Inner Automorphisms of Finite Semifields

G. P. Wene Department of Mathematics, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249. greg.wene@utsa.edu

Abstract. Unlike finite fields, finite semifields possess inner automorphisms. A further surprise is that even noncommutative semifields possess inner automorphisms. We compute inner automorphisms and automorphism groups for semifields quadratic over the nucleus, the Hughes-Kleinfeld semifields and the Dickson commutative semifields.

Keywords: semifields, inner automorphisms.

MSC 2000 classification: primary 17A35, secondary 17A36

1 Introduction

Finite nonassociative division rings were introduced in 1905 by L. E. Dickson [7]. Current interest is driven by the fact that the finite planes of Lenz-Barlotti type V.1 (translation planes) are precisely the planes coordinatizable by division rings which are not fields (see Biliotti, Jha and Johnson [2], Hughes and Piper [14]). Readers interested in the history of semifields are referred to the articles Albert [1], Knuth [18], Kleinfeld [17], Cordero and Wene [6] and Kantor [15]. We will use the term semifield to refer to a not necessarily associative division ring.

A finite semifield [18] is a finite algebraic system containing at least two distinguished elements 0 and 1. A finite semifield Δ possesses two binary operations, addition and multiplication, designated in the usual notation and satisfying the following axioms:

- (i) $(\Delta, +)$ is a group with identity 0.
- (ii) If $a, b \in \Delta$ and ab = 0 then a = 0 or b = 0.
- (iii) If $a, b, c \in \Delta$ then a(b+c) = ab + ac and (a+b)c = ac + bc.
- (iv) The element 1 satisfies the relationship $1 \cdot a = a \cdot 1 = a$ for all $a \in \Delta$.

It is easily seen that there are unique solutions to the equations ax = b and xa = b for every nonzero a and every b in Δ . It also follows easily that addition is commutative. In fact it can be shown that Δ is a vector space over some

prime field GF(p) and that Δ has p^n elements where n is the dimension of Δ over F, see [18].

Little is known of the automorphism groups of finite semifields. Both Dickson [8] and Menichetti [19, 20] made partial determinations of the automorphisms group of semifield three dimensional over a finite field not of characteristic two. Kleinfeld [16] and Knuth [18] computed the automorphism group of each of the 23 isomorphism classes of 16-element semifields; Burmester [3] showed that there are n isomorphism classes of Dickson commutative semifileds of order p^{2n} , $p \neq 2$, each of these semifields has 2n automorphisms and determines the structure of these automorphisms; Zemmer [21] used automorphisms to determine the existance of subsemifields.

We begin with an examination of Knuth's System W [18].

1 Example (Knuth's System W.). This semifield is isomorphic to Kleinfeld's System T-35 [16]. Let F_4 be the four-element field with elements $0, 1, \omega$ and $\omega^2(=\omega+1)$. The elements of System W are of the form $a + \lambda b$ where $a, b \in F_4$. Addition and multiplication are defined in terms of the addition and multiplication of F_4 .

$$(x + \lambda y) + (u + \lambda v) = (x + u) + \lambda(y + v)$$

and

$$(x + \lambda y)(u + \lambda v) = (xu + \omega y^2 v) + \lambda (yu + x^2 v).$$

This system has three automorphisms. These automorphisms are all inner and are given by $\Phi_i(x+\lambda y) = x + \lambda \omega^i y$, i = 1, 2, 3. There is a unique subring of order 4 that is generated by ω and is the nucleus. Each of these automorphisms is inner.

$$\Phi_1(x + \lambda y) = [\omega (x + \lambda y)] \omega^2$$

= $x + \lambda \omega y$
$$\Phi_2(x + \lambda y) = [\omega^2 (x + \lambda y)] \omega$$

= $x + \lambda \omega^2 y$
$$\Phi_3(x + \lambda y) = [1 (x + \lambda y)] 1$$

= $x + \lambda y$

Knuth's System W is quadratic over its nucleus in the sense of Hughes and Kleinfeld [12]. We will show that all semifields quadratic over the nucleus possess inner automorphisms and will compute the automorphism groups. The arguments apply to a larger class of semifields that include Hughes-Kleinfeld semifields and the Dickson commutative semifields. We begin with some preliminaries. This is followed by a close look at the automorphisms groups of the Hughes-Kleinfeld semifields. If Δ is a Hughes-Kleinfeld semifield of order p^4 , the automorphism group is completely determined. We construct all Dickson commutative semifields that possess inner automophisms. The conclusion gives several directions for continued research.

