Note di Matematica **21,** n. 1, 2002, 93–106.

On a functional analytic approach for transition semigroups on $L^2(\mu)$

Abdelaziz Rhandi

Department of Mathematics, University of Marrakesh, B.P.: 2390, 40000-Marrakesh, Morocco rhandi@ucam.ac.ma

Received: 18 September 2001; accepted: 15 January 2002.

Abstract. By using only analytic tools we prove the positivity of the transition semigroup associated formally with the stochastic differential equation

 $dX(t) = (AX(t) + F(X(t)))dt + Q^{\frac{1}{2}}dW(t), X(0) = x, t \ge 0, x \in H$

in the case where $F \in UCB(H, H)$. As a consequence we obtain the existence of an invariant measure of the above stochastic equation.

Introduction

The Ornstein-Uhlenbeck semigroup, acting on measurable bounded functions $\varphi: H \to \mathbb{R}$, can be defined by the formula

$$
(R_t\varphi)(x) := \mathbb{E}[\varphi(X(t,x))], \quad x \in H, t \ge 0,
$$

where H is a separable Hilbert space and X is the Gaussian Markov process that solves the following differential stochastic equation

$$
\begin{cases}\n dX(t) = AX(t)dt + Q^{\frac{1}{2}}dW(t), \quad t \ge 0, \\
X(0) = x \in H.\n\end{cases}
$$
\n(1)

Here $A: D(A) \to H$ is the generator of a C₀-semigroup $(e^{tA})_{t>0}$ on H, $W(t), t \geq 0$ 0, is an H -valued cylindrical Wiener process and Q is a continuous, linear, selfadjoint and nonnegative operator in H satisfying

(H1) for each $s > 0$ the linear operator $e^{sA}Qe^{sA^*}$ is of trace-class, ker $Q = \{0\}$ and

$$
\int_0^t Tr(e^{sA}Qe^{sA^*})ds < \infty \quad \text{ for all } t > 0.
$$

For each $t \geq 0$, we set $Q_t := \int_0^t e^{sA} Q e^{sA^*} ds$. If (H1) holds, it is obvious that Q_t is a continuous, linear, self-adjoint and nonnegative operator on H which is of trace-class and ker $Q_t = \{0\}.$

We denote by $B_b(H)$ the Banach space of all bounded and Borel mappings from H into $\mathbb R$ endowed with the norm

$$
\|\varphi\|_\infty:=\sup_{x\in H}|\varphi(x)|
$$

and by $UCB(H)$ the closed subspace of $B_b(H)$ of all uniformly continuous and bounded functions from H into R. It can be proved that if (H1) holds then (R_t) is given by

$$
(R_t \varphi)(x) = \int_H \varphi(y) \mathcal{N}(e^{tA}x, Q_t)(dy) = \int_H \varphi(e^{tA}x + y) \mathcal{N}(0, Q_t)(dy)
$$

for $\varphi \in B_b(H)$, $t \geq 0$ and $x \in H$ (see [3]). Here, $\mathcal{N}(e^{tA}x, Q_t)$ denotes the Gaussian measure with mean $e^{tA}x \in H$ and covariance Q_t . For more details concerning Gaussian measures on Banach spaces we refer to [6] and [12].

Consequently, (R_t) is *strong Feller*, i.e., $R_t\varphi \in UCB(H)$ for $\varphi \in B_b(H)$ and $t > 0$. Moreover, if A is not identically 0, the semigroup (R_t) on $UCB(H)$ is not strongly continuous (see [1] and also [9]). By the type of (e^{tA}) we understand the number $\omega(A) := \lim_{t \to \infty} \frac{1}{t} \log ||e^{tA}||$. If $\omega(A) < 0$, we set

$$
Q_{\infty} := \int_0^{\infty} e^{sA} Q e^{sA^*} ds.
$$

Using (H1) one can see that Q_{∞} is a continuous, linear, self-adjoint and nonnegative operator on H of trace-class. So we can define the Gaussian measure $\mu := \mathcal{N}(0, Q_{\infty})$ on H. The measure μ is the unique invariant measure for (R_t) (see [3]). This means that

$$
\int_H (R_t \varphi)(x) \mu(dx) = \int_H \varphi(x) \mu(dx) \quad \text{ for all } \varphi \in UCB(H).
$$

We denote by $L^2(H,\mu)$ the space of all equivalence classes of real Borel functions φ on H such that

$$
\int_H |\varphi(x)|^2 \mu(dx) < \infty.
$$

Endowed with the inner product

$$
<\varphi, \psi>_{L^2}:= \int_H \varphi(x)\psi(x)\mu(dx),
$$

 $L^2(H,\mu)$ is a Hilbert space. Since μ is an invariant measure for (R_t) , one can see that (R_t) can be uniquely extended to a C_0 -semigroup of contractions in

