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Abstract. In the present paper, we aim at presenting composition formula of integral trans-
form operator due to Nair, which is expressed in terms of the generalized Wright hypergeomet-
ric function, by inserting the generalized Bessel function of the first kind wν(z). Furthermore
the special cases for the product of trigonometric functions are also consider.
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1 Introduction

The history of fractional calculus is about 300 years old. It is a field of
applied mathematics that deals with derivatives and integrals of arbitrary or-
der. The fractional integral operator, which involves various special functions
in it, has a significance importance and its applications are used in various
subfield of applicable mathematical analysis. Such as, in turbulence and fluid
dynamics, stochastic dynamical system, plasma physics and controlled ther-
monuclear fusion, nonlinear control theory, image processing, non-linear biolog-
ical systems, astrophysics. During the last four decades, a number of researchers
have done deep study i.e., the properties, applications and different extensions
of various hypergeometric operators of fractional integration (see, for example,
[2, 4, 5, 6, 11, 12, 13, 14, 15, 17, 18, 19, 24, 29] and [30]).
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brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Università del Salento: ESE - Salento University Publishing

https://core.ac.uk/display/231311545?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


146 D. Baleanu, P. Agarwal

Bessel functions play an important role in the study of solutions of differen-
tial equations, and they are associated with a wide range of problems in impor-
tant areas of mathematical physics, like problems of acoustics, radio physics,
hydrodynamics, and atomic and nuclear physics. These considerations have to
led various workers in the field of special functions to explore the possible ex-
tensions and applications for the Bessel functions. A useful generalization of the
Bessel function wν(z) has been introduced and studied in [7, 8, 9] and [10].

In recent years, a remarkably large number of fractional integral formulas
involving a variety of special functions have been developed by so many authors
(see, for example, [15]; for a very recent work, see also [1, 3] and [27]). Many
fractional integral formulas have also been presented (see, for example, [7, 8, 9,
10, 20] and [26]), which contain the generalized Bessel function wν(z) (1.9). Here,
we aim at presenting composition formula of the pathway fractional integral
operator, which are expressed in terms of the generalized Wright hypergeometric
function, by inserting the generalized Bessel function of the first kind (1.9)
with suitable arguments into the pathway fractional integration operator of
(1.1). Furthermore some interesting special cases of our main result in terms
of the product of cosine, hyperbolic cosine, sine and hyperbolic sine functions,
respectively are also discussed.

Here, we start by recalling some known functions and earlier works. Recently,
Nair ([27], p. 239) introduce a pathway fractional integral operator by using the
pathway idea of Mathai [21] and developed further by Mathai and Haubold
[22, 23], is defined as follows:
Let f(x) ∈ L(a, b), η ∈ C,ℜ(η) > 0, a > 0 and let us take a pathway parameter
α < 1, then:

(
P

(η,α)
0+

f
)
(x) = xη

∫ [ x
a(1−α)

]

0
[1− a (1− α) t

x
]

η
(1−α) f(t)dt. (1.1)

For a real scalar α, the pathway model for scalar random variables is represented
by the following probability density function (p.d.f.):

f(x) = c |x|γ−1
[
1− a(1− α) |x|δ

] β
(1−α)

, (1.2)

provided that −∞ < x <∞, δ > 0, β ≥ 0, [1− a(1−α) |x|δ] > 0, γ > 0, where c
is the normalizing constant and α is called the pathway parameter.
For real α, the normalizing constant is as follows:

c =
1

2

δ [a(1− α)]
γ
δ Γ
(
γ
δ + β

1−α + 1
)

Γ
(γ
δ

)
Γ
(

β
1−α + 1

) , for α < 1, (1.3)
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=
1

2

δ [a(1− α)]
γ
δ Γ
(

β
α−1

)

Γ
(γ
δ

)
Γ
(

β
α−1 − γ

δ

) , for
1

α− 1
− γ

δ
> 0, α > 1, (1.4)

=
1

2

δ (aβ)
γ
δ

Γ
(γ
δ

) , α→ 1. (1.5)

We observe that for α < 1, it is a finite range density with [1−a(1−α) |x|δ] >
0 and (1.2) remains in the extended generalized type-1 beta family. The pathway
density in (1.2), for α < 1, includes the extended type-1 beta density, the
triangular density, the uniform density and many other p.d.f ′.s.

For α > 1, we have:

f(x) = c |x|γ−1
[
1 + a(α− 1) |x|δ

]− β
(α−1)

, (1.6)

provided that −∞ < x < ∞, δ > 0, β ≥ 0, α > 1, which is the extended
generalized type-2 beta model for real x. It includes the type-2 beta density, the
F density, the Student-t density, the Cauchy density and many more.

