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Abstract. The paper [5] defines a notion of digital deformation and claims to prove that if
(X, p) is k-deformable into (A, p), then these two pointed images have isomorphic fundamental
groups. We present a simple counterexample to this claim.
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1 Introduction

In digital topology, we examine geometric properties of digital images via
tools adapted from Euclidean topology. These tools include digital versions of
continuous functions, homotopy (continuous deformation), homotopy type, and
the fundamental group. A theme of several recent papers [3, 4, 5] is the rela-
tionship between the fundamental groups Πk0

1 (X,x) and Πk1
1 (f(X), f(x)), where

f : (X,x) → (f(X), f(x)) is a (k0, k1)-continuous function.
Of interest in this paper is the case of f being a pointed deformation. It is

claimed in [5] that for pointed deformations f : (X, p) → (A, p), Πk0
1 (X, p) and

Πk1
1 (A, p) are isomorphic. In this paper, we present a simple counterexample to

this claim.

2 Preliminaries

2.1 General properties

Let N be the set of natural numbers and let Z denote the set of integers.
Then Zn is the set of lattice points in Euclidean n-dimensional space.

Adjacency relations frequently used for digital images include the follow-
ing [8]. Two points p and q in Z2 are 8-adjacent if they are distinct and differ
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70 L. Boxer

by at most 1 in each coordinate; p and q in Z2 are 4-adjacent if they are 8-
adjacent and differ in exactly one coordinate. Two points p and q in Z3 are
26-adjacent if they are distinct and differ by at most 1 in each coordinate; they
are 18-adjacent if they are 26-adjacent and differ in at most two coordinates;
they are 6-adjacent if they are 18-adjacent and differ in exactly one coordinate.
For k ∈ {4, 8, 6, 18, 26}, a k − neighbor of a lattice point p is a point that is
k-adjacent to p.

Let κ be an adjacency relation defined on Zn. A digital image X ⊂ Zn is
κ-connected [6] if and only if for every pair of points {x, y} ⊂ X, x �= y, there
exists a set {x0, x1, . . . , xc} ⊂ X such that x = x0, xc = y, and xi and xi+1 are
κ-neighbors, i ∈ {0, 1, . . . , c−1}. A κ-component of X is a maximal κ-connected
subset of X.

1 Definition ([2]). Let a, b ∈ Z, a < b. A digital interval is a set of the
form

[a, b]Z = {z ∈ Z | a ≤ z ≤ b}

in which 2-adjacency is assumed.

2 Definition ([3]; see also [11]). Let X ⊂ Zn0, Y ⊂ Zn1 . Let f : X → Y
be a function. Let κi be an adjacency relation defined on Zni , i ∈ {0, 1}. We
say f is (κ0, κ1)-continuous if for every κ0-connected subset A of X, f(A) is a
κ1-connected subset of Y .

We say a function satisfying Definition 2 is digitally continuous. This defi-
nition implies the following.

3 Proposition ([3]; see also [11]). Let X and Y be digital images. Then the
function f : X → Y is (κ0, κ1)-continuous if and only if for every {x0, x1} ⊂ X
such that x0 and x1 are κ0-adjacent, either f(x0) = f(x1) or f(x0) and f(x1)
are κ1-adjacent.

For example, if κ is an adjacency relation on a digital image Y , then f :
[a, b]Z → Y is (2, κ)-continuous if and only if for every {c, c+1} ⊂ [a, b]Z, either
f(c) = f(c+ 1) or f(c) and f(c+ 1) are κ-adjacent.

2.2 Digital homotopy

Roughly, a homotopy between continuous functions is a continuous defor-
mation of one of the functions into the other over a time period.

4 Definition ([3]; see also [7]). Let X and Y be digital images. Let f, g :
X → Y be (κ, κ′)-continuous functions. Suppose there is a positive integer m
and a function F : X × [0,m]Z → Y such that

• for all x ∈ X, F (x, 0) = f(x) and F (x,m) = g(x);

________________________________________________________________________________________________



Remarks on digital deformation 71

• for all x ∈ X, the induced function Fx : [0,m]Z → Y defined by

Fx(t) = F (x, t) for all t ∈ [0,m]Z

is (2, κ′)-continuous.

• for all t ∈ [0,m]Z, the induced function Ft : X → Y defined by

Ft(x) = F (x, t) for all x ∈ X

is (κ, κ′)-continuous.

Then F is a digital (κ, κ′)-homotopy between f and g, and f and g are digitally
(κ, κ′)-homotopic in Y . If for some x ∈ X we have F (x, t) = F (x, 0) for all
t ∈ [0,m]Z, we say F holds x fixed.

The notation
f 	κ,κ′ g

indicates that functions f and g are digitally (κ, κ′)-homotopic in Y .
If (X,κ) is a digital image and x0 ∈ X, the triple (X,x0, κ) is a pointed

digital image.
For p ∈ Y , we denote by p the constant function p : X → Y defined by

p(x) = p for all x ∈ X.
5 Definition. A digital image (X,κ) is κ-contractible [7, 2] if its identity

map is (κ, κ)-homotopic to a constant function p for some p ∈ X. If the homo-
topy of the contraction holds p fixed, we say (X, p, κ) is pointed κ-contractible.

