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Abstract. Unlike finite fields, finite semifields possess inner automorphisms. A further sur-
prise is that even noncommutative semifields possess inner automorphisms. We compute in-
ner automorphisms and automorphism groups for semifields quadratic over the nucleus, the
Hughes-Kleinfeld semifields and the Dickson commutative semifields.
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1 Introduction

Finite nonassociative division rings were introduced in 1905 by L. E. Dickson
[7]. Current interest is driven by the fact that the finite planes of Lenz-Barlotti
type V.1 (translation planes) are precisely the planes coordinatizable by division
rings which are not fields (see Biliotti, Jha and Johnson [2], Hughes and Piper
[14]). Readers interested in the history of semifields are refered to the articles
Albert [1], Knuth [18], Kleinfeld [17], Cordero and Wene [6] and Kantor [15].
We will use the term semifield to refer to a not necessarily associative division
ring.

A finite semifield [18] is a finite algebraic system containing at least two
distinguished elements 0 and 1. A finite semifield ∆ possesses two binary oper-
ations, addition and multiplication, designated in the usual notation and satis-
fying the following axioms:

(i) (∆,+) is a group with identity 0.

(ii) If a, b ∈ ∆ and ab = 0 then a = 0 or b = 0.

(iii) If a, b, c ∈ ∆ then a(b+ c) = ab+ ac and (a+ b)c = ac+ bc.

(iv) The element 1 satisfies the relationship 1 · a = a · 1 = a for all a ∈ ∆.

It is easily seen that there are unique solutions to the equations ax = b and
xa = b for every nonzero a and every b in ∆. It also follows easily that addition
is commutative. In fact it can be shown that ∆ is a vector space over some
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prime field GF (p) and that ∆ has pn elements where n is the dimension of ∆
over F , see [18].

Little is known of the automorphism groups of finite semifields. Both Dickson
[8] and Menichetti [19, 20] made partial determinations of the automorphisms
group of semifield three dimensional over a finite field not of characteristic two.
Kleinfeld [16] and Knuth [18] computed the automorphism group of each of the
23 isomorphism classes of 16-element semifields; Burmester [3] showed that there
are n isomorphism classes of Dickson commutative semifileds of order p2n, p 6= 2,
each of these semifields has 2n automorphisms and determines the structure
of these automorphisms; Zemmer [21] used automorphisms to determine the
existance of subsemifields.

We begin with an examination of Knuth’s System W [18].

1 Example (Knuth’s System W.). This semifield is isomorphic to Klein-
feld’s System T-35 [16]. Let F4 be the four-element field with elements 0, 1, ω
and ω2(= ω + 1). The elements of System W are of the form a + λb where
a, b ∈ F4. Addition and multiplication are defined in terms of the addition and
multiplication of F4.

(x+ λy) + (u+ λv) = (x+ u) + λ(y + v)

and

(x+ λy)(u+ λv) = (xu+ ωy2v) + λ(yu+ x2v).

This system has three automorphisms. These automorphisms are all inner
and are given by Φi(x+λy) = x+λωiy, i = 1, 2, 3. There is a unique subring of
order 4 that is generated by ω and is the nucleus. Each of these automorphisms
is inner.

Φ1(x+ λy) = [ω (x+ λy)]ω2

= x+ λωy

Φ2(x+ λy) =
[
ω2 (x+ λy)

]
ω

= x+ λω2y

Φ3(x+ λy) = [1 (x+ λy)] 1

= x+ λy

Knuth’s System W is quadratic over its nucleus in the sense of Hughes
and Kleinfeld [12]. We will show that all semifields quadratic over the nucleus
possess inner automorphisms and will compute the automorphism groups. The
arguments apply to a larger class of semifields that include Hughes-Kleinfeld
semifields and the Dickson commutative semifields.
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We begin with some preliminaries. This is followed by a close look at the
automorphisms groups of the Hughes-Kleinfeld semifields. If ∆ is a Hughes-
Kleinfeld semifield of order p4, the automorphism group is completely deter-
mined. We construct all Dickson commutative semifields that possess inner au-
tomophisms. The conclusion gives several directions for continued research.