 $L^2(H,\mu)$. We denote by A the generator of (R_t) in $L^2(H,\mu)$. If we denote by (e_k) a complete orthonormal system of eigenvectors of Q and by $D_k\varphi$ the derivative of φ in the direction e_k , then it is well known that D_k is closable. We shall still denote by D_k its closure. We recall now the definition of Sobolev spaces. We denote by $W^{1,2}(H,\mu)$ the linear space of all functions $\varphi \in L^2(H,\mu)$ such that $D_k \varphi \in L^2(H, \mu)$ for all $k \in \mathbb{N}$ and

$$
\int_H |D\varphi(x)|^2 \mu(dx) = \sum_{k=1}^{\infty} \int_H |D_k \varphi(x)|^2 \mu(dx) < \infty.
$$

The space $W^{1,2}(H,\mu)$ endowed with the inner product

$$
\langle \varphi, \psi \rangle_{W^{1,2}} := \int_H \varphi(x)\psi(x)\mu(dx) + \int_H \langle D\varphi(x), D\psi(x) \rangle \mu(dx),
$$

$$
\varphi, \psi \in W^{1,2}(H, \mu),
$$

is a Hilbert space.

For $F \in UCB(H, H)$ we consider the linear operator $(B, D(B))$ on $L^2(H, \mu)$ defined by

$$
D(B) = W^{1,2}(H,\mu) \text{ and } B\varphi(x) := \langle F(x), D\varphi(x) \rangle
$$

for $\varphi \in D(B)$ and $x \in H$.

In the sequel we will need another assumption.

(H2) For all $t > 0$ we have $e^{tA}(H) \subset Q_t^{\frac{1}{2}}(H)$ and there exists $C > 0$ and $\nu \in (0, 1)$ such that $||Q_t^{-\frac{1}{2}}e^{tA}|| \leq Ct^{-\nu}$

We note that (H2) is satisfied with $\nu = \frac{1}{2}$ if $Q = Id$ (see [3, Corollary 9.22]).

Using a Miyadera perturbation theorem (see [7], [15]), we show that $A + B$ generates a compact C₀-semigroup (P_t) on $L^2(H,\mu)$ if $\omega(A) < 0$ and (H1) and (H2) are satisfied. The semigroup (P_t) is given by a Dyson–Phillips series and this permits to derive some regularity results. The positivity of (P_t) is also proved. As a consequence we obtain the existence of an invariant measure for the following stochastic differential equation

$$
\begin{cases}\n dX(t) = (AX(t) + F(X(t)))dt + Q^{\frac{1}{2}}dW(t), \quad t \ge 0, \\
X(0) = x \in H.\n\end{cases} \tag{2}
$$

We note here that only analytic tools will be used.

The paper is organized as follows. In Section 1 we recall the Miyadera perturbation theorem and give some well-known properties of the Ornstein–Uhlenbeck semigroup (R_t) that we will need. In Section 2 we prove that $(A + B, D(A))$ generates a compact C₀-semigroup (P_t) on $L^2(H,\mu)$ and give some smoothing properties of (P_t) . This semigroup will be called *transition semigroup*. In Section 3 we show, by using purely analytic methods, that (P_t) is a positive semigroup on $L^2(H,\mu)$. From the positivity of (P_t) we obtain the existence of an invariant measure for (2).

1 Preliminaries

In this section we recall several results that we will use in the sequel. Let $(\mathcal{A}, D(\mathcal{A}))$ and $(B, D(B))$ be two linear operators. Recall that B is A-bounded if $D(\mathcal{A}) \subset D(B)$ and $||B\varphi|| \le a||\varphi|| + b||A\varphi||$ for $\varphi \in D(\mathcal{A})$ and constants $a, b \geq 0$. Observe that if there exists $\lambda \in \rho(\mathcal{A})$ then B is A-bounded if and only if $D(\mathcal{A}) \subset D(B)$ and $BR(\lambda, \mathcal{A})$ is closed (and hence bounded).

We will need the following Miyadera perturbation theorem (see [7] or [15, Theorem 1]).

Theorem 1. Let (R_t) be a C_0 -semigroup on a Banach space E with gen*erator* (A, D(A))*. Consider an* A*-bounded linear operator* (B,D(B)) *such that there are constants* $\alpha > 0, \gamma \in [0, 1)$ *and*

$$
\int_0^\alpha \|BR_t\varphi\|dt \le \gamma \|\varphi\| \quad \text{for } \varphi \in D(\mathcal{A})
$$
 (3)

holds. Then the following assertions hold.

