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Abstract. The Bohr-Bohnenblust-Hille theorem states that the largest possible width S of
the strip in the complex plane on which a Dirichlet series

�
n
an1/n

s converges uniformly but
not absolutely, equals 1/2. In fact Bohr in 1913 proved that S ≤ 1/2, and asked for equality.
The general theory of Dirichlet series during this time was one of the most fashionable topics
in analysis, and Bohr’s so-called absolute convergence problem was very much in the focus.
In this context Bohr himself discovered several deep connections of Dirichlet series and power
series (holomorphic functions) in infinitely many variables, and as a sort of by-product he
found his famous power series theorem. Finally, Bohnenblust and Hille in 1931 in a rather
ingenious fashion answered the absolute convergence problem in the positive. In recent years
many authors revisited the work of Bohr, Bohnenblust and Hille – improving this work but
also extending it to more general settings, for example to Dirichlet series with coefficients in
Banach spaces. The aim of this article is to report on parts of this new development.
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1 Introduction

An ordinary Dirichlet series is a series of the form
�

n
an

1
ns where an are complex coef-

ficients and s is a complex variable. Maximal domains, where such Dirichlet series converge
conditionally, uniformly or absolutely are half planes [Re > σ], where σ = σc,σu or σa are
called the abscissa of conditional, uniform or absolute convergence, respectively. More precisely,
σ is the infimum of all r ∈ R such that on [Re > r] we have convergence of requested type.
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Harald Bohr’s so called absolute convergence problem from [6] asked for the largest possible
width of the strip in C on which a Dirichlet series converges uniformly but not absolutely:

✲

✻

σu σa

✲

✲

unif. conv.

abs. conv.

In other terms, Bohr asked for the precise value of the number

S := sup(σa − σu),

the supremum taken over all possible Dirichlet series
�

n
an

1
ns . In [6, Satz X] he himself

managed to show that

S ≤
1
2
.

Today this estimate easily follows from a Parseval type equality for Dirichlet series but here we
prefer to have a look at Bohr’s original method. The crucial idea was to establish the following
one-to-one correspondence between Dirichlet series and (formal) power series in infinitely many
variables: �

n

an

1
ns

�
�

α∈N(N)
0

cαz
α, where an = cα if n = pα ;

here p = (pn) stands for the sequence p1 < p2 < . . . of all prime numbers, and for each multi

index α = (α1, . . . ,αk, 0, . . .) ∈ N(N)
0 we as usual write pα = pα1

1 · . . . · pαk
k

.
Let us describe the meaning of the absolute convergence problem in terms of power series

in infinitely many variables – but instead of power series (a quite mysterious object at Bohr’s
time) we prefer to use the modern language of infinite dimensional holomorphy. It is well-
known that every holomorphic function f : DN

→ C in N complex variables has a monomial
series expansion; more precisely, for every f ∈ H(DN ) we have f(z) =

�
α∈NN

0

∂
α
f(0)
α! zα for

all z ∈ DN . From this fact we easily deduce that for every C-valued holomorphic function
f defined on the open unit ball B�∞ of �∞ (by definition a Fréchet differentiable function
f : B�∞ → C) there is a unique family (cα)

α∈N(N)
0

of scalars such that for all finite sequences

in z ∈ B�∞ we have

f(z) =
�

α∈N(N)
0

cαz
α ;

this power series is called the monomial series expansion of f , and for every N and multi index
α ∈ NN

0 we have

cα =
∂αf(0)

α!
.
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For which other than finite sequences in B�∞ does this series converge (absolutely as a net)
for every holomorphic f on B�∞? This independently interesting question is closely connected
with Bohr’s absolute convergence problem. We call

domH(B�∞) =
�

f∈H(B�∞ )

{ z ∈ B�∞ |

�

α

|cα(f)z
α
| < ∞ }

the domain of convergence of H(B�∞), and define

K := sup{ 1 ≤ p ≤ ∞ | �p ∩B�∞ ⊂ domH(B�∞) } .

Theorem 1.

