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Abstract. The main aim of this paper is to establish some companions of Ostrowski type inte-
gral inequalities for functions whose second derivatives are bounded. Moreover, some Ostrowski
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applications for special means and quadrature formulae are also given.
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1 Introduction

In 1938, Ostrowski [27] established a following useful inequality:

Theorem 1. Let f : [a, b] → R be a differentiable mapping on (a, b) whose
derivative f ′ : (a, b) → R is bounded on (a, b) , i.e. ‖f ′‖∞ := sup

t∈(a,b)
|f ′(t)| < ∞.

Then, we have the inequality∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤
[

1

4
+

(
x− a+b

2

)2
(b− a)2

]
(b− a)

∥∥f ′∥∥∞ , (1.1)

for all x ∈ [a, b].

The constant 1
4 is the best possible.

Inequality (1.1) is referred to, in the literature, as the Ostrowski inequality.
Numerous studies were devoted to extensions and generalizations of this in-
equality in both the integral and discrete case. For some examples, please refer
to ([10], [11], [17]-[26], [28]-[35])
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Definition 1. Let P : a = x0 < x1 < ... < xn = b be any partition of [a, b]
and let ∆f(xi) = f(xi+1) − f(xi), then f is said to be of bounded variation if
the sum

m∑
i=1

|∆f(xi)|

is bounded for all such partitions.

Definition 2. Let f be of bounded variation on [a, b], and
∑

∆f (P ) de-

notes the sum
n∑
i=1
|∆f(xi)| corresponding to the partition P of [a, b]. The number

b∨
a

(f) := sup
{∑

∆f (P ) : P ∈ P([a, b])
}
,

is called the total variation of f on [a, b] . Here P([a, b]) denotes the family of
partitions of [a, b] .

In [12], Dragomir proved the following Ostrowski type inequality for func-
tions of bounded variation:

Theorem 2. Let f : [a, b]→ R be a mapping of bounded variation on [a, b] .
Then ∣∣∣∣∣∣

b∫
a

f(t)dt− (b− a) f(x)

∣∣∣∣∣∣ ≤
[

1

2
(b− a) +

∣∣∣∣x− a+ b

2

∣∣∣∣] b∨
a

(f) (1.2)

holds for all x ∈ [a, b] . The constant 1
2 is the best possible.

A great many of authors worked on Ostrowski type inequality for functions
of bounded variation (or derivatives of bounded variation), for some of them
please see ([1]-[9], [13]-[16])

The main purpose of this paper is to obtain some companions of Ostrowski
type inequalities for function whose second derivatives are bounded. Moreover,
some inequalities for derivatives of bounded variation and some applications
are also given. This paper is divided into the following four sections. In Section
2, the first part of main result is presented. We establish an identity for twice
differantiable functions and using this identity we obtain an Ostrowski type in-
tegral inequality for mappings whose second derivatives are bounded. In Section
3, some integral inequalities for function whose first derivatives are of bounded
variation and some corollaries for special cases are given. In section 4, we give
some applications for special means using the inequality obtained in Section 2.
Finally, in Section 5, we presented an application for quadrature formula via
Ostrowski type ineqaulity for derivatives of bounded variation given in Section
3.
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2 Inequalities for Functions Whose Second Deriva-
tives are Bounded

Before we start our main results, we state and prove the following lemma:

Lemma 1. Let f : [a, b] → R be a twice differantiable function on (a, b) .
Then we have the following identity

1

b− a

b∫
a

f(t)dt− 1

2

[
f

(
a+ b

2

)
+
f (a) + f(b)

2

]
(2.1)

+
(b− a)

36

[
f ′ (b)− f ′ (a)

]
=

1

2(b− a)


a+b
2∫
a

(
t− 2a+ b

3

)(
t− 5a+ b

6

)
f ′′(t)dt

+

b∫
a+b
2

(
t− a+ 2b

3

)(
t− a+ 5b

6

)
f ′′(t)dt

 .
Proof. Using the integration by parts, we have

a+b
2∫
a

(
t− 2a+ b

3

)(
t− 5a+ b

6

)
f ′′(t)dt (2.2)

