
Note di Matematica 25, n. 2, 2005/2006, 113–138.

Holomorphic functions on Banach spaces

Jorge Mujica
IMECC UNICAMP,
Caixa Postal 6065, 13083-970 Campinas, SP, Brazil
mujica@ime.unicamp.br

Abstract. This is a survey about some problems from the theory of holomorphic functions
on Banach spaces which have attracted the attention of many researchers during the last thirty
years.

Keywords: Banach space, polynomial, holomorphic mapping, approximation property, re-
flexive space, weakly continuous mapping, Schauder basis, topological algebra, locally m-
convex algebra, Fréchet algebra
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1 Introduction

This is a survey about some problems from the theory of holomorphic func-
tions on Banach spaces which have attracted the attention of many researchers
during the last thirty years. The problems we selected, besides being related
among themselves, are also closely connected with some celebrated problems
from Banach space theory.

In Sections 2 and 3 we present some basic facts from the theory of polyno-
mials and holomorphic mappings between Banach spaces.

Section 4 is devoted to the study of the space of holomorphic mappings of
bounded type. The study of this space was one of the main motivations for the
celebrated theorem of Josefson [40] and Nissenzweig [53].

Section 5 is devoted to the study of the space of bounded holomorphic map-
pings. The still unsolved problem as to whether the space of bounded holomor-
phic functions on the open unit disc has the approximation property, is equiva-
lent to a problem of approximating certain bounded holomorphic mappings on
the open unit disc with values in a Banach space.

Section 6 is devoted to the question of existence of an infinite dimensional
Banach space for which all spaces of homogeneous polynomials are reflexive. The
celebrated Banach space constructed by Tsirelson [61] was the first example of
a space answering that question.

Sections 7 and 8 are devoted to the study of various weak continuity prop-
erties for polynomials or entire mappings between Banach spaces. The still un-
solved problem as to whether every entire function which is weakly continuous
on bounded sets, is necessarily weakly uniformly continuous on bounded sets, is
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discussed in detail. A pioneer result of Dineen [21], and the recent contribution
of Carrión [12], are also presented here.

Section 9 is devoted to the still unsolved problem, raised by Michael [42] in
1952, as to whether every complex homomorphism on a commutative Fréchet
algebra is necessarily continuous. It is shown that the Michael problem for arbi-
trary commutative Fréchet algebras, is equivalent to the corresponding problem
for the Fréchet algebra of all entire functions of bounded type on some infinite
dimensional Banach space.

The only new results in this survey appear in Section 9, where we present
reformulations of the Michael problem in terms of algebras of entire functions
on Tsirelson’s space. The other results are usually given without proof. We have
occasionally included a proof, or the sketch of a proof, when it is illuminating
and technically simple.

This survey is based on the notes of a three-lecture minicourse delivered at
the 56th Brazilian Analysis Seminar, held at the Universidade Federal Flumi-
nense, in Niterói, Rio de Janeiro, during November 20-23, 2002. I wish to thank
the organizers, and in particular Professor Chaim Hönig, for the kind invitation
to deliver the minicourse.

2 Multilinear mappings and polynomials

N denotes the set of all positive integers, and N0 = N∪{ 0 }. R and C denote
the field of all real numbers and all complex numbers, respectively.

The letters E and F always denote complex Banach spaces, not reduced to
{ 0 }. BE denotes the closed unit ball of E, whereas SE denotes the unit sphere
of E.
L(E;F ) denotes the Banach space of all continuous linear mappings from E

into F , with the usual norm, that is

‖A‖ = sup{ ‖Ax‖ : ‖x‖ ≤ 1 }.

When F = C we write E′ instead of L(E; C).
For each m ∈ N L(mE;F ) denotes the vector space of all m-linear mappings

from Em into F . L(mE;F ) is a Banach space under the norm

‖A‖ = sup{ ‖A(x1, . . . , xm)‖ : ‖xk‖ ≤ 1 }.

Given A ∈ L(mE;F ) and x ∈ E, we define Axm = A(x, . . . , x). For convenience
we also define L(0E;F ) = F and Ax0 = A for each A ∈ L(0E;F ) and x ∈ E.
When F = C we write L(mE) instead of L(mE; C).
Ls(mE;F ) denotes the subspace of all A ∈ L(mE;F ) which are symmet-

ric, that is A(x1, . . . , xm) = A(xσ(1), . . . , xσ(m)) for each permutation σ of
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{ 1, . . . ,m }. When F = C, we write Ls(mE) instead of Ls(mE; C). Sm denotes
the group of all permutations of { 1, . . . ,m }.

1 Proposition. Ls(mE;F ) is a complemented subspace of L(mE;F ). If we
define

As(x1, . . . , xm) =
1

m!

∑

σ∈Sm

A(xσ(1), . . . , xσ(m))

for every A ∈ L(mE;F ), then the mapping A→ As is a norm 1 projection from
L(mE;F ) onto Ls(mE;F ).

2 Proposition (Newton’s binomial formula). Given A ∈ Ls(mE;F ) and
x, y ∈ E, the following formula holds:

A(x+ y)m =

m∑

k=0

Axm−kyk.

3 Proposition (polarization formula). Given A ∈ Ls(mE;F ) and
x1, . . . , xm ∈ E, the following formula holds:

A(x1, . . . , xm) =
1

m!2m

∑

θk=±1

θ1 . . . θmA(θ1x1 + · · ·+ θmxm)m.

A mapping P : E → F is said to be a continuous m-homogeneous polynomial
if there is an A ∈ L(mE;F ) such that P (x) = Axm for every x ∈ E. In this
case we write P = Â. P(mE;F ) denotes the vector space of all continuous m-
homogeneous polynomials from E into F . P(mE;F ) is a Banach space under
the norm

‖P‖ = sup{ ‖P (x)‖ : ‖x‖ ≤ 1 }.
When F = C we write P(mE) instead of P(mE; C).

4 Proposition. The mapping A→ Â is a topological isomorphism between
Ls(mE;F ) and P(mE;F ). For each A ∈ Ls(mE;F ) the following inequalities
hold:

‖Â‖ ≤ ‖A‖ ≤ mm

m!
‖Â‖ ≤ em‖Â‖.

5 Proposition ( [11]). If m ≤ n, then P(mE;F ) is isomorphic to a com-
plemented subspace of P(nE;F ).

A mapping P : E → F is said to be a continuous polynomial if it can
be represented as a sum P = P0 + P1 + · · · + Pm, with Pk ∈ P(kE;F ) for
k = 0, 1, . . . ,m. P(E;F ) denotes the vector space of all continuous polynomials
from E into F . The representation P = P0 +P1 + · · ·+Pm of each P ∈ P(E;F )
is unique. When F = C we write P(E) instead of P(E; C).
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A series of mappings of the form
∑∞

m=0 Pm(x − a), with a ∈ E and Pm ∈
P(mE;F ) for every m, is said to be a power series from E into F . The radius
of convergence of the power series is the supremum of all r > 0 such that the
series converges uniformly on the ball B(a; r).

