Note di Matematica $Note\ Mat.\ 35\ (2015)\ {\rm no.\ 2,\ 51\text{--}67}.$

ISSN 1123-2536, e-ISSN 1590-0932 doi:10.1285/i15900932v35n2p51

Envelopes of slant lines in the hyperbolic plane

Takashi, ASHINO

Department of Mathematics, Hokkaido University

Hisayoshi ICHIWARA

Department of Mathematics, Hokkaido University

Shyuichi IZUMIYA

Department of Mathematics, Hokkaido University izumiya@math.sci.hokudai.ac.jp

Received: 6.1.2015; accepted: 23.4.2015.

Abstract. In this paper we consider envelopes of families of equidistant curves and horocycles in the hyperbolic plane. As a special case, we consider a kind of evolutes as the envelope of normal equidistant families of a curve. The hyperbolic evolute of a curve is a special case. Moreover, a new notion of horocyclic evolutes of curves is induced. We investigate the singularities of such envelopes and introduce new invariants in the Lie algebra of the Lorentz group.

Keywords: slant geometry, Hyperbolic plane, horocycles, equidistant curves

MSC 2010 classification: primary 53B30, secondary 58K99, 53A35, 58C25

1 Introduction

We consider the Poincaré disk model D of the hyperbolic plane which is conformally equivalent to the Euclidean plane, so that a circle or a line in the Poincaré disk is also a circle or a line in the Euclidean plane. A geodesic in the Poincaré disk is a Euclidean circle or a line which is perpendicular to the ideal boundary (i.e., the unit circle). If we adopt geodesics as lines in the Poincaré disk, we have the model of the hyperbolic geometry. A horocycle is an Euclidean circle which is tangent to the ideal boundary. If we adopt horocycles as lines, we call this geometry a horocyclic geometry (a horospherical geometry for the higher dimensional case) [4, 6, 7, 8, 9]. We also have another kind of curves with the properties similar to those of Euclidean lines. A curve in the Poincaré disk is called an equidistant curve if it is a Euclidean circle or a Euclidean line whose intersection with the ideal boundary consists of two points. We define an equidistant curve depends on $\phi \in [0, \pi/2]$ whose angles with the ideal boundary

at the intersection points are ϕ (cf., [10]). A geodesic is the special case with $\phi = \pi/2$ and a horocycle is the case with $\phi = 0$. Therefore, a geodesic is called a *vertical pseudo-line* and a horocycle a *horizontal pseudo-line*. For $\phi \in (0, \pi/2]$, the corresponding pseudo-line is an equidistant curve, which we call a ϕ -slant pseudo-line. If we consider a ϕ -slant pseudo-line as a line, we call this geometry a slant geometry (cf., [1]).

In this paper we consider envelopes of families of ϕ -slant pseudo-lines in the general setting. We investigate the singularities of such envelopes. Throughout the remainder of the paper, we adopt the Lorentz-Minkowski space model of the hyperbolic plane. For a 3×3 -matrix A, we say that A is a member of the Lorentz group $SO_0(1,2)$ if det A>0 and the induced linear mapping preserves the Lorentz-Minkowski scalar product. The Lorentz group $SO_0(1,2)$ canonically acts on the hyperbolic plane. It is well known that this action is transitive, so that the hyperbolic space is canonically identified with the homogeneous space $SO_0(1,2)/SO(2)$. It follows that any point of the hyperbolic space can be identified with a matrix $A \in SO_0(1,2)$ (cf., §3). Therefore, a one parameter family of ϕ -slant pseudo-lines can be parametrized by using a curve in $SO_0(1,2)$ (cf., §3 and 4). Then we apply the theory of unfoldings of function germs (cf., [2]) and obtain a classification of singularities of the envelopes of the families of ϕ -slant pseudo-lines (cf., Theorem 5.6). The singularities of the envelopes are characterized by using invariants represented by the elements of Lie algebra $\mathfrak{so}(1,2)$ of $SO_0(1,2)$. In §6 we introduce the notion of ϕ -slant evolutes of unit speed curves in the hyperbolic plane. If $\phi = \pi/2$, then the ϕ -slant evolute is a hyperbolic evolutes defined in [5]. Moreover, if $\phi = 0$, then the ϕ -slant evolute is called a horocyclic evolute. It means that the ϕ -slant evolutes depending on ϕ connects the hyperbolic evolute and the horocyclic evolute of the curve in the hyperbolic plane.

In [3] families of equal-angle envelopes in the Euclidean plane is investigated.

2 Basic concepts

We now present basic notions on Lorentz-Minkowski 3-space. Let $\mathbb{R}^3 = \{(x_0, x_1, x_2) | x_i \in \mathbb{R}, i = 0, 1, 2\}$ be a 3-dimensional vector space. For any vectors $\mathbf{x} = (x_0, x_1, x_2), \mathbf{y} = (y_0, y_1, y_2) \in \mathbb{R}^3$, the pseudo scalar product (or, the Lorentz-Minkoski scalar product) of \mathbf{x} and \mathbf{y} is defined by $\langle \mathbf{x}, \mathbf{y} \rangle = -x_0 y_0 + x_1 y_1 + x_2 y_2$. The space $(\mathbb{R}^3, \langle, \rangle)$ is called Lorentz-Minkowski 3-space which is denoted by \mathbb{R}^3_1 . We assume that \mathbb{R}^3_1 is time-oriented and choose $\mathbf{e}_0 = (1, 0, 0)$ as the future timelike vector.

We say that a non-zero vector \boldsymbol{x} in \mathbb{R}^3_1 is *spacelike*, *lightlike* or *timelike* if $\langle \boldsymbol{x}, \boldsymbol{x} \rangle > 0, = 0$ or < 0 respectively. The norm of the vector $\boldsymbol{x} \in \mathbb{R}^3_1$ is defined

by $\|x\| = \sqrt{|\langle x, x \rangle|}$. Given a non-zero vector $n \in \mathbb{R}^3_1$ and a real number c, the plane with pseudo normal n is given by

$$P(\boldsymbol{n},c) = \{ \boldsymbol{x} \in \mathbb{R}^3_1 | \langle \boldsymbol{x}, \boldsymbol{n} \rangle = c \}.$$

We say that P(n, c) is spacelike, timelike or lightlike if n is timelike, spacelike or lightlike respectively.

For any vectors $\mathbf{x} = (x_0, x_1, x_2)$, $\mathbf{y} = (y_0, y_1, y_2) \in \mathbb{R}^3$, pseudo exterior product of \mathbf{x} and \mathbf{y} is defined to be

$$\boldsymbol{x} \wedge \boldsymbol{y} = \begin{vmatrix} -\boldsymbol{e}_0 & \boldsymbol{e}_1 & \boldsymbol{e}_2 \\ x_0 & x_1 & x_2 \\ y_0 & y_1 & y_2 \end{vmatrix} = (-(x_1y_2 - x_2y_1), x_2y_0 - x_0y_2, x_0y_1 - x_1y_0),$$

where $\{e_0, e_1, e_2\}$ is the canonical basis of \mathbb{R}^3_1 . We also define *Hyperbolic plane* by

$$H_{+}^{2}(-1) = \{ \boldsymbol{x} \in \mathbb{R}_{1}^{3} | \langle \boldsymbol{x}, \boldsymbol{x} \rangle = -1, x_{0} \ge 1 \},$$

de Sitter 2-space by

$$S_1^2 = \{ \boldsymbol{x} \in \mathbb{R}_1^3 | \langle \boldsymbol{x}, \boldsymbol{x} \rangle = 1 \}$$

and the (open) lightcone at the origin by

$$LC^* = \{ \boldsymbol{x} = (x_0, x_1, x_2) \in \mathbb{R}^3_1 \mid x_0 \neq 0, \ \langle \boldsymbol{x}, \boldsymbol{x} \rangle = 0 \}.$$

We remark that $H_+^2(-1)$ is a Riemannian manifold if we consider the induced metric from \mathbb{R}^3_1 .