2 Preliminaries

A tool used to study the the associativity of finite semifields and nonasso-
ciative rings in general is the associator of elements a, b and c:

(x, y, z) = (xy)z − x(yz).

The three semi-nuclei of a semifield ∆ are defined in terms of associators
and reflect the rich structure of finite semifields. The left nucleus Nl is the set of
all elements d in ∆ such that (d, x, y) = 0 for all x, y ∈ ∆. The middle nucleus
Nm and the right nucleus Nr are defined analogously. The intersection of the
three semi-nuclei of ∆ is called the nucleus; the center, denoted by Z, refers to
the set of all n in the nucleus N such that nx = xn for all x ∈ ∆. A set W
of elements of A is called a weak nucleus if (a, b, c) = 0 whenever any two of
a, b, c are in W . The nucleus will always be a subring of the weak nucleus. If
∆ is a finite semifield, any one of the above nuclei will be a field and ∆ may
be considered as a left vector space over Nl, Nm, N and Z and a right vector
space over Nm, Nr, N and Z. In a commutative semifield, the left nucleus is the
right nucleus; this semi-nucleus is contained in the middle nucleus. The middle
nucleus of a commutative semifield is always a weak nucleus.

If the dimension of A over it’s weak nucleus is two, we say that ∆ is quadratic
over a weak nucleus. These semifields have been investigated by Hughes and
Kleinfeld [12], Knuth [18], Cohen and Ganley [4] and Ganley [11].

An automorphism of a semifield ∆ is a bijection Θ : ∆ → ∆ such that
Θ(x+y) = Θ(x) +Θ(y) and Θ(xy) = Θ(x)Θ(y) for all a, b in ∆. We will denote
by Aut(∆) the group of automorphisms of ∆. Automorphisms of semifields will
be denoted by capital Greek letters and automorphisms of fields will be denoted
by lower case Greek letters. The set S of all elements s of ∆ such that Θ(s) = s
will form a subring of ∆; if ∆ is a finite semifield the set S of elements fixed
by Θ will be a semifield. If Θ2 = id, the identity automorphism, then the set S
will be called the symmetric elements; if the characteristic is not two, the set
K = {s ∈ ∆ : Θ(x) = −x} will be called the set of skew elements.

An automophism Θ of ∆ is called an inner automorphism if there is an
element m ∈ ∆ with left inverse m−1

l (m−1
l m = 1) such that Θ(x) = (m−1

l x)m
for all x in ∆. We will denote the inner automorphism x 7→ (m−1

l x)m by Θm.
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Clearly ifm is a nonzero element of a weak nucleus thenm−1
r = m−1

l = m−1 and
Θm(x) = (m−1

l xm) = (m−1x)m. The elements fixed by an inner automorphism
will generate a subsemifield of the semifield ∆. If Θm is an inner automorphism
of ∆ and Φ an arbitrary automorphism of ∆, then Φ−1 ◦ Θm ◦ Φ will be an
inner automorphism of ∆. Since the mapping x 7→ (m−1

l x)m will always be
an isomorphism of the additive group of ∆, we need only to determine if this
mapping is an isomophism of the multiplicative structure of ∆.

2 Lemma. Let ∆ denote a finite semifield with nucleus N . If m ∈ N then
the mapping Θ defined by Θm(x) = m(xm−1) for all x in ∆ is an inner auto-
morphism of ∆.

Proof. Clearly Θm is a bijection.

Let x, y ∈ ∆ then

[(mx)m−1][(my)m−1] = (mx)[m−1[(my)m−1]]

= (mx)[[m−1(my)]m−1]]

= (mx)[ym−1] = m(x[ym−1])

= m([xy]m−1) = [m(xy)]m−1.

QED

It follows immediately that If the inner automorphism group of a finite
semifield ∆ is trivial then N ⊂ Z; if the semifield ∆ has no proper subsemifields
the only inner automorphism is the trivial automorphism.