S =
1
K

This result is due to Bohr [6, Satz IX] who formulated it in terms of power series and
used the prime number theorem for its proof. Bohr was able to establish that K ≥ 2, hence
S ≤ 1/2 . His problem then was to find the exact value of K. He didn’t even know if K < ∞,
or in other words, he had no example of a Dirichlet series for which the abscissas σu and σa

not coincide. In [6, p. 446] he says:

“Um dies Problem zu erledigen, ist ein tieferes Eindringen in die Theorie der
Potenzreihen unendlich vieler Variabeln nötig, als es mir in §3 gelungen ist.”

(“In order to solve this problem, a deeper understanding of the theory of power series in in-
finitely many variables is needed, more than I could do in §3.”) See [17] for an intensive study
of domains of monomial convergence for holomorphic functions defined on arbitrary Banach
sequence spaces, including the sequence space �∞. Much later, in 1931, Bohnenblust and Hille
solved Bohr’s absolute convergence theorem by giving an example of a Dirichlet series for
which the difference σa − σu equals 1

2 . More precisely, they created in [5, Theorem VII] for
any given 0 ≤ σ ≤

1
2 a Dirichlet series such that σa − σu = σ. This gives us what we now call

the Bohr-Bohnenblust-Hille theorem.

Theorem 2. The maximal width of the strip of uniform but not absolute convergence for
Dirichlet series is

S =
1
2
.

Since Bohr in 1914 didn’t find any reasonable way to determine the precise value of K,
a problem for power series (holomorphic functions) in infinitely many variables, he returned
to one dimension and got as a by-product of his effort what is nowadays called Bohr’s power
series theorem (see [8, Section 3]):

Theorem 3. For each f ∈ H(D)
∞�

n=0

����
f (n)(0)

n!

����
1
3n

≤ �f�∞ ,

and the value 1/3 is optimal.

In recent years quite a number of mathematicians revisited the work of Bohr, Bohnenblust
and Hille – improving this work but also extending it to more general settings, for example to
Dirichlet series with coefficients in Banach spaces. This article collects several interesting new
results in this direction, and it in particular surveys on joint work with several of our coauthors:
Frerick, Garćıa, Maestre, Ortega-Cerdà, Ounäıes, Pérez-Garćıa, Popa, Seip, Sevilla-Peris. We
in a sense quantify the Bohr-Bohnenblust-Hille cycle of ideas. For Dirichlet series with complex
coefficients we obtain a sort of microscopic view of the subject, and studying similar results
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for vector-valued Dirichlet series we obtain a more macroscopic view. The tools needed include
techniques from analytic number theory, probability theory, complex analysis in one and several
variables, the theory of infinite dimensional holomorphy, harmonic analysis, and local Banach
space theory.

2 The hypercontractivity of the Bohnenblust-Hille
inequality

In order to solve Bohr’s absolute convergence problem, Bohnenblust and Hille in [5, The-
orem I] established their famous 2m

m+1 -inequality – an inequality of high independent interest.

Theorem 4 (Bohnenblust-Hille-Inequality). For every m-linear mapping A : �N∞ × · · ·×

�N∞ −→ C
�

N�

i1,...,im=1

| A(ei1 , . . . , eim) |
2m

m+1

�m+1
2m

≤ m
m+1
2m

�√
2
�
m−1

�A�,

further the exponent 2m
m+1 is optimal.

For m = 2 this is Littlewood’s famous 4
3 -inequality from [27]. This inequality was long

forgotten and rediscovered more than forty years later by A. Davie [11, Section 2] and S. Kaijser
[25, Lemma (1.1)]. The proofs in [11] and [25] are slightly different from the original one and
give, if Cm stands for the best constant in the Bohnenblust-Hille inequality, the better estimate

Cm ≤

�√
2
�
m−1

. (1)

Bohnenblust and Hille in fact needed a polynomial version of their inequality. By polar-
ization they prove that for each m there is a constant Dm such that for every m-homogenous
polynomial

�
|α|=m

cαz
α on CN




�

|α|=m

|cα|
2m

m+1





m+1
2m

≤ Dm sup
z∈DN

������

�

|α|=m

cαz
α

������
.

Moreover, they show with a sophisticated argument that the exponent 2m
m+1 is optimal as well.

