
 

 

 

Combinatorial Approximation Algorithms: Guaranteed
Versus Experimental Performance
Citation for published version (APA):

Vredeveld, T. (2002). Combinatorial Approximation Algorithms: Guaranteed Versus Experimental
Performance. Universiteit Eindhoven.

Document status and date:
Published: 01/01/2002

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:

www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 04 Dec. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Maastricht University Research Portal

https://core.ac.uk/display/231303696?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://cris.maastrichtuniversity.nl/portal/en/publications/combinatorial-approximation-algorithms-guaranteed-versus-experimental-performance(39d5a50c-fe86-4de7-a426-8681b06f0ffe).html


Combinatorial Approximation Algorithms

Guaranteed Versus Experimental Performance

Tjark Vredeveld



CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Vredeveld, Tjark

Combinatorial approximation algorithms : guaranteed versus experimental perfor-
mance / by Tjark Vredeveld. - Eindhoven : Technische Universiteit Eindhoven,
2002.
Proefschrift. - ISBN 90-386-0532-3
NUGI 811
Subject headings: combinatorial optimisation / approximation algorithms
2000 Mathematics Subject Classification: 90C27, 90C59, 68W25, 68W40

Painting on the cover by Toon Jakobs (CLOSED UP, 1990)
Printed by Universiteitsdrukkerij Technische Universiteit Eindhoven

Copyright c© 2002 by T. Vredeveld, Eindhoven, The Netherlands.

All rights are reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without prior permission of the
author.



Combinatorial Approximation Algorithms

Guaranteed Versus Experimental Performance

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
Rector Magnificus, prof.dr. R.A. van Santen, voor
een commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op dinsdag 23 april 2002 om 16.00 uur

door

Tjark Vredeveld

geboren te Leiden



Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. J.K. Lenstra
en
prof.dr.ir. C. Roos

Copromotor:
dr.ir. C.A.J. Hurkens



Contents

Preface vii

1 Introduction 1
1.1 Combinatorial optimization . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Approximation algorithms with guarantees . . . . . . . . . . . . . . 4
1.3 Local search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Scheduling unrelated parallel machines:
an experimental investigation 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Approximation algorithms with a constant guarantee . . . . . . . . . 12

2.2.1 Convex quadratic programming relaxation . . . . . . . . . . . 12
2.2.2 Time-indexed variables on processing intervals . . . . . . . . 13
2.2.3 Time-indexed variables on starting times . . . . . . . . . . . 15

2.3 Dominance relations among lower bounds . . . . . . . . . . . . . . . 17
2.4 Local search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Multi-start iterative improvement . . . . . . . . . . . . . . . . 24
2.4.2 Tabu search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Computational experience . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.1 Test instances . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.2 Implementational details . . . . . . . . . . . . . . . . . . . . . 25
2.5.3 Computational results . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Max cut: an empirical evaluation 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Upper bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Constructive heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Improvement heuristics . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Iterative improvement . . . . . . . . . . . . . . . . . . . . . . 37
3.4.2 Tabu search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.3 Simulated annealing . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.4 Variable-depth flip . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Computational experience . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5.1 Test instances . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

v



vi Contents

3.5.2 Implementational details . . . . . . . . . . . . . . . . . . . . . 39
3.5.3 Computational results . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Multiprocessor scheduling:
guarantees for local search 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Neighborhoods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 Performance guarantees . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 Identical parallel machines . . . . . . . . . . . . . . . . . . . . 62
4.3.2 Uniform parallel machines . . . . . . . . . . . . . . . . . . . . 66
4.3.3 Unrelated parallel machines . . . . . . . . . . . . . . . . . . . 72

4.4 Running time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Generalized graph coloring:
the worst-case of local search 79
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Neighborhoods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3 KKT conditions and flip-optimality . . . . . . . . . . . . . . . . . . 80
5.4 Local optima may be bad . . . . . . . . . . . . . . . . . . . . . . . . 82
5.5 Local optima may be hard to find . . . . . . . . . . . . . . . . . . . . 84

Bibliography 89

Samenvatting (Summary in Dutch) 97

Curriculum vitae 99



Preface

Five years ago, after my graduation, I decided to pursue my PhD. I started as a
PhD student at Erasmus University in Rotterdam. The subject of my research was
multi-agent systems.

Four years ago, I realized that my interest in multi-agent systems was too little to
write a thesis about this subject. I therefore changed the subject to approximation
algorithms for combinatorial optimization and started all over again. I became
a PhD student in the combinatorial optimization group of Eindhoven University
of Technology under the supervision of Leen Stougie and Jan Karel Lenstra. My
research was part of the project “High Performance Methods for Mathematical
Optimization” of the Netherlands Organization for Scientific Research (NWO).

Three years ago, there was again a change of subject, but a smaller one. I now
started doing research on the empirical behavior of approximation algorithms and
also looked into the worst-case behavior of local search methods. With this change
of research Cor Hurkens was brought into the team of supervisors and Leen became
less involved.

Two and a half years ago, like a true PhD student, I thought about stopping
pursuing my PhD. Fortunately, my supervisors, colleagues, and friends helped me
through this difficult period and after a few months I was back on track.

One and a half year ago, Dick den Hertog, Leen Stougie, and I organized the
Fifth International Conference on High Performance Optimization Techniques. I
enjoyed working with Dick and Leen.

Today my thesis is finished. I realize I could not have done this without the
help of many people. Therefore, I would like to thank every person who made this
possible. First of all, I would like to thank Jan Karel Lenstra for asking the right
questions, giving good advice and helping to improve my writing. Cor Hurkens was
valuable for his good advice and checking my proofs. I enjoyed writing two papers
with him. I am grateful to Leen Stougie for his interest in my research, which kept
me motivated. Kees Roos initiated the NWO project and I am grateful for that. I
also would like to thank him for proofreading my thesis. Gerhard Woeginger and
Emile Aarts are the other members of my reading committee. I thank them for
their remarks.

Today, I also would like to thank Petra Schuurman for the pleasant collaboration,
which resulted in my first refereed publication. I am grateful to Toon for allowing to
use one of his paintings on the cover of this thesis, to Hans for making the picture,
and to Eline and Marko for editing the electronic version of this picture.

Today, I thank my colleagues and former colleagues of the section operations

vii



viii Preface

research and statistics of Eindhoven University of Technology for making Eindhoven
a fun place to work at, Lavazza for making good coffee, and Dutch theater groups
for making plays that occasionally took my mind of my research. Finally, I like to
express my gratitude to my friends and family for their support. A special thanks
goes to my two paranymphs Hugo and Oscar and to Eline for their support and
encouragement at times when I had severe doubts and for the necessary relaxation.

Tjark Vredeveld
Eindhoven, February 2002



1
Introduction

For many combinatorial optimization problems it is hard to find an optimal solution.
A lot of effort has therefore been put in the design and analysis of approximation
algorithms for these types of problems. Such algorithms do not necessarily find an
optimal solution, but attempt to find a good solution. Some of these approximation
algorithms are designed from a theoretical point of view and give worst-case guar-
antees on the quality of the solution as well as on the running time for obtaining
the solution. Others are designed from a practical point of view. They work well in
practice, but we hardly know of any guarantees on the quality of the solution or on
the running time. The latter group contains local search heuristics.

