrating

vectors Φp = Φ0
p such that Φ1

p = 0(m+1)×(m+1).

Remark 3 As far as the error term is concerned, it was necessary to assume that εt is i.i.d.
and standard normally distributed in order for (2) not to be misspecified. Premultiplying εt by

C in 3, however, causes ε̃t to contain differences of ε
(m)
t , . . . , ε

(m)
t−(m−2)/m. Note, however, that

these are high-frequency differences, ∆m, implying that all terms contained in ε̃t correspond to
observations within one low-frequency period t. Hence, as the transformed VAR, (5), is written
in terms of the low frequency, premultiplying εt by C does not lead to a misspecification of the
model.

Example 4 Let us again assume that the high- and low-frequency variables are monthly and
quarterly ones, respectively. Furthermore, suppose first that y and x are not cointegrated and
let us consider a VAR(1), Zt = Γ1Zt−1 + εt (without deterministic components for simplicity),
from which we get to a low-frequency VECM representation, ∆Zt = αβ′Zt−1 + εt as:

⇔


∆yt

∆x
(3)
t

∆x
(3)
t−1/3

∆x
(3)
t−2/3

 =


α11 α12

α21 α22

α31 α32

α41 α42

( 0 1 −1 0
0 0 1 −1

)
yt−1

x
(3)
t−1

x
(3)
t−1−1/3

x
(3)
t−1−2/3

+


ε
(3)
t,y

ε
(3)
t

ε
(3)
t−1/3

ε
(3)
t−2/3

 .

Now, we premultiply both sides of the equation by

C =


1 0 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1


to obtain

C∆Zt = CΠZt−1 + Cεt
⇔ CZt = CZt−1 + CΠC−1CZt−1 + Cεt
⇔ Z̃t = (I + CΠC−1)Z̃t−1 + ε̃t.

Note that

Z̃t =


yt

∆mx
(3)
t

∆mx
(3)
t−1/3

x
(3)
t−2/3

 =


∆yt

∆mx
(3)
t

∆mx
(3)
t−1/3

∆mx
(3)
t−2/3

+


1 0 0 0
0 0 0 0
0 0 0 0
0 1 1 1


︸ ︷︷ ︸

A


yt−1

∆mx
(3)
t−1

∆mx
(3)
t−1−1/3

x
(3)
t−1−2/3

 = ∆Z∗t +AZ̃t−1.
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Hence,

Z̃t = (I + CΠC−1)Z̃t−1 + ε̃t
⇔ ∆Z∗t = (I −A+ CΠC−1)︸ ︷︷ ︸

Φ1=Φ0
p

Z̃t−1 + ε̃t

⇔


∆yt

∆mx
(3)
t

∆mx
(3)
t−1/3

∆mx
(3)
t−2/3

 =


0 α11 α12 0
0 1 + α21 − α31 α22 − α32 0
0 α31 − α41 1 + α32 − α42 0
0 α41 − 1 α42 − 1 0


︸ ︷︷ ︸

Φ1


yt−1

∆mx
(3)
t−1

∆mx
(3)
t−1−1/3

x
(3)
t−1−2/3

+


εt,y

∆mε
(3)
t

∆mε
(3)
t−1/3

ε
(3)
t−2/3

 .

This shows that in the presence of prespecified cointegrating vectors only, the mixed-
frequency stationary VAR specification of Ghysels (2012) does not impose the full set of restric-
tions on the dynamics. While consistency of the estimators is still achieved, efficiency might
be affected when the VAR is not restricted accordingly. In the framework of this paper, this
changes the set of variables that has to be used in the subsequent common feature analysis.

Example 5 More importantly now, if cointegration between y and x is present as in

Π = αβ′ =


α11 α12 α13

α21 α22 α23

α31 α32 α33

α41 α42 α43


 1 −θ 0 0

0 1 −1 0
0 0 1 −1

 ,

we select C = (β : Mx)′ with m = 3. Note that CZt 6= Z̃t, a problem we get around by observing
that AθCZt = Z̃t, where

Aθ =


1 θ θ θ
0 1 0 0
0 0 1 0
0 0 0 1

 .

Hence, we have the following:

CZt = (I + CΠC−1)CZt−1 + Cεt
⇔ A−1

θ Z̃t = (I + CΠC−1)A−1
θ Z̃t−1 +A−1

θ ε̃t
⇔ Z̃t = Aθ(I + CΠC−1)A−1

θ Z̃t−1 + ε̃t
⇔ ∆Z∗t = (Aθ(I + CΠC−1)A−1

θ −A)Z̃t−1 + ε̃t
= (I −A+AθCΠC−1A−1

θ )︸ ︷︷ ︸
Φ1

Z̃t−1 + ε̃t,

where

Φ1 =


α11 α12 − α11 α13 − θα11 −θα11

α21 − α31 1 + α22 − h− θα21 + θα31 α23 − α33 − θα21 + θα31 −θ(α21 − α31)
α31 − α41 α32 − α42 − θα31 + θα41 1 + α33 − α43 − θα31 + θα41 −θ(α31 − α41)

α41 α42 − θα41 − 1 α43 − θα41− 1 −θα41

 .
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Note that the first and fourth columns of Φ1 are linearly dependent, i.e., Φ1e
′
1 = −θΦ1e

′
4, where

ei is a row-vector of size m + 1 with a value of one at the ith position and zeroes everywhere
else. Hence, we can write ∆Z∗t = Φ0

1Z̃t−1 + Φ1
1Z̃t−1 + ε̃t, where

Φ0
1 =


0 α12 − α11 α13 − θα11 0
0 1 + α22 − α32 − θα21 + θα31 α23 − α33 − θα21 + θα31 0
0 α32 − α42 − θα31 + θα41 1 + α33 − α43 − θα31 + θα41 0
0 α42 − θα41 − 1 α43 − θα41 − 1 0


and, with a particular choice of normalization,

Φ1
1 =


α11 0 0 −θα11

α21 − α31 0 0 −θ(α21 − α31)
α31 − α41 0 0 −θ(α31 − α41)

α41 0 0 −θα41

 =


α11

α21 − α31

α31 − α41

α41

( 1 0 0 −θ
)
.

4 Testing for common cyclical features in mixed-frequency VARs

In the two previous sections we have established some results about VECM representations of
mixed-frequency VARs. This is important because the most popular common cycle approach
(Vahid and Engle, 1993) aims at testing for the presence of common dynamics in VAR/VECM
multivariate systems. The previous representations become the starting point that allows us
to test for the presence of common cyclical features when two or more series are observed at
different frequencies.

