The annihilator ideal graph of a commutative ring

Mojgan Afkhami
Department of Mathematics, University of Neyshabur, P.O.Box 91136-899, Neyshabur, Iran
mojgan.afkhami@yahoo.com
Nesa Hoseini
Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O.Box 1159-91775, Mashhad, Iran
nesa.hoseini@gmail.com

Kazem Khashyarmanesh

Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O.Box 1159-91775, Mashhad, Iran
khashyar@ipm.ir

Received: 31.10.2014; accepted: 23.3.2015.

Abstract

Let R be a commutative ring with nonzero identity and I be a proper ideal of R. The annihilator graph of R with respect to I, which is denoted by $A G_{I}(R)$, is the undirected graph with vertex-set $V\left(A G_{I}(R)\right)=\{x \in R \backslash I: x y \in I$ for some $y \notin I\}$ and two distinct vertices x and y are adjacent if and only if $A_{I}(x y) \neq A_{I}(x) \cup A_{I}(y)$, where $A_{I}(x)=\{r \in R: r x \in I\}$. In this paper, we study some basic properties of $A G_{I}(R)$, and we characterise when $A G_{I}(R)$ is planar, outerplanar or a ring graph. Also, we study the graph $A G_{I}\left(\mathbb{Z}_{n}\right)$, where \mathbb{Z}_{n} is the ring of integers modulo n.

Keywords: Zero-divisor graph, Annihilator graph, Girth, Planar graph, Outerplanar, Ring graph

MSC 2000 classification: primary 05C10, 05C99, secondary 13A99

Introduction

Let R be a commutative ring with nonzero identity and let $Z(R)$ be the set of zero-divisors of R. Recently, there has been considerable attention in the literature to associating graphs with algebraic structures (see [1, 9, 10, 11, 12]). Probably the most attention has been to the zero-divisor graph, which is denoted by $\Gamma(R)$. The set of vertices of $\Gamma(R)$ is $Z(R)^{*}=Z(R) \backslash\{0\}$, and two distinct vertices x and y are adjacent if and only if $x y=0$. The concept of the zero-divisor graph goes back to Beck [5], who let all elements of R be vertices and was mainly interested in colorings. The zero-divisor graph was introduced and studied by D. F.

[^0]Anderson and P. S. Livingston in [2]. For a recent survey article on zero-divisor graphs see [3]. In [4], A. Badawi introduced the annihilator graph $A G(R)$ for a commutative ring R. Let $a \in R$ and $\operatorname{ann}_{R}(a)=\{r \in R: r a=0\}$. The annihilator graph of R is the (undirected) graph with vertices $Z(R)^{*}$, and two distinct vertices x and y are adjacent if and only if $\operatorname{ann}_{R}(x y) \neq \operatorname{ann}_{R}(x) \cup \operatorname{ann}_{R}(y)$. Clearly, each edge of $\Gamma(R)$ is an edge of $A G(R)$, and so $\Gamma(R)$ is a subgraph of $A G(R)$.

In [13], S. P. Redmond introduced the zero-divisor graph of a commutative ring R with respect to an ideal I of R. Let I be a proper ideal of R. The zero-divisor graph of R with respect to I, denoted by $\Gamma_{I}(R)$, is the graph whose vertices are the set

$$
\{x \in R \backslash I: x y \in I \text { for some } y \notin I\}
$$

and two distinct vertices x and y are adjacent if and only if $x y \in I$. In [13], among other results the relationship between the graphs $\Gamma_{I}(R)$ and $\Gamma(R / I)$ was explored.

In this article, we introduce the annihilator graph of R with respect to a proper ideal I of R, which is denoted by $A G_{I}(R)$. Let $x \in R$ and $A_{I}(x)=\{r \in$ $R: r x \in I\}$. The annihilator graph of R with respect to I is the (undirected) graph $A G_{I}(R)$ with vertices $V\left(A G_{I}(R)\right)=\{x \in R \backslash I: x y \in I$ for some $y \notin I\}$, and two distinct vertices x and y are adjacent if and only if $A_{I}(x y) \neq A_{I}(x) \cup$ $A_{I}(y)$. In other words, two distinct vertices x and y are adjacent if and only if there exists $r \in R \backslash I$ such that $r x y \in I$ and $r x, r y \notin I$. Note that $\Gamma_{I}(R)$ is a subgraph of $A G_{I}(R)$. Also if $I=\{0\}$, then we have $A G_{I}(R)=A G(R)$. We call the graph $A G_{I}(R)$ the annihilator ideal graph.