3 Theorem. Let ∆ denote a finite semifield with nucleus N . If Θm(x) =
(m−1

l x)m defines an inner automorphism for some m ∈ ∆, then so does
Θnm(x) = [(m−1

l n−1)x](nm) for each nonzero n ∈ N .

Proof. By the previous Lemma, Θn defines an inner automorphism for all
n ∈ N . If Θm(x) = (m−1

l x)m defines an automorphism then so does Θm ◦Θn.

Θm ◦Θn(x) = Θm((n−1x)n)

=
(
Θm(n−1)Θm(x)

)
Θm(n)

= [(n−1m−1
l )x](nm)

= Θnm

QED

4 Theorem. Let Θm define an automorphism of the semifield ∆ and let
a, b be nonzero elements of the nucleus. Then Θam and Θbm define the same
automorphism if and only if ab−1 ∈ Z.
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Proof. Suppose Θam = Θbm. Then, for all x ∈ ∆,

[(m−1
l a−1)(x)](am) = [(m−1

l b−1)(x)](bm)

[(m−1
l a−1)(x)]a = [(m−1

l b−1)(x)]b

[m−1
l (a−1x)]a = [m−1

l (b−1x)]b

m−1
l [(a−1x)a] = m−1

l [(b−1x)b]

(a−1x)a = (b−1x)b

xab−1 = ab−1x

QED

5 Corollary. Let ∆ denote a finite semifield with nucleus N . The elements
m,n ∈ N define the same inner automorphism of ∆ if and only if n−1m ∈ Z. In
this case the elements of the nucleus determine (|N | − 1) / (|N ∩ Z| − 1) inner
automorphisms.

3 The Hughes-Kleinfeld Semifields

We begin this section a theorem of Hughes and Kleinfeld [12].

6 Theorem (Hughes and Kleinfeld [12]). Let R be a not associative divi-
sion ring which is a quadratic extension of a Galois field F , and suppose F is
contained in the right and middle nuclei of R. Then R must be isomorphic to
a ring S constructed as follows: Let S be a vector space of dimension 2 over F ,
having a basis 1, λ and multiplication defined by

(x+ λy)(u+ λv) = (xu+ δ0y
σv) + λ(yu+ xσv + δ1y

σv),

where σ is an arbitrary non-identity automorphism of F and δ0, δ1 in F are
subject only to the condition that

w1+σ + δ1w − δ0 = 0

have no solution for w in F . Conversely, given F, σ, δ0, δ1, satisfying the above
conditions, then S will satisfy the conditions on R.

We will limit our discussion to those Hughes-Kleinfeld semifields for which
δ1 = 0 and will write the product as

(x+ λy)(u+ λv) = (xu+ δyσv) + λ(yu+ xσv).

Clearly (a+ λb)→ (a− λb) defines an automorphism of these semifields when-
ever the characteristic is not two.

Motivated by example 1, we ask when does the mapping x+λy → [f−1(x+
λy)]f , where f is a nonzero element of F , define an automorphism of the semi-
field ∆?
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7 Theorem. Let ∆ be a Hughes-Kleinfeld semifield and θ : ∆ → ∆ be
defined by θ(x) = [f−1x]f , x ∈ ∆, where f ∈ F . Then θ is an automorphism if
and only if fσ

2
= f .

Proof.

[
(
f−1

)
(x+ λy)]f = x+ λy

(
f−1

)σ
f

θ([x+ λy)][u+ λv]) = xu+ δyσv + λ(xσv + yu)
(
f−1

)σ
f

and

(
x+ λy

(
f−1

)σ
f
) (
u+ λv

(
f−1

)σ
f
)

= xu+ δyσv
[(
f−1

)σ
f
]σ (

f−1
)σ
f +

λ(xσv + yu)
(
f−1

)σ
f .

δuσv = δuσv
[(
f−1

)σ
f
]σ (

f−1
)σ
f

1 =
(
f−1

)σ2

f

fσ
2

= f

QED

8 Corollary. If the Hughes-Kleinfeld semifield ∆ has a subfield F0 ⊂ F
fixed pointwise by σ2 then x→ [f−1x]f defines an automorphism of ∆.