Let us assume that Dm is the optimal constant in the polynomial version of the Bohnen-
blust-Hille inequality. Then it is easy to deduce from (1) and an estimate of Harris [24, Theorem
1] for the polarization constant of �∞ that

Dm ≤ (
√
2)m−1m

m
2 (m+ 1)

m+1
2

2m(m!)
m+1
2m

;

see e. g. [21, Section 4]. Using Sawa’s Khinchine-type inequality for Steinhaus variables,
Queffélec [29, Theorem III-1] obtained the slightly better estimate

Dm ≤

�
2
√
π

�
m−1 m

m
2 (m+ 1)

m+1
2

2m(m!)
m+1
2m

.

A crucial point for everything following will be a substantial improvement of Defant,
Frerick, Ortega-Cerdà, Ounäıes and Seip [14, Theorem 1] for the constant Dm. They managed
to show that the polynomial Bohnenblust-Hille inequality is hypercontractive:
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Lemma 1. There is a constant C ≥ 1 such that for every m and every m-homogeneous
polynomial

�
|α|=m

cαz
α on CN we have




�

|α|=m

|cα|
2m

m+1





m+1
2m

≤ Cm sup
z∈DN

������

�

|α|=m

cαz
α

������
.

In [18] Defant, Maestre, and Schwarting show a far reaching vector-valued extension of
this result which we now explain. Recall first that a Banach lattice Y is called q-concave,
1 ≤ q < ∞, if there is a constant C such that for every choice of finitely many y1, . . . , yN ∈ Y
we have �

N�

n=1

�yn�
q

� 1
q

≤ C

������

�
N�

n=1

|yn|
q

� 1
q

������
.

The concept of concavity is closely related to the notion of cotype (see section 5). A q-concave
Banach lattice X with q ≥ 2 is of cotype q. Conversely, each Banach lattice of cotype 2
is 2-concave and a Banach lattice of cotype q > 2 is r-concave for all r > q. Moreover, a
(bounded linear) operator v : X → Y between two Banach spaces is said to be (r, 1)-summing,
1 ≤ r < ∞, if there is a constant C such that for any N and any choice of N many vectors
x1, . . . , xN in X we have

�
N�

n=1

�vxn�
r

Y

� 1
r

≤ C sup
z∈DN

�����

N�

n=1

xnzn

�����
X

,

or equivalently: there is a constant C such that for any N and any choice of N many vectors
xα ∈ X, α ∈ N(N)

0 with |α| = 1




�

|α|=1

�vxα�
r

Y





1
r

≤ C sup
z∈DN

������

�

|α|=1

xαz
α

������
X

.

The following lemma from [18] extends the above cited hypercontractive polynomial Boh-
nenblust-Hille inequality (Lemma 1), and shows under which additional assumptions on the
underlying spaces such inequalities might be extended to sets of multi-indices α of order m
instead of order 1 (replacing the exponent r by a larger one ρ).

Lemma 2. Let Y be a q-concave Banach lattice, with 2 ≤ q < ∞, and v : X → Y an
(r, 1)-summing operator with 1 ≤ r ≤ q. Define for m the exponent

ρ :=
qrm

q + (m− 1)r
.

Then there is a constant C > 0 such that for each N and for any choice of
�
N+m−1

m

�
many

vectors xα ∈ X, α ∈ N(N)
0 with |α| = m we have




�

|α|=m

�vxα�
ρ

Y





1
ρ

≤ Cm sup
z∈DN

������

�

|α|=m

xαz
α

������
X

.

Obviously the identity id on C is (1, 1)-summing = 1-summing and C is 2-concave. Hence
in the scalar case we have ρ = 2m

m+1 . This shows that Lemma 1 is a special case of Lemma 2.
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3 Multi dimensional Bohr radii – a microscopic view

In [8, p. 2] Bohr explains the original motivation for his so called power series theorem
(Theorem 3) as follows:

“[. . .] the solution of what is called the ‘absolute convergence problem’ for Dirich-
let’s series of the type

�
an1/n

s must be based upon a study of the relations
between the absolute value of a power-series in an infinite number of variables
on the one hand, and the sum of the absolute values of the individual terms on
the other. It was in the course of this investigation that I was led to consider
a problem concerning power-series in one variable only, which we discussed last
year, and which seems to be of some interest in itself.”