Here, we consider only the case of pathway parameter α < 1. For α → 1
both (1.2) and (1.6) take the exponential from, since

lim
α→ 1

c |x|γ−1
[
1− a(1− α) |x|δ

] η

(1−α)

=
lim

α→ 1
c |x|γ−1

[
1 + a(α− 1) |x|δ

]− η

(α−1)

= c |x|γ−1 exp(−aη |x|δ). (1.7)

This include the generalized Gamma, the Weibull, the chi-square, the Laplace,
Maxwell-Boltzmann and other related densities.

When α→ 1−,[
1− a(1−α)

x

] η
(1−α) → e

−
aη
x t

.

Then, operator (1.1) reduces to the Laplace integral transform of f with pa-
rameter aη

x :

(
P

(η,1)
0+

f
)
(x) = xη

∫ ∞

0
e−

aη
x f(t)dt = xηLf (

aη

x
). (1.8)

If, we set α = 0, a = 1, and replacing η by η − 1 in (1.1) the integral operator
reduces to the Riemann-Liouville fractional integral operator (see, for example,
[16], [17], [28], [29] and [31]).
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Here, we investigate the composition of the integral transform operator (1.1)
with the product of generalized Bessel function of the first kind wν(z), which is
defined for z ∈ C \ {0} and b, c, ν ∈ C with ℜ(ν) > −1 by the following series
(see, for example,[7, p. 10, Eq. (1.15)]; for a very recent work, see also [8, 9, 10],
[26, p. 182, Eq. (2.2)], and [20, p. 2, Eq. (8)]):

wν(z) =
∞∑

k=0

(−1)kck
(
z
2

)ν+2k

k! Γ(ν + k + 1+b
2 )

, (1.9)

where C denotes the set of complex numbers and Γ(z) is the familiar Gamma
function (see, [32, Section 1.1]).

Here, it is important to mentioning that, for c = 1 and b = 1 the generalized
Bessel function of the first kind (1.9), reduces in to the Bessel function of the
first kind Jν(z) and for c = −1 and b = 1 the function wν(z) reduces in to the
terms of incomplete Bessel function of the first kind Iν(z). Similarly, for c = 1
and b = 2 the function wν(z) reduces in to 2jν√

π
, while if c = −1 and b = 2, then

wν(z) becomes 2iν√
π
. In the sequel, from (1.9), we also have wν(0) = 0. Therefore,

the generalized Bessel function of the first kind presented in this paper are easily
converted in terms of the various kind of Bessel functions after some suitable
parametric replacement.

Then, we can show that the composition formula is expressed in terms of the
generalized (Wright) hypergeometric functions (see, for example, [33, p. 21]):

pΨq

[
(α1, A1), . . . , (αp, Ap);
(β1, B1), . . . , (βq, Bq);

z

]
=

∞∑

k=0

∏p
j=1 Γ(αj +Ajk)∏q
j=1 Γ(βj +Bjk)

zk

k!
. (1.10)

Wright [34] introduced the generalized Wright function (1.10) and proved several
theorems on the asymptotic expansion of pΨq(z) (for instance, see, [34, 35, 36])
for all values of the argument z, under the condition:

1 +

q∑

j=1

Bj −
p∑

j=1

Aj ≥ 0. (1.11)

A generalized hypergeometric function pFq is defined and represented as follows
(see, [32, Section 1.5]):

pFq

[
(αp) ;
(βq) ;

z

]
=

∞∑

n=0

∏p
j=1 (αj)n∏q
j=1 (βj)n

zn

n!
, provided p ≤ q; p = q + 1 and |z| < 1,

(1.12)
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where (λ)n is the Pochhammer symbol defined (for λ ∈ C) by (see, [32, p. 2 and
pp. 4-6]):

(λ)n : =

{
1 (n = 0)

λ(λ+ 1) . . . (λ+ n− 1) (n ∈ N := {1, 2, 3, . . .})

=
Γ(λ+ n)

Γ(λ)
(λ ∈ C \ Z−

0 ).

(1.13)

and Z−
0 denotes the set of nonpositive integers.

The function (1.12) is a special case of the generalized Wright function (1.10)
for α1 = . . . = αp = β1 = . . . = βq:

pΨq

[
(α1, 1) , . . . , (αp, 1) ;

(β1, 1) , . . . , (βq, 1) ;
z

]
=

∏p
j=1 Γ (αj)∏q
j=1 Γ (βj)

pFq

[
α1, . . . , αp ;

β1, . . . , βq ;
z

]
. (1.14)

In this paper, we apply the integral operators (1.1) to the generalized Bessel
function of the first kind wν(z) (1.9) and express the image in terms of general-
ized Wright hypergeometric functions.