6 Example ([2]). Every digital interval [0,m]Z is pointed contractible.

2.3 Digital loops

7 Definition (See [7]). A digital κ-path in a digital image X is a (2, κ)-
continuous function f : [0,m]Z → X. If, further, f(0) = f(m), we call f a
digital κ-loop, and the point f(0) is the basepoint of the loop f . If f is a
constant function, it is called a trivial loop.

If f and g are digital κ-paths in X such that g starts where f ends, the
product (see [7]) of f and g, written f · g, is, intuitively, the κ-path obtained
by following f by g. Formally, if f : [0,m1]Z → X, g : [0,m2]Z → X, and
f(m1) = g(0), then (f · g) : [0,m1 +m2]Z → X is defined by

(f · g)(t) =
{
f(t) if t ∈ [0,m1]Z;
g(t−m1) if t ∈ [m1,m1 +m2]Z.

Unlike its Euclidean model, a digital interval is a finite set, so were we to
restrict homotopy classes of loops to loops defined on the same digital interval,
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72 L. Boxer

we would limit the class of a given loop undesirably. The following notion of
trivial extension permits a loop to “stretch” and remain in the same pointed
homotopy class. Intuitively, f ′ is a trivial extension of f if f ′ follows the same
path as f , but more slowly, with pauses for rest (subintervals of the domain on
which f ′ is constant).

8 Definition ([3]). Let f and f ′ be κ-paths in a digital image X. We say
f ′ is a trivial extension of f if there are sets of κ-paths {f1, f2, . . . , fk} and
{F1, F2, . . . , Fp} in X such that

(1) k ≤ p;

(2) f = f1 · f2 · · · · · fk;

(3) f ′ = F1 · F2 · · · · · Fp; and

(4) there are indices 1 ≤ i1 < i2 < · · · < ik ≤ p such that

• Fij = fj, 1 ≤ j ≤ k, and

• i �∈ {i1, i2, . . . , ik} implies Fi is a trivial loop.

This notion lets us compare the digital homotopy properties of loops even
if their domains have differing cardinality, since if m1 ≤ m2, we obtain a trivial
extension of a loop f : [0,m1]Z → X to f ′ : [0,m2]Z → X via

f ′(t) =
{
f(t) if 0 ≤ t ≤ m1;
f(m1) if m1 ≤ t ≤ m2.

The following notions are useful for defining the class of a pointed loop.
9 Definition. Let f, g : [0,m]Z → (X,x0) be digital loops with basepoint

x0. If H : [0,m]Z × [0,M ]Z → X is a digital homotopy between f and g such
that for all t ∈ [0,M ]Z we have

H(0, t) = H(m, t),

we say H is loop-preserving. If, further, for all t ∈ [0,M ]Z we have

H(0, t) = H(m, t) = x0,

we say H holds the endpoints fixed.
The notion of H holding the endpoints fixed was introduced in [4]. The

term “loop-preserving” suggests that every (time) stage of the homotopy yields
a digital loop.

Digital κ-loops f and g in X with the same basepoint p belong to the same
κ-loop class in X if there are trivial extensions f ′ and g′ of f and g, respectively,
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Remarks on digital deformation 73

with domains of the same cardinality, and a loop-preserving homotopy between
f ′ and g′ that holds the endpoints fixed [3].

Membership in the same loop class in (X,x0) is an equivalence relation
among digital κ-loops [3].

Let [f ] be the loop class of a loop f in X. We have the following.

10 Proposition ([3, 7]). Suppose f1, f2, g1, g2 are digital loops in a pointed
digital image (X,x0), with f2 ∈ [f1] and g2 ∈ [g1]. Then f2 · g2 ∈ [f1 · g1].

2.4 Digital fundamental group

The digital fundamental group is derived from the classical fundamental
group of algebraic topology (see [10]).

Let (X, p, κ) be a pointed digital image. Consider the set Πκ
1(X, p) of κ-loop

classes [f ] in X with basepoint p. By Proposition 10, the product operation

[f ] ∗ [g] = [f · g]

is well-defined on Πκ
1(X, p).

The operation ∗ is associative on Πκ
1(X, p) [7].

11 Lemma ([3]). Let (X, p) be a pointed digital image. Let p : [0,m]Z → X
be the constant function p(t) = p. Then [p] is an identity element for Πκ

1(X, p).

12 Lemma ([3]). If f : [0,m]Z → X represents an element of Π1(X, p),
then the function g : [0,m]Z → X defined by

g(t) = f(m− t) for t ∈ [0,m]Z

is an element of [f ]−1 in Πκ
1(X, p).