2 Preliminaries

A tool used to study the the associativity of finite semifields and nonassociative rings in general is the *associator of elements a*, *b* and *c*:

$$(x, y, z) = (xy)z - x(yz).$$

The three semi-nuclei of a semifield Δ are defined in terms of associators and reflect the rich structure of finite semifields. The *left nucleus* N_l is the set of all elements d in Δ such that (d, x, y) = 0 for all $x, y \in \Delta$. The *middle nucleus* N_m and the *right nucleus* N_r are defined analogously. The intersection of the three semi-nuclei of Δ is called the *nucleus*; the *center*, denoted by Z, refers to the set of all n in the nucleus N such that nx = xn for all $x \in \Delta$. A set Wof elements of A is called a *weak nucleus* if (a, b, c) = 0 whenever any two of a, b, c are in W. The nucleus will always be a subring of the weak nucleus. If Δ is a finite semifield, any one of the above nuclei will be a field and Δ may be considered as a left vector space over N_l , N_m , N and Z and a right vector space over N_m , N_r , N and Z. In a commutative semifield, the left nucleus is the right nucleus; this semi-nucleus is contained in the middle nucleus. The middle nucleus of a commutative semifield is always a weak nucleus.

If the dimension of A over it's weak nucleus is two, we say that Δ is *quadratic* over a weak nucleus. These semifields have been investigated by Hughes and Kleinfeld [12], Knuth [18], Cohen and Ganley [4] and Ganley [11].

An automorphism of a semifield Δ is a bijection $\Theta : \Delta \to \Delta$ such that $\Theta(x+y) = \Theta(x) + \Theta(y)$ and $\Theta(xy) = \Theta(x)\Theta(y)$ for all a, b in Δ . We will denote by $Aut(\Delta)$ the group of automorphisms of Δ . Automorphisms of semifields will be denoted by capital Greek letters and automorphisms of fields will be denoted by lower case Greek letters. The set S of all elements s of Δ such that $\Theta(s) = s$ will form a subring of Δ ; if Δ is a finite semifield the set S of elements fixed by Θ will be a semifield. If $\Theta^2 = id$, the identity automorphism, then the set S will be called the symmetric elements; if the characteristic is not two, the set $K = \{s \in \Delta : \Theta(x) = -x\}$ will be called the set of skew elements.

An automorphism Θ of Δ is called an *inner automorphism* if there is an element $m \in \Delta$ with left inverse m_l^{-1} $(m_l^{-1}m = 1)$ such that $\Theta(x) = (m_l^{-1}x)m$ for all x in Δ . We will denote the inner automorphism $x \mapsto (m_l^{-1}x)m$ by Θ_m .

Clearly if m is a nonzero element of a weak nucleus then $m_r^{-1} = m_l^{-1} = m^{-1}$ and $\Theta_m(x) = (m_l^{-1}xm) = (m^{-1}x)m$. The elements fixed by an inner automorphism will generate a subsemifield of the semifield Δ . If Θ_m is an inner automorphism of Δ and Φ an arbitrary automorphism of Δ , then $\Phi^{-1} \circ \Theta_m \circ \Phi$ will be an inner automorphism of Δ . Since the mapping $x \mapsto (m_l^{-1}x)m$ will always be an isomorphism of the additive group of Δ , we need only to determine if this mapping is an isomorphism of the multiplicative structure of Δ .

2 Lemma. Let Δ denote a finite semifield with nucleus N. If $m \in N$ then the mapping Θ defined by $\Theta_m(x) = m(xm^{-1})$ for all x in Δ is an inner automorphism of Δ .