We now consider the plane defined by $\mathbb{R}_0^2 = \{(x_0, x_1, x_2) \in \mathbb{R}_1^3 \mid x_0 = 0\}$. Since $\langle , \rangle |_{\mathbb{R}_0^2}$ is the canonical Euclidean scalar product, we call it *Euclidean plane*. We adopt coordinates (x_1, x_2) of \mathbb{R}_0^2 instead of $(0, x_1, x_2)$. On Euclidean plane \mathbb{R}_0^2 , we have the *Poincaré disc model* of the hyperbolic plane. We consider a unit open disc $D = \{x \in \mathbb{R}_0^2 \mid ||x|| < 1\}$ and consider a Riemannian metric

$$ds^2 = \frac{4(dx_1^2 + dx_2^2)}{1 - x_1^2 - x_2^2}.$$

Define a mapping $\Psi: H^2_+ \longrightarrow D$ by

$$\Psi(x_0, x_1, x_2) = \left(\frac{x_1}{x_0 + 1}, \frac{x_2}{x_0 + 1}\right).$$

It is known that Ψ is an isometry. Moreover, the Poinaré disc model is conformally equivalent to the Euclidean plane.

3 Pseudo-lines in the hyperbolic plane

We consider a curve defined by the intersection of the hyperbolic plane with a plane in Lorentz-Minkowski 3-space, which is called a pseudo-circle if it is non-empty. The image of a pseudo-circle by the isometry Ψ is a part of a Euclidean circle in the Poincaré disc D. Let $P(\boldsymbol{n},c)$ be a plane with a unit pseudo-normal \boldsymbol{n} . We call $H_+^2(-1) \cap P(\boldsymbol{n},c)$ a circle, an equidistant curve and a horocyle if \boldsymbol{n} is timelike, spacelike or lightlike respectively. Moreover, if \boldsymbol{n} is spacelike and c=0, then we call it a hyperbolic line (or, a geodesic). We remark that circles are compact and other pseudo-circles are non-compact. Therefore, equidistant curves or horocycles are called pseudo-lines.

We now consider a hyperbolic line

$$HL(\boldsymbol{n}) = \{ \boldsymbol{x} \in H_+^2(-1) \mid \langle \boldsymbol{x}, \boldsymbol{n} \rangle = 0 \}$$

and a horocycle

$$HC(\ell, -1) = \{ x \in H^2_+(-1) \mid \langle x, \ell \rangle = -1 \},$$

where ℓ is a lightlike vector. In general, a horocycle is defined by $\langle \boldsymbol{x}, \ell \rangle = c$ for a lightlike vector ℓ and $c \neq 0$. However, if we choose $-\ell/c$ instead of ℓ , then we have the above equation. We now consider parametrizations of a horocycle and a hyperbolic line respectively. For any $\boldsymbol{a}_0 \in HC(\ell, -1)$, let \boldsymbol{a}_1 be a unit tangent vector of $HC(\ell, -1)$ at \boldsymbol{a}_0 , so that $\langle \boldsymbol{a}_1, \ell \rangle = 0$. We define $\boldsymbol{a}_2 = \boldsymbol{a}_0 \wedge \boldsymbol{a}_1$. Then we have a pseudo orthonormal basis $\{\boldsymbol{a}_0, \boldsymbol{a}_1, \boldsymbol{a}_2\}$ of \mathbb{R}^3_1 such that $\langle \boldsymbol{a}_0, \boldsymbol{a}_0 \rangle = -1$. We remark that \boldsymbol{a}_0 is timelike and $\boldsymbol{a}_1, \boldsymbol{a}_2$ are spacelike. Since $\langle \ell - \boldsymbol{a}_0, \boldsymbol{a}_0 \rangle = \langle \ell, \boldsymbol{a}_1 \rangle = 0$, we have $\pm \boldsymbol{a}_2 = \ell - \boldsymbol{a}_0$. We choose the direction of \boldsymbol{a}_1 such that $\boldsymbol{a}_2 = \ell - \boldsymbol{a}_0$. It follows that $A = ({}^t\boldsymbol{a}_0 \ {}^t\boldsymbol{a}_1 \ {}^t\boldsymbol{a}_2) \in SO_0(1, 2)$, where

$$SO_0(1,2) = \left\{ A = \begin{pmatrix} a_0^0 & a_0^1 & a_0^2 \\ a_0^1 & a_1^1 & a_1^2 \\ a_0^2 & a_2^1 & a_2^2 \end{pmatrix} \mid {}^tAI_{1,2}A = I_{1,2}, \ a_0^0 \ge 1 \right\}$$

is the *Lorentz group*, where

$$I_{1,2} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

For any $A = ({}^t\boldsymbol{a}_0 \ {}^t\boldsymbol{a}_1 \ {}^t\boldsymbol{a}_2) \in SO_0(1,2), \ \{\boldsymbol{a}_0,\boldsymbol{a}_1,\boldsymbol{a}_2\}$ is a pseudo orthonormal basis of \mathbb{R}^3_1 . Then $\boldsymbol{\ell} = \boldsymbol{a}_0 + \boldsymbol{a}_2$ is lightlike. It follows that we have $HC(\boldsymbol{\ell},-1) = HC(\boldsymbol{a}_0 + \boldsymbol{a}_2,-1)$ such that $\boldsymbol{a}_0 \in HC(\boldsymbol{a}_0 + \boldsymbol{a}_2,-1)$ and \boldsymbol{a}_1 is tangent to $HC(\boldsymbol{a}_0 + \boldsymbol{a}_2,-1)$ at \boldsymbol{a}_0 . Moreover, we have $\boldsymbol{a}_0 \in HL(\boldsymbol{a}_2)$ and \boldsymbol{a}_1 is tangent to $HL(\boldsymbol{a}_2)$ at \boldsymbol{a}_0 . Then we have the following lemma.

Lemma 3.1. With the above notation, we have

(1)
$$HC(\ell, -1) = \left\{ x = a_0 + ra_1 + \frac{1}{2}r^2(a_0 + a_2) \mid r \in \mathbb{R} \right\}.$$

(2)
$$HL(\mathbf{a}_2) = \{\sqrt{r^2 + 1}\mathbf{a}_0 + r\mathbf{a}_1 \mid r \in \mathbb{R}\}.$$

Proof. (1) For any $\mathbf{x} \in HC(\ell, -1)$, there exist $\alpha, \beta, \gamma \in \mathbb{R}$ such that

$$\boldsymbol{x} = \alpha \boldsymbol{a}_0 + \beta \boldsymbol{a}_1 + \gamma \boldsymbol{a}_2 \quad (\alpha > 1).$$

We put $\beta = r$. Since $\langle \boldsymbol{x}, \boldsymbol{\ell} \rangle = -\alpha + \gamma = -1$, we have $\alpha = \gamma + 1$. Moreover, we also have $\langle \boldsymbol{x}, \boldsymbol{x} \rangle = -\alpha^2 + \beta^2 + \gamma^2 = -(\gamma + 1)^2 + r^2 + \gamma^2 = -1$, so that $\gamma = \frac{1}{2}r^2$. Thus,

$$x = a_0 + ra_1 + \frac{1}{2}r^2(a_0 + a_2)$$

holds. For the converse, we can easily show that $\langle x, x \rangle = -1$ and $\langle x, \ell \rangle = -1$ for the above vector.

(2) For any $\boldsymbol{x} \in HL(\boldsymbol{a}_2)$, there exist $\alpha, \beta, \gamma \in \mathbb{R}$ such that

$$x = \alpha a_0 + \beta a_1 + \gamma a_2 \quad (\alpha \ge 1).$$

Since $\langle \boldsymbol{x}, \boldsymbol{a}_2 \rangle = 0$, $\gamma = 0$. If we put $\beta = r$, then we have $\langle \boldsymbol{x}, \boldsymbol{x} \rangle = -\alpha^2 + r^2 = -1$, so that $\alpha = \pm \sqrt{r^2 + 1}$. Since $\alpha \geq 1$, we have $\alpha = \sqrt{r^2 + 1}$. By a straightforward calculation, the converse holds.