This being said, let us first point out that this paper focuses on the particular mixed-
frequency case when m is relatively small, say 3 or 12. Indeed, we propose a method based on
canonical correlations as well as Full Information Maximum Likelihood (FIML) techniques. It
is well known that the latter has shortcomings when the number of variables is large compared
to the number of observations T .

4.1 Definitions

Let us start by defining Ω as the set of all outcomes for the stochastic processes under con-
sideration. Then, let Ωt be the information set generated by the collection of sigma-fields
Ft = σ(Zs, s ≤ t), t ≥ 0, and let Zt be adapted to that filtration. In other words, Ωt contains

all the information present at moment t, implying that yt and x
(m)
t would be given, but x

(m)
t+1/m

would not.
We define the presence of common cycles in the mixed-frequency VAR (5) as follows:

Definition 6 In a mixed-frequency VAR for the m+ 1 series ∆Z∗t ,

∆Z∗t = Φ1∆Z∗t−1 + Φ2∆Z∗t−2 + . . .+ Φ0
pZ̃t−p + Φ1

pZ̃t−p + ε̃t,
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with ∆Z∗t = (∆yt, ∆mx
(m)
t ,∆mx

(m)
t−1/m, ...,∆mx

(m)
t−(m−1)/m)′, a Mixed-Frequency Serial Corre-

lation Common Features (MF-SCCF) arises iff there exists a matrix δ spanning the common
feature space such that

E(δ′∆Z∗t |Ωt−1) = 0.

This implies that there exists such a δ with the conditions δ′Φ1 = . . . = δ′Φp−1 = δ′Φ0
p =

δ′Φ1
p = 0, i.e., it is a matrix that annihilates the short-run dynamics in the systems. In other

words, δ lies in the intersection of the left null spaces of all Φ-matrices.
In particular, when δ is a (m+1)-dimensional column vector normalized on the first element,

we say that two series ∆yt and ∆mx
(m)
t have a MF-SCCF relationship iff there exists a high-

frequency-lag polynomial γ(Lm) such that

E([∆yt − γ(Lm)∆mx
(m)
t ]|Ωt−1) = 0.

Hence, two series ∆yt and ∆mx
(m)
t having a MF-SCCF imply that

E([∆yt − γ1∆mx
(m)
t ]|Ωt−1) = γ2∆mx

(m)
t−1/m + ...+ γm∆mx

(m)
t−(m−1)/m

and hence that there exists a (restricted) polynomial serial correlation common feature rela-
tionship of order m, PSCCF(m), as defined in Cubadda and Hecq (2001) between the two
series.

4.2 Testing Procedure

Now that we have defined MF-SCCF, we can formulate the steps we use to test for mixed-
frequency common cycles. Note that as far as testing for cointegration and testing for common
cyclical features are concerned we follow a two-step procedure (Vahid and Engle, 1993, Hecq,
Palm and Urbain, 2006), the validity of which has been established in Paruolo (2006). The
steps are as follows:

1. We determine the lag length order in the level (or the log level) of the series for the mixed-
frequency VAR in (1) to obtain p. We rely on usual multivariate information criteria
(hereafter MIC), in this article we take AIC, SBC and HQ. Note that the performance of
these criteria is investigated in our Monte Carlo section.

2. Given p, we test for the cointegrating rank r = r0 +r1. In doing so we rely on the Horvath
and Watson (1995) approach because the m−1 = r0 cointegrating vectors are prespecified.

3. In the absence of additional r1 cointegrating vectors we perform a reduced rank regres-
sion in the transformed VAR(p) using a test on the zero eigenvalues computed from the
canonical-correlation analysis

CanCor

∆Z∗t ,


∆Z∗t−1

...
∆Z∗t−p+1

Z̃0
t−p


 , (6)
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where Z̃0
t−p is equivalent to Z̃t−p except for the first and last elements:

Z̃0
t−p =


0

∆mx
(m)
t−p

...

∆mx
(m)
t−p−(m−2)/m

0

 .

Furthermore, CanCor {Vt,Wt} denotes the computation of canonical correlations between
the two sets of variables Vt and Wt,. The likelihood ratio type test, denoted by ξLR,
considers the null hypothesis that there exist at most s common feature vectors against
the alternative that there are less than s, i.e., H0 : rank(δ) ≤ s versus HA : rank(δ) > s.
The test is obtained as

ξLR = −T
s∑
i=1

ln(1− λ̂i), s = 1, 2, (7)

where λ̂i is the ith smallest squared canonical correlation, i.e., the ith smallest eigenvalue,
computed from (6) above, i.e., from

Σ̂−1
V V Σ̂VW Σ̂−1

WW Σ̂WV , (8)

or similarly from the symmetric matrix Σ̂
−1/2
V V Σ̂VW Σ̂−1

WW Σ̂WV Σ̂
−1/2
V V , where Σ̂ij are the

empirical covariance matrices with i and j being equal to V and/or W . In the mixed-
frequency bivariate case and without counting the constant terms, the unrestricted trans-
formed VAR has (m + 1)2(p − 1) + (m + 1 − 2)(m + 1) parameters. Note that s = 1, 2
because our 4-dimensional transformed VAR already contains two known cointegrating
relationships such that s is maximum 2.

4. In the presence of cointegration, eigenvalues and eigenvectors, are computed from

CanCor

∆Z∗t ,


∆Z∗t−1

...
∆Z∗t−p+1

Z̃t−p


 , (9)

where,

Z̃t−p =



yt−p

∆mx
(m)
t−p

...

∆mx
(m)
t−p−(m−2)/m

x
(m)
t−p−(m−1)/m


,
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and we focus on the test for s = 1. Indeed, due to the additional cointegrating relationship
between the low- and high-frequency variables, there is only room for at most one common
feature vector in this bivariate example. In the mixed-frequency bivariate case and without
counting the constant terms, the unrestricted transformed VAR has (m + 1)2(p − 1) +
(m+ 1− 2 + 1)(m+ 1) parameters.

5. Alternatively and numerically equivalent is the estimation of the pseudo-structural form
by FIML under the restriction that rank(δ) = 2.6 In the present context, this represen-
tation might be easier for counting the number of restrictions as well as for considering
additional restrictions on the common feature vectors. Let us write the pseudo-structural
model in the presence of both sets of cointegrating vectors (prespecified and not prespec-
ified) as(

I −γ
0 I

)
∆Z∗t =

(
0

Λ1

)
∆Z∗t−1 + . . .+

(
0

Λp−1

)
∆Z∗t−(p−1) +

(
0

Λp

)
C∗Z̃t−p + et

⇔

(
Is −γs×(m+1−s)

0(m+1−s)×s I(m+1−s)

)


∆yt

∆mx
(m)
t

∆mx
(m)
t−1/m
...