In this thesis we consider for several hard combinatorial optimization problems
methods from one of both categories and judge them on the criteria of the other
category. We have implemented some approximation algorithms, for which we know
guarantees, and we compared their empirical performance to the performance of
basic local search heuristics. In last two chapters of the thesis, we analyze from
a worst-case perspective the quality of solutions obtained by the simplest form of
local search. We also analyze the time needed for obtaining these solutions.

This introductory chapter continues with a description of combinatorial opti-
mization problems in Section 1.1. We next describe what we mean by approximation
algorithms with guarantees in Section 1.2. An introduction to local search is given
in Section 1.3. This chapter concludes with an overview of the thesis in Section 1.4.

1.1 Combinatorial optimization

In combinatorial optimization one is asked to make the best choice among a number
of alternatives. A combinatorial optimization problem is specified by a set of problem

1



2 1. Introduction

instances and is either a minimization problem or a maximization problem.

Definition 1.1. An instance of a combinatorial optimization problem Π consists of
a set of feasible solutions, S, and an objective function, f : S → IR, that assigns
a real value to each solution. The problem is to find an optimal solution, i.e., a
solution s∗ ∈ S such that

f(s∗) ≤ f(s) for all s ∈ S

in the case that Π is a minimization problem or

f(s∗) ≥ f(s) for all s ∈ S

in the case that Π is a maximization problem.

Usually, the solution set S and the objective function f are given by an implicit
description.

Some problems turn out to be easier to solve than others. We are interested in
determining the time required to compute an optimal solution to a problem as a
function of the length of the encoding of its input I, which we denote by |I| and refer
to as the input size. We say that a problem is easy to solve if there is a polynomial-
time algorithm that solves it to optimality. A polynomial-time algorithm is one that
runs in polynomial time, i.e., there is a polynomial p such that the algorithm applied
to an input I always finds a solution within time p(|I|). In this thesis we focus on
NP-hard problems, which are not known to be easy and are even unlikely to be easy.
We refer to Garey and Johnson (1979) for a thorough treatment of this subject. In
the following examples, we present some NP-hard optimization problems.

Example 1.1. The Santa Claus Sock Problem (SSP)
At Christmas, Santa Claus wants to give presents to all children. For each family he
has a bag filled with gifts, which he has to divide among the children of that family.
Although he knows that it is rarely possible to give each child exactly the same
value, Santa wants to avoid jealousy as well as he can. Knowing that a child always
compares what it has got to the total value of the presents given to its sibling that
has received most, Santa wants to minimize the value of gifts given to this fortunate
brother or sister.

An instance of Santa’s problem is given by the number of children, the bag with
presents, and a value for each present. A solution is specified by the contents of the
sock of each child. The weight of a solution is computed by taking the value of the
gifts in the sock of the most fortunate child.

Example 1.2. The Santa Claus Bag Problem (SBP)
Santa has chosen not to divide the presents made in his factory at the North Pole
directly to the socks of all children, because this problem is too large to handle. He
therefore has to decide which present goes into which bag. That is, the gifts that
are made in his factory have to be distributed over all bags. Again Santa wants to



1.1 Combinatorial optimization 3

avoid jealousy and he tries to divide the gifts such that the maximum ratio of the
value in a bag divided by the number of children in the family is minimized.

An instance of this problem is specified by the number of families, the number
of children in each family, the contents of the stock of his factory, and the value of
each present in that stock. A solution is represented by a distribution of all presents
over the bags, and the value of a solution is the maximum ratio over all bags of the
value in the bag divided by the number of children who get their gifts from this bag.

Example 1.3. The Traveling Santa Claus Problem (TSP)
Once Santa has decided which child receives what presents, he still has to visit
each family to deliver the gifts. He has to decide on a route that visits all families,
starting and finishing at the North Pole. As Santa wants to enjoy his Christmas
Eve with Mrs. Claus and his elves, he wishes to return to the North Pole as early
as possible.

An instance of this problem is given by the number of families which Santa has
to visit and a matrix of distances between each pair of chimneys. A solution is
specified by a closed tour through the chimneys of all families and the North Pole.
The value of a solution is the sum of all distances traversed in the solution.

Example 1.3 is a traveling salesman problem, see Lawler, Lenstra, Rinnooy Kan,
and Shmoys (1985). Examples 1.1 and 1.2 are examples of multiprocessor scheduling
problems that are discussed in Chapter 4. In these problems, we want to schedule
jobs on multiple processors. Each job has a given processing time. The objective is
to minimize the time at which the last job finishes. In Example 1.1, the processors
are identical, i.e., each job has the same processing time on all processors. The
processors in Example 1.2 are uniform: each processor has a given speed and the
time required to complete a job is the job’s processing requirement divided by the
speed of the processor. In Chapter 4, we also consider unrelated processors: the
time needed to process a job depends on the processor as well as the job.

Other combinatorial optimization problems considered in this thesis are the fol-
lowing. Chapter 2 is concerned with the scheduling of jobs on unrelated parallel
processors. Each job has, besides given processing times, a given weight. The ob-
jective is to minimize the sum of the weighted job completion times. In Chapter 3
the max cut problem is considered. In this problem we want to partition the set of
vertices of a graph into two disjoint subsets such that the total weight of the edges
(interactions) between vertices in different subsets is maximized. In Chapter 5 we
want to partition a set of items into k disjoint subsets, such that the total interac-
tion within the subsets is minimized. We call this problem the generalized graph
coloring problem. All these problems are NP-hard, as can be seen in the subsequent
chapters.

One way to deal with NP-hard problems is finding near-optimal solutions within
reasonable time. Algorithms that find such solutions are approximation algorithms
or heuristics. In the following two sections, two types of approximation algorithms
are discussed: algorithms with guarantees on the quality of the solution as well
as the time needed to find them, and local search heuristics. These two classes of



4 1. Introduction

heuristics are not disjoint, as we will see in Chapter 4.

1.2 Approximation algorithms with guarantees

The last decades, there has been a lot of interest in polynomial-time ρ-approximation
algorithms. These are algorithms that run in polynomial time and give a guarantee
on the quality of the solution.

Definition 1.2. An algorithm A is called a ρ-approximation algorithm for a com-
binatorial optimization problem Π if it delivers a feasible solution with value between
1 and ρ times the optimal solution value. That is, for each instance I of a mini-
mization problem Π, A(I) ≤ ρOPT (I), and for each instance I of a maximization
problem Π, A(I) ≥ ρOPT (I), where OPT (I) denotes the value of an optimal solu-
tion of I and A(I) denotes the value of the solution obtained by algorithm A on input
I. We refer to ρ as the performance guarantee or worst-case ratio of the algorithm.

The value ρ can be viewed as the quality measure of an algorithm: the closer it
is to 1, the better the algorithm is. Note that for minimization problems we have
ρ ≥ 1 and for maximization problems we have ρ ≤ 1.

As an illustration we give a simple approximation algorithm for the Santa Claus
Sock problem.