In Section 2 of this paper, we study some basic properties of $A G_{I}(R)$. For instance, we show that if $A G_{I}(R)$ is not identical to $\Gamma_{I}(R)$, then the girth of the graph $A G_{I}(R)$ is at most 4 (see Theorem 2.7). In the third section, we study the planarity of $A G_{I}(R)$. In Section 4, we obtain some results on the annihilator ideal graph of \mathbb{Z}_{n}, where \mathbb{Z}_{n} is the ring of integers modulo n for a positive integer n. We also study situations under which the graphs $A G_{I}\left(\mathbb{Z}_{n}\right)$ and $\Gamma_{I}\left(\mathbb{Z}_{n}\right)$ are isomorphic.

Now, we give a brief necessary background of graph theory. Let X be an undirected graph. We use the notation $V(X)$ for the set of vertices of X. Also, for a vertex $x \in V(X), N(x)$ denotes the set of vertices adjacent to x, and $|N(X)|$ is called the degree of x. We say that the graph X is connected if there is a path between each pair of distinct vertices of X. For two distinct vertices x and y, we define $\mathrm{d}(x, y)$ to be the length of a shortest path between x and $y(d(x, y)=\infty$ if there is no such path). The diameter of X is $\operatorname{diam}(X)=$ $\sup \{\mathrm{d}(x, y): x$ and y are distinct vertices of $X\}$. The girth of X is the length
of a shortest cycle in X, denoted by $\operatorname{gr}(X)(\operatorname{gr}(X)=\infty$ if X has no cycles). A clique of a graph is any complete subgraph of the graph and the number of vertices in a largest clique of X, denoted by $\omega(X)$, is called the clique number of X. A planar graph is a graph that can be embedded in the plane, that is, it can be drawn in the plane in such a way that its edges intersect only at their endpoints. Kuratowski provided a characterization of planar graphs, which is now known as Kuratowski's Theorem: A finite graph is planar if and only if it does not contain a subdivision of K_{5} or $K_{3,3}$ [6, Theorem 9.10]. Suppose that X is a graph with n vertices and q edges. Also, assume that C is a cycle of X. A chord in X is any edge of X joining two non-adjacent vertices in C. A primitive cycle is a cycle without chords. Moreover, we say that a graph X has the primitive cycle property (PCP) if any two primitive cycles intersect in at most one edge. The free rank of X, denoted by $\operatorname{frank}(X)$, is the number of primitive cycles of X. Also, the number $\operatorname{rank}(X)=q-n+r$, where r is the number of connected components of X, is called the cycle rank of X. The cycle rank of X can be expressed as the dimension of the cycle space of X. These two numbers satisfy the inequality $\operatorname{rank}(X) \leq \operatorname{frank}(X)$, as is seen in $[7$, Proposition 2.2]. The precise definition of a ring graph can be found in Section 2 of [7]; the authors showed that, for the graph X, the following conditions are equivalent:
(i) X is a ring graph,
(ii) $\operatorname{rank}(X)=\operatorname{frank}(X)$,
(iii) X satisfies PCP and X does not contain a subdivision of K_{4} as a subgraph.

Clearly ring graphs are planar. An undirected graph is an outerplanar graph if it can be drawn in the plane without crossings in such a way that all of the vertices belong to the unbounded face of the drawing. There is a characterization of outerplanar graphs that says a graph is outerplanar if and only if it does not contain a subdivision of the complete graph K_{4} or the complete bipartite graph $K_{2,3}[8$, Theorem 11.10]. Clearly, every outerplanar graph is planar. Let G and H be graphs. We use the notations $G=H$ and $G \cong H$ to denote identical and isomorphic graphs, respectively.

As usual, \mathbb{Z} and \mathbb{Z}_{n} will denote the rings of integers and integers modulo n, respectively.