(a) The operator $G := \mathcal{A} + B$ with $D(G) = D(\mathcal{A})$ generates a C_0 -semigroup (Pt) *on* E *given by the Dyson–Phillips series*

$$
P_t = \sum_{n=0}^{\infty} U_n(t), \quad t \ge 0,
$$
\n⁽⁴⁾

where $U_0(t) := R_t$ *and* $U_{n+1}(t) \varphi := \int_0^t U_n(t-s) BR_s \varphi ds$ *for* $t \geq 0$ *and* $\varphi \in D(\mathcal{A})$ *. The series in* (4) *converges in the operator norm for* $t \geq 0$ *.*

(b) *For* $\varphi \in D(\mathcal{A})$ *and* $t \geq 0$ *, we have*

$$
P_t \varphi = R_t \varphi + \int_0^t P_{t-s} B R_s \varphi ds, \qquad (5)
$$

$$
P_t \varphi = R_t \varphi + \int_0^t R_{t-s} B P_s \varphi ds. \tag{6}
$$

Moreover, (P_t) *is the only C*₀*-semigroup satisfying* (5) *for* $\varphi \in D(\mathcal{A})$ *.*

Remark 1. The last assertion in (a) is shown in [11, Proposition 2.3]. Equation (6) follows from [10, Theorem 3.1 (c)].

We denote by $UCB^k(H)$, $k \in \mathbb{N}$, the subspace of $UCB(H)$ of all functions $\varphi: H \to \mathbb{R}$ which are k-times Fréchet differentiable, with a bounded uniformly continuous k-derivative $D^k\varphi$.

The following regularity results of the Ornstein-Uhlenbeck semigroup (R_t) on $UCB(H)$ and $L^2(H, \mu)$ (see [4, Theorem 2.7]) are relevant.

Theorem 2. *Assume that (H1) and (H2) hold. Then for all* $\varphi \in B_b(H)$ and $t > 0$, $R_t \varphi \in UCB^{\infty}(H) := \bigcap_{k \in \mathbb{N}} UCB^k(H)$ *and*

$$
|D(R_t\varphi)(x)| \le Ct^{-\nu} \|\varphi\|_{\infty}, \quad x \in H. \tag{7}
$$

Theorem 3. *If* $\omega(A) < 0$ *and (H1) and (H2) hold, then for any* $\varphi \in$ $L^2(H, \mu)$ and $t > 0$, we have $R_t \varphi \in W^{1,2}(H, \mu)$ and

$$
||D(R_t \varphi)||_{L^2} \leq Ct^{-\nu} ||\varphi||_{L^2}.
$$
\n(8)

The following description of the generator $(A, D(A))$ of (R_t) is shown in [3].

Proposition 1. *If* $\omega(A) < 0$ *and (H1) are satisfied, then the subspace* \mathcal{D}_A := $\lim{\varphi_h(\cdot)} := e^{i \langle \lambda, \cdot \rangle}, h \in D(A^*)$ of $L^2(H, \mu)$ *is a core for* (R_t) *. Moreover* A *is the closure of* A_0 *, where* A_0 *is defined by*

$$
\mathcal{A}_0\varphi(x) := \frac{1}{2}Tr[Q D^2 \varphi(x)] + \langle Ax, D\varphi(x) \rangle \quad \text{for } \varphi \in \mathcal{D}_A.
$$

2 A Miyadera perturbation of the Ornstein-Uhlenbeck semigroup on *L*²

In this and the next section we suppose that $\omega(A) < 0$ and that (H1) and (H2) hold. By $(A, D(A))$ we denote the generator of the Ornstein-Uhlenbeck semigroup (R_t) on $L^2(H, \mu)$ and $(B, D(B))$ the operator defined by

$$
D(B) := W^{1,2}(H, \mu)
$$
 and $B\varphi(x) := \langle F(x), D\varphi(x) \rangle, x \in H$,

where $F \in UCB(H, H)$.

First of all we establish the following auxiliary result.

Lemma 1. *For any* $\lambda > 0$ *and* $\varphi \in L^2(H, \mu)$ *we have* $R(\lambda, \mathcal{A})\varphi \in W^{1,2}(H, \mu)$ *and* $BR(\lambda, \mathcal{A}) \in \mathcal{L}(L^2(H, \mu))$ *. In particular,* $D(\mathcal{A}) \subset W^{1,2}(H, \mu)$ *holds.*

PROOF. From Theorem 3 we have for any $\varphi \in L^2(H, \mu)$ and $t > 0$, $R_t \varphi \in L^2(H, \mu)$ $W^{1,2}(H,\mu)$ and

$$
||D(R_t\varphi) - D(R_s\varphi)||_{L^2} = ||DR_s(R_{t-s}\varphi - \varphi)||_{L^2}
$$

$$
\leq Cs^{-\nu}||R_{t-s}\varphi - \varphi||_{L^2}
$$

for $t>s>0$. This implies that the function

$$
0 < t \mapsto DR_t
$$
 is strongly continuous.