Example 1.4. SSP continued: an approximation algorithm
Santa has to divide the presents in a bag over the m children in the family. One
way to do this is to take a gift from the bag and put it in the sock of the child that
currently has the least. This algorithm is a polynomial-time (2− 1

m )-approximation
algorithm, as can be seen as follows. Let I be an instance for this problem, let A(I)
denote the value of the solution obtained by the above algorithm, and let OPT (I)
denote the optimal solution value. Furthermore, let the value of the n presents be
given by v1, . . . , vn. The best Santa can hope for is that each child receives exactly
the same value as its siblings. Hence OPT (I) ≥ 1

m

∑
j vj . Also, OPT (I) ≥ vk for

any k, since a present may not be broken. We know that at the moment at which
the most fortunate child receives its last present, having value vk, this child was not
having more than any its brothers and sisters. By an averaging argument, we know
that A(I)−vk ≤ 1

m (
∑

j vj−vk). Hence A(I) ≤ 1
m

∑
j vj + m−1

m vk ≤ (2− 1
m )OPT (I).

The last inequality is due to the above lower bounds on OPT (I). This algorithm
was first analyzed by Graham (1966). A variant of this algorithm, in which Santa
takes the gifts from the bag in order of non-increasing value, has been tested by
a.o. Finn and Horowitz (1979) and França, Gendrau, Laporte, and Müller (1994).
They report that this so-called LPT algorithm finds solutions within a few percent
of optimal.

SSP and SBP can be approximated very well: for every constant ρ > 1, there
is a polynomial-time ρ-approximation algorithm, see Hochbaum and Shmoys (1987,
1988). Such a family of polynomial-time (1 + ε)-approximation algorithms for all
ε > 0 is called a polynomial-time approximation scheme, or PTAS for short. If the



1.2 Approximation algorithms with guarantees 5

time complexity of the PTAS is also polynomially bounded in 1
ε , it is called a fully

polynomial-time approximation scheme, or FPTAS. For more details on approxi-
mation algorithms with guarantees for NP-hard problems we refer to Hochbaum
(1997), Ausiello, Crescenzi, Gambosi, Kann, Marchetti-Spaccamela, and Protasi
(1999), and Vazirani (2001).

In Chapters 2 and 3 of this thesis, we analyze polynomial-time approximation
algorithms empirically and compare them to the experimental performance of local
search heuristics. Previous work of this sort includes the following.

As mentioned above, Finn and Horowitz (1979) and França, Gendrau, Laporte,
and Müller (1994) have tested the LPT algorithm for the multiprocessor scheduling
problem with identical processors. The performance guarantee of this algorithm is
4
3 − 1

3m . Finn and Horowitz report that the quality of the solutions found by this
algorithm differs hardly from that of the solutions obtained through a simple local
search heuristic. França et al. propose a more sophisticated local search algorithm,
which performs better than the local search procedure of Finn and Horowitz and
also better than the LPT algorithm. Haupt (1989) surveyed priority rule-based
scheduling for the job shop scheduling problem, giving many references to empirical
studies.

Johnson and McGeoch (1997) presented a case study in local optimization for
the traveling salesman problem, in which they also experimentally analyzed several
constructive heuristics with a worst-case or probabilistic performance guarantee.

Hariri and Potts (1991) examined the empirical behavior of the earliest com-
pletion time (ECT) heuristic and several two-phase heuristics for the problem of
minimizing makespan on unrelated parallel processors. In the first phase of the
two-phase algorithms, an LP-relaxation is solved to generate a partial schedule; the
second phase consists of an exact or heuristic method to schedule the remaining
jobs. The performance guarantees of the two-phase heuristics they examined are
2 and (2 + �log2(m − 1)�), the performance guarantee of the ECT heuristic is m.
Their conclusion was that these constructive methods are quite unsatisfactory, as
deviations of more than 10% from the optimal solution value are common. They also
applied an improvement heuristic to the obtained solutions, which achieved a sig-
nificant reduction in the makespan at very small computational costs. Glass, Potts,
and Shade (1994) extended this research by analyzing the empirical performance of
other local search heuristics for this problem. Although it is difficult to compare the
results of these two papers, as the quality of the solution is measured as the relative
deviation from the best obtained solution, which might not be the same in both
papers, and the time spent on the local search heuristics is not equivalent to the
time spent on the constructive heuristics, the results indicate that genetic descent,
simulated annealing, and tabu search outperform the constructive heuristics; the
local search heuristics have a deviation of about 1%.

Savelsbergh, Uma, and Wein (1998) studied the quality of lower bounds for the
problem of minimizing total weighted completion time on a single processor with
release dates for the jobs, obtained by LP-relaxations, and they also studied the
quality of upper bounds delivered by a number of approximation algorithms based



6 1. Introduction

on these relaxations. The best algorithms come within a few percent of the opti-
mum. Although there are a few exceptions, they also concluded that the higher the
quality of the solution to the LP-relaxation, the better the approximation algorithms
performs. Uma and Wein (1998) made an analytical and empirical comparison of
lower bounds for the same problem and also used some rounding techniques to
obtain feasible solutions. They also applied simple local search heuristics to the
solutions obtained by these approximation algorithms as well as to solutions from
scratch. The best results were obtained by applying the local search heuristics to
the solutions obtained by good approximation algorithms.

Van der Linden (2000) made a computational study on the empirical behavior of
a convex quadratic approximation algorithm of Skutella (2001) for the problem of
minimizing the total weighted completion time on unrelated parallel processors with
release dates for the jobs. She compared the results to the solutions of an LP-based
approximation algorithm by Schulz and Skutella (1997a). On all test instances, the
LP-relaxation gave better lower bounds than the convex quadratic relaxation. In
Chapter 2, we prove that for the case of equal release dates the LP-relaxation is
guaranteed to give better bounds than the convex quadratic relaxation. Van der
Linden also used the convex quadratic relaxation in a branch-and-bound method,
which was able to solve problem instances with up to 20 jobs and 5 processors.

1.3 Local search

Local search in combinatorial optimization dates back to the late 1950s, when the
first edge-exchange algorithms for the traveling salesman problem were introduced,
see Bock (1958) and Croes (1958). We refer to Aarts and Lenstra (1997) for an
overview of local search in combinatorial optimization.

Local search is a family of methods that iteratively search through the set of
solutions. Starting from an initial solution, a local search procedure moves from
one feasible solution to a neighboring solution until some stopping criteria are met.
The choice of a suitable neighborhood function has an important influence on the
performance of local search. These neighborhood functions define the set of solutions
to which the local search procedure may move to in a single iteration. This is
formalized in the following definition.

Definition 1.3. For an instance of a combinatorial optimization problem with fea-
sible solution set S, a neighborhood function is a mapping N : S → 2S, which
defines for each feasible solution s ∈ S a set N (s) ⊆ S of feasible solutions that are
in some sense close to s. The set N (s) is the neighborhood of the feasible solution
s, and each s′ ∈ N (s) is a neighbor of s.

The simplest form of local search is iterative improvement. This method starts
from an initial solution and repeatedly selects a neighbor as long as it improves on
the current solution. The algorithm stops when it has found a local optimum with
respect to N .

Definition 1.4. Let S be the solution set of an instance for a combinatorial opti-



1.3 Local search 7

mization problem with weight function f and let N be a neighborhood function. A
feasible solution ŝ ∈ S is locally optimal with respect to N if

f(ŝ) ≤ f(s) for all s ∈ N (ŝ)

in case of a minimization problem and if

f(ŝ) ≥ f(s) for all s ∈ N (ŝ)

in case of a maximization problem.