It is known that a horocycle $\Psi(HC(\boldsymbol{a}_0 + \boldsymbol{a}_2, -1))$ in the Poincaré disc D is a Euclidean circle tangent to the ideal boundary $S^1 = \{\boldsymbol{x} \in \mathbb{R}_0^2 \mid ||\boldsymbol{x}|| = 1\}$. It is also known that a hyperbolic line $\Psi(HL(\boldsymbol{a}_2))$ is a Euclidean circle or a Euclidean line orthogonal to the ideal boundary (cf., [11]). By these reasons, a horocycle is called a horizontal pseudo-line and a hyperbolic-line is called an orthogonal pseudo-line respectively. We now define a ϕ -slant pseudo-line by

$$SL(\boldsymbol{n}_{\phi}, -\cos\phi) = \left\{ \boldsymbol{x} \in H_{+}^{2}(-1) \mid \langle \boldsymbol{x}, \boldsymbol{n}_{\phi} \rangle = -\cos\phi \right\},$$

where $\mathbf{n}_{\phi}(t) = \cos \phi \mathbf{a}_0 + \mathbf{a}_2$, $\phi \in [0, \pi/2]$. Since $\langle \mathbf{n}_{\phi}, \mathbf{n}_{\phi} \rangle = \sin^2 \phi > 0$, \mathbf{n}_{ϕ} is spacelike. Thus, $SL(\mathbf{n}_{\phi}, -\cos \phi) = H_+^2(-1) \cap P(\mathbf{n}_{\phi}, -\cos \phi)$ is an equidistant curve. Moreover, $\mathbf{a}_0 \in SL(\mathbf{n}_{\phi}, -\cos \phi)$ and \mathbf{a}_1 is tangent to $SL(\mathbf{n}_{\phi}, -\cos \phi)$ at \mathbf{a}_0 . Then $SL(\mathbf{n}_{\pi/2}, -\cos(\pi/2)) = HL(\mathbf{a}_2)$ and $SL(\mathbf{n}_0, -\cos 0) = HC(\mathbf{a}_0 + \mathbf{a}_2, -1)$. We have the following parametrization of a ϕ -slant pseudo-line.

Lemma 3.2. With the same notations as those in Lemma 3.1, we have

$$SL(\boldsymbol{n}_{\phi}, -\cos\phi) = \left\{ \boldsymbol{a}_0 + r\boldsymbol{a}_1 + \frac{\sqrt{r^2\sin^2\phi + 1} - 1}{\sin^2\phi} (\boldsymbol{a}_0 + \cos\phi\boldsymbol{a}_2) \mid r \in \mathbb{R} \right\}.$$

Proof. We consider a point $\boldsymbol{x} \in SL(\boldsymbol{n}_{\phi}(t), -\cos \phi)$. Since $\{\boldsymbol{a}_0, \boldsymbol{a}_1, \boldsymbol{a}_2\}$ is a pseudo-orthonormal basis of \mathbb{R}^3_1 , There exist $\alpha, \beta, \gamma \in \mathbb{R}$ such that $\boldsymbol{x} = \alpha \boldsymbol{a}_0 + \beta \boldsymbol{a}_1 + \gamma \boldsymbol{a}_2$, $(\alpha \geq 1)$. Therefore, we have

$$\langle \boldsymbol{x}, \boldsymbol{n}_{\phi} \rangle = \langle \alpha \boldsymbol{a}_0 + \beta \boldsymbol{a}_1 + \gamma \boldsymbol{a}_2, \cos \phi \boldsymbol{a}_0 + \boldsymbol{a}_2 \rangle$$

= $-\cos \phi \alpha + \gamma = -\cos \phi$

Thus, we have $\gamma = \cos \phi(\alpha - 1)$. Moreover, $\langle \boldsymbol{x}, \boldsymbol{x} \rangle = -\alpha^2 + \beta^2 + \gamma^2 = -\alpha^2 + \beta^2 + \cos^2 \phi(\alpha - 1)^2 = -1$. It follows that

$$\alpha = \frac{1}{\sin^2 \phi} (\pm \sqrt{\beta^2 \sin^2 \phi + 1} - \cos^2 \phi).$$

If we choose $\alpha = -\frac{1}{\sin^2 \phi} (\sqrt{\beta^2 \sin^2 \phi + 1} + \cos^2 \phi)$, then $\alpha < 0$. It contradicts to $\alpha \ge 1$. Hence, we have

$$\alpha = \frac{1}{\sin^2 \phi} (\sqrt{\beta^2 \sin^2 \phi + 1} - \cos^2 \phi), \ \gamma = \frac{\cos \phi}{\sin^2 \phi} (\sqrt{\beta^2 \sin^2 \phi + 1} - 1).$$

We put $\beta = r$. Then

$$\mathbf{x} = \frac{1}{\sin^2 \phi} (\sqrt{r^2 \sin^2 \phi + 1} - \cos^2 \phi) \mathbf{a}_0 + r \mathbf{a}_1 + \frac{\cos \phi}{\sin^2 \phi} (\sqrt{r^2 \sin^2 \phi + 1} - 1) \mathbf{a}_2$$
$$= \mathbf{a}_0 + r \mathbf{a}_1 + \frac{1}{\sin^2 \phi} (\sqrt{r^2 \sin^2 \phi + 1} - 1) (\mathbf{a}_0 + \cos \phi \mathbf{a}_2)$$

For the converse, we have $\langle \boldsymbol{x}, \boldsymbol{x} \rangle = -1$, $\langle \boldsymbol{x}, \boldsymbol{n}_{\phi} \rangle = -\cos \phi$ and $(\sqrt{r^2 \sin^2 \phi + 1} - \cos^2 \phi)/\sin^2 \phi \geq 1$. Then $\boldsymbol{x} \in SL(\boldsymbol{n}_{\phi}(t), -\cos \phi)$.

Remark 3.3. We can show $\lim_{\phi\to 0} (\sqrt{r^2 \sin^2 \phi + 1} - 1)/\sin^2 \phi = r^2/2$. In [10] the third author showed that the angle between $\Psi(SL(\boldsymbol{n}_{\phi}))$ and the ideal boundary S^1 of the Poincaré disc D at an intersection point is equal to ϕ . This is the reason why we call $SL(\boldsymbol{n}_{\phi})$ the ϕ -slant pseudo line.

4 One-parameter families of pseudo-lines

In this section we consider one-parameter families of pseudo-lines. By Lemmas 3.1 and 3.2, we consider a one-parameter family of pseudo-orthonormal bases of \mathbb{R}^3_1 . Let $A: J \longrightarrow SO_0(1,2)$ be a C^{∞} -mapping. If we write $A(t) = ({}^t\boldsymbol{a}_0(t) \ {}^t\boldsymbol{a}_1(t) \ {}^t\boldsymbol{a}_2(t))$, then $\{\boldsymbol{a}_0(t), \boldsymbol{a}_1(t), \boldsymbol{a}_2(t)\}$ is a one-parameter family of pseudo-orthonormal bases of \mathbb{R}^3_1 . We call it a pseudo-orthonormal moving frame

of \mathbb{R}^3 . By the standard arguments, we can show the following Frenet-Serret type formulae for the pseudo-orthonormal moving frame $\{a_0(t), a_1(t), a_2(t)\}$:

$$\begin{pmatrix} \boldsymbol{a}_0'(t) \\ \boldsymbol{a}_1'(t) \\ \boldsymbol{a}_2'(t) \end{pmatrix} = \begin{pmatrix} 0 & c_1(t) & c_2(t) \\ c_1(t) & 0 & c_3(t) \\ c_2(t) & -c_3(t) & 0 \end{pmatrix} \begin{pmatrix} \boldsymbol{a}_0(t) \\ \boldsymbol{a}_1(t) \\ \boldsymbol{a}_2(t) \end{pmatrix}.$$

Here,

$$\begin{cases} c_1(t) = \langle \boldsymbol{a}'_0(t), \boldsymbol{a}_1(t) \rangle \\ c_2(t) = \langle \boldsymbol{a}'_0(t), \boldsymbol{a}_2(t) \rangle \\ c_3(t) = \langle \boldsymbol{a}'_1(t), \boldsymbol{a}_2(t) \rangle \end{cases}$$