Consequently, it follows from (8) that

$$
\int_0^\infty e^{-\lambda t} \|D(R_t\varphi)\|_{L^2} dt < \infty \text{ for all } \varphi \in L^2(H, \mu) \text{ and } \lambda > 0.
$$

Therefore, for each $\varphi \in L^2(H, \mu)$ and $\lambda > 0$, we have

$$
R(\lambda, \mathcal{A})\varphi \in W^{1,2}(H, \mu)
$$
 and $D(R(\lambda, \mathcal{A})\varphi) = \int_0^\infty e^{-\lambda t} D(R_t \varphi) dt$.

Since, $F \in UCB(H,H)$, it is now easy to see that $BR(\lambda, A) \in \mathcal{L}(L^2(H,\mu))$ for $\lambda > 0$.

We state now the main result of this section.

Theorem 4. *Assume that* $\omega(A) < 0$ *and that* (*H1) and* (*H2) hold.* Let $(A, D(A))$ *and* $(B, D(B))$ *be defined as above. Then the operator* $G := A +$ B with $D(G) := D(A)$ generates a compact C_0 -semigroup (P_t) on $L^2(H,\mu)$ *satisfying the following integral equation*

$$
P_t \varphi = R_t \varphi + \int_0^t P_{t-s} B R_s \varphi ds \tag{9}
$$

for all $t \geq 0$ *and* $\varphi \in L^2(H, \mu)$ *. Moreover for each* $T > 0$ *there exists* $C_T > 0$ *such that*

$$
P_t \varphi \in W^{1,2}(H,\mu) \text{ and } ||D(P_t \varphi)||_{L^2} \leq C_T t^{-\nu} ||\varphi||_{L^2}
$$
 (10)

for $t \in (0, T]$ *and* $\varphi \in L^2(H, \mu)$ *. Further,* (P_t) *satisfies*

$$
P_t \varphi = R_t \varphi + \int_0^t R_{t-s} B P_s \varphi ds \tag{11}
$$

for all $t \geq 0$ *and* $\varphi \in L^2(H, \mu)$ *. Finally,* \mathcal{D}_A *is a core for* (P_t) *and G is the closure of* G_0 *, where*

$$
G_0\varphi(x) := \frac{1}{2}Tr[QD^2\varphi(x)] + \langle Ax, D\varphi(x) \rangle + \langle F(x), D\varphi(x) \rangle
$$

for $x \in H$ *and* $\varphi \in \mathcal{D}_A$ *.*

PROOF.

1. In order to apply Theorem 1 and by Lemma 1 it suffices to prove (3) for B and (R_t) . From the proof of Lemma 1 one can see that the function $0 < t \mapsto BR_t \varphi \in L^2(H, \mu)$ is continuous and by (8) we have

$$
\int_0^\alpha \|BR_t\varphi\|_{L^2} dt \leq C \|F\|_\infty \|\varphi\|_{L^2} (\int_0^\alpha t^{-\nu} dt)
$$

$$
= \left(\frac{C \|F\|_\infty}{1-\nu} \alpha^{1-\nu}\right) \|\varphi\|_{L^2}
$$

for all $\alpha > 0$ and $\varphi \in L^2(H, \mu)$. One can choose α sufficiently small such that $\gamma := \frac{C||F||_{\infty}}{1-\nu} \alpha^{1-\nu} \in (0,1)$ and thus (3) is satisfied for all $\varphi \in L^2(H, \mu)$. Therefore, $G := \mathcal{A} + B$ with $D(G) := D(\mathcal{A})$ generates a C_0 -semigroup (P_t) on $L^2(H, \mu)$ and (9), (11) hold for all $\varphi \in D(\mathcal{A})$. Since $D(\mathcal{A})$ is dense in $L^2(H,\mu)$, it follows from (8) and the dominated convergence theorem that (9) holds for all $\varphi \in L^2(H,\mu)$. From Proposition 1 and Lemma 1 follow that \mathcal{D}_A is a core for (P_t) and G is the closure of G_0 . On the other hand, since the embedding $W^{1,2}(H,\mu) \hookrightarrow L^2(H,\mu)$ is compact (see [2]), if we show that $P_t\varphi \in W^{1,2}(H,\mu)$ for $t > 0$ and $\varphi \in L^2(H,\mu)$, then (P_t) is compact.

2. We prove now (10) and (11) for all $\varphi \in L^2(H, \mu)$. By the same argument as above it follows from Theorem 1 and 3 that (P_t) is given by

$$
P_t \varphi = \sum_{n=0}^{\infty} U_n(t) \varphi \quad \text{ for } t \ge 0 \text{ and } \varphi \in L^2(H, \mu),
$$

where $U_0(t)\varphi := R_t\varphi$ and $U_{n+1}(t)\varphi := \int_0^t U_n(t-s)BR_s\varphi ds$ for all $t \geq 0$ and $\varphi \in L^2(H, \mu)$.