The following definition of the N -dimensional Bohr radius is due to Boas and Khavinson
[4]. The Nth Bohr radius KN is the supremum taken over all 0 ≤ r ≤ 1 such that for each
holomorphic function f ∈ H(DN ) we have

sup
z∈rDN

�

α

����
∂αf(0)

α!
zα

���� ≤ �f�∞ .

Note, that with this notation Bohr’s power series theorem (Theorem 3) reads

K1 =
1
3
.

In [4, Theorem 2] Boas and Khavinson established that for N > 1

1
3

1
√
N

≤ KN ≤ 2

�
logN
N

(see [23, Theorem 3.2] of Dineen and Timoney for an earlier weaker version initiating the
previous one), and in [3, p. 239] Boas then conjectured that “[. . .] presumably this logarithmic
factor, an artifact of the proof, should not really be present”. This conjecture was disproved
in [13, Theorem 1.1]: �

logN
N log logN

≺ KN ;

here the notation aN ≺ bN means that there is a universal constant C > 0 such that aN ≤ CbN
for every N and aN � bN means aN ≺ bN and bN ≺ aN .

Finally, using the hypercontractive Bohnenblust-Hille inequality (Lemma 1), Defant, Fr-
erick, Ortega-Cerdà, Ounäıes, and Seip in [14, Theorem 2] proved the following optimal asymp-
totic of multidimensional Bohr radii.

Theorem 5.

KN �

�
logN
N

Let us sketch the proof of the lower bound: Let Km

N be the Nth Bohr radius for m-
homogeneous polynomials (instead of all holomorphic functions), i.e. the supremum of all
0 ≤ r ≤ 1 such that for each m-homogeneous polynomial P (z) =

�
|α|=m

cαz
α on CN we have

sup
z∈rDN

�

|α|=m

|cαz
α
| ≤ |P�∞ ,

or equivalently, �

|α|=m

|cα| ≤
1
rm

�P�∞ .
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Using Caratheodory’s inequality the following estimate from [15, Corollary 2.3] can be proved:

1
3
inf
m

Km

N ≤ KN .

Then by Hölder’s inequality and Stirling’s formula for each m-homogeneous polynomial P (z) =�
|α|=m

cαz
α on CN we have

�

|α|=m

|cα| ≤




�

|α|=m

1





m−1
2m




�

|α|=m

|cα|
2m

m+1





m+1
2m

≤ Cm

�
1 +

N
m

�m−1
2




�

|α|=m

|cα|
2m

m+1





m+1
2m

,

and hence the hypercontractivity of the Bohnenblust-Hille inequality (Lemma 1) and opti-
mization over m yield the lower bound in the above theorem.

4 Bohr’s strips – a microscopic view

Maurizi and Queffélec [28, Theorem 2.4] observed that the maximal width

S = sup
�

n an
1
ns

(σa − σu),

of Bohr’s strips equals the infimum over all σ ≥ 0 for which there exists a constant C ≥ 1 such
that for each N and each choice of a1, . . . , aN ∈ C we have

N�

n=1

|an| ≤ C Nσ sup
t∈R

�����

N�

n=1

ann
−it

����� . (2)

This motivates the following definition: Given a natural number N , let QN be the best constant
D ≥ 1 such that for each choice of a1, . . . , aN ∈ C

N�

n=1

|an| ≤ D sup
t∈R

�����

N�

n=1

ann
−it

����� .

The following theorem gives the asymptotically optimal upper and lower estimate for QN , and
it marks the endpoint of a long development started by Queffélec [29] in the mid nineties,
continued by Queffélec and Konyagin [26, Theorem 4.3] in 2002 and by de la Bretèche [12,
Théorème 1.1] in 2008. The final result was proved in [14, Theorem 3] by Defant, Frerick,
Ortega-Cerdà, Ounäıes, and Seip; its proof again uses the hypercontractivity of the Bohnen-
blust-Hille inequality (Lemma 1).

Theorem 6.