Those semifields with the largest possible nuclei are the semifields quadratic
over the nucleus; Hughes and Kleinfeld [12] computed these semifields.

9 Theorem (Hughes and Kleinfeld [12]). Let R be a not associative divi-
sion ring which is a quadratic extension of a Galois field F , and suppose F is
contained in the nucleus of R. Then R must be isomorphic to one of the rings S
of theorem 6 with the additional stipulation that σ2 = I and δ1 = 0 conversely,
all such S satisfy the conditions on R.

10 Theorem. Let ∆ be a semifield quadratic over a nucleus isomorphic to
the Galois field GF (q2). Then the elements of the nucleus of ∆ determine q+1
inner automorphisms.

Proof. There are q2−1 nonzero elements in the nucleus and q−1 nonzero
elements in N ∩ Z. These elements determine

(
q2 − 1

)
/ (q − 1) = q + 1 inner

automorphisms. QED

The classification of semifields of order p4 has yet to be completed; a nice
beginning is Cordero [5]. If the order of a semifield quadratic over its nucleus
is p4, for some prime p 6= 2, the automorphism group of the semifield is easily
computed. The characteristic case is example 1.
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11 Theorem. Let ∆ be a semifield quadratic over its nucleus, of order p4.
If Φ : ∆ → ∆ is an automorphism then Φ(x + λy) = xk + λ(syk) where s is
a nonzero element of GF (p2) and k is 1 or p. Furthermore, s is a solution of
δk = δxσx.

Proof. The condition implies that F is the field GF (p2). If Φ : ∆ → ∆
is an automorphism then Φ : N → N is a field automorphism. Since N is
isomorphic to the finite field GF (p2), Φ(n) = nk , where k is 1or p.

We must know that what Φ does to λ. Suppose that Φ (λ) = r + λs where
s is a nonzero element of GF (p2n). Let α ∈ GF (p2n) then

Φ(αλ) = Φ (α) Φ (λ)

= αk(r + λs)

= αkr + λ((αkσ)s)

= Φ(λασ)

= (r + λs)(αkσ).

Equating components, we find that αkr = αkσr. If r 6= 0, σ is the identity
automorphism.

Hence Φ(λ) = λs,

Φ
(
λ2
)

= Φ(δ) = δk

= (λs) (λs) = [δsσs].

We must have δk = δsσs.
If k = 1, then δ = δsσs. Now sσs must be 1. There are exactly pn+1elements

s such that sσs = 1. There are p + 1 automorphisms a + λb 7→ a + λsb; these
automorphisms form a subgroup isomorphic to the additive group Zp+1.

If k = p we have δp = δsσs. Now sσs is fixed by Φ and must be −1. Thus
δσ = −δ and −1 is a square in GF (p). There are exactly p+ 1 elements s such
that sσs = −1.

In the latter case the automorphism group is not commutative. Let Φs and
Ψt be automorphisms of ∆ defined by Φs(a + λb) = a + λsb and Ψt(a + λb) =
ap + λtbp where sp+1 = 1 and tp+1 = −1. Then Ψt(Φs(a + λb)) = ap + λtspbp

and Φs(Ψt(a+ λb)) = ap + λstbp. QED

12 Lemma. Let k be a nonsquare element of GF (pn) and m an element
of the extension field GF (p2n) such that m2 = k. Then m is a nonsquare in
GF (p2n) if and only if −1 is a square in GF (pn). Furthermore, mp = −m.

Proof. Let k be a nonsquare element of GF (pn) and m an element of the
extension field GF (p2n) such that m2 = k. Suppose m is a square in GF (p2n)
and m = (α+ βm)2. Then m = α2 + β2k+ 2αβm. We must have α2 + β2k = 0
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and 2αβm = 1. Solving these equations for α, we find that 4α4 = −k. Hence if
both k and −k are nonsquares in GF (p), m will be a nonsquare in GF (p2).

