Note di Matematica 27, n. 1, 2007, 1–4.

An interesting table related to Fibonacci numbers

Nese Omur

Department of Mathematics, University of Kocaeli, Kocaeli - TURKEY neseomur@kou.edu.tr

Yucel Turker Ulutas

Department of Mathematics, University of Kocaeli, Kocaeli - TURKEY turkery@kou.edu.tr

Received: 6/10/2005; accepted: 19/12/2005.

Abstract. In this paper, we show that sum of the row elements on the table formed by a given recurrence relation, and each element on this table can be obtained using two different Fibonacci numbers.

Keywords: Matrices, Fibonacci numbers, recurrence relation.

MSC 2000 classification: 11B37, 11B39, 11B20

1 Introduction

There are interesting recurrence relations in [2] and then, we take an infinitedimensional matrix $A = (a_{i,j})$ formed by the following recurrence relation.

$$a_{1,j} = F_j + (-1)^j F_1$$

$$a_{2,j} = F_{j+1} + (-1)^j F_2$$

$$a_{i,j} + a_{i+1,j} = a_{i+2,j}, \quad i > 1$$
(1)

2 Results on the table

Using the recurrence relation (1), we have the following results.

1 Theorem.

$$a_{i,j} = F_{i+j-1} + (-1)^j F_i, \quad i \ge 1.$$

PROOF. By the recurrence relation (1), the result is true for i = 1, 2. We now assume that it is true for all integer less than n, where n > 2:

$$a_{n-1,j} = F_{n+j-2} + (-1)^j F_{n-1}.$$

QED

We then get

$$a_{n,j} = a_{n-2,j} + a_{n-1,j} = F_{n+j-3} + (-1)^j F_{n-2} + F_{n+j-2} + (-1)^j F_{n-1}$$
$$= F_{n+j-1} + (-1)^j F_n.$$

Thus, the result is true for all $n \ge 2$.

i/j	1	2	3	4	5	6	$\overline{7}$	8	9	10	
1	0	2	1	4	4	9	12	22	33	56	
2	0	3	2	6	$\overline{7}$	14	20	35	54	90	
3	0	5	3	10	11	23	32	57	87	146	
4	0	8	5	16	18	37	52	92	141	236	
5	0	13	8	26	29	60	84	149	228	382	
6	0	21	13	42	47	97	136	241	369	618	
7	0	34	21	68	76	157	220	390	597	1000	
8	0	55	34	110	123	254	356	631	966	1618	
9	0	89	55	178	199	411	576	1021	1563	2618	
10	0	144	89	288	322	665	932	1652	2529	4236	
•											

TABLE

2 Corollary.

$$a_{i,j} + a_{i,j+1} = F_{i+j+1}, \quad i,j \ge 1.$$

PROOF. Since $a_{i,j} = F_{i+j-1} + (-1)^j F_i$, by Theorem 1,

$$a_{i,j} + a_{i,j+1} = F_{i+j-1} + (-1)^j F_i + F_{i+j} + (-1)^{j+1} F_i$$

= $F_{i+j-1} + F_{i+j} = F_{i+j+1}$.

QED

We now examine the sum of the first n elements on any row:

$$a_{i,1} = F_i + (-1)^1 F_i = F_i - F_i,$$

$$a_{i,2} = F_{i+1} + (-1)^2 F_i = F_{i+1} + F_i,$$

$$a_{i,3} = F_{i+2} + (-1)^3 F_i = F_{i+2} - F_i,$$

$$\vdots$$

$$a_{i,n} = F_{i+n-1} + (-1)^n F_i.$$

Here, it is important that n is even or odd in these equations. Therefore, we first assume that n is even. Adding these equations, we get

$$\sum_{j=1}^{n} a_{i,j} = F_{i+1} + F_{i+2} + \dots + F_{i+n-1} + F_i$$
$$= \sum_{k=0}^{n-1} F_{i+k} = \sum_{r=1}^{i+n-1} F_r - \sum_{r=1}^{i-1} F_r = F_{i+n+1} - F_{i+1}.$$

Now let n be odd. Then, we get

$$\sum_{j=1}^{n} a_{i,j} = F_{i+1} + F_{i+2} + \dots + F_{i+n-1}$$
$$= \sum_{k=1}^{n-1} F_{i+k} = \sum_{r=1}^{i+n-1} F_r - \sum_{r=1}^{i} F_r = F_{i+n+1} - F_{i+2}.$$

Thus,

3 Theorem.

$$\sum_{j=1}^{n} a_{i,j} = \begin{cases} F_{i+n+1} - F_{i+2} & \text{if } n \text{ is odd,} \\ F_{i+n+1} - F_{i+1} & \text{if } n \text{ is even.} \end{cases}$$

We now examine a determinant of a special matrix $A = (a_{i,j})_{2 \times 2}$ taken from the above table. We now take the matrix

$$A = \begin{bmatrix} a_{i,j} & a_{i,j+1} \\ a_{i+1,j} & a_{i+1,j+1} \end{bmatrix}$$

and calculate the determinant of this matrix as follows.