6 Proposition (Cauchy-Hadamard formula). The radius of convergence of
the power series

∑∞
m=0 Pm(x− a) is given by the formula

1

R
= lim sup

m
‖Pm‖1/m.

Proposition 5 is due to Aron and Schottenloher [11]. The other results in
this section are well known and can be found in the books of Nachbin [51] or
Mujica [44].

3 Holomorphic mappings

The letter U always denotes a nonvoid open subset of E.

7 Theorem. For a mapping f : U → F , the following conditions are equiv-
alent:

(a) For each a ∈ U there is an A ∈ L(E;F ) such that

lim
x→a

f(x)− f(a)−A(x− a)

‖x− a‖ = 0.

(b) For each a ∈ U there is a power series
∑∞

m=0 Pm(x− a) which converges to
f(x) uniformly on some ball B(a; r) ⊂ U .

(c) f is continuous and, for each a ∈ U , b ∈ E and ψ ∈ F ′, the function
λ → ψ ◦ f(a+ λb) is holomorphic in the usual sense on the open set {λ ∈
C : a+ λb ∈ U }.

A mapping f : U → F is said to be holomorphic if it verifies the equivalent
conditions in Theorem 7. The mappingA in condition (a) is uniquely determined
by f and a, and is called the differential of f at a. The power series

∑∞
m=0 Pm(x−

a) in condition (b) is also uniquely determined by f and a, and is called the
Taylor series of f at a. We denote by Pmf(a) the polynomial Pm, and by
Amf(a) the unique member of Ls(mE;F ) such that [Amf(a)]∧ = Pmf(a).
H(U ;F ) denotes the vector space of all holomorphic mappings from U into F .
When F = C we write H(U) instead of H(U ; C). The Cauchy integral formulas,
which we now state, are very important.
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8 Theorem (Cauchy integral formula). Let f ∈ H(U ;F ), and let a ∈ U ,
t ∈ E and r > 0 such that a+ ζt ∈ U for every |ζ| ≤ r. Then for every |λ| < r
the following formula holds:

f(a+ λt) =
1

2πi

∫

|ζ|=r

f(a+ ζt)

ζ − λ dζ.

9 Theorem (Cauchy integral formula). Let f ∈ H(U ;F ), and let a ∈ U ,
t ∈ E and r > 0 such that a+ ζt ∈ U for every |ζ| ≤ r. Then for every m ∈ N0

the following formula holds:

Pmf(a)(t) =
1

2πi

∫

|ζ|=r

f(a+ ζt)

ζm+1
dζ.

10 Theorem (Cauchy integral formula). Let f ∈ H(U ;F ), and let a ∈ U ,
t1, . . . , tn ∈ E and r > 0 such that a+ζ1t1 + · · ·+ζntn ∈ U whenever |ζk| ≤ r for
k = 1, 2, . . . , n. Then for every m ∈ N0 and every multi-index (α1, . . . , αn) ∈ N

n
0

such that α1 + · · · + αn = m, the following formula holds:

Amf(a)tα1
1 · · · tαn

n

=
α1! · · ·αn!

m!(2πi)n

∫

|ζn|=r
· · ·
∫

|ζ1|=r

f(a+ ζ1t1 + · · ·+ ζntn)

ζα1+1
1 · · · ζαn+1

n

dζ1 · · · dζn.

11 Theorem. Let f ∈ H(U ;F ). If U is balanced, then the Taylor series
of f at the origin converges to f uniformly on a suitable neighborhood of each
compact subset of U .

We recall that a set A ⊂ E is said to be balanced if λA ⊂ A for every |λ| ≤ 1.
Let f ∈ H(U ;F ), and let a ∈ U . rcf(a) denotes the radius of convergence

of the Taylor series of f at a. rbf(a) denotes the supremum of all r > 0 such
that B(a; r) ⊂ U and f is bounded on B(a; r). rcf(a) and rbf(a) are related as
follows.

12 Theorem. Let f ∈ H(U ;F ), and let a ∈ U . Then

rbf(a) = min{ rcf(a), d(a,E \ U) }.

If X is a topological space, then C(X;F ) denotes the vector space of all
continuous mappings from X into F . C(X;F ) is a locally convex space for the
compact-open topology, that is the topology τc defined by the seminorms

pK(f) = sup{ ‖f(x)‖ : x ∈ K },

where K varies over the compact subsets of X.
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13 Proposition. H(U ;F ) is a closed subspace of C(U ;F ).

14 Proposition (Montel’s theorem). Every bounded subset of H(U) is rel-
atively compact.

All the results in this section are well known and can be found in the books
of Nachbin [51] or Mujica [44].

4 Holomorphic mappings of bounded type

A set A ⊂ U is said to be U -bounded if A is bounded and d(A,E \ U) > 0.
A mapping f ∈ H(U ;F ) is said to be of bounded type if f is bounded on all
U -bounded sets. Hb(U ;F ) denotes the vector space of all holomorphic mappings
of bounded type from U into F . Each of the sets

Un = {x ∈ U : ‖x‖ < n and d(x,E \ U) > 1/n }

is U -bounded, and each U -bounded set is contained in some Un. Hb(U ;F ) is a
Fréchet space for the topology defined by the seminorms

pn(f) = sup{ ‖f(x)‖ : x ∈ Un }.

When F = C we write Hb(U) instead of Hb(U ; C).

If E is finite dimensional, then each U -bounded set is relatively compact in
U , and hence H(U ;F ) = Hb(U ;F ). Though it is far from obvious, the converse
is also true, as we shall see. We begin with the following result of Dineen [19].

15 Theorem ( [19]). Suppose there exists a sequence (φm) ⊂ E′ such that
‖φm‖ = 1 for every m and limm φm(x) = 0 for every x ∈ E. Then H(U ;F ) 6=
Hb(U ;F ) for every open set U ⊂ E and every Banach space F .

Proof. Let a ∈ U and r > 0 such that B(a; 2r) ⊂ U . Let b ∈ F with
‖b‖ = 1, and let f : E → F be defined by

f(x) =

∞∑

m=1

r−m[φm(x− a)]mb

for every x ∈ E. One can readily prove that f ∈ H(E;F ), and therefore f ∈
H(U ;F ). On the other hand, it follows from the Cauchy-Hadamard formula 6
that rcf(a) = r, and therefore rbf(a) = r < d(a,E \ U), by Theorem 12. Thus
f /∈ Hb(U ;F ). QED

The following result, a direct application of the Hahn-Banach theorem, is
well known.
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16 Proposition. If E is a separable, infinite dimensional Banach space,
then there exists a sequence (φm) ⊂ E′ such that ‖φm‖ = 1 for every m and
limm φm(x) = 0 for every x ∈ E.