Since p is odd, mp = zm where z ∈ GF (p). Then mp2 = m = zmp = z2m
and z = −1. QED

The above lemma tells us that we can always find a nonsquare element m
in GF (p2n) such that mpn = −m if −1 is a square in GF (pn).

13 Example. Let F be the field GF (25) isomorphic to GF (5)[m] where
m2 = 2. Then m is a nonsquare in F such that m5 = −m. We construct the
semifield as before using δ = 1 + 2m. Since δ5 6= −δ, the automorphism group
consists of the six inner automorphisms generated by the automorphism

Φ(a+ λb) = a+ λb(3 + 2m) where (3 + 2m)3 = −1.

If we use δ = m, we get a 12-element automorphism group. The group is
generated by the automophisms Φ as above and the automorphism Ψ (a+ λb) =
a5 + λb5(1 +m). The elements Φ and Ψ satisfy Ψ2 = Φ3 and ΨΦΨ−1 = Φ5.

14 Remark. The congruence x2 + 1 ≡ 0 (mod p) has a solution for the
prime p only if p is of the form 4n+ 1 (Dickson [10]). Some primes p for which
−1 is a square in the finite field GF (p) are p = 5, 13, 17, 29, 41, 53, 61, 73, 89 and
97.

Let ∆ be a Hughes Kleinfeld semifield that is not necessarily quadratic over
its nucleus. The left inverse λ−1

l of the element λ is

λ−1
l = λ

(
1

δ

)σ−1

and

[
(
λ−1
l

)
(a+ λb)]λ = aσ + λbσ.

15 Theorem. Let ∆ be a Hughes-Kleinfeld semifield and θλ : ∆ → ∆ be
defined by θλ(x) = [λ−1

l x]λ for x ∈ ∆. Then θλ is an automorphism if and only
if δσ = δ. In particular, ∆ is not quadratic over its nucleus.

Proof.

θλ([a+ λb)][c+ λd]) = aσcσ + δσbσ
2
dσ + λ(aσ

2
dσ + bσcσ)

and

(aσ + λbσ) (cσ + λdσ) = aσcσ + δbσ
2
dσ + λ(aσ

2
dσ + bσcσ).

Equating components yeilds δσ = δ. Were ∆ to be quadratic over its nucleus,
this would force δ to be a square in the field F . QED
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16 Example. Let F be the field GF (53). Since 2 is a nonsquare in GF (5),
it remains a nonsquare in GF (53). Construct the Hughes-Kleinfeld semifield
with product

(x+ λy)(u+ λv) = (xu+ 2y5v) + λ(yu+ x5v).

The automorphism θλ(x + λy) → x5 + λy5 generates a cyclic subgroup of
three automophisms. If Φ : ∆ → ∆ is the automorphism (x + λy) → x − λy
then Φ ◦ θλ generates a cyclic subgroup of order six.

4 The Dickson Commutative Semifields

The Dickson commutative [9] semifields are the only commutative semifields
quadratic over a weak nucleus. The definitive study of the Dickson commutative
semifields is the paper by Burmester [3].

Surprisingly, the Dickson commutative semifields possess inner automor-
phisms. The only inner automorphims of a finite field is the trivial automor-
phism. The real quaternions are an infinite, associative, noncommunitive divi-
sion ring that permits inner automorphisms. We will construct a subclass of the
Dickson commutative semifields that have nontrivial inner automorphisms.

17 Example. Let F be the field GF (pn), p 6= 2 and n ≥ 2. The elements
of ∆ are of the form a + λb where a, b ∈ F . Addition and multiplication are
defined in terms of the addition and multiplication of F , an automorphism σ of
F and an element δ ∈ F that is a nonsquare in F . The addition is given by

(a+ λb) + (c+ λd) = (a+ c) + λ(b+ d)

and the multiplication by

(a+ λb)(c+ λd) = ac+ δ(bd)σ + λ(ad+ bc).

Burmester [3] showed that the automorphisms of ∆ are given by

Φij(a+ λb) = ap
i

+ λ(sijb
pi), i = 0, 1, . . . , n− 1 and j = 1, 2

where sij is one solution of δp
i
= δ(x2)σ.