Example 1.5. SSP & SBP continued: a neighborhood function
For SSP, once Santa has an assignment of the gifts to the children, he can try to im-
prove upon it by moving a present from one child to another. For SBP, Santa could
do a similar thing: move a present from one bag to another. The neighborhood of
a solution is thus the set of all solutions in which exactly one present is in another
sock or bag. Finn and Horowitz (1979) and Brucker, Hurink, and Werner (1997)
show that there exists an iterative improvement procedure using this neighborhood
function which is a polynomial-time (2 − 2

m+1 )-approximation algorithm for SSP.
Finn and Horowitz also showed that the experimental performance of this algorithm
differs little from the experimental performance of the algorithm described in Exam-
ple 1.4, where the presents are taken in non-increasing order of value from the bag.
For SBP, there exists an iterative improvement procedure using this neighborhood
function that is a polynomial-time (1 +

√
4m − 3)/2-approximation algorithm (Cho

and Sahni (1980) and Chapter 4).

The main drawback of iterative improvement is that it gets trapped in the first
local optimum that it encounters, which may be poor. A way to overcome this
drawback is by allowing moves to non-improving neighbors. Below, we discuss three
popular types of local search heuristics that allow such moves: tabu search, simulated
annealing and variable-depth search.

Tabu search, introduced by Glover (1989, 1990), always moves to the best neigh-
bor, even when it is a deterioration. In this way the search can be directed away
from local optima, such that other parts of the search space can be explored. To
avoid cycling, i.e., returning to a solution encountered before, some information
about solutions visited in past iterations is stored in a so-called tabu list. If a neigh-
bor satisfies the properties of an entry in the tabu list, this solution is tabu and it
may not be visited, unless it has value that is lower than the best found solution
so far or satisfies some other ‘aspiration criteria’. The tabu list contains a limited
number of entries, and a limited number of forbidden properties.

Simulated annealing was introduced independently by Kirkpatrick, Gelatt, and
Vecchi (1983) and Černy (1985). Like tabu search it may accept moves to non-
improving neighbors. In simulated annealing, we choose randomly and uniformly a
solution, s′, in the neighborhood of the current solution, s. If this neighbor is a better
solution, then it is accepted. If it is not an improving neighbor, then s′ is accepted



8 1. Introduction

with probability e−|f(s)−f(s′)|/T , where T is a positive control parameter, called the
temperature. T is gradually decreased during the execution of the algorithm and
thus the probability of accepting deteriorations is decreased. This lowering of the
probability is determined by the cooling schedule.

Variable-depth search, introduced by Kernighan and Lin (1970), generates from
an initial solution a sequence of subsequent neighbors. From this sequence, one
solution is selected to serve as the initial solution for a next sequence. Variable-
depth search can be viewed as a two-layered process that generates the sequence
of neighbors in the first layer. In the second layer, it applies a search method,
like iterative improvement, to the solutions selected in the fist one. Variable-depth
search can also be seen as a neighborhood function that given a solution outputs
the solution selected from the sequence of neighbors, see Chapter 4 and 5. The
term variable-depth search is due to the fact that, on forehand, it is unknown which
neighbor from the sequence is selected in the first layer.

The last two chapters of this thesis is concerned with the worst-case behavior
of local search. Previous results on worst-case analysis of local search include the
following.

Finn and Horowitz (1979) show that for the multiprocessor scheduling problem
with identical processors (Example 1.1) a local optimum with respect to the neigh-
borhood defined in Example 1.5 is guaranteed to have value at most 2− 2

m+1 times
the optimal solution. They also propose an iterative improvement procedure that
finds a local optimum in a quadratic number of iterations (Brucker, Hurink, and
Werner 1996, 1997).

Hurkens and Schrijver (1989) considered a packing problem in which we want
to find the largest collection of pairwise disjoint sets among a given collection of
k-sets. They gave a worst-case ratio guarantee on the quality of a local maximum
and showed that an iterative improvement procedure runs in polynomial time. De
Bontridder, Halldórsson, Halldórsson, Hurkens, Lenstra, Ravi, and Stougie (2001)
extended this result to the problem in which we want to find the largest collection
of disjoint paths of length 2 in a graph.

Korupolu, Plaxton, and Rajaraman (1998) show that iterative improvement for
the metric uncapacitated facility location problem in polynomial time yields a solu-
tion with value no more than 5+ ε times the optimal solution value, for ε > 0. They
also show that for the metric uncapacitated k-median problem local search finds a
solution using at most (3 + 5/ε)k facilities and having costs at most 1 + ε times the
optimal costs, for ε > 0.

The metric labeling problem is the problem in which, given a graph, we want to
assign labels to the vertices of a graph. The objective is to minimize the sum of the
cost of assigning the label to a vertex and the interaction costs between each pair
of adjacent vertices. The interaction cost is a function of the labels given to the
vertices and it should be a metric. Boykov, Veksler, and Zabih (1999) showed that
a local optimum is a 2-approximation when the interaction costs are all equal to 1.
Gupta and Tardos (2000) show for a truncated metric, where the interaction cost



1.4 Overview 9

is the minimum of the distance between the two labels and some constant, that a
local minimum is at most 4 times the optimal cost.

On the max-cut problem, it is easy to see that a local optimal solution with re-
spect to the flip-neighborhood has value at least half the optimal cut value. Using the
same neighborhood, Feige, Karpinski, and Langberg (2000) show that starting from
a solution obtained by the approximation algorithm of Goemans and Williamson
(1995) iterative improvement improves the performance guarantee of the starting
solution, if the graph has bounded degree; in case of graphs with maximum degree
three, a local optimum obtained in this way has a performance guarantee of 0.921,
whereas the Goemans-Williamson algorithm is guaranteed to give a solution with
value at least 0.878 times the optimal cut value.

Chandra, Karloff, and Tovey (1999) show that a 2-optimal tour for the TSP
satisfying triangle inequalities is at most 4

√
n times the optimal value and that a

lower bound on this guarantee is
√

n/4.

1.4 Overview

The outline of this thesis is as follows. Chapters 2 and 3 are empirical evaluations
of approximation algorithms. Chapter 2, which is based on Vredeveld and Hurkens
(2001), presents an empirical comparison of polynomial-time approximation algo-
rithms and local search heuristics for the problem of scheduling unrelated parallel
machines. The objective is to minimize the total weighted completion times of the
jobs. In this chapter, besides the experimental comparison, we also investigate dom-
inance relations among three lower bounds for this problem. These lower bounds are
all obtained by solving a linear or nonlinear relaxation of a mixed integer program-
ming formulation of the problem. The approximation algorithms with performance
guarantees are based on rounding the solution to these relaxations. It turns out that
the approximation algorithm that is based on the best lower bound yields, among
the algorithms with a performance guarantee, the best results. This algorithm also
performs better than the iterative improvement and tabu search algorithms. The
best results are obtained by applying tabu search to the solution obtained by the
algorithm based on the best relaxation.

