# Banach-Steinhaus type theorems <br> in locally convex spaces for linear bounded operators 

Lahrech Samir ${ }^{\text {i }}$<br>Department of mathematics, Mohammed first university, Faculty of sciences, Oujda, Morocco<br>lahrech@sciences.univ-oujda.ac.ma

Received: $16 / 3 / 2003$; accepted: $9 / 6 / 2004$.


#### Abstract

Banach-Steinhaus type results are established for linear bounded operators between locally convex spaces without barrelledness.


Keywords: Barrelledness, sequential continuity, boundedness, locally convex spaces.
MSC 2000 classification: 47B37 (primary), 46A45.

## Introduction

In the past, all of Banach-Steinhaus type results have been established only for some special classes of locally convex spaces, e.g.,barrelled spaces ([2],[3],[4]), s-barrelled spaces ([5]), strictly s-barrelled spaces ([6]), etc. Recently, Cui Chengri and Songho Han ([1]) have obtained a Banach-Steinhaus type result which is valid for every locally convex space as follows

1 Theorem. Let $(X, \lambda),(Y, \mu)$ be locally convex spaces and $T_{n}: X \rightarrow Y$ bounded linear operators, $n \in \mathbf{N}$. If weak $-\lim _{n} T_{n} y=T y$ exists at each $y \in X$, then the limit operator $T$ send $\eta\left(X, X^{b}\right)$-bounded sets into bounded sets.

In this paper we would like to obtain the same result by taking the topology $\lambda$ in place of $\eta\left(X, X^{b}\right)$.

Let $(X, \lambda)$ and $(Y, \mu)$ be locally convex spaces. Assume that the locally convex topology $\mu$ is generated by the family $\left(q_{\beta}\right)_{\beta \in I}$ of semi-norms on $Y$.

An operator $T: X \rightarrow Y$ is said to be sequentially continuous if $\left\{x_{n}\right\}$ is a sequence in $X$ such that $x_{n} \rightarrow x$ then $T x_{n} \rightarrow T x ; T$ is said to be bounded if $T$ sends bounded sets into bounded sets. Clearly, continuous operators are sequentially continuous, and sequentially continuous operators are bounded but in general, converse implications fail. Let $X^{\prime}, X^{s}$ and $X^{b}$ denote the families

[^0]of continuous linear functionals, sequentially continuous linear functionals and bounded linear functionals on $X$, respectively. In general, the inclusions $X^{\prime} \subset$ $X^{s} \subset X^{b}$ are strict.

For a linear dual pair $(E, F)$ let $\beta(E, F)$ denote the strongest $(E, F)$ polar topology on $E$ which is just the topology of uniform convergence on $\sigma(F, E)$ bounded subsets of $F$.

Let $\mathcal{C}\left(X_{\lambda}\right), \mathcal{B}\left(X_{\lambda}\right)$ and $\mathcal{C}_{0}\left(X_{\lambda}\right)$ denote the families of conditionally $\lambda$ - sequentially compact sets, bounded sets in $(X, \lambda)$ and convergent sequences in $(X, \lambda)$ to 0 , respectively.

Let $\sigma \subset \mathcal{B}\left(X_{\lambda}\right)$ such that $\bigcup_{C \in \sigma} C=X$.
Let $\zeta$ be the topology on $X^{b}$ generated by the family of semi-norms

$$
P_{C}(f)=\sup _{y \in C}|f(y)|, \quad C \in \sigma .
$$

Let $\eta\left(X, X_{\zeta}^{s}\right)$ denote the topology of uniform convergence on conditionally $\left(X^{s}, \zeta\right)$ - sequentially compacts sets of $X^{s}$.

Remark that $\eta\left(X, X_{\zeta}^{s}\right)$ is coarser than $\eta\left(X, X^{b}\right)$. It follows immediately
2 Proposition. For every locally convex space $X$ the following conditions are equivalent.
(1) For every locally convex space $Y$ and for every sequence $\left\{T_{n}\right\}_{n}$ of bounded linear operators from $X$ into $Y$ such that for every $C \in \sigma \quad \mu-\lim _{n} T_{n} x=T x$ uniformly in $x \in C$, the limit operator $T$ is also $(\lambda, \mu)$-bounded.
(2) $\left(X^{b}, \zeta\right)$ is sequentially complete.