First we have, from Theorem 3, that $R_t\varphi \in W^{1,2}(H,\mu)$ and

$$
||D(R_t\varphi)||_{L^2} \leq Ct^{-\nu} ||\varphi||_{L^2}
$$

for all $t > 0$ and $\varphi \in L^2(H, \mu)$. For $U_1(\cdot)$ we also have $U_1(t)\varphi \in W^{1,2}(H, \mu)$

and

$$
\|D(U_1(t)\varphi)\|_{L^2} = \left\| D \int_0^t R_{(t-s)} BR_s \varphi ds \right\|_{L^2}
$$

\n
$$
\leq \int_0^t \|D(R_{(t-s)}BR_s \varphi)\|_{L^2} ds
$$

\n
$$
\leq C \int_0^t (t-s)^{-\nu} \|BR_s \varphi\|_{L^2} ds
$$

\n
$$
\leq C^2 \|F\|_{\infty} t^{-\nu} \left[t^{1-\nu} \int_0^1 (1-s)^{-\nu} s^{-\nu} ds \right] \|\varphi\|_{L^2}
$$

\n
$$
\leq (C^2 \|F\|_{\infty} T^{1-\nu} K) t^{-\nu} \|\varphi\|_{L^2},
$$

for $\varphi \in L^2(H, \mu)$ and $t \in (0, T]$, where $K := \int_0^1 (1 - s)^{-\nu} s^{-\nu} ds$. By induction one can see that for each $\varphi \in L^2(H, \mu)$ and $t \in (0, T]$

$$
U_n(t)\varphi \in W^{1,2}(H,\mu)
$$

and

$$
||D(U_n(t)\varphi)||_{L^2} \leq C(C||F||_{\infty}T^{1-\nu}K)^nt^{-\nu}||\varphi||_{L^2}, n \in \mathbb{N}.
$$

If we choose T sufficiently small, then $P_t\varphi \in W^{1,2}(H,\mu)$ and

$$
||D(P_t\varphi)||_{L^2} \leq \sum_{n=0}^{\infty} ||D(U_n(t)\varphi)||_{L^2}
$$

$$
\leq C_T t^{-\nu} ||\varphi||_{L^2},
$$

for $\varphi \in L^2(H, \mu)$ and $t \in (0, T]$. The semigroup property yields

$$
P_t \varphi \in W^{1,2}(H,\mu)
$$
 and $||D(P_t \varphi)||_{L^2} \leq C_T t^{-\nu} ||\varphi||_{L^2}$,

for all $\varphi \in L^2(H, \mu)$ and $t \in (0, T]$, where C_T is a constant depending on T. Now from the last inequality, the density of $D(\mathcal{A})$ in $L^2(H,\mu)$ and (6) it follows that (10) is satisfied for all $\varphi \in L^2(H, \mu)$ and the proof is finished.

QED

Remark 2. Let 1 be the constant function equal to 1. Since $R_t 1 = 1$ for all $t \geq 0$, it follows from (9) that $P_t \mathbf{1} = \mathbf{1}$ for all $t \geq 0$. On the other hand, since the operator P_t , $t>0$, is compact in $L^2(H,\mu)$, the same is true for its adjoint $P_t^*, t > 0.$ Therefore, 1 is also an eigenvalue for P_t^* and $\text{Ker}(Id - P_t^*)$ is a finite dimensional non trivial subspace of $L^2(H,\mu)$.

^α

3 Positivity of the transition semigroup on $L^2(H,\mu)$

We denote by $Lip_b(H, H)$ the space of all bounded Lipschitz functions from H into H. It is proved in [14] and [13] that $Lip_b(H, H)$ is dense in $UCB(H, H)$. Using this result, we prove the positivity of the transition semigroup (P_t) for $F \in UCB(H,H).$

For the main result of this section we will use the following consequence of the Trotter-Kato theorem due to Voigt [16].

Theorem 5. Let (R_t) be a C_0 -semigroup on a Banach space E, with generator $(A, D(A))$ *. Let* B_n *, B be A-bounded operators, and suppose that there exist* $\alpha \in (0, \infty]$ *and* $\gamma \in [0, 1)$ *such that*

$$
\int_0^{\alpha} ||B_n R_t \varphi|| dt \le \gamma ||\varphi|| \quad \text{ for all } \varphi \in D(\mathcal{A}) \text{ and } n \in \mathbb{N}.
$$

Further assume

$$
\int_0^\infty \|(B_n - B)R_t\varphi\|dt \to 0 \quad (n \to \infty),
$$

for all $\varphi \in D(A)$ *. Then*

$$
P_t \varphi = \lim_{n \to \infty} P_t^{(n)} \varphi \quad \text{ for all } \varphi \in E
$$

 $uniformly$ for t in bounded subsets of \mathbb{R}_+ , where (P_t) (resp. $(P_t^{(n)}))$ is the semi*group generated by* $A + B$ *(resp.* $A + B_n$ *).*

We can now prove the main result of this section.