Then, the matrix $C(t) = \langle \boldsymbol{a}'_0(t), \boldsymbol{a}_1(t) \rangle$ $\begin{cases} c_1(t) = \langle \boldsymbol{a}'_0(t), \boldsymbol{a}_1(t) \rangle \\ c_2(t) = \langle \boldsymbol{a}'_0(t), \boldsymbol{a}_2(t) \rangle \\ c_3(t) = \langle \boldsymbol{a}'_1(t), \boldsymbol{a}_2(t) \rangle \end{cases}$ Then, the matrix $C(t) = \begin{pmatrix} 0 & c_1(t) & c_2(t) \\ c_1(t) & 0 & c_3(t) \\ c_2(t) & -c_3(t) & 0 \end{pmatrix}$ is an element of Lie algebra

 $\mathfrak{so}(1,2)$ of the Lorentz group $SO_0(1,2)$. The above Frenet-Serret type formulae are written by $A'(t)A^{-1}(t) = C(t)$. For any C^{∞} -mapping $C: J \longrightarrow \mathfrak{so}(1,2)$ and $A_0 \in SO_0(1,2)$, we can apply the unique existence theorem for systems of linear ordinary differential equations, so that there exists a unique $A(t) \in SO_0(1,2)$ such that $A(0) = A_0$ and $A'(t)A^{-1}(t) = C(t)$.

We now consider a mapping $g_{\phi}: I \times J \longrightarrow H^2_+$, where $g_{\phi}(r,t)$ is defined by

$$\begin{cases} \boldsymbol{a}_0(t) + r\boldsymbol{a}_1(t) + \frac{\sqrt{r^2 \sin^2 \phi + 1} - 1}{\sin^2 \phi} (\boldsymbol{a}_0(t) + \cos \phi \boldsymbol{a}_2(t)) & \text{if } \phi \neq 0, \\ \boldsymbol{a}_0(t) + r\boldsymbol{a}_1(t) + \frac{r^2}{2} (\boldsymbol{a}_0(t) + \boldsymbol{a}_2(t)) & \text{if } \phi = 0, \end{cases}$$

where $I, J \subset \mathbb{R}$ are intervals. Then we have $SL(n_{\phi}(t), -\cos \phi) = \{g_{\phi}(I \times I)\}$ $\{t\}$) | $t \in J\}$, for $\mathbf{n}_{\phi}(t) = \cos \phi \mathbf{a}_{0}(t) + \mathbf{a}_{2}(t)$. Thus g_{ϕ} is a one-parameter family of ϕ -slant pseudo-lines. Moreover, g_0 is a one-parameter family of horocycles and $g_{\pi/2}$ is a one-parameter family of hyperbolic lines.

Height functions 5

For a one parameter family of ϕ -slant pseudo-lines g_{ϕ} , we define a family of height functions $H: J \times H^2_+ \longrightarrow \mathbb{R}$ by $H(t, \boldsymbol{x}) = \langle \boldsymbol{x}, \boldsymbol{n}_{\phi}(t) \rangle + \cos \phi$. Then we have the following proposition.

Proposition 5.1. For $g_{\phi}: I \times J \longrightarrow H^2_+$, we have the following: (1) $H(t, \boldsymbol{x}) = 0$ if and only if there exists $r \in I$ such that $\boldsymbol{x} = g_{\phi}(r, t)$,

- (2) $H(t, \mathbf{x}) = \frac{\partial H}{\partial t}(t, \mathbf{x}) = 0$ if and only if there exists $r \in I$ such that $\mathbf{x} = g_{\phi}(r, t)$

$$-\sqrt{r^2\sin^2\phi + 1}c_2(t) + r(\cos\phi c_1(t) - c_3(t)) = 0.$$

Proof. (1) If $H(t, \boldsymbol{x}) = 0$, then $\langle \boldsymbol{x}, \boldsymbol{n}_{\phi}(t) \rangle = -\cos \phi$, $\boldsymbol{x} \in H^2_+(-1)$. Thus, there exists $r \in I$ such that $\boldsymbol{x} = g_{\phi}(r, t)$. The converse also holds.

(2)Since $H(t, \boldsymbol{x}) = 0$, there exists $r \in I$ such that $\boldsymbol{x} = g_{\phi}(r, t)$. Suppose that $\phi \neq 0$. Since $\boldsymbol{n}'_{\phi}(t) = c_2(t)\boldsymbol{a}_0(t) + (\cos\phi c_1(t) - c_3(t))\boldsymbol{a}_1(t) + \cos\phi c_2(t)\boldsymbol{a}_2(t)$,

$$\frac{\partial H}{\partial t}(t, \boldsymbol{x}) = \langle \boldsymbol{x}, \boldsymbol{n}'_{\phi}(t) \rangle
= \left\langle \frac{\sqrt{r^2 \sin^2 \phi + 1} - \cos^2 \phi}{\sin^2 \phi} \boldsymbol{a}_0(t) + r \boldsymbol{a}_1(t) \right.
\left. + \frac{\cos \phi (\sqrt{r^2 \sin^2 \phi + 1} - 1)}{\sin^2 \phi} \boldsymbol{a}_2(t), \ \boldsymbol{n}'_{\phi}(t) \right\rangle
= -\sqrt{r^2 \sin^2 \phi + 1} c_2(t) + r (\cos \phi c_1(t) - c_3(t)).$$

If $\phi = 0$, then

$$\frac{\partial H}{\partial t}(t, \boldsymbol{x}) = \langle \boldsymbol{x}, \boldsymbol{n}'_0(t) \rangle = -c_2(t) + r(c_1(t) - c_3(t)).$$

This completes the proof.

We now review some general results on the singularity theory for families of function germs. Detailed descriptions are found in the book[2]. Let $F: (\mathbb{R} \times \mathbb{R}^r, (s_0, x_0)) \to \mathbb{R}$ be a function germ. We call F an r-parameter unfolding of f, where $f(s) = F_{x_0}(s, x_0)$. We say that f has an A_k -singularity at s_0 if $f^{(p)}(s_0) = 0$ for all $1 \le p \le k$, and $f^{(k+1)}(s_0) \ne 0$. We also say that f has an $A_{\ge k}$ -singularity at s_0 if $f^{(p)}(s_0) = 0$ for all $1 \le p \le k$. Let F be an unfolding of f and f(s) has an A_k -singularity $(k \ge 1)$ at s_0 . We denote the (k-1)-jet of the partial derivative $\frac{\partial F}{\partial x_i}$ at s_0 by $j^{(k-1)}(\frac{\partial F}{\partial x_i}(s,x_0))(s_0) = \sum_{j=0}^{k-1} \alpha_{ji}(s-s_0)^j$ for $i=1,\ldots,r$. Then F is called an \mathbb{R} -versal unfolding if the $k\times r$ matrix of coefficients $(\alpha_{ji})_{j=0,\ldots,k-1;i=1,\ldots,r}$ has rank k $(k\le r)$. We introduce an important set concerning the unfoldings relative to the above notions. The discriminant set of F is the set

$$\mathcal{D}_F = \left\{ x \in \mathbb{R}^r | \text{there exists } s \text{ such that } F(s, x) = \frac{\partial F}{\partial s}(s, x) = 0 \right\}.$$

Then we have the following classification (cf., [2]).

Theorem 5.2. Let $F: (\mathbb{R} \times \mathbb{R}^r, (s_0, x_0)) \to \mathbb{R}$ be an r-parameter unfolding of f(s) which has an A_k singularity at s_0 (k = 1, 2). Suppose that F is an \mathcal{R} -versal unfolding.

(1) If k = 1, then \mathcal{D}_F is locally diffeomorphic to \mathbb{R}^{r-1} .

(2) If k = 2, then \mathcal{D}_F is locally diffeomorphic to $C \times \mathbb{R}^{r-2}$. Here, $C = \{(x_1, x_2) \in (\mathbb{R}^2, 0) \mid x_1 = t^2, x_2 = t^3, t \in (\mathbb{R}, 0) \}$ is the ordinary cusp.