∆mx
(m)
t−(m−1)/m



=


0︸︷︷︸

s×(m+1)

Λ1︸︷︷︸
(m+1−s)×(m+1)




∆yt−1

∆mx
(m)
t−1

∆mx
(m)
t−1−1/m
...

∆mx
(m)
t−1−(m−1)/m


+ . . .+


0︸︷︷︸

s×(m+1)

Λp−1︸ ︷︷ ︸
(m+1−s)×(m+1)





∆yt−p+1

∆mx
(m)
t−(p−1)

∆mx
(m)
t−(p−1)−1/m

...

∆mx
(m)
t−(p−1)−(m−1)/m



+


0︸︷︷︸

s×(r0+r1)

Λp︸︷︷︸
(m+1−s)×(r0+r1)




1 0 · · · · · · 0 −θ̂
0 1 0 · · · · · · 0
0 0 1 · · · · · · 0
...

...
...

. . .
...

...
0 · · · · · · · · · 1 0


︸ ︷︷ ︸

C∗



yt−p

∆mx
(m)
t−p

∆mx
(m)
t−p−1/m
...

∆mx
(m)
t−p−(m−2)/m

x
(m)
t−p−(m−1)/m


+


e1t

e2t

...
em+1t

 ,

where Λ1, . . . ,Λp are the (m + 1 − s) lower rectangular parts of the corresponding Φ-
matrices that are going to be estimated by FIML. Note that the first row of C∗ disappears
in case r1 = 0. This shows that we have to estimate (m + 1 − s) × (m + 1) parameters

6This can be easily achieved in Eviews or in OxMetrics, for instance.
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in each of the Λi, i = 1...p− 1. There are, in the presence of one additional cointegrating
vector, (m+ 1− s)×m parameters in Λp. Finally, there are s× (m+ 1− s) parameters in
γ. Without additional cointegrating vectors, Λp has only (m+1−s)×(m−1) parameters.

6. The null and alternative hypotheses of the common feature test in terms of the pseudo-
structural form become

H0 : δ′Φ1 = . . . = δ′Φp = 0
HA : δ′Φ1 = . . . = δ′Φp 6= 0,

where the rank of δ is implicitly equal to either 1 or 2 as argued before. The test is simply
performed using the following likelihood ratio type test:

LRs = 2(lHA
− lH0) ∼ χ2(v),

where lHA
and lH0 denote the value of the log-likelihood function evaluated under the

alternative and the null hypothesis, respectively. The degrees of freedom v is the differ-
ence between the number of parameters in the unrestricted mixed-frequency VAR (with
cointegration) and the number of coefficients in the pseudo-structural system.

7. Finally, additional restrictions on the vectors of γ can be imposed if necessary for extract-
ing a meaningful relationship between y and x.

The next section helps to digest all these steps.

5 Applications

To illustrate the methods discussed in the previous sections, we extract two pairs of time series,
once for the U.S. and once for Germany.7 In both cases y is the quarterly real gross national
product (ref. GNPC96 and B1GM for the U.S. and Germany, respectively), seasonally adjusted.
For the U.S. the series is observed from 1948Q1 until 2011Q4 whereas for Germany it is observed
from 1991Q1 until 2012Q1. For x we consider, for the same time span, the monthly seasonally
adjusted industrial production index (ref. INDPRO and PROD, respectively), or IPI from here
on. Since GNP is a quarterly variable and IPI is observed on a monthly basis we have that
m = 3.

5.1 Common Feature Analysis

As a first step, we determine the VAR order in the log-level of the series by relying on MIC.
That implies that we compute the mixed-frequency VAR à la Ghysels (2012) disregarding the
possibility that the series may be I(1) and possibly cointegrated. After assuming the I(1)-
ness of both series involved (we indeed do not reject the null of a unit root for all series under
consideration), we may test for the cointegrating rank r. As discussed above, due to the presence

7From respectively http://alfred.stlouisfed.org/ and http://ec.europa.eu/eurostat/.
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of r0 prespecified cointegrating vectors, we follow the approach of Horvath and Watson (1995).
In particular, since m = 3 we test the null hypothesis that merely the two known cointegrating
vectors are present against the alternative of one additional cointegrating vector to capture
the long-run relationship between GNP and IPI (Götz et al., 2012a). We can formulate the
likelihood ratio test statistic as

LRr0,r1 = 2(lHA
− lH0) = 2(lr=r0+r1 − lr=r0),

where lH0 and lHA
denote the value of the log-likelihood function evaluated under the null

and the alternative hypothesis, respectively, i.e., when once only the prespecified cointegrating
vectors are imposed and once the prespecified ones and one capturing potential cointegration
between y and x. In terms of our empirical applications, this approach involves the log-likelihood
of the following two regressions:

Under H0 :


∆GNPt

∆IPI
(3)
t

∆IPI
(3)
t−1/3

∆IPI
(3)
t−2/3

 on

(
0 1 −1 0
0 0 1 −1

)
GNPt−1

IPI
(3)
t−1

IPI
(3)
t−1−1/3

IPI
(3)
t−1−2/3


︸ ︷︷ ︸ ∆mIPI

(3)
t−1

∆mIPI
(3)
t−1−1/3



,


∆GNPt−1

∆IPI
(3)
t−1

∆IPI
(3)
t−1−1/3

∆IPI
(3)
t−1−2/3



and

Under HA :


∆GNPt

∆IPI
(3)
t

∆IPI
(3)
t−1/3

∆IPI
(3)
t−2/3

 on

 1 −θ 0 0
0 1 −1 0
0 0 1 −1




GNPt−1

IPI
(3)
t−1

IPI
(3)
t−1−1/3

IPI
(3)
t−1−2/3


︸ ︷︷ ︸

GNPt−1 − θIPI(3)
t−1

∆mIPI
(3)
t−1

∆mIPI
(3)
t−1−1/3



,


∆GNPt−1

∆IPI
(3)
t−1

∆IPI
(3)
t−1−1/3

∆IPI
(3)
t−1−2/3.