2 Pathway Fractional Integration of Generalized Bessel
functions

Our results in this section are based on the preliminary assertions giving by
composition formula of pathway fractional integral (1.1) with a power function.

2.1 Lemma 1. ([Nair [27], Lemma 1])

Let η ∈ C,ℜ(η) > 0, β ∈ C and α < 1, If ℜ(β) > 0, and ℜ
(

η
1−α

)
> −1,

then:

{
P

(η,α)
0+

[
tβ−1

]}
(x) =

xη+β

[a(1− α)]β
Γ(β)Γ(1 + η

1−α)

Γ(1 + η
1−α + β)

. (2.1)

The pathway fractional integration (1.1) of product of the generalized Bessel
function of the first kind (1.9) is given by the following result.

Theorem 1. Let η, σ, ν, b, c ∈ C and α < 1, be such that:
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ℜ(η) > 0,ℜ(σ) > 0,ℜ(ν + b+ 1

2
) > −1, ℜ (σ + ν) > 0 andℜ

(
η

1− α

)
> −1,

(2.2)
Then there holds the following formula:

(
P

(η,α)
0+

[
tσ−1wν(t)

])
(x) = xσ+η

Γ(1 + η
1−α)

[a(1− α)]σ+ν ·
(x
2

)ν

·1 Ψ2

[(σ + ν, 2
)
,−

(
1 + σ + ν +

η

1− α
, 2
)
,
(
ν +

b+ 1

2
, 1
);− cx2

4[a(1− α)]2

]
.

(2.3)

Proof: For convenience, let the left-hand side of the (PFIF)(2.3), be denoted by
I. Applying (1.9), using (1.1) and (1.10) and changing the order of integration
and summation, we get

I =

(
P

(η,α)
0+

[
tσ−1

∞∑

k=0

(−c)k
(
t
2

)ν+2k

k!Γ(ν + b+1
2 + k)

])
(x),

=
∞∑

k=0

(−c)k
(
1
2

)ν+2k

k!Γ(ν + b+1
2 + k)

(
P

(η,α)
0+

{
tσ+ν+2k−1

})
(x).

By (2.2), for any k ∈ N0, ℜ (σ + ν + 2k) ≥ ℜ (σ + ν) > 0 and ℜ
(

η
1−α

)
> −1.

Applying Lemma 1 and using (2.1) with β replaced by (σ + ν + 2k) after a little
simplification, we get

I =
∞∑

k=0

(−c)k
(
1
2

)ν+2k

k!Γ(ν + b+1
2 + k)

×
Γ (σ + ν + 2k) Γ

(
1 + η

1−α

)

Γ
(
1 + σ + η

1−α + ν + 2k
) xη+σ+ν+2k

[a(1− α)]σ+ν+2k
,

= xσ+η
Γ(1 + η

1−α)

[a(1− α)]σ+ν ·
(x
2

)ν

∞∑

k=0

Γ (σ + ν + 2k)

Γ
(
ν + b+1

2 + k
)
Γ
(
1 + σ + η

1−α + ν + 2k
) (−cx2)k
k![2a(1− α)]2k

. (2.4)

This, in accordance with (1.10), gives the required result (2.3). This is complete
the proof of the Theorem 1.
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Remark 1. If, we set α = 0, a = 1, and then replacing η by η − 1 in (2.3),
we can arrive at the known result due to Malik et al. [20].

If, we set b = c = 1 in (2.3) and give some suitable parametric replacement
in the resulting result, we can arrive at the Equation (30) in Nair ([27], p. 247).

3 Pathway fractional integration of cosine,hyperbolic
cosine, sine and hyperbolic sine functions

In this section, we derive certain new integral formulas for the cosine, hyperbolic
cosine, sine and hyperbolic sine functions involving in the PFIF of (2.3).

To do this, we set ν = − b
2 in (1.9), then the generalized Bessel function of

the first kind wν(z) in (1.9) have following relation with cosine function when c
is replaced by c2 (see, for example, [20]):

w−b/2,c2(z) =

(
2

z

) b
2 cos cz√

π
, (3.1)

while, if ν = − b
2 and c = −c2, wν(z) in (1.9) have the following relation with

the hyperbolic cosine function as:

w−b/2,−c2(z) =

(
2

z

) b
2 cosh cz√

π
. (3.2)

Replacing c by c2 and then setting ν = − b
2 in (2.3), and applying the expression

in (3.1) to the resulting identities, we obtain the pathway fractional integral
formula stated in Corollary 1 below.