13 Theorem ([3]). Πκ
1(X, p) is a group under the ∗ product operation, the

κ-fundamental group of (X, p).

We may interpret the following result to say that in a connected digital image
X, the digital fundamental group is independent of the choice of basepoint.

14 Theorem ([3]). Let X be a digital image with adjacency relation κ. If
p and q belong to the same κ-component of X, then Πκ

1(X, p) and Πκ
1(X, q) are

isomorphic groups.

15 Proposition ([4]). Let X be a pointed κ-contractible digital image and
let p ∈ X. Then Πκ

1(X, p) is a trivial group.

2.5 Deformation and deformation retraction

We have the following.
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16 Definition ([5]). Let (X,κ) be a digital image and let A be a nonempty
subset of X. Then X is κ-deformable into A if there is a κ-homotopy D :
X × [0,m]Z → X such that D(x, 0) = x and D(x,m) ∈ A for all x ∈ X.
D is called a κ-deformation. If for some x0 ∈ A we have D(x0, t) = x0 for
all t ∈ [0,m]Z, we say X is pointed κ-deformable into A, and D is a pointed
κ-deformation.

Classical notions of topology [1] yielded the concepts of digital retraction
and deformation retraction in [2]. Let (X,κ) be a digital image and let A be a
nonempty subset of X. A retraction of X onto A is a (κ, κ)-continuous function
r : X → A such that r(a) = a for all a ∈ A. A κ-deformation retraction of X to
A is a κ-homotopy H : X × [0,m]Z → X such that the induced map H( , 0) is
the identity map 1X , and the induced map H( ,m) is a retraction of X onto A.

3 Deformations, deformation retractions, and funda-
mental groups

Notice that a deformation retraction is a pointed deformation. We have the
following.

17 Theorem ([4]). Let A be a nonempty subset of a digital image X and
let H : X× [0,m]Z → X be a κ-deformation retraction of X onto A. For a ∈ A,
the inclusion map i : (A, a) ↪→ (X, a) induces an isomorphism of Πκ

1(A, a) and
Πκ

1(X, a).

However, a pointed deformation from a digital image X into its nonempty
subset A need not yield an isomorphism of the fundamental groups of X and A,
despite the claim of Han (presented as Theorem 3 of [5]) to the contrary. Indeed,
Han’s claim is false even if the deformation is required to be onto A at the end
of the homotopy. Consider the pair (X,A) defined as follows. X = ([0, 2]Z ×
[0, 2]Z) ∪ {(j, 0)}7

j=3. Let A ⊂ X be the set A = ([0, 2]Z × [0, 2]Z) \ {(1, 1)}, a
simple closed 4-curve; hence Π4

1(A, a) is isomorphic to Z [3, 8, 9]. It is easily
seen that X is 4-contractible via the function h : X × [0, 9]Z → X defined by

h(x, y, t) =
{

(x, max{0, y − t}) for 0 ≤ t ≤ 2;
(max{0, x + 2− t}, 0) for 3 ≤ t ≤ 9.

Hence X has a trivial 4-fundamental group.
We show there is a 4-deformation of X onto A as follows. Consider the
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function H : X × [0, 8]Z → X given as follows.

H(x, y, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(max{0, x − t}, y) if t ∈ [0, 2]Z;
(max{2, x − t}, 0) if (x, y) ∈ {(j, 0)}7

j=5, 3 ≤ t ≤ 5;
H(x, y, 2) if (x, y) �∈ {(j, 0)}7

j=5, 3 ≤ t ≤ 5;
(2, 1) if (x, y) ∈ {(j, 0)}7

j=5, t = 6;
H(x, y, 5) if (x, y) �∈ {(j, 0)}7

j=5, t = 6;
(2, 2) if (x, y) ∈ {(6, 0), (7, 0)}, t = 7;
H(x, y, 6) if (x, y) �∈ {(6, 0), (7, 0)}, t = 7;
(1, 2) if (x, y) = (7, 0), t = 8;
H(x, y, 7) if (x, y) �= (7, 0), t = 8.

It is easily seen that this function is a 4-homotopy between 1X and the function
H8 : X → X, defined by H8(x, y) = H(x, y, 8), that is onto A.

What is valid from Han’s paper is the following.
18 Theorem. Let X be a digital image and let A be a non-empty subset

of X. Let D : X × [0,m]Z → X be a pointed κ-deformation of X into A, with
D(p, t) = p for some p ∈ A and all t ∈ [0,m]Z . Let r : X → A be the map
defined by r(x) = D(x,m) for all x ∈ X. Then the induced homomorphism
r∗ : Πκ

1(X, p) → Πκ
1(A, p) is one to one.

Proof. [5] Let i : A → X be the inclusion map. Then D is a homotopy
between 1X and i◦r. Therefore, 1Πκ

1 (X,p) = i∗◦r∗. The assertion follows. QED

4 Summary

We have shown that the claim of [5], that a pointed digital deformation
induces an isomorphism between fundamental groups, is false.
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ymous referee.
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