By Proposition 5.1, the discriminant set \mathcal{D}_H of H is

$$D_H = \left\{ g_{\phi}(r,t) \mid -\sqrt{r^2 \sin^2 \phi + 1} c_2(t) + r \left(\cos \phi c_1(t) - c_3(t)\right) = 0 \right\}.$$

Suppose $c_2(t) \neq 0$, $\cos \phi c_1(t) - c_3(t) \neq 0$. If

$$-\sqrt{r^2\sin^2\phi + 1}c_2(t) + r(\cos\phi c_1(t) - c_3(t)) = 0,$$

then we have

$$r = \pm \frac{c_2(t)}{\sqrt{(\cos\phi c_1(t) - c_3(t))^2 - (\sin\phi c_2(t))^2}}.$$

If
$$r = -c_2(t)/\sqrt{(\cos\phi c_1(t) - c_3(t))^2 - (\sin\phi c_2(t))^2}$$
, then

$$-\sqrt{r^2\sin^2\phi + 1}c_2(t) + r(\cos\phi c_1(t) - c_3(t)) \neq 0,$$

so that

$$r = \frac{c_2(t)}{\sqrt{(\cos\phi c_1(t) - c_3(t))^2 - (\sin\phi c_2(t))^2}}.$$

For $\phi = 0$, we can also choose $r = c_2(t)/(c_1(t) - c_3(t))$. Therefore, if $\phi \neq 0$, then

$$D_{H} = \left\{ g_{\phi}(r,t) \mid r = \frac{c_{2}(t)}{\sqrt{(\cos\phi c_{1}(t) - c_{3}(t))^{2} - (\sin\phi c_{2}(t))^{2}}}, c_{2}(t) \neq 0, \\ \cos\phi c_{1}(t) - c_{3}(t) \neq 0 \right\}.$$

Under the assumptions that $c_2(t) \neq 0$ and $\cos \phi c_1(t) - c_3(t) \neq 0$, we have a $g[\phi]: J \longrightarrow H^2_+$, where $g[\phi](t)$ is defined by

$$\begin{cases} a_0(t) + r(t)a_1(t) + \frac{\sqrt{r(t)^2 \sin^2 \phi + 1} - 1}{\sin^2 \phi} (a_0(t) + \cos \phi a_2(t)) & \text{if } \phi \neq 0, \\ a_0(t) + r(t)a_1(t) + \frac{r(t)^2}{2} (a_0(t) + a_2(t)) & \text{if } \phi = 0. \end{cases}$$

Here

$$r(t) = \begin{cases} \frac{c_2(t)}{\sqrt{(\cos\phi c_1(t) - c_3(t))^2 - (\sin\phi c_2(t))^2}} & \text{if } \phi \neq 0, \\ \frac{c_2(t)}{c_1(t) - c_3(t)} & \text{if } \phi = 0. \end{cases}$$

Then $g[\phi](t)$ is a parametrization of D_H and it is the envelope of the family of ϕ -slant pseudo lines $\{SL(\boldsymbol{n}_{\phi}(t), -\cos\phi)\}_{t\in J}$.

In order to classify the singularities of $g[\phi]$, we apply the theory of unfoldings to H. For any $(r_0, t_0) \in I \times J$, we put $\mathbf{x}_0 = g_{\phi}(r_0, t_0)$ and consider the function germ $h_{x_0}: (J, t_0) \longrightarrow (\mathbb{R}, 0)$ defined by

$$h_{\boldsymbol{x}_0}(t_0) = H(t_0, \boldsymbol{x}_0) = \langle \boldsymbol{x}_0, \boldsymbol{n}_{\boldsymbol{\phi}}(t_0) \rangle + \cos \phi.$$

Then the germ of H at (t_0, x_0) is a two-dimensional unfolding of h_{x_0} . We now try to search the conditions for h_{x_0} has the A_k -singularity, (k=1,2). If $\phi \neq 0$, then we define two invariants

$$\begin{cases} \delta[\phi]_1(t) = -\sqrt{r^2 \sin^2 \phi + 1} c_2' + r(\cos \phi c_1' - c_3') + rc_2(c_1 - \cos \phi c_3) \\ -c_1(\cos \phi c_1 - c_3) - \cos \phi c_2^2 \\ + \frac{\sqrt{r^2 \sin^2 \phi + 1} - 1}{\sin^2 \phi} (\cos \phi c_1 - c_3) (\cos \phi c_3 - c_1), \\ \delta[\phi]_2(t) = -\sqrt{r^2 \sin^2 \phi + 1} c_2'' \\ + r(\cos \phi c_1'' - c_3'') + r\left(c_2(c_1' - \cos \phi c_3') + 2c_2'(c_1 - \cos \phi c_3)\right) \\ -2c_1(\cos \phi c_1' - c_3') - c_1'(\cos \phi c_1 - c_3) - 3\cos \phi c_2 c_2' \\ + \frac{\sqrt{r^2 \sin^2 \phi + 1} - 1}{\sin^2 \phi} \left((\cos \phi c_1 - c_3)(\cos \phi c_3' - c_1') + 2(\cos \phi c_1' - c_3')(\cos \phi c_3 - c_1)\right), \end{cases}$$

where $c_i = c_i(t)$, (i = 1, 2, 3) and r = r(t). For $\phi = 0$, we also define

$$\begin{cases} \delta[0]_1(t) = -c_2' + r(c_1' - c_3') - c_1(c_1 - c_3) - \frac{1}{2}c_2^2, \\ \delta[0]_2(t) = -c_2'' + r(c_1'' - c_3'') + rc_2(c_1' - c_3') - 2c_1(c_1' - c_3') \\ -c_1'(c_1 - c_3) - c_2c_2' + \frac{3}{2}rc_2(c_3' - c_1'). \end{cases}$$

We remark that $\lim_{\phi\to 0} \delta[\phi]_1(t) = \delta[0]_1(t)$ and $\lim_{\phi\to 0} \delta[\phi]_2(t) = \delta[0]_2(t)$. We expect that $\delta[\phi]_1(t) = \delta[\phi]_2(t) = 0$ if and only if $\delta[\phi]_1(t) = \delta[\phi]_1'(t) = 0$. However, we can only show this relation for a special case (cf., §6).

Proposition 5.3. We have the following assertions:

- (1) $h'_{x_0}(t_0) = 0$ always holds,
- (2) $h_{\boldsymbol{x}_0}^{"'}(t_0) = 0$ if and only if $\delta[\phi]_1(t_0) = 0$, (3) $h_{\boldsymbol{x}_0}^{"}(t_0) = h_{\boldsymbol{x}_0}^{"'}(t_0) = 0$ if and only if $\delta[\phi]_1(t_0) = \delta[\phi]_2(t_0) = 0$.

Proof. Assertion (1) holds by Proposition 5.1, (2).