In Chapter 3 an experimental evaluation of the max cut problem is made. Among
the constructive heuristics, the one with the best performance guarantee, i.e., the
celebrated algorithm of Goemans and Williamson (1995), yields the best cuts, but
the running time is rather large. Simulated annealing applied to randomly generated
solutions or greedily generated solutions yields on average the same performance as
when it is applied to the solution obtained by the Goemans-Williamson algorithm.
The time spent on the simulated annealing procedures, including obtaining the
initial solutions, is the same. As the time needed to obtain the Goemans-Williamson
solution is rather large, we have also used a smaller time bound for the local search
procedures applied to the randomly and greedily generated starting solutions. The
performance of these procedures is a little worse, about 0.1%, than that of the
procedures using the larger time bound.

In Chapter 4 and 5, we investigate the worst-case behavior of local search. In



10 1. Introduction

Chapter 4, which is based on Schuurman and Vredeveld (2001) and Hurkens and
Vredeveld (2002), we consider multiprocessor scheduling problems. The objective is
to minimize the makespan. We analyze the quality of local optima with respect to
the jump, the swap, and the newly defined push neighborhood. In case of identical
processors, an algorithm that finds a local optimum with respect to any of these
three neighborhoods has a constant performance guarantee. For uniform processors,
we show that the worst-case ratio of the value of a local optimum with respect to
the push neighborhood to the optimal solution value is a constant, whereas for the
jump and swap neighborhood this worst-case ratio grows with the square root of
the number of processors. We also make some remarks about the running time of
iterative improvement.

In Chapter 5, which is based on Vredeveld and Lenstra (2002), the generalized
graph coloring problem is examined. We recall a result on the equivalence between
the Karush-Kuhn-Tucker points of a quadratic programming formulation and flip-
optimal solutions. We also show that the quality of local optima with respect to a
large class of neighborhoods may be arbitrarily bad.



2
Scheduling unrelated parallel machines:

an experimental investigation

2.1 Introduction

In this chapter, we make an experimental comparison of approximation algorithms
for which we have constant performance bounds but no empirical evidence, and local
search heuristics which exhibit good empirical behavior but for which we have no
performance bounds. The former algorithms are polynomial-time ρ-approximation
algorithms.

The problem under consideration is the problem of scheduling unrelated parallel
machines so as to minimize the total weighted completion time. We are given a set
of n jobs, J1, . . . , Jn, each of which has to be scheduled without interruption on one
of m machines, M1, . . . , Mm, where m is part of the input. A machine can process
at most one job at a time and all jobs and machines are available at time 0. If a
job Jj is processed on a machine Mi, it will take a positive integral processing time
pij . Furthermore, for each job we are given a nonnegative integral weight wj . The
objective is to schedule the jobs so that the sum of the weighted completion times
of the jobs is minimized. Graham et al. (1979) denote this problem by R‖∑

wjCj .
Bruno, Coffman, Jr., and Sethi (1974) and Lenstra, Rinnooy Kan, and Brucker
(1977) showed that the problem of minimizing total weighted completion time on
two identical parallel machines is NP-hard; R‖∑

wjCj is NP-hard in the strong
sense. In the case that the jobs have the same weight, the problem can be formulated
as a bipartite matching problem, which can be solved in polynomial time; see Horn
(1973) and Bruno et al. (1974). In case there is only one machine the problem is also

11



12 2. Scheduling unrelated parallel machines

easy: sequence the jobs in order of non-increasing ratios wj

p1j
(Smith, 1956). Hence,

the problem reduces to assigning the jobs appropriately to the machines; once the
jobs have been assigned to the machines, we sequence the jobs on each machine by
the ratio rule.

The first polynomial-time approximation algorithm for minimizing the total
weighted completion time on unrelated parallel machines was given by Phillips,
Stein, and Wein (1997), who achieved a performance ratio O(log2 n). Hall, Schulz,
Shmoys, and Wein (1997) presented a polynomial-time 16

3 -approximation algorithm
that uses an LP-relaxation in time-indexed variables and relies on the rounding
technique of Shmoys and Tardos (1993) for the generalized assignment problem.
This result was improved by Schulz and Skutella (1997b, 1997a) to performance
guarantees 2 + ε and 3

2 + ε, where ε is an arbitrary positive value. They also used
LP-relaxations in time-indexed variables. Skutella (1998) presented a polynomial-
time 3

2 -approximation algorithm that was based on a convex quadratic relaxation.
On the negative side, Hoogeveen, Schuurman, and Woeginger (1998) showed that
the problem is APX-hard, i.e., there exists an ε > 0 such that there does not exist
a polynomial-time (1 + ε)-approximation for this problem, unless P = NP. For
an overview of previous work on the experimental comparison of polynomial-time
ρ-approximation algorithms, we refer to Chapter 1.

This chapter is organized as follows. In the following section, we discuss the
heuristics for which we have a constant performance guarantee. In Section 2.3 we
discuss the dominance relations of the lower bounds obtained by the relaxations
discussed in Section 2.2, and in Section 2.4 we describe the local search heuristics.
Next we make some remarks on implementation details and we discuss the results of
our empirical evaluation. Finally, in Section 2.6 we make some concluding remarks.

2.2 Approximation algorithms with a constant guarantee

The heuristics for which we have a constant guarantee are all based on rounding
a fractional solution to some relaxation. The rounding of the fractional solutions
is done in the same way for all three relaxations. The main idea is to exploit the
values of the relaxation as probabilities with which jobs are assigned to machines:
each job is assigned to a machine using these probabilities. This way of random-
ized rounding can be derandomized using the method of conditional expectations,
with no difference in performance guarantees, but at the cost of increased, but still
polynomial, running times.

2.2.1 Convex quadratic programming relaxation

The first relaxation we consider is due to Skutella (1998). He introduced a convex
quadratic programming relaxation that leads to a polynomial-time 3

2 -approximation
algorithm. The basic observation is that the problem is reduced to an assignment
problem. Therefore, the problem can be formulated as an integer quadratic program
in nm assignment variables, zij . The integer quadratic program, which forms the
basis of the relaxation, is given in (IQP ), where k ≺i j means that according to the
ratio rule job Jk precedes job Jj on machine Mi. Constraints (2.2) ensure that the



2.2 Approximation algorithms with a constant guarantee 13

completion time of a job is its own processing time plus the processing times of its
predecessors on the machine on which it is scheduled and constraints (2.1) ensure
that each job is scheduled on exactly one machine.

min
∑

j

wjCj

(IQP ) s.t.
∑

i

zij = 1 ∀j (2.1)

Cj =
∑

i

zij(pij +
∑
k≺ij

pikzik) ∀j (2.2)

zij ∈ {0, 1} ∀i, j (2.3)

In (2.7), the quadratic objective function is convexified by carefully raising the
diagonal entries of the matrix determining the quadratic term until it becomes
positive semidefinite and the function becomes convex. Adding constraint (2.6),
which ensures that the sum of weighted completion times is at least the sum of
weighted processing times, results in the convex quadratic programming problem
given in (CQP ). Solving this problem and then applying the randomized rounding
procedure is a polynomial-time 3

2 -approximation algorithm.

min Z (2.4)
s.t.