According to the Schwarz and the Hannan-Quinn (SC and HQ, respectively) information crite-
rion a lag length of 1 is chosen for both countries under consideration. A VAR(2) is preferred for
the U.S. using the Akaike information criterion (AIC). Consequently, we carry out the analysis
with both lag lengths for the US in order to evaluate the robustness of the results.

It turns out that LRUSr0,r1 = 8.62 in the VAR(2) and 8.88 for the VAR(1) whereas LRGERr0,r1 =
25.41 in the VAR(1) case such that with a Horvath-Watson (1995)-critical value of 18.37 we
do not reject the null hypothesis of no cointegration between GNP and IPI for the US, but do
reject it for Germany. The cointegrating vector from the restricted VECM in the Johansen ’s
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approach corresponding to r1 is

Germany : GNPt − 0.751
(0.048)

IPI
(3)
t−2/3 ∼ I(0)

This result will have an impact on how to set up the transformed VAR for both applications
which, in turn, has an implication on how to test for common cyclical features thereafter (see
examples 4 and 5 from Section 3).

Let us now look at the presence of additional common cyclical feature restrictions. For the
US, we first look at the VAR(1) in the log-level of the series which corresponds to the following
transformed mixed-frequency VAR:

∆GNPt

∆mIPI
(3)
t

∆mIPI
(3)
t−1/3

∆mIPI
(3)
t−2/3

 =


0.005
0.001
0.002
0.001

+


0 0.488 0.265 0
0 0.247 0.023 0
0 0.281 0.081 0
0 0.362 0.131 0




GNPt−1

∆mIPI
(3)
t−1

∆mIPI
(3)
t−1−1/3

IPI
(3)
t−1−2/3

+ et

with a value of the log-likelihood of 3477.474. Because the rank of the transformed VAR
coefficient matrix is 2, we know that, by construction, its orthogonal complement and then the
common feature space δ is also of rank 2 in this four-dimensional system. Hence, the normalized
common feature matrix that takes the form

δ
′

=

(
1 0 × ×
0 1 × ×

)
,

where × denotes a parameter to be estimated, always exists. Premultiplying the VAR by(
δ′

0(2×2) I(2)

)
leads to the pseudo-structural form with the same likelihood because no restrictions are added
and hence no test is possible.

We may further restrict δ and investigate whether there exists a common cyclical feature
relationship between the growth rates of GNP and IPI. Restricting for instance the first possible
relationship as in

δ
′

=

(
1 0 0 ×
0 1 × ×

)
yields a log-likelihood of 3477.067 compared to 3477.474 from the previous mixed-frequency
VAR imposing no common feature restrictions. This obviously means a non-rejection of the ad-
ditional null hypothesis, H0 : δ′Φ1 = . . . , δ′Φp = 0 (see section 5.1). The MF-SCCF relationship
is now given by:

∆GNPt = 0.005
(0.0001)

+ 1.509
(0.125)

∆mIPI
(3)
t−2/3 + wn,
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i.e., a relationship between the quarterly growth rate of GNP and the monthly difference of
IPI for the first month of the corresponding quarter. Still for the US, but with a VAR(2), as
favoured by the AIC, we have a log-likelihood of 3480.36 in

∆GNPt

∆mIPI
(3)
t

∆mIPI
(3)
t−1/3

∆mIPI
(3)
t−2/3

 =


0.005
0.001
0.001
0.000

+


0.043 0.478 0.255 0.004
0.353 0.175 −0.010 −0.311
0.259 0.227 0.045 −0.031
0.113 0.330 0.100 0.021




∆GNPt−1

∆mIPI
(3)
t−1

∆mIPI
(3)
t−1−1/3

∆mIPI
(3)
t−1−2/3



+


0 −0.016 0.027 0
0 −0.085 0.011 0
0 −0.096 −0.046 0
0 0.017 −0.035 0




GNPt−2

∆mIPI
(3)
t−2

∆mIPI
(3)
t−2−1/3

IPI
(3)
t−2−2/3

+ et.

In this case there does not necessarily exist a matrix that annihilates all of the dynamics,
namely the two matrices. For s = 1 we have a log-likelihood value of 3479.877, for s = 2 we
have a log-likelihood value of 3474.863 in the pseudo-structural systems estimated by FIML.
Consequently, we do not reject the null of s = 2 common feature vectors with a likelihood ratio
test of 2(3480.36 − 3474.86) = 11 ∼ χ2(8). In addition to s = 2, we are also able to restrict
the first common feature vector as in the (p = 1)-case; The log-likelihood with this additional
restriction is 3474.732. The relationship is

∆GNPt = 0.005
(0.0001)

+ 1.488
(0.128)

∆mIPI
(3)
t−2/3 + vn,

such that very similar results as before emerge, but now with a formal test for MF-SCCF.
For Germany with r0 + r1 cointegrating vectors we have:

∆GNPt

∆mIPI
(3)
t

∆mIPI
(3)
t−1/3

∆mIPI
(3)
t−2/3

 =


0.102
−1.594
−1.008
0.166

+


0 0.297 0.147 0
0 0.167 −0.093 0
0 0.143 0.067 0
0 0.043 0.137 0




GNPt−1

∆mIPI
(3)
t−1

∆mIPI
(3)
t−1−1/3

IPI
(3)
t−1−2/3



+


−0.010
0.162
0.103
−0.017

(GNPt−1 − 0.751IPI
(3)
t−1−2/3

)
+ ut.

Due to the ranks of these matrices, we know that there always exists a vector that annihilates
the dynamics. This is an application of the mixed form reduced rank approach of Hecq et
al. (2006). The common feature relationship and the standard errors (in brackets beneath the
estimators) obtained by FIML, however, show that there are no cofeature relationships between

17



the GNP and IPI series alone:

∆GNPt = 0.006
(0.030)

+ 2.596
(16.435)

∆mIPI
(3)
t − 3.411

(24.381)
∆mIPI

(3)
t−1/3 + 4.912

(27.25)
∆mIPI

(3)
t−2/3 + wn,

such that the only common cyclical feature relationship involves the growth rate of the gross
national product which is consequently a white noise process.

Alternative to a common feature analysis in a mixed-frequency setup, the high-frequency
variables can be temporally aggregated in order to work with a common (low-) frequency
VAR. Note, however, that common features are not invariant to temporal aggregation. Time
aggregation of high-frequency variables may not only cause common feature relationships, that
are present in mixed frequencies, to disappear in a common frequency framework, it may also
create additional cofeature vectors (Marcellino, 1999).

