
Note di Matematica 29, n. 1, 2009, 69–89.
DOI 10.1285/i15900932v29n1supplp69

Enumeration of Nonsingular Buekenhout

Unitals

R. D. Baker
Dept of Mathematics & Computer Science,
West Virginia State University,
Institute, WV, 25112.
baker@wvstateu.edu

G. L. Eberti

Dept of Mathematical Sciences,
University of Delaware,
Newark, DE, 19716.
ebert@math.udel.edu

K. L. Wantz
Dept of Mathematics,
Regent University,
Virginia Beach, VA, 23464.
kwantz@regent.edu

Abstract. The only known enumeration of Buekenhout unitals occurs in the Desarguesian
plane PG(2, q2). In this paper we develop general techniques for enumerating the nonsingular
Buekenhout unitals embedded in any two-dimensional translation plane, and apply these tech-
niques to obtain such an enumeration in the regular nearfield planes, the odd-order Hall planes,
and the flag-transitive affine planes. We also provide some computer data for small-order André
planes of index two and give partial results toward an enumeration in this case.
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1 Introduction

A unital is any 2–(n3 + 1, n+ 1, 1) design, for some integer n > 2. We often
refer to n as the order of the unital, even though this use of order is not the
standard one used in design theory. The classical example is a Hermitian curve
in the square-order Desarguesian plane PG(2, q2), where we take n = q and the
blocks become the intersections of the Hermitian curve with its “secant” lines.
This example is often called the classical unital. In general, a unital with n3+1
points which is contained in a projective plane of order n2 is called an embedded
unital in that plane. While most unitals are not embedded (see [23], [7]), the

iResearch partially supported by NSA grant H98230-09-1-0074.

Note di Matematica
Note Mat. 29 (2009), suppl. n. 1, 69-90
ISSN 1123-2536, e-ISSN 1590-0932
DOI 10.1285/i15900932v29n1supplp69
http://siba-ese.unisalento.it, © 2009 Università del Salento





70 R. Baker, G. Ebert, K. Wantz

embedded ones are certainly of most interest to finite geometers. There is cur-
rently no example of a square-order projective plane which has been proven not
to contain a unital, at least as far as we know. Moreover, unitals seem to play a
key role in understanding the nature of square-order projective planes (see [11]
for the connection with minimal blocking sets).

If we restrict to the family of translation planes which are two-dimensional
over their kernels, and hence arise from line spreads of Σ = PG(3, q), there are
general techniques for constructing unitals embedded in such planes. These were
developed by Buekenhout [12], and use the Bruck-Bose [9, 10] representation.
Namely, let S be a spread in Σ = PG(3, q), and embed Σ as a hyperplane at
infinity in Σ̄ = PG(4, q). Then the two-dimensional (affine) translation plane
of order q2 corresponding to S is the incidence structure whose points are the
points of Σ̄ \ Σ, whose lines are the planes of Σ̄ which meet the hyperplane Σ
in a line of the spread S, and whose incidence is inherited from Σ̄. This affine
plane is completed to a projective plane π(S) by adding the spread lines of S
as the points at infinity. The plane π(S) is Desarguesian (that is, isomorphic to
PG(2, q2)) if and only if the spread S is regular (see [10]).

Buekenhout used this Bruck-Bose representation to present the following
two constructions. If S is any spread of Σ and if U is an ovoidal cone of Σ̄
(that is, the point cone over some 3-dimensional ovoid) that meets Σ in a line
of S, then U corresponds to a unital U in π(S) which is tangent to the line at
infinity. Similarly, if U is a nonsingular (parabolic) quadric in Σ̄ that meets Σ
in a regulus of the spread S, then U corresponds to a unital U in π(S) which
meets the line at infinity in q + 1 points. Of course, the second construction is
valid only for those two-dimensional translation planes whose associated spread
contains at least one regulus. Unitals embedded in any two-dimensional trans-
lation plane π(S) which arise from Buekenhout’s ovoidal cone construction will
be called ovoidal Buekenhout unitals. If the ovoidal cone is an orthogonal cone
(with an elliptic quadric as base), then the unital will be called an orthogonal
Buekenhout unital. The unitals embedded in π(S) which arise from Bueken-
hout’s nonsingular quadric construction will be called nonsingular Buekenhout
unitals.

Metz [21] used a counting argument to show that there are orthogonal cones
which correspond to non-classical unitals in the Desarguesian plane PG(2, q2)
for all q > 2. Barwick [5] also used a counting argument to show that in
PG(2, q2) any unital arising from a nonsingular quadric is necessarily classi-
cal. Furthermore, the only known enumeration of Buekenhout unitals occurs
in the Desarguesian plane PG(2, q2). In this plane any nonsingular Bueken-
hout unital is classical by Barwick’s argument cited above, and the orthogonal
Buekenhout-Metz unitals are completely enumerated in [2], [16]. In addition,
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the full stabilizers of these orthogonal Buekenhout-Metz unitals are computed
in [2], [16].

To avoid the technical difficulties of dealing with quadrics in even charac-
teristic and since most of the families discussed exist only in odd characteristic,
we assume throughout this paper that q is an odd prime power. We discuss
the enumeration of nonsingular Buekenhout unitals in several infinite families
of two-dimensional translation planes, including the regular nearfield planes,
the odd-order Hall planes, and the two-dimensional flag-transitive affine planes,
thereby providing the first classification results for nonsingular Buekenhout uni-
tals embedded in non-Desarguesian square-order planes. We also provide some
computer data for nonsingular Buekenhout unitals embedded in small-order
two-dimensional André planes of index two and give partial results toward an
enumeration in this case. The enumeration of orthogonal Buekenhout unitals
embedded in non-Desarguesian planes will be addressed in a future paper.

2 General Results

We begin with some notation and general results applicable to any transla-
tion plane arising from a spread of PG(3, q). We let (X0, X1, X2, X3, X4) denote
homogeneous coordinates for Σ̄ = PG(4, q), where the hyperplane at infinity,
Σ ∼= PG(3, q), has equation X0 = 0 and contains the given spread S. Points
are represented by the row vectors containing their homogeneous coordinates.
When using the Bruck-Bose representation in Σ̄, we freely identify actions on
π(S) with the associated action on Σ̄. We always denote a primitive element of
GF (q) by ω, and let AT denote the transpose of A.