1 Basic properties of $A G_{I}(R)$

In this section, we investigate the basic properties of $A G_{I}(R)$. Also, we study the relations between the graphs $A G_{I}(R)$ and $A G(R / I)$. The following proposition immediately follows from the definition of the graph $A G_{I}(R)$.

Proposition 1.1. Let I be a proper ideal of R. Then $A G_{I}(R)=\emptyset$ if and only if I is a prime ideal.

Proposition 1.2. Let $x+I$ and $y+I$ be distinct elements in R / I. Then $x+I$ is adjacent to $y+I$ in $A G(R / I)$ if and only if x is adjacent to y in $A G_{I}(R)$.

Proof. Since $A_{I}(x y) \neq A_{I}(x) \cup A_{I}(y)$ if and only if $a n n_{R / I}(x y+I) \neq a n n_{R / I}(x+$ $I) \cup a n n_{R / I}(y+I)$, we have $x+I$ is adjacent to $y+I$ in $A G(R / I)$ if and only if x is adjacent to y in $A G_{I}(R)$.

Theorem 1.3. If $x+i$ is adjacent to $y+i$ in $A G_{I}(R)$, for some $i \in I$, then all elements of $x+I$ and $y+I$ are adjacent in $A G_{I}(R)$.

Proof. Assume that $x+i$ is adjacent to $y+i$, for some $i \in I$. Hence there exists $r \in R \backslash I$ such that $r(x+i)(y+i) \in I, r(x+i) \notin I$, and $r(y+i) \notin I$. Then, for every $j, k \in I$, we have $r(x+j)(y+k) \in I, r(x+j) \notin I$, and $r(y+k) \notin I$. So all vertices of $x+I$ and $y+I$ are adjacent in $A G_{I}(R)$.

In the following example, we show that if $A G(R / I) \cong A G(S / J)$, where I and J are ideals of the rings R and S, respectively, then the graphs $A G_{I}(R)$ and $A G_{J}(S)$ are not necessarily isomorphic.

Example 1.4. Let $R=\mathbb{Z}_{6} \times \mathbb{Z}_{3}$ and $I=0 \times \mathbb{Z}_{3}$. Then $A G(R / I) \cong A G\left(\mathbb{Z}_{6}\right)$ with vertex-set $\{(\overline{2}, 0),(\overline{3}, 0),(\overline{4}, 0)\}$, where $(\overline{3}, 0)$ is adjacent to both vertices $(\overline{2}, 0)$ and $(\overline{4}, 0)$. Let $S=\mathbb{Z}_{24}$ and $J=<8>$. Then $A G(S / J) \cong A G\left(\mathbb{Z}_{8}\right)$ with vertex-set $\{\overline{2}, \overline{4}, \overline{6}\}$, where the vertex $\overline{4}$ is adjacent to the vertices $\overline{2}$ and $\overline{6}$. Now the graph $A G_{I}(R)$ is pictured in Figure 1 while $A G_{J}(S)$ is a complete graph. Hence $A G(R / I) \cong A G(S / J)$, but the graphs $A G_{I}(R)$ and $A G_{J}(S)$ are not isomorphic.

Figure 1

Let $\left\{a_{\lambda}\right\}_{\lambda \in \Lambda} \subseteq R$ be a set of coset representatives of the vertices of $A G(R / I)$. In [13], S. P. Redmond defined the concept of a column and a connected column. Here, we call the subset $a_{\lambda}+I=\left\{a_{\lambda}+i: i \in I\right\}$ a column of $A G_{I}(R)$. Moreover, if there exists $r \in R \backslash I$ such that $r a_{\lambda} \notin I$ and $r a_{\lambda}^{2} \in I$, then we say that $a_{\lambda}+I$ is a connected column of $A G_{I}(R)$.

Now the following two theorems follow immediately from the previous paragraph.

Theorem 1.5. If $a+I$ is a connected column of $A G_{I}(R)$, then $a+I$ is a complete subgraph of $A G_{I}(R)$ and $\omega\left(A G_{I}(R)\right) \geq|I|$.

Theorem 1.6. If $A G_{I}(R)$ has a connected column and $|V(A G(R / I))| \geq 2$, then $\omega\left(A G_{I}(R)\right) \geq|I|+1$.