=

(
t− 2a+ b

3

)(
t− 5a+ b

6

)
f ′(t)

∣∣∣∣a+b2

a

− 2

a+b
2∫
a

(
t− 3a+ b

4

)
f ′(t)dt

=
(b− a)2

18
f ′
(
a+ b

2

)
− (b− a)2

18
f ′ (a)− 2

(
t− 3a+ b

4

)
f(t)

∣∣∣∣a+b2

a

+ 2

a+b
2∫
a

f(t)dt

=
(b− a)2

18

[
f ′
(
a+ b

2

)
− f ′ (a)

]
− b− a

2

[
f

(
a+ b

2

)
+ f (a)

]
+ 2

a+b
2∫
a

f(t)dt

and

b∫
a+b
2

(
t− a+ 2b

3

)(
t− a+ 5b

6

)
f ′′(t)dt (2.3)



106 H. Budak, M. Z. Sarikaya

=

(
t− a+ 2b

3

)(
t− a+ 5b

6

)
f ′(t)

∣∣∣∣b
a+b
2

− 2

b∫
a+b
2

(
t− a+ 3b

4

)
f ′(t)dt

=
(b− a)2

18
f ′ (b)− (b− a)2

18
f ′
(
a+ b

2

)
− 2

(
t− a+ 3b

4

)
f(t)

∣∣∣∣b
a+b
2

+ 2

b∫
a+b
2

f(t)dt

=
(b− a)2

18

[
f ′ (b)− f ′

(
a+ b

2

)]
− b− a

2

[
f

(
a+ b

2

)
+ f (b)

]
+ 2

b∫
a+b
2

f(t)dt.

If we add the equality (2.2) and (2.3) and divide by 2(b − a), we obtain
required identity. QED

Now using the above Lemma, we state and prove the following inequality:

Theorem 3. Let f : [a, b] → R be a twice differantiable function on (a, b),
whose second derivative f ′′ : (a, b) → R is bounded on (a, b). Then we have the
inequality inequalities∣∣∣∣∣∣ 1

b− a

b∫
a

f(t)dt− 1

2

[
f

(
a+ b

2

)
+
f (a) + f(b)

2

]
(2.4)

+
(b− a)

36

[
f ′ (b)− f ′ (a)

]∣∣∣∣
≤ 11

64
(b− a)2

∥∥f ′′(t)∥∥∞ .
Proof. Taking the modulus identity (2.1), we have∣∣∣∣∣∣ 1

b− a

b∫
a

f(t)dt− 1

2

[
f

(
a+ b

2

)
+
f (a) + f(b)

2

]
(2.5)

+
(b− a)

36

[
f ′ (b)− f ′ (a)

]∣∣∣∣
≤ 1

2(b− a)


∣∣∣∣∣∣∣
a+b
2∫
a

(
t− 2a+ b

3

)(
t− 5a+ b

6

)
f ′′(t)dt

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
b∫

a+b
2

(
t− a+ 2b

3

)(
t− a+ 5b

6

)
f ′′(t)dt

∣∣∣∣∣∣∣∣
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≤ 1

2(b− a)


a+b
2∫
a

∣∣∣∣(t− 2a+ b

3

)(
t− 5a+ b

6

)∣∣∣∣ ∣∣f ′′(t)∣∣ dt

+

b∫
a+b
2

∣∣∣∣(t− a+ 2b

3

)(
t− a+ 5b

6

)∣∣∣∣ ∣∣f ′′(t)∣∣ dt
 .

Since f ′′ is bounded on (a, b) we have

a+b
2∫
a

∣∣∣∣(t− 2a+ b

3

)(
t− 5a+ b

6

)∣∣∣∣ ∣∣f ′′(t)∣∣ dt (2.6)

≤
∥∥f ′′(t)∥∥[a,a+b2 ],∞

a+b
2∫
a

∣∣∣∣(t− 2a+ b

3

)(
t− 5a+ b

6

)∣∣∣∣ dt
=

11

64
(b− a)3

∥∥f ′′(t)∥∥[a,a+b2 ],∞

and
b∫

a+b
2

∣∣∣∣(t− a+ 2b

3

)(
t− a+ 5b

6

)∣∣∣∣ ∣∣f ′′(t)∣∣ dt (2.7)

≤
∥∥f ′′(t)∥∥[a+b2

,b],∞

b∫
a+b
2

∣∣∣∣(t− a+ 2b

3

)(
t− a+ 5b

6

)∣∣∣∣ dt
=

11

64
(b− a)3

∥∥f ′′(t)∥∥[a+b2
,b],∞ .