∑
i

zij = 1 ∀j (2.5)

(CQP ) Z ≥
∑
i,j

wjpijzij (2.6)

Z ≥
∑
i,j

(
1
2
wjpijzij +

1
2
wjpijz

2
ij)+ (2.7)∑

i,j

∑
k≺ij

wjpikzijzik

zij ≥ 0 ∀i, j (2.8)

2.2.2 Time-indexed variables on processing intervals
Schulz and Skutella (1997b, 1997a) generalized an LP-relaxation in time-indexed
variables that was introduced by Dyer and Wolsey (1990) for the single-machine
scheduling problem with release dates. It contains decision variables, yijt, indicating
whether job Jj is being processed on machine Mi during the time interval [t, t + 1),
for integral t, where t ranges from 0 to T − 1, with T an upper bound on the
length of a schedule. The resulting LP-relaxation is a 3

2 -relaxation of the scheduling
problem under consideration, i.e., the value of an optimal schedule is within a factor
3
2 of the optimum LP value. Moreover, solving this LP-relaxation and applying the
randomized rounding procedure yields a solution with expected value no more than
3
2 times the optimal value.

The LP-relaxation Schulz and Skutella used is the following:



14 2. Scheduling unrelated parallel machines

min
∑

j

wjCj (2.9)

s.t.
∑
i,t

yijt

pij
= 1 ∀j (2.10)

(LPY )
∑

j

yijt ≤ 1 ∀i, t (2.11)

Cj ≥
∑
i,t

(
yijt

pij
(t +

1
2
) +

1
2
yijt) ∀j (2.12)

Cj ≥
∑
i,t

yijt ∀j (2.13)

yijt ≥ 0 ∀i, j, t (2.14)

To see that this is indeed a relaxation of R‖∑
wjCj , consider an arbitrary

feasible schedule, where job Jj is being continuously processed between time Sj and
Sj + phj on machine Mh. Then yijt = 1 if i = h and t ∈ {Sj , . . . , Sj + phj − 1} and
yijt = 0 otherwise. The right hand side in (2.12) corresponds for these values of yijt

to the completion time of Jj in the schedule. This relaxation can be strengthened
by adding the constraint that a job can be processed by at most one machine during
each time interval: ∑

i

yijt ≤ 1 ∀j, t. (2.15)

As the time horizon, T , can be exponential in the input size, this relaxation may
suffer from an exponential number of variables and constraints. One can overcome
this drawback by turning to interval-indexed variables. The time intervals Schulz
and Skutella used are of the form I0 = [0, 1) and Il = [(1 + ε)l−1, (1 + ε)l) for
l = 1, . . . , log T

log(1+ε) , where ε > 0 can be chosen arbitrarily small. The LP-relaxation,
including constraints (2.15), is then the following:

min
∑

j

wjCj (2.16)

s.t.
∑
i,l

yijl|Il|
pij

= 1 ∀j (2.17)∑
j

yijl ≤ 1 ∀i, l (2.18)

(LPY ′)
∑

i

yijl ≤ 1 ∀j, l (2.19)

Cj ≥
∑

i

(
1

2pij
+

1
2
)yij0+ (2.20)∑

i

∑
l≥1

yijl|Il|
pij

(1 + ε)l−1+∑
i

∑
l≥1

1
2
yijl|Il| ∀j



2.2 Approximation algorithms with a constant guarantee 15

Cj ≥
∑
i,l

yijl|Il| ∀j (2.21)

yijl ≥ 0 ∀i, j, l (2.22)

Any feasible solution, ȳ, of (LPY ) plus constraints (2.15) can be transformed
into a feasible solution, y, to (LPY ′) with the same or lower value. This is done
by setting yijl =

∑
t
|[t,t+1)∩Il|

|Il| ȳijt. Hence, the optimal value of (LPY ′) is at most
equal to the optimal value of (LPY ), including (2.15).

This leads to a (3
2 + ε)-relaxation of polynomial size and a polynomial-time

( 3
2 + ε)-approximation algorithm; in the subsequent sections, this method will be

referred to as the LPY approach. Notice that the size of the relaxation still depends
substantially on the time horizon and may be huge for small values of ε.

2.2.3 Time-indexed variables on starting times

The LP-relaxation used by Schulz and Skutella yields a poor lower bound, as even
a 0 − 1 solution to this relaxation does not necessarily correspond to a feasible
schedule. Therefore, we have implemented another relaxation. This is a general-
ization of a second LP-relaxation introduced by Dyer and Wolsey (1990) for the
single-machine scheduling problem with release dates. The problem is formulated
as an integer program in time-indexed variables, xijt, denoting whether job Jj starts
being processed on machine Mi at time t. This program is given in (IPX):

min
∑

j

wjCj

s.t.
∑
i,t

xijt = 1 ∀j (2.23)

(IPX)
∑

j

t∑
s=t−pij+1

xijs ≤ 1 ∀i, t (2.24)∑
i,t

(t + pij)xijt = Cj ∀j (2.25)

xijt ∈ {0, 1} ∀i, j, t (2.26)

The LP-relaxation is obtained by relaxing the integrality constraints (2.26) to
non-negativity constraints and will be denoted by (LPX).

As with LP problem (LPY ), the time horizon, T , can be an exponential in
the input size. Instead of trying to reduce the size of the LP problem, we solved
this large problem by column generation, generalizing the work of Van den Akker,
Hurkens, and Savelsbergh (2000) on the above mentioned single-machine problem.

To reduce the number of constraints we apply Dantzig-Wolfe decomposition.
The constraints (2.24) and the non-negativity constraints describe a polytope P .
This polytope can be written as the Cartesian product P = P1 × . . . × Pm, where
Pi = {x ∈ IRnT

+ :
∑

j

∑t
s=t−pij+1 xjt ≤ 1, t = 1, . . . , T}. Hence a point x ∈ P can

be written as x = (x(1), . . . , x(m)), where x(i) ∈ Pi (i = 1, . . . , m). The polytopes



16 2. Scheduling unrelated parallel machines

Pi have integral vertices (Van den Akker et al., 2000)) and these vertices can be
considered as schedules on machine Mi in which jobs do not have to be processed
exactly once, as they do not necessarily satisfy constraints (2.23). We will call such
schedules semi-schedules.

Let ξ
(i)
1 , . . . , ξ

(i)
Ki

be the extreme points of Pi. Then any x(i) ∈ Pi can be written as

a convex combination x(i) =
∑Ki

l=1 λ
(i)
l ξ

(i)
l . The LP-relaxation can be reformulated

using the variables λ
(i)
l as follows:

min
∑

i

Ki∑
l=1

(
∑
j,t

cijtξ
(i)
l,jt)λ

(i)
l

(LPX ′) s.t.
∑

i

Ki∑
l=1

(
∑

t

ξ
(i)
l,jt)λ

(i)
l = 1 ∀j (2.27)

Ki∑
l=1

λ
(i)
l = 1 ∀i (2.28)

λ
(i)
l ≥ 0 ∀l, i (2.29)

Note that the solutions of (LPX) and (LPX ′) are in a one-to-one correspondence.
Observe that the jth element of the column corresponding to λ

(i)
l , i.e.,

∑
t(ξ

(i)
l )jt,

is equal to the number of times that job Jj occurs in the semi-schedule ξ
(i)
l . This

means that the column corresponding to the semi-schedule ξ
(i)
l only indicates how

many times each job occurs in this schedule. The cost coefficient of λ
(i)
l is equal to

the cost of the semi-schedule ξ
(i)
l .