Two temporal aggregation schemes are considered here, point-in-time and average sampling.
The former takes a specific high-frequency observation as the corresponding low-frequency one
and is usually applied to stock variables. The latter simply uses the average of the high-
frequency observations as the corresponding t-observation and is usually of interest when flow
variables are dealt with (see Marcellino, 1999, or Silvestrini and Veredas, 2008). We only
consider the U.S. data for the common feature analysis in these low-frequency VARs. The re-

sulting elasticities (standard errors in brackets) of ∆GNP with respect to ∆IPI
(3)
t , ∆IPI

(3)
t−1/3,

∆IPI
(3)
t−2/3 and ∆IPI

(3)
t are 0.7187 (0.0696), 0.4033 (0.0.364), 0.279 (0.016) and 0.4097 (0.0328),

respectively, where IPI
(3)
t refers to the average of the monthly IPI-observations in period t.

The corresponding common feature test statistics computed from the pseudo-structural forms
of the low-frequency VARs are 10.09, 7.9, 31 and 4.48 for the respective temporal aggregation
approaches. At the 5% significance level, the null hypothesis of one common feature is rejected
in all cases, implying that there exist two independent, i.e., non-common and non-synchronous,
cycles for two variables under consideration. In other words, the commonalities that are present
in the mixed-frequency setup are not visible anymore after time aggregation. Finally, note that
the cofeature elasticities are also very different to the mixed-frequency setup.

5.2 Forecasting

In the remainder of this section a small forecasting exercise is presented to emphasize the
potential benefits of employing a mixed-frequency approach when dealing with common cycles.
Potential gains of incorporating common feature restrictions for forecasting already exist in the
literature. Vahid and Issler (2002) show that the costs in terms of forecast accuracy associated
with ignoring common feature relationships in VARs may be considerable. Athanasopoulos,
Guillén, Issler and Vahid (2011) also show that models imposing restrictions associated with
common cycles outperform unrestricted VAR models for different sample sizes, especially if
the data are generated by comparably severe rank restrictions. Anderson and Vahid (2010)
argue that VARs ”with cointegration and common cycles can be [...] viewed as observable
factor models [...that...] have potential for forecasting” (page 5). In a set of Monte Carlo
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studies the authors illustrate that over- and underspecification of the associated rank restrictions
deteriorate the forecast performance in almost all cases. While the cointegration structure
seems to be more crucial in general, mis-specification of the common cycle rank restrictions
particularly worsens the forecast accuracy in the short-run. In their conclusion, Anderson and
Vahid (2010) advise to consider reduced rank error-correction models for forecasting if there
are compelling reasons to consider common trends or cycles in a particular data set.

We consider 28 out-of-sample one-step-ahead forecasts of the real U.S. GNP growth rate
corresponding to the period from 2005Q1 until 2011Q4. We recursively update the estimation
period and select the lag length at each moment in time. Furthermore, we test for the number
of common feature vectors at each moment in time. Note that we do not use real-time data,
but final-vintage data. Indeed, real-time data would require a vintage-specific analysis of which
models to employ, which lag length to choose, cointegration properties and so on (see Götz
et al, 2012b for an example of mixed-frequency models in a real-time data set). As already
investigated above, the null hypothesis of no cointegration cannot be rejected for the U.S. such
that we assume no cointegration to be present for each estimation period under consideration.

We are interested in the forecast accuracy of three mixed-frequency stationary VAR models.
First, the model without restrictions on the short-run parameters, denoted by MF VAR1 FULL.
Second, the model imposing zero-restrictions corresponding to the absence of cointegration
between GNP and IPI in the transformed VAR, denoted by MF VAR1 ZEROS. Finally, the
model imposing, on top of the just mentioned zero-restrictions, a set of common feature vectors,
denoted by MF VAR1 CF. In order to investigate whether the development of such mixed-
frequency VAR models leads to an improved forecast performance compared to VARs stemming
from traditional aggregation methods, we confront our three MF-VARs with two low-frequency
VARs , resulting from applying average sampling to IPI on the one hand and point-in-time

sampling using the end-of-period observations, IPI
(3)
t , on the other hand. In both cases a

VAR in first differences, denoted by AV VAR1 DIFF and PIT VAR1 DIFF, respectively, are
considered. RMSFE errors are computed for each model.

As far as the lag length selection is concerned, it turns out that for both, the mixed-frequency
and time aggregated models, a VAR(1) model in first differences is chosen by the Schwarz or
Hannan-Quinn information criteria at each moment in time. When testing for common features
in the mixed-frequency VARs, the null hypothesis of s = 2 common feature vectors could not
be rejected for all estimation periods considered. Hence, MF VAR1 CF imposes two common
feature vectors at each step of the forecasting exercise, whereby the first vector is further
restricted as done in the previous subsection. Even though no common feature could have been
detected at the 5% significance level at each moment in time, we include the models imposing
one common feature vector into the analysis, i.e., AV VAR1 1CF and PIT VAR1 1CF. As a
justification, although no common feature was detected for average sampled IPI at the 5%
significance level, the null hypothesis of one common feature could not be rejected at the 1%
significance level.

Figure 1 shows the forecasts of the real U.S. GNP growth rate from 2005Q1 to 2011Q4
corresponding to each of the seven models just introduced as well as the actual data (solid
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black line). Note that the black dotted or dashed lines correspond to the mixed-frequency
transformed VARs, the grey dotted or dashed ones to the VARs based on averaging the high-
frequency variable and, finally, the grey solid lines to the VARs based on taking the last monthly
observation of IPI per quarter (point-in-time).

Figure 1: Out-of-sample one-step-ahead static forecasts of real GNP growth in the U.S. from
2005Q1 to 2011Q4

It becomes clear from Figure 1 that the forecasts based on the mixed-frequency models are,
compared to the competing time aggregated models, able to track the actual data rather well,
especially the trough associated with the financial crisis in 2008. The forecasts based on VARs
stemming from temporally aggregating the high-frequency variables severely underestimate this
drop in the GNP growth rate. This is reflected in the RMSFEs summarized in Table 1.
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Table 1: RMSFEs of the seven competing models

Model RMSFE

MF VAR1 ZEROS 0.005671
MF VAR1 CF 0.005672
MF VAR1 FULL 0.005766

PIT VAR1 DIFF 0.006527
PIT VAR1 1CF 0.006591

AV VAR1 1CF 0.007589
AV VAR1 DIFF 0.00766

Note: The figures represent the RMSFEs of the seven competing models: The model 1) involving no restrictions,
2) imposing zero-restrictions, 3) imposing zero-restrictions and two common features, 4)-5) based on point-in-
time sampling with and without a common feature imposed, respectively, and 5)-6) based on averaging with and
without a common feature imposed.