Theorem 6. *Assume that* $\omega(A) < 0$ *and that* (*H1) and* (*H2) hold.* Let (A, D(A) *and* (B,D(B)) *be defined as in Section 1 and 2. Then the transition semigroup* (P_t) *is positive. Therefore there exists an invariant measure* σ *for* (P_t) which is absolutely continuous with respect to μ . Moreover,

$$
\frac{d\sigma}{d\mu}(x) \in L^2(H, \mu).
$$

PROOF. The proof is carried out in two steps.

Step 1. We first suppose that $F \in Lip_b(H, H)$.

By standard arguments one sees that there is $T > 0$ such that the nonlinear equation

$$
\begin{cases} \frac{\partial}{\partial t} \eta(t, x) = F(\eta(t, x)), \quad t \in [0, T], x \in H \\ \eta(0, x) = x \in H \end{cases}
$$

has a unique solution $\eta(\cdot, \cdot)$ satisfying

$$
\eta(t,x) = x + \int_0^t F(\eta(s,x)) ds \quad \text{ for } t \in [0,T] \text{ and } x \in H.
$$

Since F is bounded and so by the uniqueness it follows that

the function $[0, T] \ni t \mapsto \eta(t, x)$ is continuous uniformly in $x \in H$ (12)

and

$$
\eta(s, \eta(t, x)) = \eta(t + s, x) \tag{13}
$$

for $x \in H$ and $t, s \in [0, T]$ such that $t + s \in [0, T]$. We consider now the family of bounded operators $(S_t)_{t\in[0,T]}$ on $UCB(H)$ defined by

$$
S_t\varphi(x):=\varphi(\eta(t,x))
$$

for $t \in [0, T], x \in H$ and $\varphi \in UCB(H)$. By (13) we obtain $S_{t+s} = S_t S_s$ for $t, s \in [0, T]$ such that $t + s \in [0, T]$. The strong continuity of (S_t) on $[0, T]$ follows from (12). For $t \geq 0$ there is $n \in \mathbb{N}$ such that $\frac{t}{n} \leq T$. With this n we define $S_t := (S_{\frac{t}{n}})^n$. One can see that this definition is unambiguous. Hence $(S_t)_{t\geq 0}$ is a positive C₀-semigroup of contractions on $UCB(H)$. If we denote by $(\mathcal{B}, D(\mathcal{B}))$ its generator, then

$$
UCB1(H) \subset D(\mathcal{B}) \text{ and}
$$

$$
(\mathcal{B}\varphi)(x) = \langle F(x), D\varphi(x) \rangle = (B\varphi)(x) \text{ for } \varphi \in UCB1(H)
$$

(cf. [8, B-II, Example 3.15]). Hence,

$$
\lim_{m \to \infty} \mathcal{B}_m \varphi = B\varphi \text{ in } UCB(H) \quad \text{ for all } \varphi \in UCB^1(H),
$$

where $\mathcal{B}_m := m\mathcal{B}(m - \mathcal{B})^{-1}$ is the Hille–Yosida approximation of \mathcal{B} . On the other hand, if we put

$$
R(\lambda)\varphi(x) := \int_0^\infty e^{-\lambda t} (R_t \varphi)(x) dt
$$

for $\lambda > 0$, $\varphi \in UCB(H)$ and $x \in H$, then by [1, Proposition 6.2 and 3.1], $R(\lambda) \in \mathcal{L}(UCB(H))$ and by a simple computation one can see that

$$
R(\lambda)\varphi = R(\lambda, \mathcal{A})\varphi \quad \text{ for } \varphi \in UCB(H) \text{ and } \lambda > 0.
$$

Hence from Theorem 2 it follows that $R(\lambda, \mathcal{A})\varphi \in UCB^{\infty}(H)$ and there is $\lambda_0 > 0$ such that

$$
||BR(\lambda, \mathcal{A})\varphi||_{\infty} \le \frac{1}{2} ||\varphi||_{\infty}
$$
\n(14)

for all $\varphi \in UCB(H)$ and $\lambda > \lambda_0$. This implies that

$$
Id - BR(\lambda, \mathcal{A}) : UCB(H) \to UCB(H)
$$

is invertible and $(Id - BR(\lambda, \mathcal{A}))^{-1} = \sum_{n=0}^{\infty} [BR(\lambda, \mathcal{A})]^n$ for $\lambda > \lambda_0$. Hence,

$$
R(\lambda, \mathcal{A} + B)\varphi = R(\lambda, \mathcal{A}) \sum_{n=0}^{\infty} [BR(\lambda, \mathcal{A})]^n \varphi \in UCB^{\infty}(H) \qquad (15)
$$

for all $\varphi \in UCB(H)$ and $\lambda > \lambda_0$. Since $R(\lambda, A) \mathbf{1} = \frac{1}{\lambda}$ and $R(\lambda, A) \ge 0$ on $UCB(H)$, it follows that

$$
||R(\lambda, \mathcal{A})||_{\infty} \le \frac{1}{\lambda} \quad \text{ for } \lambda > 0.
$$