Proof. (1) $\Rightarrow$ (2). Let $\left\{f_{n}\right\}$ be a $X_{\zeta}^{b}$ - Cauchy sequence in $X^{b}$. then, there exists a linear functional $f$ such that for every $C \in \sigma \lim _{n} f_{n}(x)=f(x)$ uniformly in $x \in C$. Consequently, $f \in X^{b}$ by (1).
$(2) \Rightarrow(1)$. Let $Y$ be a locally convex space and $\left\{T_{n}\right\}$ a sequence of bounded linear operators from $X$ into $Y$ such that for every $C \in \sigma \mu-\lim _{n} T_{n} x=T x$ uniformly in $x \in C$. Suppose that $B$ is a bounded subset of $X_{\lambda}$ and $y^{\prime} \in Y^{\prime}$. Then there exists $\beta_{0} \in I$ and $c_{1}>0$ such that for every $z \in Y\left|y^{\prime}(z)\right| \leq c_{1} q_{\beta_{0}}(z)$. Therefore, for every $C \in \sigma \lim _{n} y^{\prime}\left(T_{n} x\right)=y^{\prime}(T x)$ uniformly in $x \in C$. Since $y^{\prime} \circ T_{n} \in X^{b}$ for all $n \in \mathbf{N}, y^{\prime} \circ T \in X^{b}$ by (2). Therefore, $\left\{y^{\prime}(T x): x \in B\right\}$ is bounded. Since $y^{\prime} \in Y^{\prime}$ is arbitrary, $T(B)$ is $\mu$-bounded by the classical Mackey theorem.

QED
The proof of proposition 1 gives the following
3 Proposition. For every locally convex space $X$ the following conditions are equivalent.
(1) For every locally convex space $Y$ and for every sequence $T_{n}$ of sequentially
continuous linear operators from $X$ into $Y$ such that for every $C \in \sigma \mu-$ $\lim _{n} T_{n} y=T y$ uniformly in $y \in C$, the limit operator $T$ is also $(\lambda, \mu)$-bounded. (2) $X_{\zeta}^{s}$ is sequentially complete.

Assume now that $\sigma$ satisfies also the condition $\mathcal{C}\left(X_{\lambda}\right) \subset \sigma$. It follows immediately

4 Proposition. $X_{\zeta}^{s}$ is sequentially complete.
Proof. Suppose that $\left\{A_{n}\right\}_{n}$ is Cauchy sequence in $X_{\zeta}^{s}$. Then,

$$
\forall \varepsilon>0 \quad \forall C \in \sigma \quad \exists n_{0} \in \mathbf{N}
$$

such that

$$
\begin{equation*}
\forall n, m \geq n_{0} \quad \forall y \in C \quad\left|A_{n} y-A_{m} y\right|<\varepsilon \tag{1}
\end{equation*}
$$

On the other hand, $\forall y \in X\left\{A_{n} y\right\}_{n}$ is Cauchy sequence in $\mathbf{R}$. Consequently, $A_{n} y \rightarrow A y$ in $\mathbf{R}$, as $n \rightarrow \infty$. Letting $m \rightarrow \infty$ in (1), it follows that

$$
\forall \varepsilon>0 \quad \forall C \in \sigma \quad \exists n_{0} \in \mathbf{N}
$$

such that

$$
\begin{equation*}
\forall n \geq n_{0} \quad \forall y \in C \quad\left|A_{n} y-A y\right| \leq \varepsilon \tag{2}
\end{equation*}
$$

We will show now that $A \in X^{s}$.
Let $\left\{x_{n}\right\}_{n} \in \mathcal{C}_{0}\left(X_{\lambda}\right)$. Pick any $\varepsilon>0$. As $\left\{x_{n}\right\} \in \mathcal{C}\left(X_{\mu}\right) \subset \sigma$, then there exists $n_{0} \in \mathbf{N}$ such that for all $n \in \mathbf{N}$ and forall $y \in C$

$$
\left|A_{n_{0}} x_{n}-A x_{n}\right| \leq \frac{\varepsilon}{2}
$$

On the other hand, there exists $n_{1} \in \mathbf{N}$ such that $\forall n>n_{1}\left|A_{n_{0}} x_{n}\right| \leq \frac{\varepsilon}{2}$.
In this case

$$
\forall n>n_{1}\left|A x_{n}\right| \leq \varepsilon .
$$

Consequently, $A \in X^{s}$. Thus, $X_{\zeta}^{s}$ is sequentially complete.
5 Proposition. Let $(X, \lambda),(Y, \mu)$ be locally convex spaces and $T_{n}: X \rightarrow Y$ sequentially continuous linear operators, $n \in \mathbf{N}$. If for every $C \in \sigma \mu-\lim _{n} T_{n} z=$ $T z$ uniformly in $z \in C$, then the limit operator $T$ send $\eta\left(X, X_{\zeta}^{s}\right)$-bounded sets into bounded sets.