We now briefly recall how Aut(π(S)) is computationally obtained from
Aut(S), where Aut(S) denotes the stabilizer of the spread S in the collineation
group of Σ. As long as the spread S is not regular (and hence the plane π(S) is
not Desarguesian), the ideal line (that is, Σ) must be fixed. Hence in this case
any automorphism of π(S) is represented by a field automorphism applied to
the Σ̄-coordinates followed by right multiplication of a 5× 5 “normalized” non-
singular matrix M̄ over GF (q), where the first column of M̄ may be assumed
to be (1, 0, 0, 0, 0)T . Moreover, the 4 × 4 lower right submatrix M induces a
collineation of Σ which stabilizes the spread S. The four components of the first
row of M̄ , other than the first component, are arbitrary elements of GF (q), in-
dicating the q4 translations of π(S). If these four components are all zero, then
M̄ represents an element in the translation complement of π(S). In any case,
one sees that |Aut(π(S))| = q4(q − 1)|Aut(S)|.

We first consider the number of mutually inequivalent nonsingular Bueken-
hout unitals embedded in the translation plane π(S) that might arise from a
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given regulus of S. When we say Q0 is some quadratic form for a regulus R, we
mean that the isotropic vectors of Q0 are the points of the hyperbolic quadric
H which has R as one class of ruling lines. All such forms are given by kQ0, as
k varies over GF (q)∗.

1 Theorem. Let q be any odd prime power, and let R be some regulus
contained in the spread S. Let Q0 be a quadratic form for R. Then the plane
π(S) has one or two inequivalent nonsingular Buekenhout unitals that meet
the ideal line Σ in the points corresponding to R, according to whether Aut(S)
contains a collineation with an associated isometry that takes Q0 to ωQ0.

Proof. Consider a nonsingular Buekenhout unital of π(S) that is repre-
sented by a nonsingular (parabolic) quadric U of Σ̄ that meets Σ in the points
covered by the regulus R of S. If Q is a quadratic form for U , then Q|Σ must
be a form for the hyperbolic quadric H of R. Let P = Σ⊥ be the pole of Σ
with respect to the symmetric bilinear form associated with Q, and consider the
translation τM̄ induced by the matrix M̄ which has first row P = (1, t1, t2, t3, t4)
and lower right 4× 4 submatrix I. Thus τM̄ maps P0 = (1, 0, 0, 0, 0) to P . The
image of U under τ−1

M̄
will have Σ⊥ = P0, and hence, after suitable scaling, will

have as its equation

Ut : X2
0 − tQ0(X1, X2, X3, X4) = 0, (1)

for some t ∈ GF (q)∗, where Q0 is a form for H. Thus any nonsingular Bueken-
hout unital is equivalent to one with Equation (1), and any regulus R of S thus
lifts to one or more inequivalent unitals.

Now, if we let ρk be the linear transformation whose associated matrix is
Diag{1, k, k, k, k} for some k ∈ GF (q)∗, then ρk is in the homology subgroup
associated with the kernel of π(S). Straightforward computations show that ρk
maps Ut to U t

k2
. Hence there are at most two inequivalent nonsingular Bueken-

hout unitals meeting the ideal line in the points corresponding to R, namely
those represented by the parabolic quadrics

U1 : X2
0 −Q0(X1, X2, X3, X4) = 0,

Uω : X2
0 − ωQ0(X1, X2, X3, X4) = 0.

Moreover, to have a single equivalence class of nonsingular Buekenhout uni-
tals arising from R, it suffices to have an isometry taking Q0 to ωQ0 which
induces a collineation in Aut(S) that fixes R. Conversely, if τ ∈ Aut(π(S))
maps U1 to Uω, then it necessarily has an associated isometry of the underlying
vector space taking Q0 to ωQ0. QED

It should be noted that the order of the stabilizer in Aut(π(S)) of a non-
singular Buekenhout unital is naturally related to the order of the stabilizer in
Aut(S) of the regulus R from which it arises.
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2 Theorem. Let q be any odd prime power, and consider a nonsingular
Buekenhout unital of π(S) which meets the ideal line in the points corresponding
to some regulus R contained in S. Then the stabilizer of this unital in Aut(π(S))
has either the same order or twice the order of the stabilizer of the regulus R in
Aut(S), according to whether there are one or two equivalence classes of such
unitals arising from R. Moreover, some representative of the equivalence class
of this unital has its stabilizer contained in the translation complement of π(S).

Proof. As discussed in the proof of Theorem 1, we may assume without
loss of generality that our nonsingular Buekenhout unital is represented by a
parabolic quadric in Σ̄ of the form given by Equation (1). We define P = {Ut |
t ∈ GF (q)∗}, and let G be the group of all elements of Aut(π(S)) which stabilize
P. Note that for every Ut, we have Σ⊥ = P0 as in the proof of Theorem 1, and
hence every element of G fixes P0. Thus G is a subgroup of the translation
complement of Aut(π(S)).

Choose any U ∈ P. Straightforward matrix computations show that the
stabilizer of U in Aut(π(S)) is indeed a subgroup of G. Now any τ ∈ Aut(S)
which fixes R has q − 1 “liftings” to the translation complement of Aut(π(S)),
according to the choice of the nonzero scalar multiple of the lower 4 × 4 ma-
trix used in the representation. Moreover, any such lifting τ̄ belongs to G,
and conversely any φ ∈ G must have φ|Σ ∈ Aut(S) with φ|Σ fixing R. Thus
|G| = (q−1)|StabAut(S)(R)|. Since G acts transitively on P or has two orbits of

size q−1
2 each, the result now follows from the Orbit-Stabilizer Theorem. QED

3 The Regular Spread of PG(3, q)

Before discussing the specific translation planes mentioned Section 1, we
need a convenient representation for a regular spread of PG(3, q) and its full
automorphism group. To do this, it is best to start with the projective line
PG(1, q2) over the finite field GF (q2). We let β denote a primitive element of
GF (q2), so that ω = βq+1 is a primitive element of GF (q). We choose {1, ǫ =
β

q+1
2 } for our ordered basis of GF (q2), treated as a vector space over its subfield

GF (q), noting that ǫ2 = ω and ǫq = −ǫ. We identify ordered pairs (s1, s2) from
GF (q) with the element s = s1+s2ǫ in GF (q

2) whenever it is useful, and observe
that sq+1 = s21 − ωs22.