By reformulating this way, the number of constraints is decreased significantly
from n+mT to n+m. The number of variables, however, has increased to the total
number of extreme points of the polytopes Pi. Fortunately, this does not matter,
since the problem can be solved through column generation. To apply column
generation, we have to find an efficient way to determine a column with minimal
reduced cost, i.e., to solve a pricing problem. We determine for each machine such
a minimal column in the same way as Van den Akker et al. (2000). The reduced
cost of the variable λ

(i)
l is given by∑

j,t

cijtξ
(i)
l,jt −

∑
j

πj(
∑

t

ξ
(i)
l,jt) − αi (2.30)

where πj denotes the dual variable of constraint (2.27) for job Jj , and αi denotes
the dual variable of constraints (2.28) for machine Mi.

Recall that each extreme point ξ
(i)
l represents a semi-schedule on machine Mi.

These semi-schedules can be represented by paths in a network in the following way.
The nodes of the network correspond to time points 0, 1, . . . , T . For each job Jj

and each period s, with s ≤ T − pij + 1, there is an arc from s to s + pij that
indicates the machine processes job Jj from time s to time s + pij ; we say that this



2.3 Dominance relations among lower bounds 17

arc corresponds to the variable (x(i))js. Furthermore, for each time point t there
is an idle time arc from t to t + 1 that indicates that the machine is idle in period
[t, t + 1). Any directed path from 0 to T corresponds to a semi-schedule ξ

(i)
l on

machine Mi, and vice versa.
If we set the length of the arc corresponding to (x(i))jt equal to cijt − πj , for

all j and t, and the length of all idle time arcs equal to 0, then the reduced cost of
the variable λ

(i)
l is equal to the length of path corresponding to ξ

(i)
l minus the dual

variable αi. Therefore, finding a column with minimal reduced costs boils down
to finding the shortest path in a directed acyclic network with arbitrary weights.
As the network is directed and acyclic, the shortest path problem can be solved in
O(nT ) time.

As we do not know of any analytical bounds on the number of columns that
have to be generated and T might not be a polynomial in the input size, we have
no polynomial-time guarantee for solving the LP problem.

As a corollary to the work of Schulz and Skutella, solving the LP problem and
then applying the randomized rounding technique yields a performance guarantee
of 3

2 . This method will be called the LPX approach.

2.3 Dominance relations among lower bounds

The LP-relaxations and the CQP-relaxation described in the previous section pro-
vide us with lower bounds. In the following theorems, we discuss the dominance
relations between the lower bounds obtained by (LPX), (LPY ), and (CQP ).

Theorem 2.1. Let ZLPX be the value of an optimal solution to (LPX) and (LPX ′)
and let ZCQP denote the value of an optimal solution to (CQP ). Then ZLPX ≥
ZCQP .

Proof. Consider a feasible solution λ = (λ(i)
l ) for (LPX ′), and define, for i =

1, . . . , m, zi ∈ IRn as
zi =

∑
l

λln
(i)
l ,

where n
(i)
l is the vector consisting of the first n elements of the column in (LPX ′)

corresponding to variable λ
(i)
l , i.e., the jth element of n

(i)
l is the number of copies

of Jj occurring in semi-schedule ξ
(i)
l .

Let ci ∈ IRn be given by cij = wjpij and Di = (d(i)
jk )jk ∈ IRn×n be defined as

d
(i)
jk = min(wj pik, wk pij). If we define ZC

i as

ZC
i (z) =

1
2
cT
i zi +

1
2
zT
i Dizi,

and ZCQP (z) as
ZCQP (z) = max(

∑
i

cT
i zi,

∑
i

ZC
i ),



18 2. Scheduling unrelated parallel machines

then (z, Z) ∈ IRnm × IR, with z = (z1, . . . , zm) and Z ≥ ZCQP (z), is a feasible

solution for (CQP ), as zij ≥ 0 and
∑

i zij =
∑

i

∑
l λln

(i)
lj

(2.27)
= 1, for all j.

The sum of the completion times of all copies of Jj in semi-schedule ξ
(i)
l is

C
(i)
lj =

1
2
pijn

(i)
lj +

1
2
pij(n

(i)
lj )2 +

∑
k≺ij

pikn
(i)
lk n

(i)
lj .

Thus the weighted sum of completion times for a machine Mi in (LPX ′) is

ZX
i (λ) =

∑
j,l

wjλ
(i)
l C

(i)
lj =

∑
l

λ
(i)
l (

1
2
cT
i n

(i)
l +

1
2
(n(i)

l )T Din
(i)
l ).

As all elements of n
(i)
l are integer, for all l and i, we know that

ZX
i (λ) =

∑
j,l

wjλ
(i)
l (

1
2
pijn

(i)
lj +

1
2
pij(n

(i)
lj )2 +

∑
k≺ij

pikn
(i)
lk n

(i)
lj )

≥
∑
j,l

wjλ
(i)
l (

1
2
pijn

(i)
lj +

1
2
pijn

(i)
lj )

= cT
i (

∑
l

λ
(i)
l n

(i)
l ) = cT

i zi. (2.31)

Skutella (1998) proved that the matrix Di is positive semi-definite, thus the
function fi(x) = 1

2cT
i x + 1

2xT Dix is convex. By constraint (2.28)
∑

l λ
(i)
l = 1 and

thus

ZX
i (λ) =

∑
l

λ
(i)
l fi(n

(i)
l ) ≥ fi(

∑
l

λln
(i)
l ) = ZC

i (z). (2.32)

By (2.31) we know that
∑

i ZX
i (λ) ≥ ∑

i cT
i zi and by (2.32) we know that∑

i ZX
i (λ) ≥ ∑

i ZC
i (z). Hence,

ZLPX(λ) ≥ max(
∑

i

cT
i zi,

∑
i

ZC
i (z)) = ZCQP (z).

Thus, any feasible solution for (LPX ′) can be converted to a feasible solution for
(CQP ) with value at most equal to the value of the solution for (LPX′). Hence,
ZLPX ≥ ZCQP . �

Theorem 2.2. Let ZLPX be the value of an optimal solution to (LPX) and (LPX ′)
and let ZLPY denote the optimal value to (LPY ) plus constraints (2.15). Then
ZLPX ≥ ZLPY .



2.3 Dominance relations among lower bounds 19

Proof. Consider a feasible solution for (LPX) and construct a feasible solution,
(y, CY ) ∈ IRnmT × IRn, for (LPY ) as follows:

yijt =
t∑

t′=t−pij+1

xijt′ , (2.33)

CY
j = max(

∑
i,t

yijt,
∑
i,t

yijt

pij
(t +

1
2
) +

1
2
yijt). (2.34)

It is easy to verify that y satisfies constraints (2.10), (2.11), and (2.15). The right
hand side of constraint (2.13) is

∑
i,t

yijt =
∑
i,t

t∑
t′=t−pij+1

xijt′ =
∑
i,t

pijxijt ≤
∑
i,t

(t + pij)xijt,

and the right hand side of constraint (2.12) is

∑
i,t

(
yijt

pij
(t +

1
2
) +

1
2
yijt) =

∑
i,t

t∑
t′=t−pij+1

xijt′(
t + 1

2

pij
+

1
2
) =

=
∑
i,t′

xijt′

t′+pij−1∑
t=t′

(
t + 1

2

pij
+

1
2
) =

∑
i,t

(t + pij)xijt.