Proof. Let (Mm) be an increasing sequence of finite dimensional subspaces
of E such that ∪∞m=1Mm is dense in E. By the Hahn-Banach theorem there exists
a sequence (φm) ⊂ E′ such that ‖φm‖ = 1 for every m and φm(x) = 0 for every
x ∈ Mm. Since ∪∞m=1Mm is dense in E, it follows easily that φm(x) → 0 for
every x ∈ E. QED

Thus every separable, infinite dimensional Banach space verifies the hypoth-
esis of Dineen’s Theorem 15. This motivates the following problems.

17 Problem ( [59]). If E is an infinite dimensional Banach space, does there
exist a sequence (φm) ⊂ E′ such that ‖φm‖ = 1 for every m and limm φm(x) = 0
for every x ∈ E?

18 Problem ( [55]). If E is an infinite dimensional Banach space, does E
have a separable, infinite dimensional quotient space?

Problem 17 was raised by Thorp and Whitley in [59], whereas Problem 18
was raised by Rosenthal in [55]. It follows from Proposition 16 that an affirma-
tive solution to Problem 18 would imply an affirmative solution to Problem 17,
a result noticed by Thorp and Whitley in [60]. Problem 17 was solved indepen-
dently by Josefson [40] and Nissenzweig [53], but Problem 18 remains unsolved.

19 Theorem ( [40], [53]). If E is an infinite dimensional Banach space,
then there exists a sequence (φm) ⊂ E′ such that ‖φm‖ = 1 for every m and
limm φm(x) = 0 for every x ∈ E.

From Theorems 19 and 15 we immediately obtain the following corollary.

20 Corollary. For a Banach space E, the following conditions are equiva-
lent:

(a) E is infinite dimensional.

(b) H(U ;F ) 6= Hb(U ;F ) for every open set U ⊂ E and every Banach space F .

(c) H(E) 6= Hb(E).

We refer to Mujica [47] for a survey of results concerning Problem 18, and
to Diestel [17] or Mujica [47], [50] for short proofs of the Josefson-Nissenzweig
theorem.



120 J. Mujica

5 Bounded holomorphic mappings

H∞(U ;F ) denotes the vector space of all f ∈ H(U ;F ) which are bounded
on U . H∞(U ;F ) is a Banach space for the norm

‖f‖ = sup{ ‖f(x)‖ : x ∈ U }.

When F = C we write H∞(U) instead of H∞(U ; C).
H∞(U) is always a dual Banach space. This follows readily from the fol-

lowing useful result of Ng [52], which is an abstract version of an old result of
Dixmier [23].

21 Theorem ( [23], [52]). If there exists a Hausdorff locally convex topology
τ on E such that BE is τ -compact, then E is isometrically isomorphic to a dual
Banach space. More precisely, if F denotes the Banach space

F = {φ ∈ E′ : φ|BE is τ -continuous },

then the evaluation mapping J : E → F ′ is an isometric isomorphism.

If τc denotes the compact-open topology on H∞(U), then we obtain the
following proposition.

22 Proposition. H∞(U) is isometrically isomorphic to a dual Banach
space. More precisely, if G∞(U) denotes the Banach space

G∞(U) = {Φ ∈ H∞(U)′ : Φ|BH∞(U) is τc-continuous },

then the evaluation mapping J : H∞(U) → G∞(U)′ is an isometric isomor-
phism.

Proof. It follows from Proposition 14 that BH∞(U) is τc-compact. Then an
application of Theorem 21 completes the proof. QED

Proposition 22 has an interesting history, showing that mathematical discov-
eries are sometimes fortuitous. I was visiting Dublin in 1981, when Seán Dineen
was writing his book [20]. When I saw the statement of Proposition 22 as Ex-
ercise 2.100 in the book, I asked Dineen how he proved the result. He answered
that he didn’t know, since he had only seen the result stated somewhere without
proof. Shortly afterwards I came across the Dixmier-Ng theorem in a book of
Holmes [37], and thus found the proof above. This story and some additional
comments appear in Dineen’s books [20, p. 417] and [22, pp. 238–239].

Proposition 22 may be regarded as a linearization theorem, since it identifies
the bounded holomorphic functions on U with the continuous linear functionals
on G∞(U). This was the motivation for the following, much stronger, lineariza-
tion theorem, due to the author [46].
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23 Theorem ( [46]). Let δU : x ∈ U → δx ∈ G∞(U) denote the evaluation
mapping, that is, δx(f) = f(x) for all x ∈ U and f ∈ H∞(U). Then:

(a) δU ∈ H∞(U ;G∞(U)).

(b) For each Banach space F and each f ∈ H∞(U ;F ), there is a unique Tf ∈
L(G∞(U);F ) such that Tf ◦ δU = f .

(c) The mapping f ∈ H∞(U ;F )→ Tf ∈ L(G∞(U);F ) is an isometric isomor-
phism.

(d) f has a finite dimensional range if and only if Tf is a finite rank operator.

(e) f has a relatively compact (resp. weakly relatively compact) range if and
only if Tf is a compact (resp. weakly compact) operator.

We recall that a Banach space E is said to have the approximation property
if given a compact set K ⊂ E and ǫ > 0, there is a finite rank operator T ∈
L(E;E) such that ‖Tx− x‖ < ǫ for every x ∈ K. The approximation property
was introduced by Grothendieck [33], who obtained the following theorems.

24 Theorem ( [33]). For a Banach space E, the following conditions are
equivalent:

(a) E has the approximation property.

(b) Given a Banach space F , an operator S ∈ L(F ;E), a compact set L ⊂ F ,
and ǫ > 0, there is a finite rank operator T ∈ L(F ;E) such that ‖Ty−Sy‖ <
ǫ for every y ∈ L.

(c) Given a Banach space F , an operator S ∈ L(E;F ), a compact set K ⊂ E,
and ǫ > 0, there is a finite rank operator T ∈ L(E;F ) such that ‖Tx−Sx‖ <
ǫ for every x ∈ K.

(d) Given sequences (xn) ⊂ E and (φn) ⊂ E′ such that
∑∞

n=1 ‖φn‖‖xn‖ < ∞
and

∑∞
n=1 φn(x)xn = 0 for every x ∈ E, we have that

∑∞
n=1 φn(xn) = 0.

(e) Given a Banach space F , a compact operator S ∈ L(F ;E), and ǫ > 0, there
is a finite rank operator T ∈ L(F ;E) such that ‖T − S‖ < ǫ.

25 Theorem ( [33]). E′ has the approximation property if and only if, given
a Banach space F , a compact operator S ∈ L(E;F ), and ǫ > 0, there is a finite
rank operator T ∈ L(E;F ) such that ‖T − S‖ < ǫ.