Proof. Let $y^{\prime} \in Y^{\prime}, C \in \sigma$. Then there exists $\beta_{0} \in I$ and $c_{1}>0$ such that for every $z \in Y\left|y^{\prime}(z)\right| \leq c_{1} q_{\beta_{0}}(z)$. Consequently, $\sup _{z \in C}\left|y^{\prime}\left(T_{n} z\right)-y^{\prime}(T z)\right| \rightarrow 0$.

Since $X_{\zeta}^{s}$ is sequentially complete, then $\left\{y^{\prime} \circ T_{n}: n \in \mathbf{N}\right\}$ is conditionally ( $X^{s}, \zeta$ )-sequentially compact.

Suppose that $B$ is a $\eta\left(X, X_{\zeta}^{s}\right)$-bounded subset of $X$ and $\left\{x_{k}\right\} \subset B$. Then $\exists c>0 \forall k \in \mathbf{N} \forall n \in \mathbf{N}\left|y^{\prime}\left(T_{n} x_{k}\right)\right| \leq c$. Fix a $k \geq k_{0}$ and $\varepsilon>0$. Since $\lim _{n} y^{\prime}\left(T_{n} x_{k}\right)=y^{\prime}\left(T x_{k}\right)$ there is an $n_{0} \in \mathbf{N}$ such that $\left|y^{\prime}\left(T_{n_{0}} x_{k}\right)-y^{\prime}\left(T x_{k}\right)\right|<\frac{\varepsilon}{2}$. Therefore,

$$
\left|y^{\prime}\left(T x_{k}\right)\right| \leq\left|y^{\prime}\left(T x_{k}\right)-y^{\prime}\left(T_{n_{0}} x_{k}\right)\right|+\left|y^{\prime}\left(T_{n_{0}} x_{k}\right)\right|<\frac{\varepsilon}{2}+c .
$$

This shows that $\left\{y^{\prime}(T x): x \in B\right\}$ is bounded. Since $y^{\prime} \in Y^{\prime}$ is arbitrary, $T(B)$ is $\mu$-bounded by the classical Mackey theorem. Thus, we achieve the proof.

QED
Let us denote by $\theta\left(X, X_{\zeta}^{s}\right)$ the topology of uniform convergence on $\left(X^{s}, \zeta\right)-$ Cauchy sequences. A subset $B$ of $X$ is said to be $\theta\left(X, X_{\zeta}^{s}\right)$-bounded if for every $X_{\zeta}^{s}$-Cauchy sequence $\left\{f_{n}\right\}$ there exists $c>0$ such that for every sequence $\left\{x_{k}\right\}$ in $B\left|f_{n}\left(x_{k}\right)\right| \leq c \quad \forall n \in \mathbf{N} \quad \forall k \in \mathbf{N}$.

Then the proof of proposition 4 gives the following.
6 Proposition. Let $(X, \lambda),(Y, \mu)$ be locally convex spaces and $T_{n}: X \rightarrow Y$ bounded linear operators, $n \in \mathbf{N}$. If for every $C \in \sigma \mu-\lim _{n} T_{n} y=T y$ uniformly in $y \in C$, then the limit operator $T$ send $\theta\left(X, X_{\zeta}^{s}\right)$ bounded sets into bounded sets.

Now we have a useful proposition as follows.
7 Proposition. Let $(X, \lambda),(Y, \mu)$ be locally convex spaces and $T_{n}: X \rightarrow Y$ sequentially continuous linear operators, $n \in \mathbf{N}$. If for every $C \in \sigma \mu-\lim _{n} T_{n} y=$ Ty uniformly in $y \in C$, then the limit operator $T$ send $\lambda$-bounded sets into bounded sets.

Proof. By propositions 2 and 3, we deduce the result.

## References

[1] Cui Chengri, Songho Han: Banach-Steinhaus properties of locally convex spaces, Kangweon-Kyungki Math. Jour. 5, no. 2 (1997), 227-232.
[2] J. Horvath: Topological vector spaces and distributions, Addison-Wesley, 1966.
[3] A. Wilansky: Modern Methods in TVS, McGraw-Hill, 1978.
[4] G. Kothe: Topological vector spaces, I, Springer-Verlag, 1983.
[5] R. Snipes: S-barrelled topological vector spaces, Canad. Math. Bull. 21, no. 2 (1978), 221-227.
[6] W. H. Hsiang: Banach-Steinhaus theorems of locally convex spaces based on sequential equicontinuity and essentially uniform boundedness, Acta Sci.Math. 52 (1988), 415-435.
[7] Ronglu Li, Min-Hyung Cho: Banach-Steinhaus type theorem which is valid for every locally convex space, Appl. Funct. Anal. 1 (1993), 146-147.


[^0]:    ${ }^{\mathrm{i}}$ This work is partially supported by Department of mathematics of Mohammed first university in Oujda.