PROOF. Clearly Θ_m is a bijection. Let $x, y \in \Delta$ then

$$\begin{split} [(mx)m^{-1}][(my)m^{-1}] &= (mx)[m^{-1}[(my)m^{-1}]] \\ &= (mx)[[m^{-1}(my)]m^{-1}]] \\ &= (mx)[ym^{-1}] = m(x[ym^{-1}]) \\ &= m([xy]m^{-1}) = [m(xy)]m^{-1}. \end{split}$$

QED

It follows immediately that If the inner automorphism group of a finite semifield Δ is trivial then $N \subset Z$; if the semifield Δ has no proper subsemifields the only inner automorphism is the trivial automorphism.

3 Theorem. Let Δ denote a finite semifield with nucleus N. If $\Theta_m(x) = (m_l^{-1}x)m$ defines an inner automorphism for some $m \in \Delta$, then so does $\Theta_{nm}(x) = [(m_l^{-1}n^{-1})x](nm)$ for each nonzero $n \in N$.

PROOF. By the previous Lemma, Θ_n defines an inner automorphism for all $n \in N$. If $\Theta_m(x) = (m_l^{-1}x)m$ defines an automorphism then so does $\Theta_m \circ \Theta_n$.

$$\Theta_m \circ \Theta_n(x) = \Theta_m((n^{-1}x)n)$$

= $(\Theta_m(n^{-1})\Theta_m(x)) \Theta_m(n)$
= $[(n^{-1}m_l^{-1})x](nm)$
= Θ_{nm}

QED

4 Theorem. Let Θ_m define an automorphism of the semifield Δ and let a, b be nonzero elements of the nucleus. Then Θ_{am} and Θ_{bm} define the same automorphism if and only if $ab^{-1} \in Z$.

PROOF. Suppose $\Theta_{am} = \Theta_{bm}$. Then, for all $x \in \Delta$,

$$\begin{split} & [(m_l^{-1}a^{-1})(x)](am) \ = \ [(m_l^{-1}b^{-1})(x)](bm) \\ & [(m_l^{-1}a^{-1})(x)]a \ = \ [(m_l^{-1}b^{-1})(x)]b \\ & [m_l^{-1}(a^{-1}x)]a \ = \ [m_l^{-1}(b^{-1}x)]b \\ & m_l^{-1}[(a^{-1}x)a] \ = \ m_l^{-1}[(b^{-1}x)b] \\ & (a^{-1}x)a \ = \ (b^{-1}x)b \\ & xab^{-1} \ = \ ab^{-1}x \end{split}$$

QED

5 Corollary. Let Δ denote a finite semifield with nucleus N. The elements $m, n \in N$ define the same inner automorphism of Δ if and only if $n^{-1}m \in Z$. In this case the elements of the nucleus determine $(|N| - 1) / (|N \cap Z| - 1)$ inner automorphisms.

3 The Hughes-Kleinfeld Semifields

We begin this section a theorem of Hughes and Kleinfeld [12].

6 Theorem (Hughes and Kleinfeld [12]). Let R be a not associative division ring which is a quadratic extension of a Galois field F, and suppose F is contained in the right and middle nuclei of R. Then R must be isomorphic to a ring S constructed as follows: Let S be a vector space of dimension 2 over F, having a basis $1, \lambda$ and multiplication defined by

 $(x + \lambda y)(u + \lambda v) = (xu + \delta_0 y^{\sigma} v) + \lambda (yu + x^{\sigma} v + \delta_1 y^{\sigma} v),$

where σ is an arbitrary non-identity automorphism of F and δ_0, δ_1 in F are subject only to the condition that

$$w^{1+\sigma} + \delta_1 w - \delta_0 = 0$$

have no solution for w in F. Conversely, given $F, \sigma, \delta_0, \delta_1$, satisfying the above conditions, then S will satisfy the conditions on R.

We will limit our discussion to those Hughes-Kleinfeld semifields for which $\delta_1 = 0$ and will write the product as

$$(x + \lambda y)(u + \lambda v) = (xu + \delta y^{\sigma}v) + \lambda(yu + x^{\sigma}v).$$

Clearly $(a + \lambda b) \rightarrow (a - \lambda b)$ defines an automorphism of these semifields whenever the characteristic is not two.