26 Theorem ( [33]). If E′ has the approximation property, then E has the
approximation property as well.
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After introducing an auxiliary topology on H∞(U ;F ), the author [46] used
Theorems 23 and 24 to prove the following theorem.

27 Theorem ( [46]). If U is a balanced, bounded, open set in E, then
G∞(U) has the approximation property if and only if E has the approximation
property.

By using Theorems 23 and 25 the author obtained the following theorem.

28 Theorem ( [46]). If U is an open subset of E, then H∞(U) has the
approximation property if and only if, given a Banach space F , a mapping f ∈
H∞(U ;F ), with a relatively compact range, and ǫ > 0, there is a mapping
g ∈ H∞(U ;F ), with a finite dimensional range, such that ‖g − f‖ < ǫ.

Grothendieck [33] proved that several of the classical Banach spaces that
occur in analysis have the approximation property, and raised the problem as
to whether every Banach space has the approximation property. This problem
remained open for nearly twenty years, and was finally solved by Enflo [26],
who constructed the first example of a Banach space without the approximation
property. Among the classical Banach spaces, the problems as to whether the
space of operators L(ℓ2; ℓ2) and the space of holomorphic functions H∞(∆)
(where ∆ denotes the open unit disc) have the approximation property were
pointed out as open in the book of Lindenstrauss and Tzafriri [41]. The problem
concerning L(ℓ2; ℓ2) was solved by Szankowski [58], who proved that L(ℓ2; ℓ2)
does not have the approximation property. But the problem concerning H∞(∆)
remains unsolved. By Theorem 28 that problem is equivalent to the following
problem.

29 Problem ( [46]). Given a Banach space F , a mapping f ∈ H∞(∆;F ),
with a relatively compact range, and ǫ > 0, does there exist a mapping g ∈
H∞(∆;F ), with a finite dimensional range, such that ‖g − f‖ < ǫ?

6 Reflexive spaces of homogeneous polynomials

By using topological tensor products, Ryan [56] proved that P(mE) is always
a dual Banach space. Ryan’s result is also a direct consequence of the Dixmier-
Ng Theorem 21.

30 Proposition ( [56]). P(mE) is isometrically isomorphic to a dual Ba-
nach space. More precisely, if Q(mE) denotes the Banach space

Q(mE) = {Φ ∈ P(mE)′ : Φ|BP(mE) is τc-continuous },

then the evaluation mapping J : P(mE) → Q(mE)′ is an isometric isomor-
phism.
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By using topological tensor products Ryan [56] obtained a linearization theo-
rem for homogeneous polynomials. The following version of Ryan’s linearization
theorem in terms of Q(mE) is due to the author [46].

31 Theorem ( [56], [46]). Let δm : x ∈ E → δx ∈ Q(mE) denote the
evaluation mapping, that is δx(P ) = P (x) for every x ∈ E and P ∈ P(mE).
Then:

(a) δm ∈ P(mE;Q(mE)).

(b) For each Banach space F and each P ∈ P(mE;F ), there is a unique TP ∈
L(Q(mE);F ) such that TP ◦ δm = P .

(c) The mapping P ∈ P(mE;F )→ TP ∈ L(Q(mE);F ) is an isometric isomor-
phism.

(d) P has a finite dimensional range if and only if TP is a finite rank operator.

(e) P is a compact (resp. weakly compact)polynomial if and only if TP is a
compact (resp weakly compact) operator.

We remark that P ∈ P(mE;F ) is said to be compact (resp. weakly compact)
if P (BE) is a relatively compact (resp. weakly relatively compact) subset of F .
The compact open topology on P(mE) has the following important property.

32 Theorem ( [43]). The compact open topology τc is the finest topology
on P(mE) which coincides on each bounded set with the topology of pointwise
convergence.

33 Corollary ( [46]). Q(mE) = (P(mE), τc)
′.

Ryan [56] began a systematic study of the question of reflexivity of P(mE).
Before stating the next result, which collects results of several authors, but
originated from Ryan’s thesis [56], we introduce some terminology.

A polynomial P ∈ P(mE;F ) is said to be of finite type if it can be repre-
sented as a sum P (x) =

∑p
k=1[φk(x)]mbk, with φk ∈ E′ and bk ∈ F . Pf (mE;F )

denotes the subspace of all P ∈ P(mE;F ) of finite type. When F = C we write
Pf (mE) instead of Pf (mE; C).

The following result gives some necessary and sufficient conditions for re-
flexivity of P(mE).

34 Theorem ( [56], [2], [49]). For a reflexive Banach space E and m ∈ N,
consider the following conditions:

(a) P(mE) = Pf (mE)
‖·‖

.

(b) Each P ∈ P(mE) is weakly continuous on bounded sets.
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(c) Each P ∈ P(mE) is weakly sequentially continuous.

(d) For each P ∈ P(mE), there is an x ∈ BE such that |P (x)| = ‖P‖.

(e) P(mE) is reflexive.

(f) (P(mE), τc)
′ = (P(mE), ‖ · ‖)′.

Then the implications (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (f) always hold. If E
has the approximation property, then (f)⇒ (a).

Proof. The implications (a)⇒ (b)⇒ (c) are clear.
(c) ⇒ (d): Given P ∈ P(mE), there is a sequence (xn) ⊂ BE such that

lim |P (xn)| = ‖P‖. Since E is reflexive, BE is weakly compact. By the Eberlein-
Smulian theorem the sequence (xn) has a subsequence (xnk

) which converges
weakly to some x ∈ BE . Since P is weakly sequentially continuous, it follows
that |P (x)| = lim |P (xnk

)| = ‖P‖.
(d)⇒ (e): By (d), given P ∈ P(mE), there is an x ∈ BE such that

|TP (δx)| = |P (x)| = ‖P‖ = ‖TP ‖.

Since the mapping P ∈ P(mE) → TP ∈ Q(mE)′ is an isometric isomorphism,
the James reflexivity theorem [38] guarantees that Q(mE) is reflexive. Hence
P(mE) is reflexive as well.

(e)⇒ (f): We know that

(P(mE), τc)
′ = Q(mE) and Q(mE)′ = (P(mE), ‖ · ‖).

If (P(mE), ‖ · ‖) is reflexive, then

(P(mE), τc)
′ = Q(mE) = (P(mE), ‖ · ‖)′.

(f) ⇒ (a) when E has the approximation property: We first prove that
P(mE) = Pf (mE)

τc
. Indeed, let P ∈ P(mE), let K be a compact subset of E,

and let ǫ > 0. Since P is continuous and K is compact, we can find δ > 0 such
that |P (y) − P (x)| < ǫ whenever x ∈ K and ‖y − x‖ < δ. Since E has the
approximation property, there is a finite rank operator T ∈ L(E;E) such that
‖Tx − x‖ < δ for every x ∈ K, and therefore |P ◦ T (x) − P (x)| < ǫ for every
x ∈ K. Since T has finite rank, P ◦T ∈ Pf (mE), and the claim has been proved.