On the other hand, the estimate in (14) implies that

$$
\|\mathcal{B}_{m}R(\lambda,\mathcal{A})\|_{\infty} = \|m(m-\mathcal{B})^{-1}BR(\lambda,\mathcal{A})\|_{\infty} \le \frac{1}{2}
$$

for $\lambda > \lambda_0$. So from the dissipativity of \mathcal{B}_m on $UCB(H)$, and since $||R(\lambda, \mathcal{A})||_{\infty} \leq \frac{1}{\lambda}$ for $\lambda > 0$, follows that

$$
(\lambda_0, \infty) \subset \rho(\mathcal{A} + \mathcal{B}_m)
$$
 and $||R(\lambda, \mathcal{B}_m + \mathcal{A})||_{\infty} \le \frac{1}{\lambda}$ (16)

for $\lambda > \lambda_0$ and $m \in \mathbb{N}$. So by (16) we obtain

$$
||R(\lambda, \mathcal{B}_m + \mathcal{A})\varphi - R(\lambda, \mathcal{A} + B)\varphi||_{\infty} =
$$

= $||R(\lambda, \mathcal{B}_m + \mathcal{A})(B - \mathcal{B}_m)R(\lambda, \mathcal{A} + B)\varphi||_{\infty}$
 $\leq \frac{1}{\lambda}||(B - \mathcal{B}_m)R(\lambda, \mathcal{A} + B)\varphi||_{\infty}$
 $\downarrow (m \to \infty)$
 0

for all $\varphi \in UCB(H)$ and $\lambda > \lambda_0$. It remains to show that

$$
R(\lambda, \mathcal{B}_m + \mathcal{A})\varphi \ge 0 \quad \text{ for all } \varphi \in UCB(H)_+, m \in \mathbb{N} \text{ and } \lambda > \lambda_0.
$$

The positivity of $e^{t\mathcal{B}_m}$ follows from that of S_t . Moreover, from [8, Theorem C-II.1.11] we have $T_m := \mathcal{B}_m + ||\mathcal{B}_m||Id \geq 0$ for $m \in \mathbb{N}$. Hence,

$$
R(\lambda, \mathcal{B}_m + \mathcal{A}) = R(\lambda + ||\mathcal{B}_m||, T_m + \mathcal{A})
$$

= $R(\lambda + ||\mathcal{B}_m||, \mathcal{A}) \sum_{n=0}^{\infty} [T_m R(\lambda + ||\mathcal{B}_m||, \mathcal{A})]^n \ge 0$

for all $\lambda > ||B_m||$. We fix now $m \in \mathbb{N}$ and consider the set

$$
M := \{ \lambda > \lambda_0 \mid R(\lambda, \mathcal{B}_m + \mathcal{A}) \ge 0 \}.
$$

Then M is a closed and open subset of (λ_0, ∞) . In fact, let $\lambda \in M$. Then for small $\varepsilon > 0$ one has $R(\lambda - \varepsilon, \mathcal{B}_m + \mathcal{A}) = \sum_{n=0}^{\infty} \varepsilon^n R(\lambda, \mathcal{B}_m + \mathcal{A})^{n+1} \ge 0$. On the other hand, since $R(\lambda, \mathcal{B}_m + \mathcal{A}) = R(\lambda + ||\mathcal{B}_m||, T_m + \mathcal{A}) \geq 0$, it follows from [17, Theorem 1.1] that $r(T_mR(\lambda + \|\mathcal{B}_m\|, \mathcal{A})) < 1$. Furthermore, we have

$$
0 \leq T_m R(\lambda + \varepsilon + ||B_m||, \mathcal{A}) \leq T_m R(\lambda + ||B_m||, \mathcal{A}).
$$

Therefore, $r(T_m R(\lambda + \varepsilon + ||B_m||, A)) < 1$ and hence,

$$
0 \leq R(\lambda + \varepsilon + ||\mathcal{B}_m||, T_m + \mathcal{A}) = R(\lambda + \varepsilon, \mathcal{B}_m + \mathcal{A}).
$$

The claim "M is a closed subset of (λ_0, ∞) " follows from the resolvent equation and (16). Thus,

$$
R(\lambda, \mathcal{B}_m + \mathcal{A}) \ge 0
$$

on $UCB(H)$ and by density on $L^2(H,\mu)$ for all $\lambda > \lambda_0$. This proves the positivity of (P_t) on $L^2(H,\mu)$.