4 Theorem.

$$\begin{vmatrix} a_{i,j} & a_{i,j+1} \\ a_{i+1,j} & a_{i+1,j+1} \end{vmatrix} = (-1)^{i+j+1} [F_{j+1} - 1], \quad i, j \ge 1.$$

PROOF. Using the Theorem 1, we get

$$\begin{vmatrix} a_{i,j} & a_{i,j+1} \\ a_{i+1,j} & a_{i+1,j+1} \end{vmatrix} = F_{i+j-1}F_{i+j+1} + (-1)^{j+1}F_{i+j-1}F_{i+1} + (-1)^{j}F_{i+j+1}F_{i+1} - F_{i+j}F_{i+1} - (-1)^{j}F_{i+j+1}F_{i+1} - F_{i+j}F_{i+1} + (-1)^{j}F_{i+j+1}F_{i+1} - F_{i+j}F_{i+1} - F_{i+j}F$$

QED

By the well-known identities about the Fibonacci numbers [2, p.74, 87]

$$F_{r-1}F_{r+1} - F_r^2 = (-1)^r, F_m F_n - F_{m+k}F_{n-k} = (-1)^r F_{m+k-n}F_k,$$

we obtain

$$\begin{vmatrix} a_{i,j} & a_{i,j+1} \\ a_{i+1,j} & a_{i+1,j+1} \end{vmatrix} = (-1)^{j+i} + (-1)^{i+j+1} F_{j-1} + (-1)^{i+2j} F_{1-j} = (-1)^{j+i} + (-1)^{i+j+1} F_{j-1} + (-1)^{i+3j+1} F_{j} = (-1)^{i+j+1} [F_{j-1} + F_j - 1] = (-1)^{i+j+1} [F_{j+1} - 1].$$

We can generalize Theorem 4, as the next theorem shows.

5 Theorem.

i.

 $\begin{vmatrix} a_{i,j} & a_{i,k} \\ a_{i+1,j+1} & a_{i+1,k} \end{vmatrix} = (-1)^{i+j+1} F_{k-j} + (-1)^{i+j+k} [F_{1-j} - F_{1-k}], \quad i,j \ge 1, k > j.$

PROOF. From the definition of determinant of a matrix, we obtain

$$\begin{vmatrix} a_{i,j} & a_{i,k} \\ a_{i+1,j+1} & a_{i+1,k} \end{vmatrix} = a_{i,j}a_{i+1,k} - a_{i,k}a_{i+1,j+1}$$

= $(F_{i+j-1} + (-1)^j F_i)(F_{i+k} + (-1)^k F_{i+1}) - (F_{i+k-1} + (-1)^k F_i)(F_{i+j} + (-1)^j F_{i+1})$
= $F_{i+j-1}F_{i+k} + (-1)^k F_{i+j-1}F_{i+1} + (-1)^j F_i F_{i+k} + (-1)^{j+k} F_i F_{i+1}$
 $- F_{i+j}F_{i+k-1} - (-1)^k F_{i+j}F_i - (-1)^j F_{i+1}F_{i+k-1} - (-1)^{j+k} F_{i+1}F_i$
= $F_{i+j-1}F_{i+k} + (-1)^k (F_{i+j-1}F_{i+1} - F_{i+j}F_i) + (-1)^j (F_i F_{i+k} - F_{i+1}F_{i+k-1})$
Since by [1]

$$F_{n+h}F_{n+k} - F_nF_{n+h+k} = (-1)^n F_h F_k,$$

we get

.

$$\begin{vmatrix} a_{i,j} & a_{i,k} \\ a_{i+1,j+1} & a_{i+1,k} \end{vmatrix} = (-1)^{i+j} F_{k-j} + (-1)^k (-1)^{i+j} F_{1-j} + (-1)^j (-1)^{i+k} F_{1-k} = (-1)^{i+j} F_{k-j} + (-1)^{i+j+k} (F_{1-j} + F_{1-k}),$$

as desired.

References

- EVERMAN ET AL: Problem E 1396, The American Mathematical Monthly, 67, (1960), 697.
- [2] T. KOSHY: Fibonacci and Lucas Numbers in Applications, A Wiley-Interscience Publication, New York, 2001.