Since (P(mE), τc)
′ = (P(mE), ‖ · ‖)′, it follows that

P(mE) = Pf (mE)
τc

= Pf (mE)
‖·‖
,

completing the proof. QED
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The implications (b)⇒ (d)⇒ (e) are due to Ryan [56], and the equivalence
(a)⇔ (e), when E has the approximation property, is due to Alencar [2]. In his
thesis Ryan [56] claimed that conditions (b), (d) and (e) are always equivalent,
but his proof of the implication (e) ⇒ (b) was incomplete. Condition (f) was
introduced by the author in [49], where it was shown that (e) ⇒ (f), and
(f) ⇒ (a) when E has the approximation property. In [49] it was also shown
that (f)⇒ (b) when E has the compact approximation property, a property that
we have not defined here, and which is weaker than the approximation property.
But it seems to be unknown whether the conditions in Theorem 34 are equivalent
without some sort of approximation hypothesis on E. In particular the following
problem remains open.

35 Problem. Let E be a Banach space such that P(mE) is reflexive.

(a) Does P(mE) = Pf (mE)
‖·‖

?

(b) Is every P ∈ P(mE) weakly continuous on bounded sets?

We remark that Alencar’s proof in [2] of the equivalence (a)⇔ (e), when E
has the approximation property, is completely different from the one presented
here. His proof is based on some duality results of Gupta [34] and Dineen [18],
and on another result of Alencar [1] of coincidence of certain classes of homo-
geneous polynomials.

The following problem was raised by Ryan [56].

36 Problem ( [56]). Does there exist an infinite dimensional Banach space
E such that P(mE) is reflexive for every m ∈ N?

Before presenting the solution to this problem, we give some additional nec-
essary conditions for P(mE) to be reflexive for every m ∈ N.

37 Proposition. P(mℓp) contains a subspace isometrically isomorphic to
ℓ∞ whenever m ≥ p. In particular P(mℓp) is not reflexive whenever m ≥ p.

Proof. Given a = (αk) ∈ ℓ∞, we define Pa ∈ P(mℓp) by

Pa(x) =

∞∑

k=1

αkξ
m
k

for every x = (ξk) ∈ ℓp. Then one can readily verify that the mapping

a ∈ ℓ∞ → Pa ∈ P(mℓp)

is an isometric embedding. QED

38 Corollary. If E has a quotient isomorphic to ℓp, then P(mE) contains a
subspace isomorphic to ℓ∞ whenever m ≥ p. In particular P(mE) is not reflexive
whenever m ≥ p.
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Proof. If S ∈ L(E; ℓp) is a surjective operator, then the mapping

P ∈ P(mℓp)→ P ◦ S ∈ P(mE)

is an isomorphic embedding. Then the conclusion follows from Proposition 37.
QED

39 Corollary ( [4]). If P(mE) is reflexive for every m ∈ N, then E′ is
reflexive and contains no subspace isomorphic to any ℓp.

Proof. E′ is reflexive, being isomorphic to a complemented subspace of
P(mE), by Proposition 5. If E′ contains a subspace isomorphic to some ℓp, then
E′′ = E has a quotient isomorphic to ℓ′p = ℓq, where 1

p + 1
q = 1. Thus, by

Corollary 38, P(mE) is not reflexive whenever m ≥ q. QED

According to Ryan [56], Proposition 37 is due to Richard Aron. Corollary
38 can be found in the book of Dineen [22], and Corollary 39 is due to Alencar,
Aron and Dineen [4].

Corollary 39 shows that Problem 36 is connected with the following old
problem from Banach space theory.

40 Problem. Does every infinite dimensional Banach space contain a sub-
space isomorphic to either c0 or ℓp, for some 1 ≤ p <∞?

Problem 40 was solved in the negative by B. Tsirelson [61], who constructed a
reflexive, infinite dimensional Banach space X, with an unconditional Schauder
basis (en), which contains no subspace isomorphic to any ℓp. Shortly afterwards
Figiel and Johnson [28] proved that the dual X ′ of X is also a reflexive, infinite
dimensional Banach space, with an unconditional Schauder basis, which contains
no subspace isomorphic to any ℓp. Thus both X and X ′ verify the necessary
conditions in Corollary 39. But Tsirelson [61] proved that X has the following
additional property:

sup
n+1≤k≤2n

|λk| ≤ ‖
2n∑

k=n+1

λkek‖ ≤ 2 sup
n+1≤k≤2n

|λk|

for every (λk) ⊂ C and every n ∈ N. By using this property of X, Alencar, Aron
and Dineen [4] solved Problem 36 as follows.

41 Theorem ( [4]). If X denotes Tsirelson’s space, then:

(a) For each m ∈ N, every P ∈ P(mX) is weakly sequentially continuous.

(b) P(mX) is reflexive for every m ∈ N.
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Alencar, Aron and Dineen [4] actually proved more. They proved that if U
is a balanced open subset of Tsirelson’s space X, then H(U) is a reflexive locally
convex space for the Nachbin compact-ported topology τω, a topology that we
have not defined here, and which is stronger that the compact-open topology.
They also proved that P(mX ′) is not reflexive whenever m ≥ 2.

Following Farmer [27] we say that a Banach space E is polynomially reflexive
if P(mE) is reflexive for every m ∈ N. Farmer [27] observed that every quotient
space of a polynomially reflexive Banach space is polynomially reflexive as well.
Indeed if S ∈ L(E;F ) is a surjective operator, then the mapping P ∈ P(mF )→
P ◦S ∈ P(mE) is an isomorphic embedding, and the desired conclusion follows.

For additional results on the reflexivity of P(mE) we refer to a survey of
Gamelin [30].

In this section we have restricted our attention to the study of reflexivity of
spaces of scalar-valued homogeneous polynomials. Several authors have devoted
their attention to the study of reflexivity of spaces of vector-valued homogeneous
polynomials. We mention Alencar [3], Alencar, Aron and Fricke [5], Alencar
and Floret [6], [7], Gonzalo and Jaramillo [32], Jaramillo and Moraes [39] and
Mujica [49].

7 Weakly continuous polynomials

Weak continuity properties of polynomials appeared already in the preceding
section in connection with the reflexivity of P(mE). This section is devoted to
a systematic study of weak continuity properties of polynomials.

Pwsc(
mE;F ) denotes the subspace of all P ∈ P(mE;F ) which are weakly

sequentially continuous. Pw(mE;F ) (resp. Pwu(mE;F )) denotes the subspace
of all P ∈ P(mE;F ) which are weakly continuous (resp. weakly uniformly con-
tinuous) on each bounded subset of E. Clearly we have the following inclusions:

Pf (mE;F )
‖·‖ ⊂ Pwu(mE;F ) ⊂ Pw(mE;F ) ⊂ Pwsc(

mE;F ) ⊂ P(mE;F ).