The trivial (point) spread in PG(1, q2) consisting of all its q2+1 points lifts
to a Desarguesian (or regular) line spread of PG(3, q) by viewing the underlying
2-dimensional vector space over GF (q2) for PG(1, q2) as a 4-dimensional vector
space over GF (q) (see [8], for instance). Namely, using the above ordered basis
for GF (q2) over GF (q), the projective point 〈(1, s)〉 = 〈(ǫ, ǫs)〉 of PG(1, q2) lifts
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to the line

ℓs = 〈(1, 0, s1, s2), (0, 1, ωs2, s1)〉
of PG(3, q), and the projective point 〈(0, 1)〉 = 〈(0, ǫ)〉 of PG(1, q2) lifts to the
line

ℓ∞ = 〈(0, 0, 1, 0), (0, 0, 0, 1)〉
of PG(3, q). That is,

S0 = {ℓ∞} ∪ {ℓs | s ∈ GF (q2)}

is a regular line spread of Σ = PG(3, q).
The general linear group GL(2, q2) of order q2(q2 − 1)2(q2 + 1) acting on

the underlying vector space for PG(1, q2) lifts to a projective subgroup of order
q2(q2 − 1)(q2 + 1)(q + 1) stabilizing the regular spread S0; namely, the matrix[
e g
h f

]
∈ GL(2, q2) naturally lifts to the linear collineation φe,f,g,h of PG(3, q)

stabilizing S0 that is induced by the matrix

Me,f,g,h =




e1 e2 g1 g2
ωe2 e1 ωg2 g1
h1 h2 f1 f2
ωh2 h1 ωf2 f1


 ,

acting on row vectors by right multiplication, where e, f, g, h ∈ GF (q2) with
ef − gh 6= 0. Of course, any nonzero GF (q)-scalar multiple of Me,f,g,h induces
the same collineation φe,f,g,h. Note that

φe,f,g,h : ℓs 7→ ℓ fs+g

hs+e

, (2)

with the usual conventions on ∞.
The full (semilinear) stabilizer of S0 may be represented as follows. As al-

ways, we let (X1, X2, X3, X4) denote homogeneous coordinates for Σ = PG(3, q).
Let q = pn, where p is an odd prime, and let σ be an automorphism of GF (q2)
given by x 7→ xr, where r = pi for some 0 < i ≤ 2n. We let ψσ, or ψr for empha-

sis, denote the map which takes (X1, X2, X3, X4) to (Xr
1 , ω

r−1
2 Xr

2 , X
r
3 , ω

r−1
2 Xr

4).
Using the notation introduced above, straightforward computations show that

ψσ : ℓs 7→ ℓsσ , (3)

for any choice of σ. Also each ψσ fixes the line ℓ∞, and thus each ψσ stabilizes
the regular spread S0. While we would normally model a semilinear automor-
phism of S0 by first applying a field automorphism to each coordinate and then
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multiplying by a non-singular matrix, in this setting it is more convenient to first
apply some ψσ and then apply some φe,f,g,h as defined above. Straightforward
computations show that

ψσφe,f,g,hψ
−1
σ = φ

eσ
−1

,fσ−1
,gσ

−1
,hσ−1 ,

and thus we get a group stabilizing S0 of order 2nq2(q2 − 1)(q2 + 1)(q + 1).
In fact, this is well known to be the order of Aut(S0) (see [8], for instance). It
should be noted that ψq : (X1, X2, X3, X4) 7→ (X1,−X2, X3,−X4) is actually a
linear collineation, so that the (full) projective subgroup of Aut(S0) has order
2q2(q2 − 1)(q2 + 1)(q + 1).

4 Regular Nearfield Planes

Two-dimensional regular nearfield planes are André translation planes, and
hence can be constructed via the Bruck-Bose method by starting with a regular
spread in Σ = PG(3, q) and then reversing a certain “linear” set of disjoint
reguli to obtain a regular nearfield spread of Σ. For a given odd prime power q,
the regular nearfield spread is uniquely determined up to equivalence.

Let S0 = {ℓ∞} ∪ {ℓs | s ∈ GF (q2)} be the regular spread of Σ discussed in
the previous section. For each t ∈ GF (q)∗ = GF (q) \ {0}, Rt = {ℓs | sq+1 = t}
is a regulus contained in S0. In fact, {Rt | t ∈ GF (q)∗} is a linear set of q − 1
mutually disjoint reguli in S0 with carriers ℓ0 and ℓ∞ (see [8]). Straightforward
computations show that Ropp

t = {ms | sq+1 = t} is the opposite regulus to Rt,
where

ms = 〈(1, 0, s1, s2), (0, 1,−ωs2,−s1)〉,
with the usual representation for s in terms of the basis {1, ǫ}. Note that the line
ℓs consists of the points whose homogeneous coordinates satisfy y = sx, while
ms contains those points with y = sxq. It is also useful to note that s ∈ �q2 if
and only if sq+1 = s21 − ωs22 ∈ �q, and similarly for non-squares, since

s
q2−1

2 = (sq+1)
q−1
2 gives the quadratic character.

Replacing the lines of a regulus by the lines in its opposite regulus (covering
the same hyperbolic quadric) is often called reversing the regulus. Reversing all
the reguli in the above linear set produces the spread

S ′0 = {ℓ0, ℓ∞} ∪ {ms | s ∈ GF (q2); s 6= 0},

which is another regular spread of Σ sharing only the lines ℓ0 and ℓ∞ with S0.
The regular nearfield spread of Σ is obtained by reversing a linear subset

of q−1
2 reguli Rt in the regular spread S0, where the subscripts t are all the
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nonzero squares (or, equivalently, all the non-squares) of GF (q) (see Proposition
II in [22]). We choose to reverse those reguli Rt where t is a nonzero square in
GF (q), thus obtaining the regular nearfield spread

S =
(
S0 \ ∪t∈�qRt

)
∪
(
∪t∈�q Ropp

t

)
(4)

= {ℓ0, ℓ∞} ∪ {ℓs | sq+1 ∈6�q} ∪ {ms | sq+1 ∈ �q}.

It is well known (see [1], for instance) that for q ≥ 5

|Aut(S)| = 4n(q2 − 1)(q + 1), (5)

where q = pn for some odd prime p. It should be noted that for q = 3, the regular
nearfield spread is equivalent to the Hall spread of PG(3, 3). The automorphism
group of this spread has order 1920, and it acts transitively on the 10 lines
and 10 reguli of the spread. The corresponding translation plane is called the
exceptional nearfield plane. We thus assume from now on that q ≥ 5.