Motivated by example 1, we ask when does the mapping $x + \lambda y \rightarrow [f^{-1}(x + \lambda y)]f$, where f is a nonzero element of F, define an automorphism of the semi-field Δ ?

7 Theorem. Let Δ be a Hughes-Kleinfeld semifield and $\theta : \Delta \to \Delta$ be defined by $\theta(x) = [f^{-1}x]f$, $x \in \Delta$, where $f \in F$. Then θ is an automorphism if and only if $f^{\sigma^2} = f$.

Proof.

$$\left[\left(f^{-1}\right)\left(x+\lambda y\right)\right]f = x + \lambda y \left(f^{-1}\right)^{\sigma} f$$

$$\theta([x+\lambda y)][u+\lambda v]) = xu + \delta y^{\sigma}v + \lambda(x^{\sigma}v + yu) \left(f^{-1}\right)^{\sigma} f$$

and

$$(x + \lambda y (f^{-1})^{\sigma} f) (u + \lambda v (f^{-1})^{\sigma} f) = xu + \delta y^{\sigma} v [(f^{-1})^{\sigma} f]^{\sigma} (f^{-1})^{\sigma} f + \lambda (x^{\sigma} v + yu) (f^{-1})^{\sigma} f.$$

$$\delta u^{\sigma} v = \delta u^{\sigma} v [(f^{-1})^{\sigma} f]^{\sigma} (f^{-1})^{\sigma} f$$

$$1 = (f^{-1})^{\sigma^{2}} f$$

$$f^{\sigma^{2}} = f$$

QED

8 Corollary. If the Hughes-Kleinfeld semifield Δ has a subfield $F_0 \subset F$ fixed pointwise by σ^2 then $x \to [f^{-1}x]f$ defines an automorphism of Δ .

Those semifields with the largest possible nuclei are the semifields quadratic over the nucleus; Hughes and Kleinfeld [12] computed these semifields.

9 Theorem (Hughes and Kleinfeld [12]). Let R be a not associative division ring which is a quadratic extension of a Galois field F, and suppose F is contained in the nucleus of R. Then R must be isomorphic to one of the rings S of theorem 6 with the additional stipulation that $\sigma^2 = I$ and $\delta_1 = 0$ conversely, all such S satisfy the conditions on R.

10 Theorem. Let Δ be a semifield quadratic over a nucleus isomorphic to the Galois field $GF(q^2)$. Then the elements of the nucleus of Δ determine q + 1 inner automorphisms.

PROOF. There are $q^2 - 1$ nonzero elements in the nucleus and q - 1 nonzero elements in $N \cap Z$. These elements determine $(q^2 - 1) / (q - 1) = q + 1$ inner automorphisms.

The classification of semifields of order p^4 has yet to be completed; a nice beginning is Cordero [5]. If the order of a semifield quadratic over its nucleus is p^4 , for some prime $p \neq 2$, the automorphism group of the semifield is easily computed. The characteristic case is example 1. **11 Theorem.** Let Δ be a semifield quadratic over its nucleus, of order p^4 . If $\Phi : \Delta \to \Delta$ is an automorphism then $\Phi(x + \lambda y) = x^k + \lambda(sy^k)$ where s is a nonzero element of $GF(p^2)$ and k is 1 or p. Furthermore, s is a solution of $\delta^k = \delta x^{\sigma} x$.

PROOF. The condition implies that F is the field $GF(p^2)$. If $\Phi : \Delta \to \Delta$ is an automorphism then $\Phi : N \to N$ is a field automorphism. Since N is isomorphic to the finite field $GF(p^2)$, $\Phi(n) = n^k$, where k is 1 or p.