Pk(mE;F ) denotes the subspace of all P ∈ P(mE;F ) which are compact,
that is P (BE) is relatively compact in F . The following results are due to Aron
and Prolla [10].

42 Theorem ( [10]). For Banach spaces E and F we have that:

(a) Pwu(mE;F ) ⊂ Pk(mE;F ) for every m ∈ N.

(b) Pwu(mE;F ) = Pk(mE;F ) for m = 1.
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Aron and Prolla [10] actually proved more. They proved that if f : E → F
is any mapping which is weakly uniformly continuous on bounded sets, then f
maps bounded subsets of E onto relatively compact subsets of F .

43 Example ( [10]). Let P ∈ P(2ℓ2) be defined by

P (x) =

∞∑

k=1

ξ2k

for every x = (ξk) ∈ ℓ2. Clearly P ∈ Pk(2ℓ2), but P /∈ Pw(2ℓ2), since en → 0
weakly, but P (en) = 1 6→ 0. Thus the conclusion of Theorem 42 (b) need not
be true when m > 1.

44 Theorem ( [10]). For a Banach space E the following conditions are
equivalent:

(a) E′ has the approximation property.

(b) Pwu(1E;F ) = Pf (1E;F )
‖·‖

for every Banach space F .

(c) Pwu(mE;F ) = Pf (mE;F )
‖·‖

for every Banach space F and every m ∈ N.

Conditions (a) and (b) are equivalent by Theorems 25 and 42. Clearly (c)
implies (b). Finally (c) follows from (b) by induction on m with the aid of the
following lemma.

45 Lemma ( [10]). Let P = Â, with A ∈ Ls(mE;F ) and m ≥ 2. Let

P̃ ∈ L(E;P(m−1E;F ))

be defined by

P̃ (x)(t) = A(x, t, . . . , t)

for all x, t ∈ E. If P ∈ Pwu(mE;F ), then P̃ is a compact operator, and its
image is contained in Pwu(m−1E;F ).

Clearly Pw(mE;F ) = Pwu(mE;F ) when E is reflexive. But the following
problem was raised by Aron and Prolla [10].

46 Problem ( [10]). Does the equality Pw(mE;F ) = Pwu(mE;F ) hold for
all Banach spaces E and F , and all m ∈ N?

Problem 46 was solved by Aron, Hervés and Valdivia [9] as follows.

47 Theorem ( [9]). Pw(mE;F ) = Pwu(mE;F ) for all Banach spaces E
and F , and all m ∈ N.

The spaces Pwsc(
mE;F ) and Pw(mE;F ) are related as follows.
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48 Theorem ( [9], [35]). For a Banach space E the following conditions
are equivalent:

(a) E contains no subspace isomorphic to ℓ1.

(b) Pwsc(
mE;F ) = Pw(mE;F ) for every Banach space F and every m ∈ N.

(c) Pwsc(
mE) = Pw(mE) for some m ≥ 2.

The implication (a) ⇒ (b) is due to Aron, Hervés and Valdivia [9]. The
implication (b) ⇒ (c) is obvious, and the implication (c) ⇒ (a) is due to
Gutiérrez [35].

For variants of the results in this section we refer to the aforementioned
survey of Gamelin [30]. For other weak continuity properties of polynomials we
refer to a survey of Gutiérrez, Jaramillo and Llavona [36] and the references
there.

8 Weakly continuous entire mappings

Hwsc(E;F ) denotes the subspace of all f ∈ H(E;F ) which are weakly se-
quentially continuous. Hw(E;F ) (resp. Hwu(E;F )) denotes the subspace of all
f ∈ H(E;F ) which are weakly continuous (resp. weakly uniformly continuous)
on each bounded subset of E. Clearly we have the following inclusions:

Hwu(E;F ) ⊂ Hw(E;F ) ⊂ Hwsc(E;F ) ⊂ H(E;F ).

The following result is a holomorphic version of Theorem 48.

49 Proposition ( [9]). If E is separable and contains no subspace isomor-
phic to ℓ1, then Hwsc(E;F ) = Hw(E;F ) for every Banach space F .

50 Corollary ( [9]). If E has a separable dual, then Hwsc(E;F ) = Hw(E;F )
for every Banach space F .

If f ∈ Hw(E;F ), then it follows from the Cauchy integral formula 9 that
Pmf(0) ∈ Pw(mE;F ) for every m ∈ N. By using this fact, Theorem 47 and
the remark after Theorem 42, Aron, Hervés and Valdivia [9] established the
following relationship between Hw(E;F ) and Hwu(E;F ).

51 Proposition ( [9]). Hwu(E;F ) = Hw(E;F ) ∩Hb(E;F ).

Clearly Hw(E;F ) = Hwu(E;F ) when E is reflexive. The first example of
a non-reflexive Banach space for which this equality holds is due to Seán Di-
neen [21], who proved that Hwsc(c0;F ) = Hw(c0;F ) = Hwu(c0;F ) for every
Banach space F . These results led Aron, Hervés and Valdivia [9] to pose the
following problems.
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52 Problem ( [9]). Does the equality Hwsc(E;F ) = Hw(E;F ) hold for
every Banach space F if and only if E contains no subspace isomorphic to ℓ1?

53 Problem ( [9]). Does the equality Hwsc(E;F ) = Hwu(E;F ) hold for
every Banach space F when E has a separable dual?

54 Problem ( [9]). Does the equality Hw(E;F ) = Hwu(E;F ) hold for all
Banach spaces E and F?

Problem 52 was solved by Joaqúın Gutiérrez [35], who improved Proposition
49 as follows.

55 Theorem ( [35]). For a Banach space E the following conditions are
equivalent:

(a) E contains no subspace isomorphic to ℓ1.

(b) Hwsc(E;F ) = Hw(E;F ) for every Banach space F .

(c) Hwsc(E) = Hw(E).

Humberto Carrión [12] recently solved Problem 53 and, in so doing, obtained
a partial solution to Problem 54. Before presenting a more detailed description
of the aforementioned results of Dineen [21] and Carrión [12], we introduce some
additional terminology.

Hbk(E;F ) denotes the subspace of all f ∈ H(E;F ) which are bounded on
the weakly compact subsets of E. Clearly we have the inclusions

Hb(E;F ) ⊂ Hbk(E;F ) and Hwsc(E;F ) ⊂ Hbk(E;F ).

With this notation Dineen [21] obtained the following theorem.

56 Theorem ( [21]). For every Banach space F we have that:

(a) Hbk(c0;F ) = Hb(c0;F ).