We next develop a representation for the automorphisms of the regular
nearfield spread S, using the above model. This representation is very similar to
the one given in [20]. Using the notation introduced in Section 3, straightforward
computations show that

ψσ : ms 7→ msσ , (6)

for any field automorphism σ of GF (q2). Since any field automorphism σ fixes
�q2 and 6�q2 as sets, it follows from Equations (3) and (6) that each ψσ is an
automorphism of S. Thus it suffices to determine those matrices which induce
by right multiplication (on row vectors) a linear collineation of Σ fixing S. We
first deal with those actions which fix ℓ∞.

For each e = e1+e2ǫ, f = f1+f2ǫ ∈ GF (q2), with ef 6= 0, we let φe,f denote
the collineation of Σ induced by

Me,f =




e1 e2δe,f 0 0
ωe2 e1δe,f 0 0
0 0 f1 f2
0 0 ωf2 f1


 ,

where δe,f is the quadratic character of ef in GF (q2); namely

δe,f =

{
1, if ef ∈ �q2 ,

−1, if ef ∈6�q2 .

It should be noted that φe,f is not the same collineation as φe,f,0,0 as previously
defined. Indeed, it is precisely those φe,f with ef ∈ �q2 that are in the stabilizer
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of the regular spread S0 as discussed in Section 3. Straightforward computations
show that the above matrices form a matrix group of order (q2 − 1)2, which

naturally induces a collineation group of Σ whose order is (q2−1)2

q−1 = (q2−1)(q+1)
since any nonzero GF (q)-scalar multiple of Me,f induces the same collineation
φe,f of Σ.

More direct computations show that if ef ∈ �q2 , then

φe,f : ℓs 7→ ℓ f

e
s
,

φe,f : ms 7→ m f

eq
s
.

}
(7)

Similarly, if ef ∈6�q2 , then

φe,f : ℓs 7→ m f

e
s
,

φe,f : ms 7→ ℓ f

eq
s
.

}
(8)

In particular, since the quadratic character of ef, fe and f
eq are all the same, we

see that each φe,f leaves invariant the regular nearfield spread S defined in (4).
Note that each φe,f fixes the lines ℓ0 and ℓ∞.

Moreover, one easily verifies that ψσφe,fψ
−1
σ = φ

eσ
−1

,fσ−1 , and thus

K = {ψσφe,f | σ ∈ Aut(GF (q2)); e, f ∈ GF (q2)∗}

is a subgroup of Aut(S) which stabilizes ℓ∞ (and ℓ0). In fact, K is the semidirect
product of {φe,f | e, f ∈ GF (q2)∗} by {ψσ | σ ∈ Aut(GF (q2))}, and hence is an
index-two subgroup in Aut(S) by Equation (5). To complete the description of
Aut(S), we define ν to be the linear collineation of Σ induced by the mapping

(X1, X2, X3, X4) 7→ (X3, X4, X1, X2).

One easily computes that

ν : ℓs 7→ ℓ 1
s
,

ν : ms 7→ m 1
sq

}
(9)

for any s 6= 0, and observe that ν interchanges ℓ0 and ℓ∞. Hence the involution
ν leaves invariant the regular nearfield spread S defined in (4). Moreover, one
easily checks that νψσφe,fν = ψσφf,e when ef ∈ �q2 , and νψσφe,fν = ψqσφfq ,eq

when ef ∈6�q2 . Letting J be the cyclic subgroup generated by the involution ν,
we have thus shown that G = K ⋊ J is the full automorphism group of S.

Next we obtain Aut(π(S)) from Aut(S) using the Bruck-Bose represen-
tation in Σ̄ as described in Section 2. Thus we know that |Aut(π(S))| =
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4nq4(q2 − 1)2. To account for field automorphisms, we use the lifting ψ̄r of

ψr which takes (X0, X1, X2, X3, X4) to (Xr
0 , X

r
1 , ω

r−1
2 Xr

2 , X
r
3 , ω

r−1
2 Xr

4). Defin-
ing linear collineations φ̄e,f and ν̄ in a similar fashion (bordering the associated
matrices with a 1 in the (1, 1)-position and 0’s elsewhere in the first row and
column), we see that every element of the translation complement of π(S) may
be written uniquely as ψ̄rφ̄e,f or as ψ̄rφ̄e,f ν̄, for some e, f ∈ GF (q2)∗ and some
integer r = pi with 0 < i ≤ 2n. In particular, this translation complement has
order 4n(q2 − 1)2 since φ̄e,f 6= φ̄e′,f ′ whenever (e, f) 6= (e′, f ′).

The previously described group actions show that Aut(S) has two orbits
on the lines of S, namely {ℓ0, ℓ∞} and S \ {ℓ0, ℓ∞}. More importantly, for our
purposes we need to discuss the action of Aut(S) on the reguli of S. While this
action seems to be well-known, we could not find any suitable reference in print
and hence we briefly discuss here the results that we will need.

3 Theorem. Let q ≥ 5 be an odd prime power. Then the regular nearfield
spread S of Σ has precisely 2q reguli.

Proof. We assume S is defined as in Equation (4), and thus S contains at
least q− 1 reguli, namely {Rt | t ∈6�q}∪ {Ropp

t | t ∈ �q}. These reguli partition
the lines of S \ {ℓ0, ℓ∞}. Also note that every line of S belongs to either S0 or
S ′0, both of which are regular spreads. Moreover, the carriers {ℓ0, ℓ∞} belong to
both S0 and S ′0.

Now let R denote an arbitrary regulus contained in S. Then R contains
zero, one, or two lines from the carriers {ℓ0, ℓ∞}. Suppose first that R contains
both of these lines, and let ℓ ∈ R \ {ℓ0, ℓ∞}. If ℓ ∈ S0, then R ⊂ S0 since S0 is
a regular spread. Similarly, if ℓ ∈ S ′0, then R ⊂ S ′0. Thus R consists of {ℓ0, ℓ∞}
and either two lines from each regulus in {Rt | t ∈ 6�q} or two lines from each
regulus in {Ropp

t | t ∈ �q}. From the well-known correspondence between the
lines and reguli of a regular spread in Σ and the points and circles of a Miquelian
inversive plane (see [8], for instance), and using the associated computational
techniques (as discussed in [17], for instance), one immediately sees that there
are 1

2(q + 1) reguli of S0 through {ℓ0, ℓ∞} which contain two lines from each
of {Rt | t ∈ 6�q}. And there are 1

2(q + 1) reguli of S ′0 through {ℓ0, ℓ∞} which
contain two lines from each of {Ropp

t | t ∈ �q}. Thus we get a total of q + 1
choices for a regulus R in S that contains both ℓ0 and ℓ∞.