We must know that what Φ does to λ . Suppose that $\Phi(\lambda) = r + \lambda s$ where s is a nonzero element of $GF(p^{2n})$. Let $\alpha \in GF(p^{2n})$ then

$$\Phi(\alpha\lambda) = \Phi(\alpha) \Phi(\lambda)$$

= $\alpha^k (r + \lambda s)$
= $\alpha^k r + \lambda((\alpha^{k\sigma})s)$
= $\Phi(\lambda\alpha^{\sigma})$
= $(r + \lambda s)(\alpha^{k\sigma}).$

Equating components, we find that $\alpha^k r = \alpha^{k\sigma} r$. If $r \neq 0$, σ is the identity automorphism.

Hence $\Phi(\lambda) = \lambda s$,

$$\Phi(\lambda^2) = \Phi(\delta) = \delta^k$$
$$= (\lambda s) (\lambda s) = [\delta s^{\sigma} s]$$

We must have $\delta^k = \delta s^\sigma s$.

If k = 1, then $\delta = \delta s^{\sigma} s$. Now $s^{\sigma} s$ must be 1. There are exactly $p^n + 1$ elements s such that $s^{\sigma} s = 1$. There are p + 1 automorphisms $a + \lambda b \mapsto a + \lambda sb$; these automorphisms form a subgroup isomorphic to the additive group \mathbb{Z}_{p+1} .

If k = p we have $\delta^p = \delta s^{\sigma} s$. Now $s^{\sigma} s$ is fixed by Φ and must be -1. Thus $\delta^{\sigma} = -\delta$ and -1 is a square in GF(p). There are exactly p + 1 elements s such that $s^{\sigma} s = -1$.

In the latter case the automorphism group is not commutative. Let Φ_s and Ψ_t be automorphisms of Δ defined by $\Phi_s(a + \lambda b) = a + \lambda sb$ and $\Psi_t(a + \lambda b) = a^p + \lambda tb^p$ where $s^{p+1} = 1$ and $t^{p+1} = -1$. Then $\Psi_t(\Phi_s(a + \lambda b)) = a^p + \lambda ts^p b^p$ and $\Phi_s(\Psi_t(a + \lambda b)) = a^p + \lambda stb^p$.

12 Lemma. Let k be a nonsquare element of $GF(p^n)$ and m an element of the extension field $GF(p^{2n})$ such that $m^2 = k$. Then m is a nonsquare in $GF(p^{2n})$ if and only if -1 is a square in $GF(p^n)$. Furthermore, $m^p = -m$.

PROOF. Let k be a nonsquare element of $GF(p^n)$ and m an element of the extension field $GF(p^{2n})$ such that $m^2 = k$. Suppose m is a square in $GF(p^{2n})$ and $m = (\alpha + \beta m)^2$. Then $m = \alpha^2 + \beta^2 k + 2\alpha\beta m$. We must have $\alpha^2 + \beta^2 k = 0$

and $2\alpha\beta m = 1$. Solving these equations for α , we find that $4\alpha^4 = -k$. Hence if both k and -k are nonsquares in GF(p), m will be a nonsquare in $GF(p^2)$.

Since p is odd, $m^p = zm$ where $z \in GF(p)$. Then $m^{p^2} = m = zm^p = z^2m$ and z = -1.

The above lemma tells us that we can always find a nonsquare element m in $GF(p^{2n})$ such that $m^{p^n} = -m$ if -1 is a square in $GF(p^n)$.

13 Example. Let F be the field GF(25) isomorphic to GF(5)[m] where $m^2 = 2$. Then m is a nonsquare in F such that $m^5 = -m$. We construct the semifield as before using $\delta = 1 + 2m$. Since $\delta^5 \neq -\delta$, the automorphism group consists of the six inner automorphisms generated by the automorphism

$$\Phi(a + \lambda b) = a + \lambda b(3 + 2m)$$
 where $(3 + 2m)^3 = -1$.

If we use $\delta = m$, we get a 12-element automorphism group. The group is generated by the automorphisms Φ as above and the automorphism $\Psi(a + \lambda b) = a^5 + \lambda b^5(1+m)$. The elements Φ and Ψ satisfy $\Psi^2 = \Phi^3$ and $\Psi \Phi \Psi^{-1} = \Phi^5$.