In the next theorem, we study the girth of the graph $A G_{I}(R)$.
Theorem 1.7. Let $A G_{I}(R) \neq \Gamma_{I}(R)$. Then $\operatorname{gr}\left(A G_{I}(R)\right) \leq 4$.
Proof. Since $A G_{I}(R) \neq \Gamma_{I}(R)$, there exist adjacent vertices x and y such that $x y \notin I$. Thus there exists $1 \neq r \in R \backslash I$ such that $r x y \in I, r x \notin I$ and $r y \notin I$. Now, if $r \notin\{x, y\}$, then it is easy to see that r is a vertex of $A G_{I}(R)$ which is adjacent to both vertices x and y, and so we have the cycle $x-r-y-x$. Without loss of generality, we may assume that $r=x$. Then clearly $x \neq x^{2}$, $y \neq x y$ and we have the cycle $x-y-x^{2}-x y-x$. So the result holds. QED

2 Planar, outerplanar and ring graph annihilator ideal graphs

We begin this section with the following theorem.
Theorem 2.1. Let $|V(A G(R / I))|=1$. Then $A G_{I}(R)$ is planar if and only if $|I| \leqslant 4$.

Proof. Suppose that $V(A G(R / I))=\{x+I\}$. Clearly $x^{2} \in I$ and $x+I$ is a connected column of $A G_{I}(R)$. Hence, by Theorem 1.5, $A G_{I}(R)$ is isomorphic to the complete graph $K_{|I|}$. Therefore $A G_{I}(R)$ is planar if and only if $|I| \leq$ 4. QED

Lemma 2.2. Let $|V(A G(R / I))| \geqslant 2$ and $|I| \geq 3$. Then $A G_{I}(R)$ is not planar.

Proof. Suppose that $a+I$ is a vertex of $A G(R / I)$. Note that $A G(R)$ is connected since $\Gamma(R)$ is connected [2, Theorem 2.3], and $\Gamma(R)$ is a subgraph of $A G(R)$ with $V(\Gamma(R))=V(A G(R))$. Now since $|V(A G(R / I))| \geqslant 2$ and $A G(R / I)$ is connected, there exists $b \in R \backslash I$ such that the vertices a and b are adjacent
in $A G_{I}(R)$. Hence $A G_{I}(R)$ has a subgraph isomorphic to $K_{3,3}$ with vertex-set $\left\{a, a+x_{1}, a+x_{2}\right\} \cup\left\{b, b+x_{1}, b+x_{2}\right\}$, where x_{1} and x_{2} are distinct elements in $I \backslash\{0\}$. So $A G_{I}(R)$ contains a subgraph which is isomorphic to $K_{3,3}$. Thus $A G_{I}(R)$ is not planar.

Theorem 2.3. Let $|V(A G(R / I))|=3$ and $|I|=2$. Then $A G_{I}(R)$ is not planar if and only if $A G(R / I)$ is complete such that at least one of its vertices is a connected column in $A G_{I}(R)$.

Proof. First assume that $A G(R / I)$ is a complete graph with vertices $a+I, b+I$ and $c+I$. Without loss of generality, we may assume that $a+I$ is a connected column. Then $A G_{I}(R)$ has a subgraph isomorphism to $K_{3,3}$ with vertex-set $\{b, b+x, a\} \cup\{c, c+x, a+x\}$, where $x \in I \backslash\{0\}$. Hence $A G_{I}(R)$ contains a copy of $K_{3,3}$, which means that it is not planar.

For the converse statement, assume to the contrary that if $A G(R / I)$ is complete, then none of its vertices is a connected column, or $A G(R / I)$ is not complete. If $A G(R / I)$ is complete and no vertex is a connected column, then $A G_{I}(R)$ is pictured in Figure 2, which is planar, and this is a contradiction.

Figure 2
Now assume that $A G(R / I)$ is not a triangle, say that $a+I$ and $c+I$ are not adjacent. Then $A G_{I}(R)$ is pictured in Figure 3, which is planar, and this is a contradiction.