QN =

√
N

e
�

1√
2
+o(1)

�√
logN log logN

By an important result of Bohr from [7, Satz I] for each Dirichlet series
�

n
an

1
ns the

abscissa σu of uniform convergence equals the abscissa of boundedness; the latter is the infimum
of those r such that the analytic function represented by the Dirichlet series is bounded on
[Re ≥ r]. When discussing the Bohr-Bohnenblust-Hille theorem (Theorem 2), it is therefore
quite natural to introduce the space H

∞, which consists of those bounded analytic functions
f in [Re > 0] such that f can be represented by an ordinary Dirichlet series

�∞
n=1 ann

−s in
some half-plane (and then as a consequence even on [Re > 0]).
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Corollary 1. The supremum of the set of real numbers c such that for every
f =

�∞
n=1 ann

−s
∈ H

∞ we have

∞�

n=1

|an|n
− 1

2 exp
�
c
�

log n log log n
�
< ∞ ,

equals 1/
√
2.

This result is an improved version of a theorem of Balasubramanian, Calado, and Queffélec
[1, Theorem 1.2] from 2006, which says that the upper inequality holds for sufficiently small
c. The Bohr-Bohnenblust-Hille theorem (Theorem 2) shows that the (unique) Dirichlet series
associated with a function f ∈ H

∞ converges absolutely on the vertical line [Re = 1/2 +
ε], and that the number 1/2 here is optimal. An interesting consequence of the theorem of
Balasubramanian, Calado, and Queffélec (just mentioned) is that each such Dirichlet series
even converges absolutely on the vertical line [Re = 1/2]. But the preceding corollary gives a lot
more; it adds a level precision that enables us to extract much more precise information about
the absolute values |an| than what is obtained from the solution of the Bohr-Bohnenblust-Hille
theorem.

5 Bohr’s radii – a macroscopic view

The study of Bohr radii for vector-valued holomorphic functions in several complex vari-
ables can be considered as sort of “macroscopic view” of the subject.

Let X be a (nontrivial) Banach space and λ ≥ 1. Then for N ∈ N the Nth Bohr Radius,
denoted by KN (X,λ), is the supremum taken over all 0 ≤ r ≤ 1 such that for each X-valued

holomorphic function f =
�

α∈NN
0

∂
α
f(0)
α! zα on DN we have

sup
z∈rDN

�

α∈NN
0

����
∂αf(0)

α!
zα

����
X

≤ λ�f�∞ . (3)

We start with some comments on the case N = 1 and X = C (i.e. we only deal with
complex valued functions in one complex variable). Note first that then the left side of the
inequality in (3) can be rephrased as follows:

sup
z∈ 1

3D

∞�

n=0

����
f (n)(0)

n!
zn

���� =
∞�

n=0

����
f (n)(0)

n!

����
1
3n

,

and hence Bohr’s power series theorem (Theorem 3) in our new notation reads

K1(C, 1) = 1/3 .

For 1/3 < r < 1 by the Cauchy-Schwarz inequality

∞�

n=0

����
f (n)(0)

n!

���� r
n
≤

� ∞�

n=0

r2n
�1/2 � ∞�

n=0

����
f (n)(0)

n!

����
2
�1/2

≤ (1− r2)−1/2
�f�2 ≤ (1− r2)−1/2

�f�∞ ;

(here we assume without loss of generality that f is defined on D, and then �f�2 denotes the
L2-norm of f with respect to the normalized Lebesgue measure on the Torus).
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One now may ask for the best constant C(r) ≥ 1 such that for all holomorphic functions
f on the open unit disk D we have

∞�

n=0

����
f (n)(0)

n!

���� r
n
≤ C(r)�f�∞ .

By a result of Bombieri in [9] the exact value of this constant in the range 1/3 ≤ r ≤ 1/
√
2 is

given by the formula

C(r) =
1
r

�
3−

�
8(1− r2)

�
,

and later Bombieri and Bourgain proved in [10, Theorem 1.1, 1.2] that

C(r) < (1− r2)−1/2 for r > 1/
√
2 ,

and
C(r) � (1− r2)−1/2 as r → 1 .