(b) Hwsc(c0;F ) = Hw(c0;F ) = Hwu(c0;F ).

The bulk of Dineen’s paper [21] is devoted to the proof of (a). (b) follows
from (a) with the aid of Proposition 51 and Corollary 50.

By adapting Dineen’s method of proof, Carrión was able to show that the
conclusion of Theorem 56 remains valid when c0 is replaced by a Banach space
with a shrinking, unconditional Schauder basis. By a clever refinement of that
proof he was able to delete the hypothesis of unconditionality of the basis. Thus
he obtained the following theorem.

57 Theorem ( [12]). Let E be a Banach space with a shrinking Schauder
basis. Then for each Banach space F we have that:
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(a) Hbk(E;F ) = Hb(E;F ).

(b) Hwsc(E;F ) = Hw(E;F ) = Hwu(E;F ).

This theorem has very important consequences.

58 Corollary ( [12]). If E has a separable dual, then for each Banach space
F we have that:

(a) Hbk(E;F ) = Hb(E;F ).

(b) Hwsc(E;F ) = Hw(E;F ) = Hwu(E;F ).

59 Corollary ( [12]). If each separable subspace of E has a separable dual,
then for each Banach space F we have that:

(a) Hbk(E;F ) = Hb(E;F ).

(b) Hwsc(E;F ) = Hw(E;F ) = Hwu(E;F ).

Corollary 58(a) follows from Theorem 57(a) with the aid of a result of Davis,
Figiel, Johnson and Pelczynski [16], which asserts that each Banach space with
a separable dual is a quotient of a Banach space with a shrinking Schauder
basis. Corollary 59(a) follows easily from Corollary 58(a). In Theorem 57 and in
Corollary 58, (b) follows from (a) with the aid of Proposition 51 and Corollary
50. In Corollary 59, (b) follows from (a) with the aid of Proposition 51 and
Theorem 55.

60 Example ( [12]). Since every weakly compact subset of ℓ1 is norm com-
pact, it follows that Hbk(ℓ1;F ) = H(ℓ1;F ) 6= Hb(ℓ1;F ) for every Banach space
F . Thus the conclusion of Corollary 59(a) is not valid for E = ℓ1.

61 Note (Note added in proof). Manuel Valdivia has observed that there
is a subtle gap in the proof of a result of Humberto Carrión [12, Theorem 11]
(Theorem 57 in this survey), which he has recognized. At present it is not clear
whether this result is correct or not. I am indebted to Pilar Rueda for informing
me of Valdivia’s observation.

9 Topological algebras of entire functions

A topological algebra is a complex algebra and a topological vector space in
which ring multiplication is continuous. All topological algebras are assumed to
be Hausdorff and to have a unit element. A topological algebra A is said to be
locally m-convex if its topology is defined by a family of seminorms p with the
property that p(xy) ≤ p(x)p(y) for all x, y ∈ A. A complete, metrizable, locally
m-convex algebra is called a Fréchet algebra.
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Every Banach algebra is a Fréchet algebra. If U is an open subset of a Banach
space E, then H(U) is an example of a commutative, complete, locally m-convex
algebra, whereas Hb(U) is an example of a commutative Fréchet algebra.

Locally m-convex algebras were systematically studied by Michael [42], who
proved that every complete, locally m-convex algebra is topologically isomorphic
to a projective limit of Banach algebras. In this way many properties of complete
locally m-convex algebras can be derived from the corresponding properties of
Banach algebras. But some important properties of Banach algebras are not
shared by complete locally m-convex algebras. Indeed it is well known that every
complex homomorphism on a Banach algebra is automatically continuous. But
this need not be true for complete locally m-convex algebras, as the following
example shows.

62 Example ( [42]). Let W be the set of all countable ordinals, with the
order topology, that is

W = {α : α is an ordinal and α < ω1 },

where ω1 denotes the first uncountable ordinal. If we set

W ∗ = W ∪ {ω1 },

then W is a countably compact topological space which is not compact, and W ∗

is the one-point compactification of W . Then C(W ) is a commutative, complete,
locally m-convex algebra. Each f ∈ C(W ) is eventually constant, and has a
unique extension f∗ ∈ C(W ∗). It follows that the mapping f ∈ C(W ) → f∗ ∈
C(W ∗) is an algebra isomorphism, and the functional f ∈ C(W )→ f∗(ω1) ∈ C

is a discontinuous homomorphism. Since the space W is countably compact, but
not compact, it follows that W is not metrizable. For proofs of these assertions
we refer to the book of Gillman and Jerison [31, Chapter 5].

Despite several claims to the contrary, the following problems, raised by
Michael [42] in 1952, remain unsolved.

63 Problem ( [42]). If A is a commutative Fréchet algebra, is every homo-
morphism φ : A→ C necessarily continuous?

64 Problem ( [42]). If A is a commutative, complete, locally m-convex
algebra, is every homomorphism φ : A→ C necessarily bounded, that is bounded
on all bounded subsets of A?

Clearly an affirmative solution to Problem 64 would imply an affirmative
solution to Problem 63. But Dixon and Fremlin [25] proved that the reverse
implication is also true. Thus Problems 63 and 64 are equivalent.

I. Craw [14], D. Clayton [13] and M. Schottenloher [57] proved that to solve
the Michael problem for an arbitrary commutative Fréchet algebra, it is suffi-
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cient to solve the corresponding problem for certain Fréchet algebras of holo-
morphic functions. By a refinement of their techniques we proved that to solve
the Michael problem for an arbitrary commutative Fréchet algebra, it is suffi-
cient to solve the corresponding problem for the Fréchet algebra Hb(E), where
E is some infinite dimensional Banach space. Our proof is based on the following
theorem, which is also due to the author [44].

65 Theorem ( [44]). Let E be a Banach space with a normalized Schauder
basis (en), and let (φn) ⊂ E′ be the corresponding sequence of coordinate func-
tionals. Let A be a commutative, complete, locally m-convex algebra. Let (an) be
a sequence in A such that

∑∞
n=1

√
p(an) <∞ for every continuous seminorm p

on A. Then there is a continuous algebra homomorphism T : H(E) → A such
that T (1) = 1 and T (φn) = an for every n ∈ N.

66 Theorem ( [44], [45]). The following assertions are equivalent:

(a) For each commutative, complete, locally m-convex algebra A, every homo-
morphism φ : A→ C is bounded.

(b) For each commutative Fréchet algebra A, every homomorphism φ : A → C

is continuous.

(c) There is an infinite dimensional Banach space E such that every homomor-
phism Φ : H(E)→ C is bounded.

(d) There is an infinite dimensional Banach space E such that every homomor-
phism Φ : Hb(E)→ C is continuous.

Proof. The implications (a) ⇒ (b), (a) ⇒ (c) and (b) ⇒ (d) are clear. To
complete the proof we show the implications (c) ⇒ (a) and (d) ⇒ (a) at the
same time.