Now suppose that R contains exactly one of ℓ0, ℓ∞. The remaining q ≥ 4
lines of R are partitioned by S0 \ {ℓ0, ℓ∞} and S ′0 \ {ℓ0, ℓ∞}. Thus R must be
a regulus of S0 or S ′0, since both are regular spreads, and so without loss of
generality we may assume that R ⊂ S0. Then the remaining q lines of R must
include at least three lines from one of {Rt | t ∈ 6�q}, which implies that R
must be one of these reguli. But this contradicts the fact that R contains one
of {ℓ0, ℓ∞}, and thus this case cannot occur.
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Finally, suppose that R contains neither ℓ0 nor ℓ∞. The same reasoning as
above shows that R must be one of {Rt | t ∈ 6�q} ∪ {Ropp

t | t ∈ �q}. As these
q − 1 reguli are indeed reguli of S, we have a total of 2q choices for R and the
result follows. QED

It is interesting to note that q + 1 of the reguli in S contain {ℓ0, ℓ∞}, and
the remaining q − 1 reguli in S are disjoint from {ℓ0, ℓ∞}. Moreover, q of the
reguli in S are reguli of the regular spread S0, and the remaining q reguli in S
are reguli of the regular spread S ′0.

4 Theorem. Let q ≥ 5 be an odd prime power, and let S be a regular
nearfield spread of Σ. Then Aut(S) has precisely two orbits on the 2q reguli
contained in S.

Proof. We again assume that S is defined as in (4), and we let O1 = {Rt |
t ∈ 6�q} ∪ {Ropp

t | t ∈ �q}. Since Aut(S) leaves invariant {ℓ0, ℓ∞} and maps
reguli of S to reguli of S, the proof of Theorem 3 implies that Aut(S) naturally
acts on the q − 1 reguli in O1. Choose Ropp

1 = {ms | sq+1 = 1} ∈ O1, and
consider the stabilizer of this regulus in G = Aut(S).

From our description of G = K ⋊ J and using Equations (3), (6), (7), (8),
and (9), we see that the stabilizer of Ropp

1 is K1 ⋊ J , where

K1 = {ψσφe,f | σ ∈ Aut(GF (q2); e, f ∈ GF (q2)∗; (f/e)q+1 = 1}.

Now there are q+1 choices for f , given any e ∈ GF (q2)∗, so that (f/e)q+1 = 1.
And for any such pair (e, f), the q − 1 pairs (ke, kf), as k varies over GF (q)∗,
all satisfy this condition. Hence elementary counting shows that the order of
the stabilizer of Ropp

1 is 2n(q + 1)2(2) = 4n(q + 1)2. An application of the
Orbit-Stabilizer Theorem now shows that O1 is a single orbit under Aut(S).

Next we define O2 to be the remaining q + 1 reguli contained in S, all of
which contain {ℓ0, ℓ∞} by the proof of Theorem 3. If R = {ms | s ∈ GF (q)∗} ∪
{ℓ0, ℓ∞}, then R is a subset of q+1 lines contained in S from Equation (4), and
straightforward computations show that R is in fact a regulus of S. Namely the
hyperbolic quadric covered by the lines in R has equation X1X4+X2X3 = 0. In
particular, R is a regulus in O2. Again G = Aut(S) acts naturally on the reguli
in O2. From our previous discussion of G = K ⋊ J and using the same group
action equations as above, we see that the stabilizer of R is K2 ⋊ J , where

K2 = {ψσφe,f | σ ∈ Aut(GF (q2); e, f ∈ GF (q2)∗; f

eq
∈ GF (q)∗}.

There are exactly (q2 − 1)(q − 1) pairs (e, f) satisfying the condition f
eq ∈

GF (q)∗, as we may choose any nonzero e and set f = teq for each t ∈ GF (q)∗.
Moreover, this set includes all GF (q)-homogeneous pairs. Hence the stabilizer
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of R has order 2n(q2 − 1)(2) = 4n(q2 − 1), and an application of the Orbit-
Stabilizer Theorem shows that O2 is a single orbit under Aut(S), proving the
result. QED

We set aside for future use the following stabilizer results contained in the
above proof.

5 Corollary. Let q = pn ≥ 5 be an odd prime power, and let Ropp
1 and

R be the inequivalent reguli in the regular nearfield S described in the proof of
Theorem 4. Then

(1) the full stabilizer of Ropp
1 in Aut(S) has order 4n(q + 1)2,

(2) the full stabilizer of R in Aut(S) has order 4n(q2 − 1).

Finally, we determine all mutually inequivalent nonsingular Buekenhout uni-
tals embedded in the regular nearfield plane π(S), and compute their stabilizer
subgroups.

6 Theorem. Let q ≥ 5 be an odd prime power, and let S be a regular
nearfield spread of Σ. Then the regular nearfield plane π(S) has precisely two
inequivalent nonsingular Buekenhout unitals embedded in it.

Proof. We need only consider one regulus from each of the two orbits
O1,O2 as given in Theorem 4, whose notation we use here. In particular, for orbit
O1 we again choose Ropp

1 as its representative. Straightforward computations
show that the hyperbolic quadric H1 covered by the lines of Ropp

1 has equation

H1 : X
2
1 − wX2

2 −X2
3 + wX2

4 = 0.

By Theorem 1 there is a single equivalence class of nonsingular Buekenhout
unitals arising from H1 if there exists a semilinear transformation associated
with some τ ∈ Aut(S) that takes Q1(X1, X2, X3, X4) = X2

1 − ωX2
2 − X2

3 +
ωX2

4 to ωQ1 More straightforward computations show that the matrix Mǫ,ǫN
corresponding to φǫ,ǫν provides such a transformation. We let U1 denote a unital
of π(S) from this uniquely determined equivalence class.

Similarly, for the orbit O2 we choose R = {ℓ0, ℓ∞} ∪ {ms | s ∈ GF (q)∗}
as its representative. The hyperbolic quadric H2 covered by the lines of R has
equation

H2 : X1X4 +X2X3 = 0.