As becomes evident from the figures, the forecast accuracy of the mixed-frequency trans-
formed VARs is significantly better than the one of the VARs based on classical temporal
aggregation methods. Hence, in the case of predicting the real U.S. GNP growth rate from
2005Q1 to 2011Q1 it seems advantageous to consider mixed-frequency VAR models instead of
temporally aggregating the high-frequency variable.

6 Monte Carlo study

Taking the preceding small forecasting exercise as a warm-up, we want to investigate the behav-
ior of mixed-frequency VAR models more closely in this section. Naturally, we are interested
in the common feature test behavior, i.e., in the size and power of the LR type test in (7) or
the one corresponding to (10), depending on whether there are additional cointegrating vectors
above the prespecified ones. Since the computation of the test statistic, however, is dependent
on the lag length p determined by MIC (see section 4), we also analyze the frequencies with
which these criteria select different lag lengths.

To this end we conduct a Monte Carlo study, in which we simulate a mixed-frequency VAR
that matches some of the characteristics that we have obtained using U.S. data, namely a VAR
of order p = 2 in the level of the I(1) series and no additional cointegrating vectors above the
known ones. Hence, it is a two-variable system with m = 3 for the high-frequency series, in
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which the following parameter values in the transformed VAR representation are chosen:
∆yt

∆mx
(3)
t

∆mx
(3)
t−1/3

∆mx
(3)
t−2/3

 =


0.05
0.05
0.05
0.05

+


0.2 0.5
−0.2 0.2
0.4 0.5
0.5 0.25




0.5 0.1
0.6 0.5
0.2 −0.5
0.1 0.25


′


∆yt−1

∆mx
(3)
t−1

∆mx
(3)
t−1−1/3

∆mx
(3)
t−1−2/3



+


0 0.2 0.5 0
0 −0.2 0.2 0
0 0.4 0.5 0
0 0.5 0.25 0




yt−2

∆mx
(3)
t−2

∆mx
(3)
t−2−1/3

x
(3)
t−2−2/3

+


ε1t

ε2t

ε3t

ε4t

 ,

where

εt ∼ i.i.d.N(0,Σ) with Σ =


1 0.5 0.5 0.5

0.5 1 0.9 0.9
0.5 0.9 1 0.9
0.5 0.9 0.9 1

 .

The normalized cofeature matrix that annihilates the two coefficient matrices of this DGP are
fixed to:

δ
′

=

(
1 0 −4

3
2
3

0 1 −1 1.2

)
.

Note that because the DGP is generated as mixed-frequency transformed VAR, we know the
correct lag length to be p = 2 and the number of common feature vectors to be s = 2.
Consequently, we will investigate the extent to which multivariate information criteria choose
the correct lag length instead of under- or overestimating it. Likewise, given a lag length p, we
can analyze size (s = 2) and power (s = 3 or s = 4) of the LR type test in (7).

As already mentioned before, an alternative to considering a mixed-frequency VAR is tem-
porally aggregating the high-frequency variables in order to work in a common (low-)frequency
setup. Consequently, we mimic the scenario in which practitioners are unaware of the mixed-
frequency nature of the underlying data and work with time aggregated IPI data. Assuming
they follow the same testing procedure, i.e., relying on MIC to choose p and using (7) to test for
common feature relationships, employing their low-frequency system, it is of interest to analyze
in how far the use of time aggregated data instead of high-frequency ones changes the results.

Note that as soon as data are temporally aggregated, the dynamics of the underlying system
change completely (see Marcellino, 1999, Silvestrini and Veredas, 2008, or Lütkepohl, 2005).
Indeed, an n-dimensional VAR(p) can be written in a final equation system (Zellner and Palm,
1974) such that each component is at most an ARMA(np, (n − 1)p) process. In the presence
of s SCCF-restrictions the n-dimensional VAR(p) yields at most ARMA((n − s)p, (n − s)p)
models (Cubadda, Hecq and Palm, 2009). In our case, the VAR(2) becomes a VARMA(4, 4)
after temporal aggregation of IPI (because n = 4 and s = 2), that can be written as VAR(∞).
For practical reasons, the VARMA(4, 4) is usually approximated by a finite order VAR. Hence,
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because the true lag length is infinity in this case, we can merely report the frequencies with
which MIC detect the different lag lengths under consideration. Note that we do not derive
the final equation system corresponding to the mixed-frequency transformed VAR because it
depends not only on the particular parameter values chosen, but also on T , making it a tedious
and challenging task that could be tackled in future work.

As already mentioned before, time aggregation also has an impact on the analysis of common
cycles (Marcellino, 1999). For example, it may cause common feature relationships, that are
present in mixed frequencies, to disappear in a common frequency framework as illustrated
at the end of section 5.1. In our case, temporal aggregation of IPI leads to a 2-dimensional
low-frequency VAR, for which the corresponding common feature test can be performed and
the rejection frequencies for s = 1 or s = 2 can be computed. The rejection frequencies for
s = 2 represent power against a bivariate white noise system. The ones for s = 1, however,
cannot clearly be interpreted as size or power, because we do not know whether one synchronous
common feature is present after time aggregation (in which case it would measure size) or none
(in which case it would correspond to power). Again, the precise impact of temporal aggregation
in a mixed-frequency VAR on common cycles analyses is left for further research.

For both, the mixed-frequency and time aggregated models, we consider T = 40 and 100
corresponding to respectively 10 and 25 years of quarterly data. An additional burning period
of 100 observations is used to initialize the process. All figures are based on 10,000 replications.
We concentrate on: (i) The frequencies with which different lag lengths are detected by MIC and
(ii) the rejection frequencies for common feature test statistics corresponding to the likelihood
ratio type tests in (7).