If we substitute the inequalities (2.6) and (2.7) in (2.5), then we get∣∣∣∣∣∣ 1

b− a

b∫
a

f(t)dt− 1

2

[
f

(
a+ b

2

)
+
f (a) + f(b)

2

]
+

(b− a)

36

[
f ′ (b)− f ′ (a)

]∣∣∣∣∣∣
≤ 1

2(b− a)

[
11

64
(b− a)3

∥∥f ′′(t)∥∥[a,a+b2 ],∞ +
11

64
(b− a)3

∥∥f ′′(t)∥∥[a+b2
,b],∞

]
≤ 11

64
(b− a)2

∥∥f ′′(t)∥∥∞
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which completes the proof. QED

Corollary 1. If we choose f ′ (b) = f ′ (a) , then the following Bullen type
inequality holds∣∣∣∣∣∣ 1

b− a

b∫
a

f(t)dt− 1

2

[
f

(
a+ b

2

)
+
f (a) + f(b)

2

]∣∣∣∣∣∣ ≤ 11

64
(b− a)2

∥∥f ′′(t)∥∥∞ .
3 Inequalities for Functions Whose First Derivatives

are of Bounded Variation

For functions whose first derivatives are of bounded variation, the following
theorem holds:

Theorem 4. Let : f : [a, b] → R be a twice differantiable function on I◦

and [a, b] ⊂ I◦. If the first derivative f ′ is of bounded variation on [a, b] , then∣∣∣∣∣∣ 1

b− a

b∫
a

f(t)dt− 1

2

[
f

(
a+ b

2

)
+
f (a) + f(b)

2

]
(3.1)

+
(b− a)

36

[
f ′ (b)− f ′ (a)

]∣∣∣∣
≤ b− a

36

b∨
a

(f ′).

Proof. Using the integration by parts for Riemann-Stieltjes, we have the equality

1

b− a

b∫
a

f(t)dt− 1

2

[
f

(
a+ b

2

)
+
f (a) + f(b)

2

]
(3.2)

+
(b− a)

36

[
f ′ (b)− f ′ (a)

]
=

1

2(b− a)


a+b
2∫
a

(
t− 2a+ b

3

)(
t− 5a+ b

6

)
df ′(t)

+

b∫
a+b
2

(
t− a+ 2b

3

)(
t− a+ 5b

6

)
df ′(t)

 .
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Taking the madulus in (3.2), we have∣∣∣∣∣∣ 1

b− a

b∫
a

f(t)dt− 1

2

[
f

(
a+ b

2

)
+
f (a) + f(b)

2

]
(3.3)

+
(b− a)

36

[
f ′ (b)− f ′ (a)

]∣∣∣∣
=

1

2(b− a)


∣∣∣∣∣∣∣
a+b
2∫
a

(
t− 2a+ b

3

)(
t− 5a+ b

6

)
df ′(t)

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
b∫

a+b
2

(
t− a+ 2b

3

)(
t− a+ 5b

6

)
df ′(t)

∣∣∣∣∣∣∣∣
 .

It is well known that if g, f : [a, b] → R are such that g is continuous on [a, b]

and f is of bounded variation on [a, b] , then
b∫
a
g(t)df(t) exists and∣∣∣∣∣∣

b∫
a

g(t)df(t)

∣∣∣∣∣∣ ≤ sup
t∈[a,b]

|g(t)|
b∨
a

(f). (3.4)

Since f ′ is of bounded variation on [a, b], appliying the inequality (3.4), we
get ∣∣∣∣∣∣∣

a+b
2∫
a

(
t− 2a+ b

3

)(
t− 5a+ b

6

)
df ′(t)

∣∣∣∣∣∣∣ (3.5)