Hence the result holds.
Theorem 2.4. Let $|V(A G(R / I))| \geqslant 4$ and $|I|=2$. Then $A G_{I}(R)$ is not planar if and only if there exists a subdivision of the complete graph K_{3} in $A G(R / I)$.

Proof. First assume that there exists a subdivision of the complete graph K_{3} in $A G(R / I)$. Suppose that $a+I, b+I, c+I$ and $d+I$ are distinct vertices in $A G(R / I)$. Now if these vertices form a square in $A G(R / I)$, then $A G_{I}(R)$ has a

Figure 3
subgraph isomorphic to $K_{3,3}$ with vertex-set $\{a, a+x, c\} \cup\{b, b+x, d\}$, where $x \in I \backslash\{0\}$. Hence $A G_{I}(R)$ contains a subgraph isomorphic to $K_{3,3}$. So $A G_{I}(R)$ is not planar. If a, b and c form a triangle in $A G_{I}(R / I)$, then, in view of Figure 4, the graph $A G_{I}(R)$ contains a subdivision of $K_{3,3}$. So $A G_{I}(R)$ is not planar.

Figure 4
The converse statement is clear.
Theorem 2.5. Let $|V(A G(R / I))|=1$. Then $|I| \leq 3$ if and only if $A G_{I}(R)$ is a ring graph and an outerplanar graph.

Proof. Since $|V(A(R / I))|=1$, then, in view of the proof of Theorem 2.1, $A G_{I}(R)$ is isomorphic to $K_{|I|}$. If $|I| \geqslant 4$, then $A G_{I}(R)$ contains a subgraph which is isomorphic to K_{4}. So $A G_{I}(R)$ is neither a ring graph nor an outerplanar graph.

The converse statement is clear.
Since the graph $A G_{I}(R)$ is isomorphic to $A G(R)$ whenever $|I|=1$, in the following theorem, we verify the case that $|I| \geqslant 2$ and $|V(A(R / I))| \geq 2$.

Theorem 2.6. Assume that $|I|,|V(A G(R / I))| \geq 2$, and at least one of the sets $V(A G(R / I))$ or I has three elements. Then $A G_{I}(R)$ is neither outerplanar nor a ring graph.

Proof. First, suppose that $|I| \geq 3$. Then the set of vertices $\left\{a, a+x_{1}, a+x_{2}\right\} \cup$ $\left\{b, b+x_{1}\right\}$, where x_{1} and x_{2} are distinct nonzero elements of I and a, b are distinct elements of $R \backslash I$, forms the graph $K_{2,3}$. So $A G_{I}(R)$ contains a subgraph which is isomorphic to $K_{2,3}$. Assume that $|V(A G(R / I))| \geq 3$ and that $a+I, b+I, c+I$ are distinct vertices of $A G(R / I)$. Since $A G(R / I)$ is connected, we may assume that $a+I$ and $c+I$ are adjacent to $b+I$. Thus the vertices a and c are adjacent to b in $A G_{I}(R)$. Therefore the set of vertices $\left\{a, a+x_{1}, c\right\} \cup\left\{b, b+x_{1}\right\}$ forms the graph $K_{2,3}$. Hence $A G_{I}(R)$ contains a subgraph which is isomorphic to $K_{2,3}$. So $A G_{I}(R)$ is neither outerplanar nor a ring graph.

In the following theorem, we study the outerplanar and ring graph annihilator ideal graphs in the remaining case $|I|=2$ and $|V(A(R / I))|=2$.

Theorem 2.7. Let $|I|=|V(A G(R / I))|=2$. Then $A G_{I}(R)$ is neither outerplanar nor a ring graph if and only if there exist two connected columns in $A G_{I}(R)$.

Proof. Note that $A G_{I}(R)$ is connected since $\Gamma_{I}(R)$ is connected [13, Theorem 2.4], and $\Gamma_{I}(R)$ is a subgraph of $A G_{I}(R)$ with $V\left(\Gamma_{I}(R)\right)=V\left(A G_{I}(R)\right)$. We have $|I|=|V(A G(R / I))|=2$, and $\left|V\left(A G_{I}(R)\right)\right|=4$. So it is easy to see that there exist two connected columns in $A G_{I}(R)$ if and only if $A G_{I}(R)$ is isomorphic to K_{4}. Therefore the result holds.