For the mixed-frequency models, Table 2 reports the frequencies with which MIC (AIC,
SC and HQ) select different lag lengths. We estimate mixed-frequency VARs of orders from
one to six but without imposing the zero-restrictions in the last matrix, i.e. in Φp for p =
1, . . . , 6. These models are denoted by MF VAR. Models imposing zero-restrictions are denoted
by MF VAR 0. It is of interest to investigate whether non-imposition of the zero-restrictions
in MF VAR causes MIC to underestimate the lag length, i.e., choose p = 1 instead of p = 2.
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Table 2: Frequencies with which MIC select different lag lengths; Mixed-frequency models

T = 40
p 1 2 3 4 5 6

MF VAR
AIC 0 43.53 4.04 2.87 5.24 44.32
SC 0.04 90.11 2.32 0.76 0.89 5.88
HQ 2.5 97.5 0 0 0 0

MF VAR 0
AIC 0 63.4 5.4 1.8 4.4 25
SC 0 95.9 1.8 0.3 0.2 1.8
HQ 0.4 99.6 0 0 0 0

T = 100

MF VAR
AIC 0 96.2 2.78 0.52 0.2 0.3
SC 0 100 0 0 0 0
HQ 0 100 0 0 0 0

MF VAR 0
AIC 0 95.6 3.6 0.5 0.1 0.2
SC 0 100 0 0 0 0
HQ 0 100 0 0 0 0

Note: The figures represent frequencies with which the Akaike (AIC), Schwarz (SC) and Hannan-Quinn (HQ)
information criterion detect different lag lengths. The DGP is a mixed-frequency transformed VAR(2) in the level
of two I(1)-series, where no additional cointegrating relationships above the known ones and two common feature
vectors are present. Models with VAR orders from 1 to 6 are estimated where zero-restrictions, corresponding
to the absence of additional cointegrating relationships, are once imposed (denoted MF VAR 0) and once not
imposed (denoted MF VAR). The sample size is T = 40 (top) or T = 100 (bottom).

We observe from Table 2 that the correct lag length, i.e., p = 2, is accurately chosen in
the mixed-frequency transformed VARs, especially using the HQ and to a slightly lesser extent
by SC. AIC overestimates the dynamics for T = 40. For all information criteria, imposing
the zero-restrictions increases the frequencies to detect the correct lag length. Note, however,
that the model not imposing the zero-restrictions does not underestimate p. Furthermore, the
frequency to obtain the correct lag length quickly increases with the sample size.

Table 3 contains the corresponding results for the low-frequency models obtained by tempo-
rally aggregating the high-frequency observations. The two time aggregation methods already
introduced before are considered, i.e., average and point-in-time sampling. Note that as far
as the latter is concerned, we only report the results for point-in-time sampling on the end-of-

period (PiT x
(3)
t ) or start-of-period (PiT x

(3)
t−2/3) observations to save space (results available

upon request).
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Table 3: Frequencies with which MIC select different lag lengths; Low-frequency models

T = 40
p 1 2 3 4 5 6

Average
AIC 19.2 51.18 12.39 7.81 4.31 5.11
SC 35.48 53.6 6.56 2.82 0.87 0.67
HQ 60.2 38.29 1.2 0.28 0.02 0.01

PiT x
(3)
t

AIC 5.96 48.5 17.7 13.4 6.97 7.47
SC 16.41 63.8 7.41 8.77 2.19 1.42
HQ 40.2 56.4 2.13 1.14 0.08 0.05

PiT x
(3)
t−2/3

AIC 28.38 26.2 20 11.78 5.68 7.96
SC 52.17 27.48 12.8 4.92 1.5 1.13
HQ 79.78 16.5 3.02 0.62 0.07 0.01

T = 100

Average
AIC 0.58 62.3 18.59 13.18 3.45 1.9
SC 4.37 85.9 7.35 2.22 0.12 0.04
HQ 17.3 81.7 0.92 0.08 0 0

PiT x
(3)
t

AIC 0 25.1 11.52 48.42 8.84 6.12
SC 0.17 66.9 10.01 21.3 1.28 0.34
HQ 2.79 92 3 2.18 0.03 0

PiT x
(3)
t−2/3

AIC 3.1 19.2 31.1 29.7 8.65 8.25
SC 20.7 41.38 25.6 11.1 0.95 0.27
HQ 55.6 36.8 6.76 0.83 0.01 0

Note: The figures represent frequencies with which the Akaike (AIC), Schwarz (SC) and Hannan-Quinn (HQ)
information criterion detect different lag lengths. The DGP is a mixed-frequency transformed VAR(2) in the
level of two I(1)-series, where no additional cointegrating relationships above the known ones and two common
feature vectors are present. Common low-frequency models obtained via three different temporal aggregation
methods are considered: (a) Average sampling (denoted Average), (b) point-in-time sampling using the end-

of-period observation (denoted PiT x
(3)
t ) and (c) point-in-time sampling using the start-of-period observation

(denoted PiT x
(3)

t−2/3). The sample size is T = 40 (top) or T = 100 (bottom).

It can be seen from Table 3 that, consistently with the previous discussion, depending on
the temporal aggregation method, the MIC and the value of T under consideration, a different
lag length is chosen. This is in contrast to the mixed-frequency models, for which we know the
true value of p.

Concerning the common feature test statistics, we rely on the estimation of the squared
canonical correlation reviewed in Section 4. For the mixed-frequency models, Table 4 reports
the rejection frequencies associated with the likelihood ratio type test in (7). As argued before,
the size of the test should be interpreted as the rejection frequency for s = 2, power can be
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observed for s = 3 and s = 4.

Table 4: Rejection frequencies of the LR type test in (7); Mixed-frequency models

T = 40
p 1 2 3 4 5 6

MF VAR

s = 1 0.23 0.58 0.99 2.35 5.69 15.4
s = 2 1.42 8.22 17.7 25.4 44.3 68.5
s = 3 20.4 75.7 79.1 87.3 94.2 98.7
s = 4 100 100 100 100 100 100

MF VAR 0

s = 1 - 0.37 0.74 1.45 3.8 9.41
s = 2 - 6.49 10.3 18.9 34.2 55.9
s = 3 18 77.5 76.6 82.8 90.8 97.3
s = 4 99.8 100 100 100 100 100

T = 100

MF VAR

s = 1 0.24 0.26 0.29 0.43 0.53 0.79
s = 2 1.98 6.59 8.17 9.87 12.4 16.6
s = 3 37 99.4 98.5 97.4 96.9 96.9
s = 4 100 100 100 100 100 100

MF VAR 0

s = 1 - 0.32 0.26 0.41 0.53 0.73
s = 2 - 5.68 7.55 9.22 11.1 14.6
s = 3 45.6 99.7 99 97.9 97.1 96.8
s = 4 100 100 100 100 100 100

Note: The figures represent rejection frequencies associated with the likelihood ratio type test in equation (7).
The DGP is a VAR(2) in the level of two I(1)-series, where no additional cointegrating relationships above the
known ones and two common feature vectors are present. Models with VAR orders from 1 to 6 are estimated
where zero-restrictions, corresponding to the absence of additional cointegrating relationships, are once imposed
(denoted MF VAR 0) and once not imposed (denoted MF VAR). The sample size is T = 40 (top) or T = 100
(bottom). Size should be interpreted as the rejection frequency for s = 2, power can be observed for s = 3 and
s = 4.