14 Remark. The congruence $x^2 + 1 \equiv 0 \pmod{p}$ has a solution for the prime p only if p is of the form 4n + 1 (Dickson [10]). Some primes p for which -1 is a square in the finite field GF(p) are p = 5, 13, 17, 29, 41, 53, 61, 73, 89 and 97.

Let Δ be a Hughes Kleinfeld semifield that is not necessarily quadratic over its nucleus. The left inverse λ_l^{-1} of the element λ is

$$\lambda_l^{-1} = \lambda \left(\frac{1}{\delta}\right)^{\sigma^{-1}}$$

and

$$[(\lambda_l^{-1})(a+\lambda b)]\lambda = a^{\sigma} + \lambda b^{\sigma}.$$

15 Theorem. Let Δ be a Hughes-Kleinfeld semifield and $\theta_{\lambda} : \Delta \to \Delta$ be defined by $\theta_{\lambda}(x) = [\lambda_l^{-1}x]\lambda$ for $x \in \Delta$. Then θ_{λ} is an automorphism if and only if $\delta^{\sigma} = \delta$. In particular, Δ is not quadratic over its nucleus.

Proof.

$$\theta_{\lambda}([a+\lambda b)][c+\lambda d]) = a^{\sigma}c^{\sigma} + \delta^{\sigma}b^{\sigma^{2}}d^{\sigma} + \lambda(a^{\sigma^{2}}d^{\sigma} + b^{\sigma}c^{\sigma})$$

and

$$(a^{\sigma} + \lambda b^{\sigma}) (c^{\sigma} + \lambda d^{\sigma}) = a^{\sigma} c^{\sigma} + \delta b^{\sigma^2} d^{\sigma} + \lambda (a^{\sigma^2} d^{\sigma} + b^{\sigma} c^{\sigma}).$$

Equating components yields $\delta^{\sigma} = \delta$. Were Δ to be quadratic over its nucleus, this would force δ to be a square in the field F.

16 Example. Let F be the field $GF(5^3)$. Since 2 is a nonsquare in GF(5), it remains a nonsquare in $GF(5^3)$. Construct the Hughes-Kleinfeld semifield with product

$$(x + \lambda y)(u + \lambda v) = (xu + 2y^5v) + \lambda(yu + x^5v).$$

The automorphism $\theta_{\lambda}(x + \lambda y) \to x^5 + \lambda y^5$ generates a cyclic subgroup of three automophisms. If $\Phi : \Delta \to \Delta$ is the automorphism $(x + \lambda y) \to x - \lambda y$ then $\Phi \circ \theta_{\lambda}$ generates a cyclic subgroup of order six.

4 The Dickson Commutative Semifields

The Dickson commutative [9] semifields are the only commutative semifields quadratic over a weak nucleus. The definitive study of the Dickson commutative semifields is the paper by Burmester [3].

Surprisingly, the Dickson commutative semifields possess inner automorphisms. The only inner automorphims of a finite field is the trivial automorphism. The real quaternions are an infinite, associative, noncommunitive division ring that permits inner automorphisms. We will construct a subclass of the Dickson commutative semifields that have nontrivial inner automorphisms.

17 Example. Let F be the field $GF(p^n)$, $p \neq 2$ and $n \geq 2$. The elements of Δ are of the form $a + \lambda b$ where $a, b \in F$. Addition and multiplication are defined in terms of the addition and multiplication of F, an automorphism σ of F and an element $\delta \in F$ that is a nonsquare in F. The addition is given by

$$(a + \lambda b) + (c + \lambda d) = (a + c) + \lambda (b + d)$$

and the multiplication by

$$(a + \lambda b)(c + \lambda d) = ac + \delta(bd)^{\sigma} + \lambda(ad + bc).$$

Burmester [3] showed that the automorphisms of Δ are given by

$$\Phi_{ij}(a+\lambda b) = a^{p^i} + \lambda(s_{ij}b^{p^i}), i = 0, 1, \dots, n-1 \text{ and } j = 1, 2$$

where s_{ij} is one solution of $\delta^{p^i} = \delta(x^2)^{\sigma}$.