Corollary 1. Let η, σ, b, c ∈ C, α < 1, be such that:

ℜ(η) > 0,ℜ(σ) > 0, ℜ
(
σ − b

2

)
> 0 andℜ

(
η

1− α

)
> −1,

Then there holds the following formula:

(
P

(η,α)
0+

[
tσ−1cos(ct)

])
(x) = xσ+η√π

Γ(1 + η
1−α)

[a(1− α)]σ−
b
2

·

·1 Ψ2

[(
σ − b

2
, 2
)
,−

(
1 + σ − b

2
+

η

1− α
, 2
)
,
(1
2
, 1
);−

(cx)2

4[a(1− α)]2

]
.

(3.3)



152 D. Baleanu, P. Agarwal

Remark 2. By setting α = 0, a = 1 and then replacing η by η − 1 in (3.3),
we can arrive at known result given by Malik et al.([20],p. 5).
If we set c = 1 in (3.3) and give some suitable parametric replacement in the
resulting result, we can arrive at the Equation (33) in Nair ([27], p. 248).

Similarly by setting ν = − b
2 and replacing c by −c2 in (2.3), and applying

the expression in (3.2) to the resulting identities, we get the pathway fractional
integral formula asserted in Corollary 2.

Corollary 2. Let η, σ, b, c ∈ C, α < 1, be such that:

ℜ(η) > 0,ℜ(σ) > 0, ℜ
(
σ − b

2

)
> 0 andℜ

(
η

1− α

)
> −1,

Then there holds the following formula:

(
P

(η,α)
0+

[
tσ−1cosh(ct)

])
(x) = xσ+η√π

Γ(1 + η
1−α)

[a(1− α)]σ−
b
2

·

·1 Ψ2

[(
σ − b

2
, 2
)
,−

(
1 + σ − b

2
+

η

1− α
, 2
)
,
(1
2
, 1
);

(cx)2

4[a(1− α)]2

]
.

(3.4)

Remark 3. If, we set α = 0, a = 1 and then replacing η by η − 1 in (3.4),
we can arrive at the known result given by Malik et al.([20], p. 5).

In the sequel, we recall the following well known formulas (see, for example,
[20]):

w1−b/2,c2(z) =

(
2

z

) b
2 sincz√

π
. (3.5)

w1−b/2,−c2(z) =

(
2

z

) b
2 sinhcz√

π
. (3.6)

Considering (3.5) and (3.6), and using (2.3), we get the following pathway frac-
tional integral formulas asserted in Corollaries 3 and 4 in terms of sine and
hyperbolic sine functions, respectively.

Corollary 3. Let η, σ, b, c ∈ C, α < 1, be such that:

ℜ(η) > 0,ℜ(σ) > 0, ℜ
(
σ − b

2

)
> −1 andℜ

(
η

1− α

)
> −1,
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Then there holds the following formula:

(
P

(η,α)
0+

[
tσ−1 sin(ct)

])
(x) = xσ+η+1√π c

2

Γ(1 + η
1−α)

[a(1− α)]σ−
b
2
+1

·

·1 Ψ2

[(
σ + 1− b

2
, 2
)
,−

(
2 + σ − b

2
+

η

1− α
, 2
)
,
(3
2
, 1
);−

(cx)2

4[a(1− α)]2

]
.

(3.7)

Remark 4. By setting α = 0, a = 1 and replacing η by η − 1 in (3.7), we
can arrive at the known result given by Malik et al.([20], p. 8).

Corollary 4. Let η, σ, b, c ∈ C, α < 1, be such that:

ℜ(η) > 0,ℜ(σ) > 0, ℜ
(
σ − b

2

)
> −1 andℜ

(
η

1− α

)
> −1,

Then there holds the following formula:

(
P

(η,α)
0+

[
tσ−1 sinh(ct)

])
(x) = xσ+η+1√π c

2

Γ(1 + η
1−α)

[a(1− α)]σ−
b
2

·

·1 Ψ2

[(
σ + 1− b

2
, 2
)
,−

(
2 + σ − b

2
+

η

1− α
, 2
)
,
(3
2
, 1
);

(cx)2

4[a(1− α)]2

]
.

(3.8)

Remark 5. By setting α = 0, a = 1 and replacing η by η − 1 in (3.8),
directly we can arrive at the known result given by Malik et al.([20], p. 8).

4 Concluding Remarks

We conclude this investigation by remarking that the results obtained here
are general in character and useful in deriving various integral formulas in the
theory of the pathway fractional integration operator. Most of the results ob-
tained here, besides being of a very general character, have been put in a com-
pact form avoiding the occurrence of infinite series and thus making them useful
from the point of view of applications. The result obtained in the present paper
provides an extension of the results given by Agarwal and Purohit [1] and Nair
[27] as mentioned earlier.
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