Using the correct lag length p = 2, the size distortion is small, especially if one correctly
accounts for the zeros in the last coefficient matrix. Size distortions are amplified when the lag
length is overestimated. This is reflected by the figures in the columns corresponding to p > 2.
As discussed above, however, we advise to rely on HQ or SC to get the correct lag length for
the mixed-frequency models. The test is undersized when p is underestimated. With respect to
the power of the test, note that for T = 40 we reject the presence of 3 common feature vectors
75% of the cases when the lag length is chosen correctly and up to almost 100% of the cases
when it is overestimated. When the p = 1, however, the power deteriorates. The presence of 4
common feature vectors, however, is rejected in all cases. As soon as the sample size increases,
we reject both s = 3 and s = 4 in almost all cases (except for p = 1 and s = 3).
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Table 5 reports the rejection frequencies of the low-frequency counterpart to the common
feature test statistic in (7). As argued before, note that the frequencies corresponding to s = 2
represent power against a bivariate white noise system, whereas the ones for s = 1 cannot
clearly be interpreted as size or power.

Table 5: Rejection frequencies of the LR type test in (7); Low-frequency models

T = 40
p 1 2 3 4 5 6

Average
s = 1 3.82 7.15 8.08 10.3 11.1 13.3
s = 2 68.4 88.5 87.4 87.4 86.6 86.8

PiT x
(3)
t

s = 1 4.54 9.05 9.83 14.1 14.4 16.5
s = 2 81.3 97.2 96.2 97.6 97.1 96.8

PiT x
(3)
t−2/3

s = 1 4.97 22.5 23.8 25.4 25.6 28.3
s = 2 89.2 92.8 95.2 95 94.3 94.8

T = 100

Average
s = 1 4.43 8.8 10.7 12.2 12.1 12.4
s = 2 97.7 100 100 100 100 100

PiT x
(3)
t

s = 1 11.9 21.3 22.1 30.8 28 27.5
s = 2 100 100 100 100 100 100

PiT x
(3)
t−2/3

s = 1 5.79 55.7 58.5 56.3 54.2 53.3
s = 2 100 100 100 100 100 100

Note: The figures represent rejection frequencies associated with the likelihood ratio type test in equation (7).
The DGP is a VAR(2) in the level of two I(1)-series, where no additional cointegrating relationships above the
known ones and two common feature vectors are present. Common low-frequency models obtained via three
different temporal aggregation methods are considered: (a) Average sampling (denoted Average), (b) point-

in-time sampling using the end-of-period observation (denoted PiT x
(3)
t ) and (c) point-in-time sampling using

the start-of-period observation (denoted PiT x
(3)

t−2/3). The sample size is T = 40 (top) or T = 100 (bottom).
Frequencies for s = 2 represent power against a bivariate white noise. system.

For T = 40, power against a bivariate white noise system is lower when average sampling
is employed (68-87%, depending on p) than when point-in-time sampling is used (81-95%, de-
pending on p and whether the end- or start-of-period observation is concerned). When the
sample size increases, this power is equal to 100% in almost all cases. The rejection frequencies
corresponding to one common feature relationship, i.e., s = 1, depend on the temporal aggrega-
tion method chosen, p and T . For a given T , the frequencies increase with the lag length chosen
for all three time aggregation approaches. Given p, the rejection frequencies also increase with
the sample size (except for average sampling and p = 6). Finally, given p and T , the rejec-
tion frequencies are almost always largest when point-in-time sampling on the start-of-period
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observation is performed, i.e., PiT x
(3)
t−2/3 (the exception being p = 1 and T = 100).

7 Conclusion

In this paper a new approach to common cycle analyses in multivariate time series processes is
proposed when variables are sampled at mixed frequencies. This test allows users to examine
commonalities in the business cycle of different countries when the frequency of observations
is not the same. It also helps to detect co-movements when the economic indicators are not
available at the same sampling frequency as in the applications given in this paper.

It is shown that in the presence of non-stationary variables, we need to account for two
kinds of possible long-run relationships in a VAR; One stemming from the long-run relation-
ship between the low- and high-frequency variables and several prespecified ones capturing the
relationships between the high-frequency series themselves. A transformed VAR is presented,
from which the set of variables is derived, that is used to construct an LR type test for the
presence of common cyclical features. An empirical analysis and a small forecasting exercise
with the quarterly GNP and monthly IPI illustrate this new approach. Finally, a Monte Carlo
study is presented in order to investigate two issues: The frequencies with which multivariate
information criteria detect different lag lengths and the rejection frequencies of the previously
mentioned LR type common feature test. Using a mixed-frequency VAR as DGP, this analysis
is done for our mixed-frequency models and several common (low-)frequency models obtained
by temporal aggregation of the high-frequency variables.

From the empirical section as well as the Monte Carlo experiments it becomes clear that if
the underlying data are of a mixed-frequency nature relying on mixed-frequency models instead
of temporally aggregating the high-frequency variables may have advantageous effects. Firstly,
we know that MIC consistently detect the correct lag length. Secondly, for the correct lag
length, the common feature test behaves very well. And finally, common cycles, whose existence
may be not visible when working with a low-frequency model, are detected and incorporated
adequately in the model, which may lead to gains in terms of forecasting, for example. In other
words, if there is useful information present in the high-frequency variables, there is some gain
in making use of them and incorporate them adequately in a VAR model.

Some issues are not treated in this paper and are currently under study. A common
trend/common cycle decomposition could be easily obtained given that the MF-SCCF can
be seen as a special case of the PSCCF modeling. Naturally, the development of a strategy for
higher dimensional systems is of importance. Finally, as mentioned in the Monte Carlo study,
an extension of Cubadda et al. (2009) and Marcellino (1999) to a mixed-frequency transformed
VAR is of interest in order to investigate and generalize the effects of temporal aggregation on
the lag length selection and the analysis of common cycles in a mixed-frequency setup. A de-
tailed study of the latter would also allow us to state what difference time aggregation of stock
or flow variables makes in our framework. Furthermore, it could help answering the question
whether mixed-frequency data help to detect the state of the business cycle earlier than with
low-frequency data only.
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