He shows that there are n isomorphism classes of Dickson commutative semifields of order p^{2n} , $p \neq 2$; each of these semifields has 2n automorphisms.

We now derive an alternative description, in terms of inner automorphisms, for some of these automorphism groups.

An obvious automorphism is the mapping $(a + \lambda b) \mapsto (a - \lambda b)$.

QED

18 Theorem. Let Δ be a Dickson commutative semifield, F the field $GF(p^n), p \neq 2 \text{ and } n \geq 2 \text{ and } \delta \text{ a nonsquare element of } F.$ Then $\Phi(a + \lambda b) =$ $[\lambda_l^{-1}(a+\lambda b]] \lambda = a^{\sigma} + \lambda b^{\sigma}$ defines an automorphism of Δ if and only if $\delta^{\sigma} = \delta$.

Proof.

$$\lambda_l^{-1} = \lambda \frac{1}{\delta}$$

then

$$\left\lfloor \lambda_l^{-1}(a+\lambda b) \right\rfloor \lambda = a^{\sigma} + \lambda b^{\sigma}$$

The multiplication property of the automorphism:

$$\Phi[(a+\lambda b)(c+\lambda d)] = \Phi(ac+\delta(bd)^{\sigma}+\lambda(ad+bc))$$

= $(ac)^{\sigma}+\delta^{\sigma}(bd)^{\sigma^{2}}+\lambda(ad+bc)^{\sigma}$
 $(a^{\sigma}+\lambda b^{\sigma})(c^{\sigma}+\lambda d^{\sigma}) = (ac)^{\sigma}+\delta(bd)^{\sigma^{2}}+\lambda(ad+bc)^{\sigma}$

Equating components gives $\delta^{\sigma} = \delta$.

19 Example. Let Δ be a Dickson commutative semifield, F the field $GF(5^5)$, and $\delta = 2$. Since 2 is a nonsquare in GF(5) it remains a nonsquare in $GF(5^5)$. The cyclic automorphism group is generated $\Phi \circ \Psi$ where $\Phi(a + \lambda b) =$ $a^5 + \lambda b^5 = \left[\lambda_l^{-1}(a+\lambda b)\right] \lambda$ and $\Psi(a+\lambda b) = a - \lambda b$. The elements of Δ fixed by the automorphism Φ is the 25 element field $GF(5)[\lambda]$. There will be ten automorphisms.

Conclusion And Further Directions 5

We have seen that all semifields Δ quadratic over the nucleus have (nontrivial) inner automorphisms: if $|\Delta| = p^4$ for some prime p, the automorphism group can be completely determined. Any Hughes-Kleinfeld semifield in which there is a subfield fixed pointwise by the automorphism σ has an inner automorphism as does any Hughes-Kleinfeld semifield in which $\delta^{\delta} = \delta$. Our results can be used to produce many examples.

We determined a sufficient condition that a Dickson commutative semifield have a (nontrivial) inner automophism.

Much work remains to be done. The automorphism groups of the Hughes-Kleinfeld semifields need to be computed. We need to find additional examples of semifields with inner automorphisms.

Dickson [8] discovered a certain family of three-dimensional commutative nonassociative division algebras. Let F be any field of characteristic $\neq 2$. Let B, β, b be elements of F such that $x^3 - Bx^2 - \beta x - b$ is irreducible over F. Define an algebra with basis 1, i, j by

$$\begin{aligned} i^2 &= j \\ ij &= ji = b + \beta i + Bj \\ j^2 &= 4bB - \beta^2 - 8bi - 2\beta j. \end{aligned}$$

There has yet to emerge a comprehensive description of the automorphism of either the commutative or noncommutative semifields 3-dimensional over a finite field. Complete the work started by Dickson and Menichetti.