Step 2. For $F \in UCB(H, H)$ there is $F_n \in Lip_b(H, H)$ such that

$$
\lim_{n \to \infty} ||F_n - F||_{\infty} = 0.
$$

We associated with F_n the operator defined by

$$
D(B_n) = D(B) = W^{1,2}(H, \mu)
$$

and $B_n\varphi(x) := \langle F_n(x), D\varphi(x) \rangle, \varphi \in W^{1,2}(H,\mu), x \in H$ and $n \in \mathbb{N}$. So by Theorem 3 and Lemma 1 we obtain that B and B_n satisfy the assumptions of Theorem 5. Hence,

$$
P_t \varphi = \lim_{n \to \infty} P_t^{(n)} \varphi \quad \text{ for all } \varphi \in L^2(H, \mu) \text{ and } t \ge 0.
$$

From Step 1 we have the positivity of (P_t) on $L^2(H, \mu)$.

We prove now the last statement of the theorem.

From Remark2 and the spectral mapping theorem for the point spectrum (cf. [5, IV-3.6]) it follows that there is $\psi \in D(G^*), \psi \not\equiv 0$ such that $G^*\psi = 0$, where $(G^*, D(G^*))$ denotes the generator of (P_t^*) . Hence,

$$
P_t^*\psi - \psi = \int_0^t P_s^*(G^*\psi) ds = 0
$$
 for all $t \ge 0$.

Since (P_t) is positive it follows that $|\psi| = |P_t^* \psi| \leq P_t^* |\psi|$ and from

$$
=<|\psi|, P_t\mathbf{1}>=<|\psi|, \mathbf{1}>=<|P_t^*\psi|, \mathbf{1}>
$$

we obtain

 $|P_t^*\psi| = P_t^*|\psi| = |\psi| \text{ for all } t \ge 0.$

If we put $\psi_0 := \frac{1}{\|\psi\|_{L^2}} |\psi|$ then the measure $\sigma(dx) := \psi_0(x) \mu(dx)$ has the asserted properties.

QED

Remark 3. The above result generalizes the one given in [4, Theorem 3.1].

Acknowledgements. The author is indebted to G. Da Prato for bringing the approximation result in [14] and [13] to his knowledge.

References

- [1] S. Cerrai: *A Hille-Yosida theorem for weakly continuous semigroups*, Semigroup Forum **49** (1994), 349–367.
- [2] G. Da Prato, P. Malliavin, D. Nualart: *Compact families of Wiener functionals*, C.R.A.S. Paris **315** (1992), 1287–1291.
- [3] G. Da Prato, J. Zabczyk: *Stochastic Equations in Infinite Dimensions*, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1992.
- [4] G. Da Prato, J. Zabczyk: *Regular densities of invariant measures in Hilbert spaces*, J. Funct. Anal. **130** (1995), 427–449.
- [5] J. K. Engel, R. Nagel: One-parameter Semigroups for Linear Evolution Equations, Graduate Texts in Math., Springer-Verlag 2000.
- [6] H. H. Kuo: Gaussian measures in Banach spaces, Lecture Notes in Math. **463**, Springer-Verlag 1975.
- [7] I. MIYADERA: *On perturbation theory for semi-groups of operators*, Tôhoku Math. J. 18 (1966), 299–310.
- [8] R. Nagel (ed.): *One-Parameter Semigroups of Positive Operators*, Lecture Notes Math. **1184**, Springer-Verlag 1986.
- [9] J. M. A. M. van Neerven, J. Zabczyk: *Norm discontinuity of Ornstein-Uhlenbeck semigroups*, Semigroup Forum **59** (1999), 389–403.
- [10] F. RÄBIGER, A. RHANDI, R. SCHNAUBELT, J. VOIGT: *Non-autonomous Miyadera perturbation*, Diff. Integ. Equat. **13** (2000), 341–368.
- [11] A. RHANDI: *Dyson-Phillips expansion and unbounded perturbations of linear C*₀-semi*groups*, J. Comp. Applied Math. **44** (1992), 339–349.
- [12] A. V. Skorohod: Integration in Hilbert Space, Springer-Verlag 1974.
- [13] I. G. Tsar'kov: *Smoothing of uniformly continuous mapping in L*^p *spaces*, Math. Notes **54** (1993), 957–967.
- [14] F. A. Valentine: *A Lipschitz condition preserving extension for a vector function*, Amer. J. Math. **67** (1945), 83–93.
- [15] J. Voigt: *On the perturbation theory for strongly continuous semigroups*, Math. Ann. **229** (1977), 163–171.
- [16] J. Voigt: *Absorption semigroups, their generators, and Schrödinger semigroups*, J. Funct. Anal. **67** (1986), 167–205.
- [17] J. Voigt: *On resolvent positive operators and positive C*0*-semigroups on AL-spaces*, Semigroup Forum **38** (1989), 263–266.