3 Annihilator ideal graph of \mathbb{Z}_{n}

In this section, we assume that n is a positive integer and p, q are distinct prime numbers that divide n. Also, for $x \in \mathbb{Z}_{n},\langle x\rangle$ denotes the ideal generated by x in \mathbb{Z}_{n}.

Theorem 3.1. Let $R=\mathbb{Z}_{n}$ and $I=\langle p q\rangle$. Then $A G_{I}\left(\mathbb{Z}_{n}\right)=\Gamma_{I}\left(\mathbb{Z}_{n}\right)$.
Proof. Let x and y be adjacent vertices of $A G_{I}\left(\mathbb{Z}_{n}\right)$. Then there exists $r \in R \backslash I$ such that $r x y \in I, r x \in R \backslash I$, and $r y \in R \backslash I$. It is enough to show that $x y \in I$. Since $r x y \in I$ and $p \mid p q$, we have $p \mid r x y$, which implies that $p|r, p| x$ or $p \mid y$, and $q|r, q| x$ or $q \mid y$. Let $p \mid r$. Since $p q \nmid r x$ and $p q \nmid r y$, we have $q \mid r$. Thus $p q \mid r^{2}$, and this implies that $p q \mid r$. So $r \in I$, which is a contradiction. Let $p \mid x$. Then $q \mid y$. So $x y \in I$. The case that $p \mid y$ is obtained in a similar way. QED

Theorem 3.2. Let $R=\mathbb{Z}_{n}$ and $I=<p^{2}>$. Then $A G_{I}\left(\mathbb{Z}_{n}\right)=\Gamma_{I}\left(\mathbb{Z}_{n}\right)$.
Proof. The proof is similar to the proof of Theorem 3.1.
QED
Theorem 3.3. Let $R=\mathbb{Z}_{p^{n}}$ and $I=<p^{n-i}>$, for some $1 \leq i \leq n-1$. Then $A G_{I}(R)$ is a complete graph.

Proof. Let x and y be distinct vertices of $V\left(A G_{I}\left(\mathbb{Z}_{p^{n}}\right)\right)$. Then $x x^{\prime} \in I$ and $y y^{\prime} \in I$, for some vertices $x^{\prime}, y^{\prime} \in V\left(A_{I}\left(\mathbb{Z}_{p^{n}}\right)\right)$. Hence $p^{n-i} \mid x x^{\prime}$ and $p^{n-i} \mid y y^{\prime}$. Set $\alpha=\operatorname{Max}\left\{\alpha^{\prime} \in \mathbb{N}: p^{\alpha^{\prime}} \mid x\right\}$ and $\beta=\operatorname{Max}\left\{\beta^{\prime} \in \mathbb{N}: p^{\beta^{\prime}} \mid y\right\}$. Then we have $p^{\alpha+\beta} \mid x y$. Now, if $\alpha+\beta \geqslant n-i$, then $x y \in I$, which implies that x is adjacent to y. Let $\alpha+\beta<n-i$ and put $r=p^{n-i-(\alpha+\beta)}$. This implies that $r x y \in I$, and we have that $r x \in R \backslash I$. Assume that $r x \in I$. Then $p^{n-i} \mid p^{n-i-(\alpha+\beta)} p^{\alpha} a$, where there exists $a \in \mathbb{Z}$ such that $p^{\alpha} a=x$. Thus $p^{\beta} \mid a$, and hence $p^{\alpha+\beta} \mid x$. Therefore we have $\alpha+\beta \leq \alpha$ which implies that $\beta=0$ and $p^{n-i} \mid y^{\prime}$. This is a contradiction.

Theorem 3.4. Suppose that $R=\mathbb{Z}_{n}$ and $I=\langle k\rangle$, where $k \in \mathbb{Z}_{n}$. If there exist vertices $a, b, k \in \mathbb{Z}_{n}$ such that $\operatorname{gcd}(a, k)=\operatorname{gcd}(b, k)$, then $\operatorname{deg}(a)=\operatorname{deg}(b)$ and $N(a) \backslash\{b\}=N(b) \backslash\{a\}$.