≤ sup
t∈[a,a+b2 ]

∣∣∣∣(t− 2a+ b

3

)(
t− 5a+ b

6

)∣∣∣∣
a+b
2∨
a

(f ′)

=
(b− a)2

18

a+b
2∨
a

(f ′),

and similarly ∣∣∣∣∣∣∣∣
b∫

a+b
2

(
t− a+ 2b

3

)(
t− a+ 5b

6

)
df ′(t)

∣∣∣∣∣∣∣∣ (3.6)
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≤ sup
t∈[a+b2

,b]

∣∣∣∣(t− a+ 2b

3

)(
t− a+ 5b

6

)∣∣∣∣ b∨
a+b
2

(f ′)

≤ (b− a)2

18

b∨
a+b
2

(f ′).

If we substitute the inequalities (3.5) and (3.6) in (3.3), then we obtain required
result. QED

Under assumption of of Theorem 3, we have the following corollaries:

Corollary 2. Let f ∈ C2 [a, b] . Then we have the inequality∣∣∣∣∣∣ 1

b− a

b∫
a

f(t)dt− 1

2

[
f

(
a+ b

2

)
+
f (a) + f(b)

2

]
(3.7)

+
(b− a)

36

[
f ′ (b)− f ′ (a)

]∣∣∣∣
≤ b− a

36

∥∥f ′′∥∥
[a,b],1

where ‖.‖[a,b],1 is the L1−norm, namely

∥∥f ′′∥∥
[a,b],1

=

b∫
a

∣∣f ′′(t)∣∣ dt.
Corollary 3. Let f ′ : [a, b] → R be a Lipschitzian mapping with the con-

stants L > 0. Then, we have the inequality∣∣∣∣∣∣ 1

b− a

b∫
a

f(t)dt− 1

2

[
f

(
a+ b

2

)
+
f (a) + f(b)

2

]
(3.8)

+
(b− a)

36

[
f ′ (b)− f ′ (a)

]∣∣∣∣
≤ L (b− a)3

36
.

Proof. As f ′ is L-Lipschitzian on [a, b], it is also of bounded variation. If P([a, b])
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denotes the family of divisions on [a, b], then

b∨
a

(f ′) = sup
P∈P([a,b])

n−1∑
i=0

∣∣f ′(xi+1)− f ′(xi)
∣∣

≤ L sup
P∈P([a,b])

n−1∑
i=0

|xi+1 − xi|

= L (b− a)

and the required result (3.8) is proved. QED

4 Some applications for special means

Let us recall the following special means of the two positive number u, v:
(1) Arithmetic mean,

A(u, v) =
u+ v

2
, u, v ∈ R

(2) Geometric mean,

G(u, v) =
√
u.v, u, v > 0

(3) Harmonic mean

H(u, v) =
2uv

u+ v
,

(4) Logarithmic mean,

L(u, v) =


u if u = v

u−v
lnu−ln v if u 6= v

, u, v > 0

(5) Generalized log−mean

Lp(u, v) =


u if u = v

[
up+1−vp+1

(p+1)(u−v)

] 1
p

if u 6= v

, u, v > 0, p 6= −1, 0

(6) Identric mean

I(u, v) =


u if u = v

1
e

(
vv

uu

) 1
v−u if u 6= v

, u, v > 0
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Proposition 1. Let a, b ∈ R, a < b, and n ∈ Z\ {−1, 0}. Then the following
inequality holds:∣∣∣∣Lnn(a, b)− An(a, b) +A(an, bn)

2
+
n(n− 1)(b− a)2

36
Ln−1
n−1(a, b)

∣∣∣∣
≤ 11

64
(b− a)2δn(a, b).