As in the above case, we need only show that there exists a semilinear trans-
formation associated with some τ in Aut(S) that takes Q2(X1, X2, X3, X4) =
X1X4 +X2X3 to ωQ2 to show that the “lifted” nonsingular Buekenhout unital
is unique up to equivalence. The matrix Mǫ,ǫ corresponding to τ = φǫ,ǫ pro-
vides such a transformation, and we let U2 denote a unital from this uniquely
determined equivalence class.
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As the unitals U1 and U2 are clearly inequivalent, we see that π(S) contains
precisely two inequivalent nonsingular Buekenhout unitals. QED

7 Theorem. Let q = pn ≥ 5 be an odd prime power, and let U1 and U2 be the
inequivalent nonsingular Buekenhout unitals embedded in the regular nearfield
plane π(S), as described in the proof of Theorem 6. Then

(1) the full stabilizer of U1 in Aut(π(S)) has order 4n(q + 1)2,

(2) the full stabilizer of U2 in Aut(π(S)) has order 4n(q2 − 1).

Proof. The result follows immediately from Theorem 2 and Corollary 5.
QED

5 Hall planes

To construct a Hall spread, unique up to equivalence, we start with a regular
spread in Σ = PG(3, q) and reverse a regulus. Using the notation of the previous
sections, we work with the regular spread S0 = {ℓs | s ∈ GF (q2) ∪ {∞} } of Σ
and reverse the regulus R1 = {ℓs | sq+1 = 1} to obtain the Hall spread S. That
is,

S =
(
S0 \ R1

)
∪
(
Ropp

1

)

= {ℓ∞} ∪ {ℓs | sq+1 6= 1} ∪ {ms | sq+1 = 1}.

We now develop a representation for the automorphisms of S, just as we did for
the regular nearfield spread.

Since q > 3, all collineations of Aut(S) are inherited from collineations of
Aut(S0), where S0 is the regular spread used in the construction of S (see [19]).
Hence the stabilizer of R1 in Aut(S0) is precisely Aut(S), where S is the Hall
spread defined above. From Equation (3) we see that every ψσ ∈ Aut(S), and
thus we concentrate on determining which φe,f,g,h stabilize R1. From Equa-
tion (2) we see that φe,f,g,h ∈ Aut(S) if and only if (fs + g)q+1 = (hs + e)q+1

whenever sq+1 = 1. This is true if and only if

(f qg − hqe)sq + (gqf − eqh)s+ f q+1 + gq+1 − hq+1 − eq+1 = 0

for all s ∈ GF (q2) such that sq+1 = 1. Treating the above equation as a poly-
nomial in s of degree q with q + 1 roots, we see that this polynomial must be
the zero polynomial, and we obtain the necessary and sufficient conditions that
f qg = hqe and eq+1 − f q+1 − gq+1 + hq+1 = 0. Multiplying the second equation
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by ef and then using the first equation (and its companion fgq = heq) to sub-
stitute, we get (ef − gh)eq+1 = (ef − gh)f q+1 and therefore eq+1 = f q+1, which
further implies that gq+1 = hq+1. Thus φe,f,g,h ∈ Aut(S) if and only if

eq+1 = f q+1 6= gq+1 = hq+1, (10)

f qg = hqe. (11)

Note that the condition f q+1 6= gq+1 in the above system is equivalent to the
non-singularity condition ef − gh 6= 0 for φe,f,g,h.

It is now straightforward counting (partitioning into cases e = 0 and e 6= 0)
to show that the number of choices for (e, f, g, h) is

(q2 − 1)(q + 1) + (q2 − 1)(q + 1)(q2 − (q + 1)) = q(q2 − 1)2,

and thus |Aut(S)| = 2nq(q2 − 1)2/(q − 1) = 2nq(q2 − 1)(q + 1) for any odd
prime power q > 3 (see [19]).

We next determine the orbit structure on reguli contained in the Hall spread
S.

8 Theorem. Let q > 3 be any prime power. Then the Hall spread S of Σ
has precisely 1

2q(q − 1)(q − 2) + 1 reguli.

Proof. Since q ≥ 4, any regulus in S not equal to Ropp
1 contains at most

two lines of Ropp
1 and thus must contain at least three lines of S0. Hence such

a regulus is contained in the regular spread S0, and is necessarily disjoint from
Ropp

1 . From the previously mentioned one-to-one correspondence between the
lines and reguli of S0 and the points and circles of the Miquelian inversive plane
M(q), it follows that there are precisely 1

2q(q − 1)(q − 2) reguli disjoint from a
given regulus (see [14]). The result now follows immediately. QED

To determine the orbit structure on the reguli contained in the Hall spread,
we find it useful to introduce the concept of self-reciprocal polynomials. Since
this is a rather abrupt shift in content, we briefly review this notion and some
related elementary facts. The reciprocal polynomial f∗ of a polynomial f of
degree d > 0 is given by f∗(x) = xdf( 1x), and f is said to be self-reciprocal if
f = f∗. For any t ∈ GF (q)∗, where q = pn for some (odd) prime p, either the
(monic) minimal polynomial f of t over GF (p) is self-reciprocal, or the least
degree self-reciprocal monic polynomial in GF (p)[x] which has t as a root is an
associate of f(x)f∗(x), namely 1

f(0)f(x)f
∗(x). In any case, the monic least degree

self-reciprocal polynomial which has t as a root is referred to as the minimal
self-reciprocal monic polynomial of t over GF (p), or min-srmp for short. Note
that when t = −1, the min-srmp is x + 1 and this is the only min-srmp of
degree one. When t = 1, the min-srmp is x2 − 2x + 1 = (x − 1)2, and this
is the only min-srmp with a repeated root. Moreover, the binary relation on
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GF (q) \ {0, 1} defined by t1 ∼ t2 if and only if t1 and t2 have the same min-
srmp is an equivalence relation with equivalence class sizes given by the degrees
of the various min-srmp. The importance of min-srmp for our purposes lies in
the following lemma.

9 Lemma. Let q = pn ≥ 5 be an odd prime power, and consider the pre-
viously defined reguli Rt1 and Rt2 contained in the Hall spread S, for some
t1, t2 ∈ GF (q) \ {0, 1}. Then Rt1 and Rt2 are equivalent under G = Aut(S) if
and only if t1 and t2 have the same min-srmp. Moreover, the stabilizer of Rt1 in
G has order 4n

d (q+1)2, where d is the degree of the min-srmp of t1 over GF (p).