(2) Since

$$\mathbf{n}''_{\phi} = (\mathbf{n}'_{\phi})'
= c'_{2}\mathbf{a}_{0} + (\cos\phi c'_{1} - c'_{3})\mathbf{a}_{1} + \cos\phi c'_{2}\mathbf{a}_{2} + (c_{1}(\cos\phi c_{1} - c_{3}) + \cos\phi c'_{2})\mathbf{a}_{0}
+ c_{2}(c_{1} - \cos\phi c_{3})\mathbf{a}_{1} + (c_{3}(\cos\phi c_{1} - c_{3}) + c'_{2})\mathbf{a}_{2},$$

we have

$$\begin{split} &\frac{\partial^2 H}{\partial t^2}(t,x) = \langle x, n_\phi'' \rangle \\ &= -\sqrt{s^2 \sin^2 \phi + 1} c_2' + s(\cos \phi c_1' - c_3') \\ &+ \frac{(\cos^2 \phi - \sqrt{s^2 \sin^2 \phi + 1}) \left(c_1(\cos \phi c_1 - c_3) + \cos \phi c_2^2 \right)}{\sin^2 \phi} \\ &+ sc_2(c_1 - \cos \phi c_3) + \frac{\cos \phi (\sqrt{s^2 \sin^2 \phi + 1} - 1) \left(c_3(\cos \phi c_1 - c_3) + c_2^2 \right)}{\sin^2 \phi} \\ &= -\sqrt{s^2 \sin^2 \phi + 1} c_2' + s(\cos \phi c_1' - c_3') - c_1(\cos \phi c_1 - c_3) - \cos \phi c_2^2 \\ &+ \frac{(1 - \sqrt{s^2 \sin^2 \phi + 1}) \left(c_1(\cos \phi c_1 - c_3) + \cos \phi c_2^2 \right)}{\sin^2 \phi} + sc_2(c_1 - \cos \phi c_3) \\ &+ \frac{\cos \phi (\sqrt{s^2 \sin^2 \phi + 1} - 1) \left(c_3(\cos \phi c_1 - c_3) + c_2^2 \right)}{\sin^2 \phi} \\ &= -\sqrt{s^2 \sin^2 \phi + 1} c_2' + s(\cos \phi c_1' - c_3') + sc_2(c_1 - \cos \phi c_3) \\ &- c_1(\cos \phi c_1 - c_3) - \cos \phi c_2^2 + \frac{(\sqrt{s^2 \sin^2 \phi + 1} - 1)(\cos \phi c_1 - c_3)(\cos \phi c_3 - c_1)}{\sin^2 \phi} \\ &= \delta[\phi]_1(t). \end{split}$$

(3) We have

$$\mathbf{n}_{\phi}^{""} = c_{2}^{"} \mathbf{a}_{0} + (\cos \phi c_{1}^{"} - c_{3}^{"}) \mathbf{a}_{1} + \cos \phi c_{2}^{"} \mathbf{a}_{2}
+ 2 \left(c_{2}^{\prime} \mathbf{a}_{0}^{\prime} + (\cos \phi c_{1}^{\prime} - c_{3}^{\prime}) \mathbf{a}_{1}^{\prime} + \cos \phi c_{2}^{\prime} \mathbf{a}_{2}^{\prime} \right) + c_{2} \mathbf{a}_{0}^{"} + (\cos \phi c_{1} - c_{3}) \mathbf{a}_{1}^{"} + \cos \phi c_{2} \mathbf{a}_{2}^{"}.$$
Here, $\mathbf{a}_{0}^{\prime} = c_{1} \mathbf{a}_{1} + c_{2} \mathbf{a}_{2}$, $\mathbf{a}_{1}^{\prime} = c_{1} \mathbf{a}_{0} + c_{3} \mathbf{a}_{2}$, $\mathbf{a}_{2}^{\prime} = c_{2} \mathbf{a}_{0} - c_{3} \mathbf{a}_{1}$. Then
$$\begin{cases}
\mathbf{a}_{0}^{"} = (c_{1}^{2} + c_{2}^{2}) \mathbf{a}_{0} + (c_{1}^{\prime} - c_{2} c_{3}) \mathbf{a}_{1} + (c_{2}^{\prime} + c_{1} c_{3}) \mathbf{a}_{2}, \\
\mathbf{a}_{1}^{"} = (c_{1}^{\prime} + c_{2} c_{3}) \mathbf{a}_{0} + (c_{1}^{2} - c_{3}^{2}) \mathbf{a}_{1} + (c_{3}^{\prime} + c_{1} c_{2}) \mathbf{a}_{2}, \\
\mathbf{a}_{2}^{"} = (c_{2}^{\prime} - c_{1} c_{3}) \mathbf{a}_{0} + (c_{1} c_{2} - c_{3}^{\prime}) \mathbf{a}_{1} + (c_{2}^{\prime} - c_{3}^{2}) \mathbf{a}_{2}.
\end{cases}$$

Therefore,

$$\begin{aligned} & \boldsymbol{n}_{\phi}^{\prime\prime\prime} = c_{2}^{\prime\prime}\boldsymbol{a}_{0} + (\cos\phi c_{1}^{\prime\prime} - c_{3}^{\prime\prime})\boldsymbol{a}_{1} + \cos\phi c_{2}^{\prime\prime}\boldsymbol{a}_{2} \\ & + \left(c_{2}(c_{1}^{2} + c_{2}^{2} - c_{3}^{2}) + 2c_{1}(\cos\phi c_{1}^{\prime} - c_{3}^{\prime}) + c_{1}^{\prime}(\cos\phi c_{1} - c_{3}) + 3\cos\phi c_{2}c_{2}^{\prime}\right)\boldsymbol{a}_{0} \\ & + \left((\cos\phi c_{1} - c_{3})(c_{1}^{2} + c_{2}^{2} - c_{3}^{2}) + c_{2}(c_{1}^{\prime} - \cos\phi c_{3}^{\prime}) + 2c_{2}^{\prime}(c_{1} - \cos\phi c_{3})\right)\boldsymbol{a}_{1} \\ & + \left(\cos\phi c_{2}(c_{1}^{2} + c_{2}^{2} - c_{3}^{2}) + 2c_{3}(\cos\phi c_{1}^{\prime} - c_{3}^{\prime}) + c_{3}^{\prime}(\cos\phi c_{1} - c_{3}) + 3c_{2}c_{2}^{\prime}\right)\boldsymbol{a}_{2}.\end{aligned}$$

By the calculation similar to case (2), we have

$$\frac{\partial^3 H}{\partial t^3}(t, \boldsymbol{x}) = \delta[\phi]_2(t).$$

For the case $\phi = 0$, we also have the similar arguments to the above case. This completes the proof.

We have the following corollary.

Corollary 5.4. For h_{x_0} as the above proposition, we have the following:

- (1) h_{x_0} has the A_1 -singularity at $t = t_0$ if and only if $\delta[\phi]_1(t_0) \neq 0$.
- (2) h_{x_0} has the A_2 -singularity at $t = t_0$ if and only if $\delta[\phi]_1(t_0) = 0$, $\delta[\phi]_2(t_0) \neq 0$. Then we have the following proposition.

Proposition 5.5. For h_{x_0} as the above proposition, we have the following:

- (1) If h_{x_0} has the A_1 -singularity, then H is a \mathcal{R} -versal unfolding of h_{x_0} ,
- (2) If h_{x_0} has the A_2 -singularity, then H is a \mathcal{R} -versal unfolding of h_{x_0} .

Proof. We consider a parametrization of H^2_+ defined by

$$\psi(x_2, x_3) = (\sqrt{x_2^2 + x_3^2 + 1}, x_2, x_3).$$

Then we have

$$H(t, x_2, x_3) = H(t, \psi(x_2, x_3)) = \langle \psi(x_2, x_3), \mathbf{n}_{\phi}(t) \rangle + \cos \phi.$$

We write $\mathbf{n}_{\phi}(t) = (n_{\phi 1}(t), n_{\phi 2}(t), n_{\phi 3}(t))$ and have

$$\frac{\partial \tilde{H}}{\partial x_i}(t, x_2, x_3) = n_{\phi i}(t) - \frac{x_i}{\sqrt{x_2^2 + x_3^2 + 1}} n_{\phi 1}(t) \quad (i = 2, 3).$$

Moreover, we have

$$\frac{\partial}{\partial t} \frac{\partial \tilde{H}}{\partial x_i}(t, x_2, x_3) = n'_{\phi i}(t) - \frac{x_i}{\sqrt{x_2^2 + x_3^2 + 1}} n'_{\phi 1}(t).$$

We write that $\mathbf{x}_0 = (x_{01}, x_{02}, x_{03})$. Then the 1-jet of $(\partial \tilde{H}/\partial x_i)(t, x_{02}, x_{03})$ at $t = t_0$ is

$$\frac{\partial \tilde{H}}{\partial x_i}(t, x_{02}, x_{03}) = \frac{\partial \tilde{H}}{\partial x_i}(t_0, x_{02}, x_{03}) + \frac{1}{2} \frac{\partial}{\partial t} \frac{\partial \tilde{H}}{\partial x_i}(t_0, x_{02}, x_{03})(t - t_0).$$

From now on, we remove (t_0) for abbreviation.