Proof. Let us reconsider the inequality (2.4):∣∣∣∣∣∣ 1

b− a

b∫
a

f(t)dt− 1

2

[
f

(
a+ b

2

)
+
f (a) + f(b)

2

]
(4.1)

+
(b− a)

36

[
f ′ (b)− f ′ (a)

]∣∣∣∣
≤ 11

64
(b− a)2

∥∥f ′′(t)∥∥∞ .
Consider the mapping f : (0,∞) → R, f(x) = xn, n ∈ Z\ {−1, 0} . Then,
0 < a < b, we have

1

b− a

b∫
a

f(t)dt = Lnn(a, b),

f

(
a+ b

2

)
= An(a, b),

f (a) + f(b)

2
= A(an, bn)

f ′ (b)− f ′ (a) = n
[
bn−1 − an−1

]
= n(n− 1)(b− a)Ln−1

n−1(a, b)

and ∥∥f ′′(t)∥∥∞ =


|n(n− 1)| bn−2, n > 2

|n(n− 1)| bn−2, n ∈ (−∞, 2) \ {−1, 0}
Then, we obtain∣∣∣∣Lnn(a, b)− An(a, b) +A(an, bn)

2
+
n(n− 1)(b− a)2

36
Ln−1
n−1(a, b)

∣∣∣∣
≤ 11

64
(b− a)2δn(a, b)

where

δn(a, b) =


|n(n− 1)| bn−2, n > 2

|n(n− 1)| bn−2, n ∈ (−∞, 2) \ {−1, 0} .
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This completes the proof. QED

Proposition 2. Let a, b ∈ R, a < b. Then the following inequality holds:∣∣∣∣L−1(a, b)− A−1(a, b) +H−1(a, b)

2
+

(b− a)2

18ab
H−1(a, b)

∣∣∣∣ ≤ 22

64
.
(b− a)2

a3
.

Proof. The proof is obvious from Theorem 3 applied to the function f(x) =
1
x .

QED

Proposition 3. Let a, b ∈ R, a < b. Then the following inequality holds:∣∣∣∣∣ln
[

I(a, b)√
A(a, b)G(a, b)

]
+
b− a

18
H−1(a, b)

∣∣∣∣∣ ≤ 11

64
.
(b− a)2

a2
.

Proof. Consider the mapping f : (0,∞)→ R, f(x) = lnx, and 0 < a < b.

1

b− a

b∫
a

f(t)dt = ln I(a, b), f

(
a+ b

2

)
= lnA(a, b),

f (a) + f(b)

2
= lnG(a, b)

f ′ (b)− f ′ (a) = 2H−1(a, b), and
∥∥f ′′(t)∥∥∞ =

1

a2

and then ,by (4.1), we obtain the desired inequality. QED

5 Application to quadrature formula

Our obtained inequalities for function of bounded variation have many ap-
plications but in this paper, we apply our result only for efficient quadrature
rule.

Let us consider the arbitrary division In : a = x0 < x1 < ... < xn = b
with hi := xi+1 − xi and υ(h) := max {hi| i = 0, ..., n− 1}. Then the following
Theorem holds:

Theorem 5. Let f : [a, b] → R be such that f ′ is a continuous function of
bounded variation on [a, b] . Then we have the quadrature formula:

b∫
a

f(t)dt

=

n−1∑
i=0

[
1

2

[
f

(
xi + xi+1

2

)
+
f (xi) + f(xi+1)

2

]
+
hi
36

[
f ′ (xi+1)− f ′ (xi)

]]
hi

+R(In, f).
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The remainder term R(In, f) satisfies

|R(In, f)| ≤ 1

36
(v(h))2

b∨
a

(
f ′
)

Proof. Applying Theorem 3 to interval [xi, xi+1] , we have∣∣∣∣∣∣
xi+1∫
xi

f(t)dt−
[

1

2

[
f

(
xi + xi+1

2

)
+
f (xi) + f(xi+1)

2

]
(5.1)

+
hi
36

[
f ′ (xi+1)− f ′ (xi)

]]
hi

∣∣∣∣
≤ h2

i

36

xi+1∨
xi

(f ′).

Summing the inequality (5.1) over i from 0 to n− 1, then we have

|R(In, f, ξ)| ≤
1

36

n−1∑
i=0

h2
i

36

xi+1∨
xi

(f ′) ≤ 1

36
(v(h))2

n−1∑
i=0

xi+1∨
xi

(
f ′
)
≤ 1

36
(v(h))2

b∨
a

(
f ′
)
.

This completes the proof of the Theorem. QED
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