Proof. Recall that each element of Aut(S) may be written as ψσφe,f,g,h,
subject to the conditions in Equation (10) and Equation (11). Since ψσ maps
the regulus Rt1 to Rtσ1

by Equation (3), we may concentrate on those φe,f,g,h
which map Rtσ1

to Rt2 . Computations similar to those given above show that
such a mapping exists if and only if

(f qg − t2hqe)sq + (gqf − t2eqh)s+ tσ1f
q+1 + gq+1 − tσ1 t2hq+1 − t2eq+1 = 0

for all s ∈ GF (q2) with sq+1 = tσ1 . The usual polynomial argument shows that
this is equivalent to the above polynomial in s being the zero polynomial, and
hence we obtain the necessary and sufficient conditions

(1− t2)hqe = 0,

(tσ1 − t2)f q+1 + (1− tσ1 t2)gq+1 = 0.

Since t2 6= 1, we necessarily have h = 0 or e = 0. Conditions (10) further
imply that either g = h = 0 or e = f = 0, but not both, and in either case
Condition (11) is satisfied. Moreover, in the first case we have t2 = tσ1 , and
in the second case we have t2 = 1

tσ1
. As the roots of the min-srmp of t1 are

precisely these elements t2, as σ varies over all automorphisms of GF (q2), the
first assertion in the lemma follows. Note that each of these roots is obtained
twice as σ varies over Aut(GF (q2)) (and once each as σ varies over Aut(GF (q))).

To prove the second assertion, we observe that H = {ψσφe,f,g,h | g = h =
0 or e = f = 0} is a subgroup of Aut(S) of order 4n(q + 1)2 which contains
the stabilizer of Rt1 and acts transitively on the collection {Rt | t ∼ t1}. The
stated order for the stabilizer of Rt1 then follows from the Orbit-Stabilizer
Theorem. QED

Next observe that xq−1−1
x−1 is a self-reciprocal monic polynomial in GF (p)[x]

which factors as the product of the distinct min-srmp for t ∈ GF (q)\{0, 1} (each
such min-srmp is either a minimal polynomial or the product of two distinct
minimal polynomials). Let N denote the number of factors in this factorization,
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and write
xq−1 − 1

x− 1
= f1(x)f2(x) · · · fN (x).

Let di denote the degree of fi(x), and let ti be one of its roots. Clearly
∑N

1 di =
q − 2.

10 Theorem. Let q ≥ 5 be an odd prime power, let S be the Hall spread
of Σ, and let G = Aut(S). Then G has precisely 1 + N orbits on the reguli
contained in S. These orbits are represented by the regulus Ropp

1 and the reguli
Rti , i = 1, 2, . . . , N .

Proof. Clearly, {Ropp
1 } is an orbit of size one under the action of G. When

the full stabilizer G = Aut(S) is used in place of H from Lemma 9, we see that

the orbit of Rti has size di
q(q−1)

2 since [G : H] = q(q−1)
2 . Summing these sizes,

we see that the orbits of the various Rt account for

N∑

1

di
q(q − 1)

2
=
q(q − 1)

2

N∑

1

di =
q(q − 1)(q − 2)

2

reguli, and the result follows from Theorem 8. QED

It is an easy computation to determine the number N for a specific value
of q = pn, however a general formula would require the use of Möbius inversion
(which is needed to count the number of irreducible polynomials of a given
degree). When n = 1, so q is prime, it is easily seen that N = 1

2(q − 1). If n
is odd, then since x + 1 is the only self-reciprocal polynomial of odd degree,
it follows that N is 1

2(1 + N0), where N0 is the number of irreducible factors

in the complete factorization of xq−1−1
x−1 over GF (p). As another example, one

can verify that N = (p−1)(p+3)
4 for q = p2 (where there are p−1

2 self-reciprocal
polynomials of degree 2). In any case N is a polynomial in p whose leading term
is always q

2n .

11 Theorem. Let q ≥ 5 be an odd prime power, and let S be the Hall
spread of Σ = PG(3, q) . Then the Hall plane π(S) has precisely 1+N mutually
inequivalent nonsingular Buekenhout unitals, where N is the number of min-
srmp factors of xq−1−1

x−1 in GF (p)[x]. If q is prime, then 1 + N = q+1
2 is the

number of inequivalent nonsingular Buekenhout unitals in π(S).
Proof. By Theorem 10, it suffices to consider those nonsingular quadrics

of Σ̄ that meet Σ in one of the hyperbolic quadrics Ht, covered by the lines of
the regulus Rt, for some nonzero t (note we have used the fact that R1 and
Ropp

1 cover the same points). Moreover, by Theorem 1 we know that for a given
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t, we only need consider the following two parabolic quadrics in Σ̄:

Ut : X2
0 − tX2

1 + tωX2
2 +X2

3 − ωX2
4 = 0

U ′
t : X2

0 − ω
[
tX2

1 − tωX2
2 −X2

3 + ωX2
4

]
= 0.

Since the linear collineation φβ,β,0,0 ∈ Aut(S) has an associated isometry that
maps Q0(X1, X2, X3, X4) = tX2

1 − tωX2
2 − X2

3 + ωX2
4 to ωQ0, by Theorem 1

there is a single equivalence class of nonsingular Buekenhout unitals arising from
Ht for any given value of t, and the result follows. QED

We let Ut denote the unital embedded in the Hall plane π(S) corresponding
to the nonsingular quadric Ut of Σ̄ described above.

12 Theorem. Let q = pn ≥ 5 be an odd prime power, and consider non-
singular Buekenhout unitals Ut embedded in the Hall plane π(S). For t 6= 1, let
d be the degree of the min-srmp of t over GF (p). Then

(1) the full stabilizer of U1 in Aut(π(S)) has order 2nq(q2 − 1)(q + 1),

(2) the full stabilizer of Ut in Aut(π(S)), for t 6= 1, has order 4n
d (q + 1)2.

Proof. The result follows immediately from Theorem 2, the proof of The-
orem 11, Lemma 9, and the fact that Aut(S) leaves invariant Ropp

1 . QED

13 Remark. Note that d = 1 when t = −1, and d = 2 when t ∈ GF (p) \
{0, 1,−1}. Hence, if q = p is prime, then there is one such stabilizer of order
2q(q2 − 1)(q + 1), one of order 4(q + 1)2, and 1

2(q − 3) of order 2(q + 1)2.

6 Flag-transitive planes

An affine plane is called flag-transitive if the automorphism group of the
affine plane acts transitively on point-line incident pairs. By a result of Wag-
ner [25] every finite flag-transitive affine plane is necessarily a translation plane
and hence arises from some spread. Using the translation group which acts tran-
sitively on the affine points, one sees that a finite affine plane is flag-transitive
if and only if the associated spread admits an automorphism group which acts
transitively on it.