Note that the strictly increasing function K1(C, ·) : [1,∞[→ [1/3, 1[ has as its inverse the
function C(·) : [1/3, 1[→ [1,∞[. Hence Bombieri’s result implies that for all 1 ≤ λ ≤

√
2

K1(C,λ) =
1

3λ− 2
�

2(λ2 − 1)
,

and for λ close to ∞

K1(C,λ) �
√
λ2 − 1
λ

.

On the other hand Blasco [2, Theorem 1.2] showed that for X = �2p (i.e. C2 with the p-norm)
we have

K1(X, 1) = 0 for every 1 ≤ p ≤ ∞ .

This explains why we implemented the constant λ ≥ 1 in our definition of the vector-valued
Bohr radii KN (X,λ); later we will see that for every nontrivial Banach space X and λ > 1
the inequality KN (X,λ) ≥ K1(X,λ) > 0 holds.

Again our aim is to find optimal lower and upper asymptotic bounds for KN (X,λ). Note
first that for each Banach space X and λ > 1 we have

1
N

≺ KN (X,λ) ≺

�
logN
N

(see [18]), but in more concrete situations we can say much more. Recall the following well-
established notion from local Banach space theory: A Banach space X is said to have cotype
p, 2 ≤ p < ∞, whenever there is some constant C > 0 such that for each choice of finitely
many vectors x1, . . . , xN ∈ X we have

�
N�

n=1

�xn�
p

�1/p

≤ C




� 1

0

�����

N�

n=1

rn(t)xn

�����

2

dt




1/2

;

here as usual rn stands for the nth Rademacher function on [0, 1]. Every Banach space X by
definition has cotype ∞, and we as usual write

Cot(X) := inf{ 2 ≤ p ≤ ∞ | X has cotype p } ;
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this infimum is sometimes called optimal cotype of X although it in general is not attained.
For all in a sense natural X the value of Cot(X) is known – in particular, we have that

Cot(�p) =

�
2 p ≤ 2

p p > 2

(compare again with the notion of p-concavity which we recalled in section 2). The following
theorem is one of the main results from [18].

Theorem 7. Let X be a Banach space and λ > 1. With constants depending only on X
and λ we have:

(1) For finite dimensional X

KN (X,λ) �

�
logN
N

.

(2) For infinite dimensional X

1

N
1− 1

Cot(X)+ε

≺ KN (X,λ) ≺
1

N
1− 1

Cot(X)

;

if Cot(X) is attained, then the inequality even holds with left ε = 0 .

Note that in contrast to the finite dimensional case in the infinite dimensional case, e.g.
for �p-spaces, no logarithmic term appears.

Corollary 2. With constants depending only on p and λ we have

KN (�p,λ) �
1

N
1− 1

max{p,2}
.

Clearly, we can also define KN (v,λ), where v : X → Y is some non-zero (bounded and
linear) operator: The Nth Bohr radius of v and λ, denoted by KN (v,λ), is the best 0 ≤ r ≤ 1
such that for each X-valued holomorphic function f =

�
α∈NN

0
cαz

α on DN we have

sup
z∈rDN

�

α∈Nn
0

�v(cα)�Y ≤ λ�f�∞ .

A priori we have
1
N

≺ KN (v,λ) ≺

�
logN
N

.

But in certain situations we know much more precise estimates – we mainly focus our interest
on the following two scales of operators:

• v any of the embeddings �p �→ �q with 1 ≤ p ≤ q < ∞

• v any operator �1 → �q with 1 ≤ q < ∞

Combining Lemma 2 with deep Grothedieck type inequalities from the theory of summing
operators (e.g. the fact that by Littlewood’s 4/3-inequality the embedding �1 �→ �4/3 is (4/3, 1)-
summing or that by Grothendieck’s theorem every operator v : �1 → �2 is (1, 1)-summing
together with its important improvements by Bennett, Carl and Kwapién) we know from [18]
that

Theorem 8. Let 1 ≤ p < q < ∞. Then with constants depending only on p, q and λ:

KN (�p �→ �q,λ) �






�
logN

N
if p < 2,

1

N
1− 1

p
if p ≥ 2.
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Theorem 9. For every operator v : �1 → �q, 1 ≤ q < ∞

�
logN
N

�1− 1
max{2,q}

≺ KN (v,λ) ≺

�
logN
N

.