We will use $\Delta \otimes_F K$ to denote the algebra that results from extending the base field F to the field K and are interested in the case where $\Delta \otimes_F K$ is a semifield. What are the automorphism groups of the resulting semifields $\Delta \otimes_F K$? Does the obvious extension of the automorphism group always work? The polynomial $x^3 - Bx^2 - \beta x - b$ will continue to be irreducible in all field extensions K of degree prime to 3 and can be used to construct a commutative semifield Δ . If $\theta : \Delta \to \Delta$ is an automorphism and $\sigma : K \to K$ an automorphism of the field K then $\sigma \circ \theta : \Delta \otimes_F K \to \Delta \otimes_F K$ will be an automorphism. Clearly the polynomial $w^{1+p^k} + \delta_1 w - \delta_0$ used to construct the Hughes-Kleinfeld semifield will remain irreducible in all field extensions K of degree prime to $p^k + 1$; does the obvious extension of the automorphism group give the automorphisms group of $\Delta \otimes_F K$?

Knowing that the automorphism group has an element of order 2 immediately provides some knowledge of the multiplication of the algebra. What other interesting conditions can we impose on the automorphism group?

There is much to do.

References

- A. A. ALBERT: Nonassociative algebras I. Fundamental concepts and isotop y, Ann. Math., (2) 43, 685–707.
- [2] M. BILIOTTI, V. JHA, N. L. JOHNSON: Foundations of Translation Planes, Pure and Applied Mathematics, Marcel Dekker, New York, Basel, 243 (2001), 1–552.
- [3] M. V. D. BURMESTER: On the commutative non-associative division algebras of even order of L. E. Dickson, Rend. Mat. e Appl., V. Ser. 21 (1962), 143–166.
- [4] S. D. COHEN, M. J. GANLEY: Commutative semifields, two dimensional over their middle nucleui, J. Algebra 75 (1982), 373–385.
- M. CORDERO: Semifield planes of order p⁴ that admit a p-primitive Baer collineation, Osaka J. Math. 28 (1991), 305–321.
- M. CORDERO, G. P. WENE: A survey of finite semifields, Discrete Mathematics 208/209 (1999), 125–137.

- [7] L. E. DICKSON: On finite algebras, Nachr. ges. Wiss. Göttingen, (1905), 358–393.
- [8] L. E. DICKSON: Linear algebras in which division is always uniquely possible, Trans. Amer. Math. Soc., 7 (1906), 370–390.
- [9] L.E. DICKSON: On commutative linear algebras in which division is always possible, trans. Amer. Math. Soc., 7 (1906), 514–522.
- [10] L. E. DICKSON: Elementary Number Theory, McGraw-Hill Book Company, Inc., New York, 1939, 484.
- [11] M. J. GANLEY: Central weak nucleus semifields, Europ. J. Combinatorics, 2 (1981), 339– 347.
- [12] D. R. HUGHES, E. KLEINFELD: Seminuclear extensions of Galois fields, Amer. J. Math. 82 (1960), 389–392.
- [13] D. R. HUGHES: Collineation groups on non-Desarguesian PlanesII. Some seminuclear division algebras., American J. Math. 82 (1960), 113–119.
- [14] D. R. HUGHES, F. C. PIPER: Projective Planes, Springer_Verlag, New York, 1982, 291.
- [15] KANTOR, W. M. (2006): In *Finite semifields*, Groups and Computations ,Proc. Of Conf. at Pingree Park, Co, Sept. 2005, Berlin-New York: de Gruyter.
- [16] E. KLEINFELD: Techniques for enumerating Veblen Wedderburn systems, J. Assoc. Comp. Mach. 7 (1960), 330–337.
- [17] KLEINFELD, E. (1983): A history of finite semifields, in Finite Geometries, Pullman, Washington, 1981, New York: Dekker, New York.
- [18] D. E. KNUTH: Finite semifields and projective planes, J. Algebra 2 (1965), 182-217.
- [19] G. MENICHETTI: On a Kaplansky conjecture concerning three-dimensional division algebras over a finite field, J. Algebra 47 (1977), 400–410.
- [20] G. MENICHETTI: Algebre tridimensionali su un campo di Galois, Ann. Mat. Pura Appl., 97 (1973), 293–302.
- [21] J. L. ZEMMER JR.: On the subalgebras of finite division algebras, Canadian J. Math. 4 (1952), 391–503. Chicago, 1943.