(1) Since h_{x_0} has the A_1 -singularity, we show that the rank of the matrix

$$\left(n_{\phi 2} - \frac{x_{02}}{\sqrt{x_{02}^2 + x_{03}^2 + 1}} n_{\phi 1} \quad n_{\phi 3} - \frac{x_{03}}{\sqrt{x_{02}^2 + x_{03}^2 + 1}} n_{\phi 1}\right)$$

Is equal to one. If the rank is zero, then

$$n_{\phi 2} - \frac{x_{02}}{\sqrt{x_{02}^2 + x_{03}^2 + 1}} n_{\phi 1} = -\frac{\cos \phi x_{02}}{\sqrt{x_{02}^2 + x_{03}^2 + 1}} = 0$$

$$n_{\phi 3} - \frac{x_{03}}{\sqrt{x_{02}^2 + x_{03}^2 + 1}} n_{\phi 1} = 1 - \frac{\cos \phi x_{03}}{\sqrt{x_{02}^2 + x_{03}^2 + 1}} = 0$$

Thus, we have the sum of the power of the both equations

$$0 = \frac{\cos^2 \phi(x_{02}^2 + x_{03}^2) - (x_{02}^2 + x_{03}^2 + 1)}{x_{02}^2 + x_{03}^2 + 1}$$
$$= -\frac{\sin^2 \phi(x_{02}^2 + x_{03}^2) + 1}{x_{02}^2 + x_{03}^2 + 1} \neq 0.$$

This is a contradiction.

(2) Since h_{x_0} has the A_2 -singularity, we show that the rank of the matrix

$$B = \begin{pmatrix} n_{\phi 2} - \frac{x_{02}}{\sqrt{x_{02}^2 + x_{03}^2 + 1}} n_{\phi 1} & n_{\phi 3} - \frac{x_{03}}{\sqrt{x_{02}^2 + x_{03}^2 + 1}} n_{\phi 1} \\ n'_{\phi 2} - \frac{x_{02}}{\sqrt{x_{02}^2 + x_{03}^2 + 1}} n'_{\phi 1} & n'_{\phi 03} - \frac{x_{03}}{\sqrt{x_{02}^2 + x_{03}^2 + 1}} n'_{\phi 1} \end{pmatrix}$$

is equal to two. Since $\mathbf{n}'_{\phi} = c_2 \mathbf{a}_0 + (\cos \phi c_1 - c_3) \mathbf{a}_1 + \cos \phi c_2 \mathbf{a}_2$,

$$\det B = \begin{vmatrix} n_{\phi 2} - \frac{x_{02}}{\sqrt{x_{02}^2 + x_{03}^2 + 1}} n_{\phi 1} & n_{\phi 3} - \frac{x_{03}}{\sqrt{x_{02}^2 + x_{03}^2 + 1}} n_{\phi 1} \\ n'_{\phi 2} - \frac{x_{02}}{\sqrt{x_{02}^2 + x_{03}^2 + 1}} n'_{\phi 1} & n'_{\phi 3} - \frac{x_{03}}{\sqrt{x_{02}^2 + x_{03}^2 + 1}} n'_{\phi 1} \end{vmatrix}$$

$$= \frac{1}{\sqrt{x_{02}^2 + x_{03}^2 + 1}} |\mathbf{x}_0, \mathbf{n}_{\phi}, \mathbf{n}'_{\phi}|$$

$$= -\frac{(\cos \phi c_1 - c_3) \sqrt{s^2 \sin^2 \phi + 1} + s \sin^2 \phi c_2}{\sqrt{x_{02}^2 + x_{03}^2 + 1}} \neq 0$$

This means that the rank of B is two.

It follows from Theorem 5.2 and Proposition 5.5, we have shown the following theorem.

Theorem 5.6. Let $\{a_0(t), a_1(t), a_2(t)\}_{t \in J}$ be pseudo-orthonormal moving frame of \mathbb{R}^3_1 . Suppose $c_2(t) \neq 0$ and $\cos \phi c_1(t) - c_3(t) \neq 0$. Then we have the following:

- (1) The envelope $g[\phi]$ of the family of ϕ -slant pseudo-lines $SL(\boldsymbol{n}_{\phi}, -\cos\phi)$ is regular at a point $t=t_0$ if and only if $\delta[\phi]_1(t_0) \neq 0$,
- (2) The envelope $g[\phi]$ of the family of ϕ -slant pseudo-lines $SL(n_{\phi}, -\cos \phi)$ at a point $t = t_0$ is locally diffeomorphic to the cusp C if and only if $\delta[\phi]_1(t_0) = 0$, $\delta[\phi]_2(t_0) \neq 0$.

6 Slant evolutes of hyperbolic plane curves

There is the notion of hyperbolic evolutes of hyperbolic plane curves [5]. Let $\gamma: J \longrightarrow H_+^2$ be a unit speed curve, where we use the parameter $s \in J$ instead of t. We call $\mathbf{t}(s) = \gamma'(s)$ a unit tangent vector of γ at s. Since $\langle \gamma(s), \gamma(s) \rangle = -1$ we have $\langle \gamma(s), \mathbf{t}(s) \rangle = 0$. We define $\mathbf{e}(s) = \gamma(s) \wedge \mathbf{t}(s)$, which is called a unit binormal vector of γ at $s \in J$. Then we have $\langle \mathbf{e}(s), \mathbf{e}(s) \rangle = \langle \gamma(s) \wedge \mathbf{t}(s), \gamma(s) \rangle$ the tangent vector, we have a pseudo-orthonormal moving frame $\{\gamma(s), -\mathbf{e}(s), \mathbf{t}(s)\}$ of \mathbb{R}^3_1 , which is called a hyperbolic Sabban frame along γ .

$$a_0(s) = \gamma(s)$$
, $a_1(s) = -e(s)$, $a_2(s) = t(s)$

Then we have the following Frenet-Serret type formulae:

$$\begin{cases} \boldsymbol{\gamma}'(s) = \boldsymbol{t}(s) \\ \boldsymbol{t}'(s) = \boldsymbol{\gamma}(s) + \kappa_g(s)\boldsymbol{e}(s) \\ \boldsymbol{e}'(s) = -\kappa_g(s)\boldsymbol{t}(s), \end{cases}$$

where $\kappa_g(s) = |\gamma(s), \gamma'(s), \gamma''(s)|$ is called the *geodesic curvature* of γ . Since $\mathbf{a}_0(s) = \gamma(s)$, $\mathbf{a}_1(s) = -\mathbf{e}(s)$, $\mathbf{a}_2(s) = \mathbf{t}(s)$, we have $c_1(s) = 0$, $c_2(s) = 1$ and $c_3(s) = -\langle \mathbf{a}_1(s), \mathbf{a}_2'(s) \rangle = \langle \mathbf{e}(s), \mathbf{t}'(s) \rangle = \langle \gamma(s) \wedge \mathbf{t}(s), \mathbf{t}'(s) \rangle = |\gamma(s), \mathbf{t}(s), \mathbf{t}'(s)| = |\gamma(s), \gamma''(s), \gamma''(s)| = \kappa_g(s)$. In this case, the family of ϕ -slant pseudo-lines $g_{\phi}: I \times J \longrightarrow H_+^2(-1)$ is

$$g_{\phi}(r,s) = \begin{cases} \boldsymbol{\gamma}(s) - r \, \boldsymbol{e}(s) + \frac{\sqrt{r^2 \sin^2 \phi + 1} - 1}{\sin^2 \phi} (\boldsymbol{\gamma}(s) + \cos \phi \boldsymbol{t}(s)) & \text{if } \phi \neq 0, \\ \boldsymbol{\gamma}(s) - r \, \boldsymbol{e}(s) + \frac{r^2}{2} (\boldsymbol{\gamma}(s) + \boldsymbol{t}(s)) & \text{if } \phi = 0. \end{cases}$$