In [3] the two-dimensional flag-transitive affine planes of odd order q2 are
classified modulo a certain gcd condition involving q; namely, provided
gcd(12(q

2 + 1), n) = 1 where q = pn with p an odd prime. In particular, if q = p
is an odd prime, this gcd condition is certainly satisfied and the enumeration
shows that there are precisely 1

2(p−1) mutually non-isomorphic two-dimensional
flag-transitive affine planes of order p2. A formula involving the Euler totient
function can be given in the general setting (see [3]), again subject to the above
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gcd condition. Moreover, all the associated spreads in PG(3, q) are shown in [4]
to be regulus-free, and thus the projective completions of these affine planes have
no embedded nonsingular Buekenhout unitals. The only known two-dimensional
flag-transitive affine planes of even order are the Lüneburg-Tits planes order q2,
where q ≥ 8 is an odd power of 2. This plane is uniquely determined, up to
isomorphism, for each such value of q. Once again the associated spread in
PG(3, q) is known to be regulus-free (see [8]). Hence we have the following
result.

14 Theorem. The projective completions of all known two-dimensional
flag-transitive affine planes have no embedded nonsingular Buekenhout unitals.

7 Index-Two André Planes

The two-dimensional André planes of index two are translation planes of
order q2 which can be constructed via the Bruck-Bose method by starting with
a regular spread in Σ = PG(3, q) and reversing a (linear) pair of disjoint reguli.
It is determined in [8] that there are precisely 1

2(p− 1) such planes of order p2

when q = p ≥ 5 is prime. In fact, using the information developed above for
the Hall plane, it is straightforward to show that the number of such planes of
order q2, for any odd prime power q, is given by the integer N in the statement
of Theorem 10. Moreover, if R1 and Rt0 are reversed to obtain the index two
André spread, it is not difficult to show, at least for q ≥ 7, that the stabilizer of
such an André spread has order 8n

d0
(q + 1)2, where d0 is given as in Lemma 9.

Before making additional observations, we provide some computer data about
the embedded nonsingular Buekenhout unitals in these planes for small values
of q. All data was obtained using the software package Magma [13].

For q ≥ 7, every regulus in such an André spread is inherited from the am-
bient regular spread (the second line of the table, where q = 5 and t0 = −1,
has only 7 of the 10 reguli inherited). The proof that the corresponding hy-
perbolic quadric lifts uniquely to a Buekenhout nonsingular unital again fol-
lows from Theorem 1 exactly as in the proof of Theorem 11 since the required
mapping is in the automorphism group. Thus the number of mutually inequiv-
alent Buekenhout nonsingular unitals in such an André plane is the same as
the number of regulus orbits in the associated spread. Counting the number
of inherited reguli in the Andrè spread requires a general representation for
the reguli of the regular spread S0 or an equivalent use of counting in the
Miquelian inversive plane M(q); however, it is clear that this number is either
(q − 1) + 1

4(q + 1)(q − 3)(q − 5) + 1
2(q + 1) or (q − 1) + 1

4(q + 1)(q − 3)(q − 5),
according to whether t0 is a square or a nonsquare. The q − 1 reguli from the
linear set will always be a union of orbits, each of length m for some divisor m
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of 4n. The extra 1
2(q + 1) reguli that occur when t0 is a square are always a

single orbit. The remaining 1
4(q + 1)(q − 3)(q − 5) reguli are all in orbits whose

length is m(q+ 1) for some divisor m of 4n. Thus we do not expect there to be
a simple explicit expression for the number of inequivalent such unitals in an
index two André plane of odd order q2. The stabilizer orders of the table are as
expected given the comments on the lengths of the orbits of reguli.

q |Aut(S)| regs in S orbits unitals stabilizer orders

5 2532 4 1 1 2332

5 2632 10 2 2 2432, 253

7 28 26 7 7 28, 28, 27, 27, 26, 25, 25

7 28 22 4 4 27, 27, 27, 24

7 29 22 3 3 28, 27, 25

9 2652 73 6 6 2552, 2552, 2452,
265, 245, 235

9 2552 73 8 8 2452, 2452, 2452, 2452,
255, 235, 235, 235

9 2452 68 7 7 2352, 2352, 2352,
2352, 225, 225, 225

Table 1. Nonsingular Buekenhout Unitals in Index-Two André Planes

8 Conclusion

The techniques developed in this paper may be used with any translation
plane, provided one has a convenient description of the full automorphism group
of the spread S. A determination of distinct representatives for the orbits on
reguli of S will then allow one to enumerate the nonsingular Buekenhout unitals
embedded in π(S) and compute their stabilizers in Aut(π(S)). It should also be
noted that this approach gives an alternative (short) proof of Barwick’s result
that the only nonsingular Buekenhout unital embedded in the Desarguesian
plane is the classical unital.

While Witt’s Theorem could have been used to help sort out the equivalences
among these nonsingular Buekenhout unitals, our approach seemed to be more
insightful with respect to the stabilizers of such unitals. In a future paper we
will use a similar technique to enumerate the orthogonal Buekenhout unitals
embedded in various families of two-dimensional translation planes.

A number of authors have dealt with Buekenhout unitals embedded in the
Hall plane, although no attempt at a complete enumeration had previously been
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made. For example, Barwick [6] and Rinaldi [24] studied nonsingular Bueken-
hout unitals in the Hall plane that are inherited from classical unitals in the
Desarguesian plane, while Dover [15] studied unitals in the Hall plane that are
inherited from non-classical unitals in the Desarguesian plane. In fact, Dover’s
approach lead to the construction of unitals embedded in the Hall plane which
do not arise from either of Buekenhout’s constructions, the only such known ex-
amples in any two-dimensional translation plane. Grüning [18] studied a class of
nonsingular Buekenhout unitals in the Hall plane that turned out to be self-dual,
and hence are embedded in both the Hall plane and the dual Hall plane.
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[14] P. Dembowski: Möbiusebenen gerader Ordnung, Math. Ann., 157 (1964), 179–205.

[15] J.M. Dover: A family of non-Buekenhout unitals in the Hall planes. Mostly Finite Ge-
ometries, Lecture Notes Pure Appl. Math., 190 (1997), 197–205.

[16] G.L. Ebert: On Buekenhout-Metz unitals of even order, Europ. J. Combin., 13 (1992),
109–117.





Enumeration of Nonsingular Buekenhout Unitals 89

[17] G.L. Ebert: Replaceable nests. Mostly Finite Geometries, Lecture Notes Pure Appl.
Math., 190 (1997), 35–49.
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