In the second result for q ≤ 2 we have equality, and looking at the embedding �1 �→ �q we
see that for q ≥ 2 the right side in general can not be improved. The upper estimates in both
theorems are consequences of the following more abstract theorem.

Theorem 10. Let v : X → Y be a non-zero operator and λ > �v�. With constants
depending only on v and λ:

(1) If Y is a Banach space of cotype p, then

1

N1− 1
p

≺ KN (v,λ) .

(2) If Y is a p-concave Banach lattice with p ≥ 2 and if there is r < p such that v is
(r, 1)-summing, then

�
logN
N

�1− 1
p

≺ KN (v,λ) .

6 Bohr’s strips – a macroscopic view

Here we try a sort “macroscopic view” on the Bohr-Bohnenblust-Hille theorem (Theorem
2) – “macroscopic” since we regard Dirichlet series with coefficients in a Banach space. Clearly,
for each Dirichlet series

�
n
an

1
ns with coefficients an in some fixed Banach space X we again

can define the abscissa of absolute and the abscissa of uniform convergence. Then S(X) obvi-
ously stands for the largest possible strip in which such a X-valued Dirichlet series converges
uniformly but not absolutely. The main result from [16, Theorem 1] is a formula on S(X) in
terms of the optimal cotype Cot(X) of the underlying space X.

Theorem 11.

S(X) =

�
1
2 if dimX < ∞

1− 1
Cot(X) if dimX = ∞

From (5) we immediately deduce that

Corollary 3.

S(�p) = 1−
1

max{p, 2}

More generally, we define for each non-zero (bounded and linear) operator v : X → Y the
number

S(v) := sup

�
σa

��
v(an)

1
ns

�
− σu

��
an

1
ns

��
,

the supremum taken over all Dirichlet series
�

an
1
ns with coefficients in X. Obviously, we

have S(idX) = S(X) and in particular S = S(idC). It can be seen easily that

1
2
= S ≤ S(v) ≤ 1 , (4)

and as above we concentrate for 1 ≤ p ≤ q < ∞ on the study of embeddings �p �→ �q and
arbitrary non-zero operators �1 → �q.
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Corollary 4.

(1) S(v : �1 → �q) =
1
2

(2) S(�p �→ �q) = 1−
1

max{p, 2}

The lower estimate in (1) is a consequence of (4), and the upper estimate follows easily
from Corollary 3 and the fact that S(v : �1 → �q) ≤ S(id�1). With the same arguments we
get the upper estimate in (2). On the other hand one can also regard the strip Sm(v) =
sup(σa(vA) − σu(A)) where the supremum is taken over all m-homogeneous Dirichlet series
A. It is shown in [22, Theorem 1.1] that for p ≥ 2 we have Sm(�p �→ �q) = 1− 1

p
. This and the

fact that Sm(v) ≤ S(v) give the lower estimate of (2).
Looking at the scalar case it seems natural to consider in the operator case the following

“graduation” of S(v). For givenN , the numberQN (v) by definition stands for the best constant
D ≥ 1 such that for all choices of vectors a1, . . . , aN ∈ X

N�

n=1

�van�Y ≤ D sup
t∈R

�����

N�

n=1

ann
−it

�����
X

.

Of course, we abbreviate QN (idX) by QN (X), and clearly we have QN = QN (idC). Motivated
by the history of the results in the scalar case we (can not resist to) call QN (v) the Nth
Queffélec number of the operator v. Why do these numbers graduate S(v)? The following
lemma is a vector-valued variant of the Maurizi-Queffélec result (2) mentioned above (see [20]).

Lemma 3. Let v : X → Y be a non-zero operator. Then S(v) equals the infimum over
all σ ≥ 0 for which there exists a constant C ≥ 1 such that for each N and each choice of
a1, . . . , aN ∈ X we have that

N�

n=1

�van� ≤ C Nσ sup
t∈R

�����

N�

n=1

ann
it

�����
X

.

This allows us to prove (as a sort of corollary) the following formula for the the widths of
Bohr’s strips S(v) (see [20]).