Therefore, the envelope $g[\phi]: J \longrightarrow H^2_+$ of g_{ϕ} is

$$g[\phi](s) = \begin{cases} \gamma(s) - r(s) e(s) + \frac{\sqrt{r(s)^2 \sin^2 \phi + 1} - 1}{\sin^2 \phi} (\gamma(s) + \cos \phi t(s)) & \text{if } \phi \neq 0, \\ \gamma(s) + \frac{1}{\kappa_g(s)} e(s) + \frac{1}{2\kappa_g^2(s)} (\gamma(s) + t(s)) & \text{if } \phi = 0, \end{cases}$$

where

$$r(s) = \frac{1}{\sqrt{\kappa_g^2(s) - \sin^2 \phi}}.$$

We call $g[\pi/2]$ a hyperbolic evolute and g[0] a horocyclic evolute of γ , respectively. For $s_0 \in J$, we define

$$\begin{cases}
\sigma[\phi]_1(s_0) = \kappa'_g(s_0) + \frac{\cos\phi(\kappa_g(s_0)^2 - \sin^2\phi)}{\sqrt{\kappa_g^2(s_0) - \sin^2\phi} - \kappa_g(s_0)}, \\
\sigma[\phi]_2(s_0) = \kappa''_g(s_0) + \cos\phi\kappa'_g(s_0) \left(\frac{\sqrt{\kappa_g^2(s_0) - \sin^2\phi} + 2\kappa_g(s_0)}{\sqrt{\kappa_g^2(s_0) - \sin^2\phi} - \kappa_g(s_0)}\right).
\end{cases}$$

In this case, by a straightforward calculation, we can show that $\sigma[\phi]'_1(s) = \sigma[\phi]_2(s)$. Moreover, we can show that $\delta[\phi]_1(s) = \delta[\phi]_2(s) = 0$ if and only if $\sigma[\phi]_1(s) = \sigma[\phi]'_1(s) = 0$. As special cases, we have

$$\sigma[0]_1(s) = \kappa'_g(s) - \frac{1}{2}\kappa_g(s), \ \sigma[\pi/2]_1(s) = \kappa'_g(s).$$

As a corollary of Theorem 5.6, we have the following theorem.

Theorem 6.1. Let $\gamma: J \longrightarrow H^2_+(-1)$ be a unit speed curve with $\kappa_g(s)^2 - \sin^2 \phi > 0$. Then we have the following:

- (1) $g[\phi]$ is a regular curve at $s = s_0$ if and only if $\sigma[\phi]_1(s_0) \neq 0$,
- (2) $g[\phi]$ is locally diffeomorphic to the cusp C at $s = s_0$ if and only if

$$\sigma[\phi]_1(s_0) = 0 \text{ and } \sigma[\phi]'_1(s_0) \neq 0.$$

As a special case, we have the following corollary.

Corollary 6.2. Let $\gamma: J \longrightarrow H^2_+(-1)$ be a unit speed curve.

- (A) Suppose $\kappa_g^2 > 1$. Then we have the following (cf., [5]):
- (1) The hyperbolic evolute $g[\pi/2]$ is a regular curve at $s=s_0$ if and only if $\kappa'_{a}(s) \neq 0$.
- (2) The hyperbolic evolute $g[\pi/2]$ is locally diffeomorphic to the cusp C at $s = s_0$ if and only if

$$\kappa'_q(s_0) \neq 0$$
 and $\kappa''_q(s_0) \neq 0$.

- (B) Suppose $\kappa_g \neq 0$. Then we have the following:
- (1) The horocyclic evolute g[0] is a regular curve at $s=s_0$ if and only if $\kappa'_q(s)-\frac{1}{2}\kappa_q(s)\neq 0$.
- (2) The horocyclic evolute g[0] is locally diffeomorphic to the cusp C at $s=s_0$ if and only if

$$\kappa'_g(s_0) - \frac{1}{2}\kappa_g(s_0) = 0$$
 and $\kappa''_g(s_0) - \frac{1}{2}\kappa'_g(s_0) \neq 0$.

The hyperbolic evolute is given by

$$g[\pi/2](s) = \begin{cases} \frac{-1}{\sqrt{\kappa_g^2(s) - 1}} (\kappa_g(s) \gamma(s) + \boldsymbol{e}(s)) & \text{if } \kappa_g(s) < -1, \\ \frac{1}{\sqrt{\kappa_g^2(s) - 1}} (\kappa_g(s) \gamma(s) - \boldsymbol{e}(s)) & \text{if } \kappa_g(s) > 1 \end{cases}$$

and the horocyclic evolute is

$$g[0](s) = \gamma(s) + \frac{1}{\kappa_g(s)} e(s) + \frac{1}{2\kappa_q^2(s)} (\gamma(s) + \boldsymbol{t}(s)).$$

In [5] hyperbolic evolutes was introduced and the classified the singularities. Moreover, a de Sitter evolute of γ was introduced in [5], which is located in the de Sitter 2-space. It corresponds to points of $\gamma(s)$ with $\kappa_g^2(s) < 1$. Here we only consider families of hyperbolic lines, so that we do not consider de Sitter evolutes. It is also shown in [5] that $g[\pi/2](s)$ is a constant point if and only if γ is a part of a circle. This condition is also equivalent to $\kappa_g'(s) \equiv 0$. We have a natural question what is γ when g[0](s) is a constant point. Of course it is equivalent to

$$\kappa_g'(s) - \frac{1}{2}\kappa_g(s) \equiv 0.$$

The solution of the above differential equation is $\kappa_g(s) = ce^{s/2}$ for a constant real number c. The curvature tends to infinity, so that γ is a kind of spirals in $H^2_+(-1)$. If c=1/2, the curve with the curvature $\frac{1}{2}c^{s/2}$ in the Euclidean plane is called a *Nielsen spiral*. So we call γ with $\kappa_g(s) = \frac{1}{2}c^{s/2}$ a hyperbolic Nielsen spiral. We have two open problems as follows:

- (1) What is γ with $\sigma[\phi]_1(s) \equiv 0$?
- (2) For a general one-parameter family of pseudo-lines, is it always true that $\delta[\phi]_1(t) = \delta[\phi]_2(t) = 0$ if and only if $\delta[\phi]_1(t) = \delta[\phi]_1'(t) = 0$?

References

- [1] M. Asayama, S. Izumiya, A. Tamaoki and H. Yıldırım, Slant geometry of spacelike hypersurfaces in Hyperbolic space and de Sitter space. Revista Matematica Iberoamericana, 28 (2012), 371–400.
- [2] J. W. Bruce and P. J. Giblin, Curves and singularities (second edition). Cambridge University Press (1992)
- [3] P.J. Giblin and J. P. Warder, Evolving evolutoids. Amer. Math. Monthly 121 (2014), 871–889.
- [4] R. Hayashi, S. Izumiya and T. Sato, Duals of curves in Hyperbolic space. Note Mat. 33 (2013), 97–106.
- [5] S. Izumiya, D-H. Pei, T. Sano and E. Torii, Evolutes of hyperbolic plane curves. Acta Mathematica Sinica, English Series 20 (2004), 543–550.
- [6] S. Izumiya, D.-H.Pei and T. Sano, Horospherical surfaces of curves in hyperbolic space. Publ. Math. Debrecen, 64 (2004), 1–13.
- [7] S. Izumiya, D-H. Pei, M.C. Romero-Fuster and M. Takahashi, On the horospherical ridges of submanifolds of codimension 2 in hyperbolic n-space, Bull. Braz. Math. Soc. (N.S.), 35 (2004), 177-198.
- [8] S. Izumiya, D-H. Pei, M.C. Romero Fuster and M. Takahashi, The horospherical geometry of submanifolds in hyperbolic space, J. London Math. Soc., 2 71 (2005), 779-800.
- [9] S. Izumiya, Horospherical geometry in the hyperbolic space, Advanced Studies in Pure Mathematics 55 (2009), 31–49.
- [10] S, Izumiya, Slant pseudo-lines in the hyperbolic plane. International Journal of Geometry 4 (2015), 37–41.
- [11] A. Ramsay and R. D. Richtmyer, *Introduction to hyperbolic geometry*. Springer-Verlag, New York Berlin Heidelberg (1994)