Suppose that (a) is false. Then there exist a commutative, complete, locally
m-convex algebra A and an unbounded homomorphism ψ : A → C. Hence
there is a bounded sequence (bn) in A such that |ψ(bn)| > 8n for every n. Let
an = 4−nbn for every n. Then for each continuous seminorm p on A there is a
constant c > 0 such that p(an) ≤ 4−nc for every n. Thus

∑∞
n=1

√
p(an) < ∞

for each continuous seminorm p on A.

We claim that (c) and (d) are false. Indeed let E be any infinite dimensional
Banach space. By a classical result of Mazur (see Diestel’s book [17, Chapter
V]), E contains a closed, infinite dimensional subspace M with a normalized
Schauder basis (en). Let (φn) ⊂M ′ be the corresponding sequence of coordinate
functionals. By Theorem 65 there is an algebra homomorphism T : H(M)→ A
such that T (1) = 1 and T (φn) = an for every n. Let R : H(E)→H(M) be the
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restriction mapping. Since the sequence (φn) is bounded in M ′, by the Hahn-
Banach theorem there is a bounded sequence (φ̃n) in E′ such that R(φ̃n) = φn

for every n. Thus ψ ◦ T ◦ R is a complex homomorphism on H(E), which is
unbounded, since |ψ ◦ T ◦ R(φ̃n)| = |ψ(an)| > 2n for every n. For the same
reason, the restriction of ψ ◦ T ◦ R to Hb(E) is an unbounded, and therefore
discontinuous complex homomorphism on Hb(E). This shows that (c) and (d)
are false, and completes the proof of the theorem. QED

Observe that Theorem 66 gives another proof of the equivalence of Problems
63 and 64.

We next characterize the complex homomorphisms and the continuous com-
plex homomorphisms on the Fréchet algebra Hb(E), where E varies over a class
of Banach spaces that contains Tsirelson’s space.

67 Theorem ( [48]). Let E be a reflexive Banach space such that P(mE) =

Pf (mE)
‖·‖

for every m ∈ N. Then each continuous homomorphism Φ : Hb(E)→
C is an evaluation, that is, there is an a ∈ E such that Φ(f) = f(a) for every
f ∈ Hb(E).

68 Theorem ( [48]). Let E be a reflexive Banach space such that P(mE) =

Pf (mE)
‖·‖

for every m ∈ N. Then given f1, . . . , fp ∈ Hb(E), without common
zeros, there are g1, . . . , gp ∈ Hb(E) such that

∑p
k=1 fkgk = 1.

69 Theorem. Let E be a reflexive Banach space such that

P(mE) = Pf (mE)
‖·‖

for every m ∈ N. Then each homomorphism Φ : Hb(E) → C is a local evalua-
tion, that is, given f1, . . . , fp ∈ Hb(E), there is an a ∈ E such that Φ(fk) = fk(a)
for k = 1, . . . , p.

Proof. If there were no a ∈ E such that Φ(fk) = fk(a) for k = 1, . . . , p,
then the functions f1 − Φ(f1), . . . , fp − Φ(fp) would have no common zeros.
By Theorem 68 there would exist g1, . . . , gp ∈ Hb(E) such that

∑p
k=1(fk −

Φ(fk))gk = 1. By applying Φ we would get 0 = 1, absurd. QED

Given a Banach space E, we consider the mapping

σb : x ∈ E → (f(x))f∈Hb(E) ∈ C
Hb(E).

The mapping σb is clearly injective. If we use Definition 7(c) to define holo-
morphic mappings between locally convex spaces, then σb is easily seen to be
holomorphic. Furthermore, σb maps bounded sets onto bounded sets. Thus, with
the obvious notation, σb ∈ Hb(E; CHb(E)). With this notation, from Theorems
67 and 69 we easily get the following theorem.
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70 Theorem. Let E be a reflexive Banach space such that

P(mE) = Pf (mE)
‖·‖

for every m ∈ N. Then for a function Φ : Hb(E)→ C we have that:

(a) Φ is a continuous algebra homomorphism if and only if (Φ(f))f∈Hb(E) ∈
σb(E).

(b) Φ is an algebra homomorphism if and only if (Φ(f))f∈Hb(E) ∈ σb(E).

We next characterize the complex homomorphisms and the bounded com-
plex homomorphisms of the locally m-convex algebra H(E), where E varies over
a class of Banach spaces that contains Tsirelson’s space.

71 Theorem ( [43]). Let E be a separable Banach space such that P(mE) =
Pf (mE)

τc
for every m ∈ N. Then each bounded homomorphism Φ : H(E) → C

is an evaluation.

72 Theorem ( [48]). Let E be a reflexive Banach space such that P(mE) =

Pf (mE)
‖·‖

for every m ∈ N. Then given f1, . . . , fp ∈ H(E), without common
zeros, there are g1, . . . , gp ∈ H(E) such that

∑p
k=1 fkgk = 1.

73 Theorem. Let E be a reflexive Banach space such that

P(mE) = Pf (mE)
‖·‖

for every m ∈ N. Then each homomorphism Φ : H(E)→ C is a local evaluation.

The proof of Theorem 73 is similar to that of Theorem 69, but uses Theorem
72 instead of Theorem 68.

Given a Banach space E we consider the mapping

σ : x ∈ E → (f(x))f∈H(E) ∈ C
H(E).

Then the mapping σ is injective and is holomorphic, that is σ ∈ H(E; CH(E)).
With this notation, from Theorems 71 and 73 we easily get the following theo-
rem.

74 Theorem. Let E be a separable and reflexive Banach space such that

P(mE) = Pf (mE)
‖·‖

for every m ∈ N. Then for a function Φ : H(E) → C we
have that:

(a) Φ is a bounded homomorphism if and only if (Φ(f))f∈H(E) ∈ σ(E).

(b) Φ is a homomorphism if and only if (Φ(f))f∈H(E) ∈ σ(E).
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It follows from Theorems 34 and 41 that Tsirelson’s space X verifies the
hypotheses of Theorems 70 and 74. Thus it follows from Theorems 66, 70 and
74 that Problems 63 and 64 are equivalent to the following problems.

75 Problem. Does the mapping σb : X → C
Hb(X) have a closed image?

76 Problem. Does the mapping σ : X → C
H(X) have a closed image?

By using Theorem 41 we can prove that the image of the mapping σb :
X → C

Hb(X) is sequentially closed. By using a result of Petunin and Savkin [54]
(see also [29]) we can prove that the image of the mapping σ : X → C

H(X) is
sequentially closed too. But I have unable to determine whether these sets are
closed.

For other reductions of the Michael problem we refer to an article of Dixon
and Esterle [24]. For other results in this direction we refer to a survey of
Dales [15] on automatic continuity.
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