Lemma 4.

S(v) = lim sup
N→∞

logQN (v)
logN

.

Again we have an “a priori upper and an a priori lower estimate”:
√
N

e
( 1√

2
+o(1))

√
logN log logN

≺ QN (v) ≺ N ; (5)

the lower estimate is a consequence of Theorem 6, for the upper one see [20]. But again for
special operators v we sometimes know much more precise inequalities. Our main interest as
above lies in the asymtotics of the Queffélec numbers QN (X), QN (�p �→ �q), and QN (�1 → �q).
Analyzing the article [12] of de la Bretèche and combining it with Lemma 1 (as in [14]) the
following theorem was proved in [20].

Theorem 12. Let X be a Banach space. Then with constants depending only on X we
have:

(1) For finite dimensional X

QN (X) =

√
N

e
( 1√

2
+o(1))

√
logN log logN

.
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(2) For infinite dimensional X and any ε

N
1− 1

Cot(X) ≺ QN (X) ≺ N
1− 1

Cot(X)+ε .

We conjecture that in (2) it is possible to take ε = 0 provided the optimal cotype Cot(X)
is attained. This in particular means that in the following corollary no ε would be needed (the
fact that in the case p ≥ 2 no ε is needed is proved in [20]).

Corollary 5. With constants depending only on p we have:

N
1− 1

max{p,2} ≺ QN (�p) ≺






N1− 1
2+ε if p < 2,

N1− 1
p if p ≥ 2.

If we replace the identities v = id�p by the embeddings �p �→ �q, then we obtain the
following result.

Theorem 13. Let 1 ≤ p < q < ∞. Then with constants depending only on p, q we have:

QN (�p �→ �q) ≺






√
N

e
��

1
p−max{ 1

2 ,
1
q }+o(1)

�√
logN log logN

if p < 2 ,

N1− 1
p if p ≥ 2 .

The question whether this result is optimal is open. For operators v : �1 → �q we have

Theorem 14. Let v : �1 → �q be a non-zero operator an 1 ≤ q ≤ 2. Then

QN (v) ≤

√
N

e
��

1− 1
q +o(1)

�√
logN log logN

.

Obviously, (5) shows that this estimate for p = 1 and q = 2 can not be improved – but
the optimality in the general case again is unclear. As above (see Theorem 10) both of the
preceding theorems can be seen as consequences of a more abstract theorem.

Theorem 15. Let Y be a q-concave Banach lattice and v : X → Y and (r, 1)-summing
operator with 1 ≤ r < q. Then

QN (v) ≤
N

q−1
q

e

�
2
q−1
q

�
1
r
− 1

q
+o(1)

�√
logN log logN

.

7 Philosophy

Recall from Bohr’s vision (which we repeated in the introduction) that in principle every
definition or result from the theory of Dirichlet series can be reformulated in terms of power
series in infinitely many variables (or equivalently, in terms of holomorphic functions on the
open unit ball of �∞). In this sense for a given non-zero operator v : X −→ Y the counterpart
of the number S(v) is the number K(v):

K(v) := sup p ,
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where the supremum is taken over all 1 ≤ p ≤ ∞ such that for all z ∈ �p ∩ B�∞ and all
f ∈ H(B�∞ , X) we have that

(v ◦ f)(z) =
�

α

v

�
f (α)(0)

α!

�
zα.

The following theorem can be shown with Bohr’s methods from [7] (needing the prime
number theorem).

Theorem 16.

S(v) =
1

K(v)
.

All given estimates on Queffélec numbers QN , Bohr radii KN as well as S, K in the scalar
case, for Banach spaces X or operators v : X → Y suggest the following meta-theorem.

Meta-Theorem. For each non-zero operator v : X → Y and each λ > 1 up to small
terms in N (terms like Nε, logN , log logN etc.. . .) and constants only depending on v,λ we
have

QN (v) �
1

KN (v,λ)

QN (v) � NS(v)

KN (v,λ) �
1

N1/K(v)
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Hille inequality for homogeneous polynomials is hypercontractive, Annals of Mathematics,
no. 1 174 (2011), 485–497.
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