He shows that there are n isomorphism classes of Dickson commutative
semifields of order p2n, p 6= 2; each of these semifields has 2n automorphisms.

We now derive an alternative description, in terms of inner automorphisms,
for some of these automorphism groups.

An obvious automorphism is the mapping (a+ λb) 7→ (a− λb).
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18 Theorem. Let ∆ be a Dickson commutative semifield, F the field
GF (pn), p 6= 2 and n ≥ 2 and δ a nonsquare element of F . Then Φ(a + λb) =[
λ−1
l (a+ λb

]
λ = aσ + λbσ defines an automorphism of ∆ if and only if δσ = δ.

Proof.

λ−1
l = λ

1

δ

then [
λ−1
l (a+ λb)

]
λ = aσ + λbσ

The multiplication property of the automorphism:

Φ [(a+ λb)(c+ λd)] = Φ (ac+ δ(bd)σ + λ(ad+ bc))

= (ac)σ + δσ (bd)σ
2

+ λ(ad+ bc)σ

(aσ + λbσ)(cσ + λdσ) = (ac)σ + δ (bd)σ
2

+ λ(ad+ bc)σ

Equating components gives δσ = δ. QED

19 Example. Let ∆ be a Dickson commutative semifield, F the field
GF (55), and δ = 2. Since 2 is a nonsquare in GF (5) it remains a nonsquare in
GF (55). The cyclic automorphism group is generated Φ ◦Ψ where Φ(a+ λb) =
a5 + λb5 =

[
λ−1
l (a+ λb

]
λ and Ψ(a + λb) = a − λb. The elements of ∆ fixed

by the automorphism Φ is the 25 element field GF (5)[λ]. There will be ten
automorphisms.

5 Conclusion And Further Directions

We have seen that all semifields ∆ quadratic over the nucleus have ( non-
trivial) inner automorphisms: if |∆| = p4 for some prime p, the automorphism
group can be completely determined. Any Hughes-Kleinfeld semifield in which
there is a subfield fixed pointwise by the automorphism σ has an inner auto-
morphism as does any Hughes-Kleinfeld semifield in which δδ = δ. Our results
can be used to produce many examples.

We determined a sufficient condition that a Dickson commutative semifield
have a (nontrivial) inner automophism.

Much work remains to be done. The automorphism groups of the Hughes-
Kleinfeld semifields need to be computed. We need to find additional examples
of semifields with inner automorphisms.

Dickson [8] discovered a certain family of three-dimensional commutative
nonassociative division algebras. Let F be any field of characteristic 6= 2. Let
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B, β, b be elements of F such that x3−Bx2−βx−b is irreducible over F . Define
an algebra with basis 1, i, j by

i2 = j

ij = ji = b+ βi+Bj

j2 = 4bB − β2 − 8bi− 2βj.

There has yet to emerge a comprehensive description of the automorphism
of either the commutative or noncommutative semifields 3-dimensional over a
finite field. Complete the work started by Dickson and Menichetti.

We will use ∆ ⊗F K to denote the algebra that results from extending
the base field F to the field K and are interested in the case where ∆ ⊗F K
is a semifield. What are the automorphism groups of the resulting semifields
∆⊗F K ? Does the obvious extension of the automorphism group always work?
The polynomial x3 − Bx2 − βx − b will continue to be irreducible in all field
extensions K of degree prime to 3 and can be used to construct a commutative
semifield ∆. If θ : ∆→ ∆ is an automorphism and σ : K → K an automorphism
of the field K then σ ◦ θ : ∆⊗F K → ∆⊗F K will be an automorphism. Clearly
the polynomial w1+pk+δ1w−δ0 used to construct the Hughes-Kleinfeld semifield
will remain irreducible in all field extensions K of degree prime to pk + 1; does
the obvious extension of the automorphism group give the automorphisms group
of ∆⊗F K?

Knowing that the automorphism group has an element of order 2 immedi-
ately provides some knowledge of the multiplication of the algebra. What other
interesting conditions can we impose on the automorphism group?

There is much to do.
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