Proof. Let $s \neq b$ be an adjacent vertex to a. Then there exists $r \in R \backslash I$ such that $r s a \in I, r s \notin I$, and $r a \notin I$. Thus $k \mid r s a, \quad k \nmid r s$, and $k \nmid r a$. In order to show that $s \in N(b)$, it is enough to prove that $k \mid r s b$, and $k \nmid r b$. Set $d=\operatorname{gcd}(a, k)=\operatorname{gcd}(b, k)$. Then we have $\frac{k}{d} \left\lvert\, r s \frac{a}{d}\right.$, and so $\frac{k}{d}|r s, k| r s d$ and $k \mid r s b$. Now, assume on the contrary that $k \mid r b$. Then $\frac{k}{d} \left\lvert\, r \frac{b}{d}\right.$, and so $\left.\frac{k}{d} \right\rvert\, r$, $\frac{k}{d} \left\lvert\, r \frac{a}{d}\right.$, and $k \mid r a$, which is contradiction. Therefore $s \in N(b) \backslash\{a\}$, and so the results hold.

Theorem 3.5. Suppose that $R=\mathbb{Z}_{n}$ and $I=\langle k\rangle$, where $k \in \mathbb{Z}_{n}$. If there exists an integer $d>1$ such that $d^{2} \mid k$, then $\operatorname{gr}\left(A G_{I}\left(\mathbb{Z}_{n}\right)\right)=3$.

Proof. Consider two distinct integers s_{1}, s_{2} such that $\operatorname{gcd}\left(s_{1}, k\right)=\operatorname{gcd}\left(s_{2}, k\right)=$ 1. Then $\operatorname{gcd}\left(s_{1} d, k\right)=\operatorname{gcd}\left(s_{2} d, k\right)=d$ and, by Theorem 3.4, $N\left(s_{1} d\right) \backslash\left\{s_{2} d\right\}=$ $N\left(s_{2} d\right) \backslash\left\{s_{1} d\right\}$. Now it is easy to see that $s_{1} d$ is adjacent to $s_{2} d$ and there exist at least three vertices in $A G_{I}\left(\mathbb{Z}_{n}\right)$, which completes the proof. QED

Acknowledgements. The authors are deeply grateful to the referee for careful reading of the manuscript and helpful suggestions.

References

[1] S. Akbari, H. R. Maimani, S. Yassemi, When a zero-divisor graph is planar or a complete r-partite graph, J. Algebra 270 (2003), 169-180.
[2] D. F. Anderson, P. S. Livingston, The zero-divisor graph of commutative ring, J. Algebra 217(1999), 434-447.
[3] D. F. Anderson, M. C. Axtell, J. A. Stickles JR, Zero-divisor graphs in commutative ring, In:M. Fontana, S. E. Kabbaj, B. Olberding, I. Swanson, eds. Commutative Algebra, noetherian and non-noetherian perspectives. New York: Springer-Verlag, pp. 23-45 (2011).
[4] A. BADAWI, The annihilator ideal graph of a commutative ring, Comm. Algebra 42 (2014), 108-121.
[5] I. BECK, Coloring of commutative rings, J. Algebra 116 (1988), 208-226.
[6] J. A. Bondy, U. S. R. Murty, Graph theory with applications, American Elsevier, New York, 1976.
[7] I. Gitler, E. Reyes, R. H. Villarreal, Ring graphs and complete intersection toric ideals, Discrete Math. 310 (2010), 430-441.
[8] F. Harary, Graph theory, Addision-Wesley, Reading, MA, 1972.
[9] C. Hung-Jen, Classification of rings with projective zero-divisor graphs, J. Algebra 319 (2008), 2789-2802.
[10] W. Hsin-Ju, Zero-divisor graphs of genus one, J. Algebra 304 (2006), 666-678.
[11] C. Wickham, Rings whose zero-divisor graphs have positive genus, J. Algebra 321 (2009) 377-383.
[12] H. R. Maimani, M. R. pournaki, A. Tehranian, S. Yassemi, Graphs attached to rings revisited, Arab. J. Sci. Eng. 36 (2011), 997-1012.
[13] S. P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra 31 (2003), 4425-4443.

[^0]: http://siba-ese.unisalento.it/ © 2016 Università del Salento