Hence, CY
j = max(

∑
i,t yijt,

∑
i,t

yijt

pij
(t + 1

2 ) + 1
2yijt) ≤ ∑

i,t(t + pij)xijt and the
optimal value to (LPX) is at least as large as the optimal value to (LPY ). �

To establish the relation between (LPY ) and (CQP ), we need the following
lemma, that specifies an optimal solution to (LPY ) without constraints (2.13) for
a given fractional assignment of the jobs to the machines.

Lemma 2.3. Let z = (zij) ∈ IRnm
+ and let ȳ ∈ IRnmT

+ be

ȳijt = |[t, t + 1) ∩ [Sij , Sij + pijzij)|,

where Sij =
∑

k≺ij
pikzik. Then ȳ minimizes

f(y) =
∑

j

wj

∑
it

(
yijt

pij
(t +

1
2
) +

1
2
yijt)

over all y ∈ Y (z) = {y ∈ IRnmT
+ :

∑
j yijt ≤ 1,

∑
t

yijt

pij
= zij}.

Proof. First note that, by construction, ȳ satisfies
∑

j ȳijt ≤ 1 for all i, t, and∑
t

yijt

pij
= zij , and so ȳ ∈ Y (z). In addition ȳ has the property that for all i there



20 2. Scheduling unrelated parallel machines

exist an si and an αi ∈ [0, 1) such that

∑
j

ȳijt =


1 if t < si,
αi if t = si,
0 if t > si.

Consider a solution y ∈ Y (z), such that y �= ȳ. Then there exists an triple (i, j, t)
such that yijt < ȳijt. Let (i, k, t′) be such a triple, with minimal t′. Note that by
construction of ȳ and minimality of t′, yijt = ȳijt for all t < t′, and thus there exists
a t′′ > t′ such that yikt′′ > ȳikt′′ .

If
∑

j yijt′ < 1, then we construct y′ by adding β = min(1−∑
j yijt′ , yikt′′) to yikt′

and subtracting the same value from yikt′′ . Clearly, y′ ∈ Y (z), and f(y) − f(y′) =
wk

pik
β(t′′ − t′) > 0.
If

∑
j yijt′ = 1, then there is an l such that yilt′ > ȳilt′ ≥ 0. By construction of

ȳ we have k ≺i l. Let β = min(yilt′ , yikt′′ , ȳikt′ − yikt′) and construct y′ by adding
β to yikt′ and yilt′′ and subtracting it from yikt′′ and yilt′ . Then, clearly y′ ∈ Y (z)
and

f(y) − f(y′) =
wk

pik
β(t′′ − t′) +

wl

pil
β(t′ − t′′)

= β(t′′ − t′)(
wk

pik
− wl

pil
) ≥ 0.

Hence, we have constructed a solution that has the same or lower value and is closer
to ȳ. Setting y = y′ and repeating this procedure results in the solution ȳ, and it
has the same or lower value than all intermediate solutions. That is, f(ȳ) ≤ f(y)
for all y ∈ Y (z). �

Theorem 2.4. Let ZLPY be the value of an optimal solution to (LPY ) and let
ZCQP denote the optimal solution value to (CQP ). Then ZLPY ≥ ZCQP .

Proof. Let (y, CY ) ∈ IRnmT ×IRn be a feasible solution for (LPY ) and let z ∈ IRnm

be defined as zij =
∑

t
yijt

pij
, and ZCQP (z) as

ZCQP (z) = max(
∑
i,j

wjpijzij ,
∑
i,j

1
2
wjpijzij +

1
2
wjpijz

2
ij +

∑
k≺ij

pikzijzik).

Then (z, ZCQP (z)) is a feasible solution for (CQP ), and∑
i,j

wjpijzij =
∑

j

wj

∑
i,t

yijt ≤
∑

j

wjC
Y
j .

Below, we prove that∑
i,j

1
2
wjpijzij +

1
2
wjpijz

2
ij +

∑
k≺ij

pikzijzik ≤
∑

j

wjC
Y
j (y).



2.3 Dominance relations among lower bounds 21

Let ȳ be the feasible solution for (LPY ) as defined in Lemma 2.3, i.e.,

ȳijt = |[t, t + 1) ∩ [Sij , Sij + pijzij)|,
where Sij =

∑
k≺ij

pikzik. Let αij = Sij − �Sij� and βij = �Sij + pijzij� − (Sij +
pijzij). Then

ȳijt =


1 − αij if t = �Sij� < �Sij + pijzij� − 1,
1 − βij if t = �Sij + pijzij� − 1 > �Sij�,

1 − αij − βij if t = �Sij� = �Sij + pijzij� − 1,
1 if �Sij� < t < �Sij + pijzij� − 1,
0 otherwise.

Let CY
ij (ȳ) be defined as

CY
ij (ȳ) =

∑
t

(
ȳijt

pij
(t +

1
2
) +

1
2
ȳijt).

If �Sij� = �Sij + pijzij� − 1, then 1 − αij − βij = pijzij and

CY
ij (ȳ) =

1 − αij − βij

pij
(Sij − αij +

1
2
) +

1
2
pijzij

=
1
2
pijzij + zij(Sij +

1
2
pijzij) +

1 − αij − βij

pij
(−1

2
(1 − αij − βij) − αij +

1
2
)

=
1
2
pijzij +

1
2
pijz

2
ij + zijSij +

1
pij

1
2
(αij − βij)(αij + βij − 1). (2.35)

If �Sij� < �Sij + pijzij� − 1, then

CY
ij (ȳ) =

1 − αij

pij
(Sij − αij +

1
2
) +

1 − βij

pij
(Sij + pijzij + βij − 1

2
) +

1
pij

(pijzij − 2 + αij + βij)(Sij +
1
2
pijzij − 1

2
(αij − βij)) +

1
2
pijzij

=
1

pij
(pijzij + αij + βij)(Sij +

1
2
pijzij − 1

2
(αij − βij)) −

αij

pij
(Sij − αij +

1
2
) − βij

pij
(Sij + pijzij + βij − 1

2
) +

1
2
pijzij

=
1
2
pijzij +

1
2
pijz

2
ij + zijSij +

1
pij

1
2
(αij − βij)(αij + βij − 1). (2.36)



22 2. Scheduling unrelated parallel machines

Thus in both cases

CY
ij (ȳ) =

1
2
pijzij +

1
2
pijz

2
ij + zijSij +

1
pij

1
2
(αij − βij)(αij + βij − 1).

Consider a machine Mi and assume w.l.o.g. that {j : pijzij > 0} = {1, . . . , K},
and that J1 ≺i . . . ≺i JK . Then αi1 = 0 and, as Si,j+1 = Sij+pijzij , αi,j+1 = 1−βij ,
for j = 1, . . . , K − 1.

Then∑
j

wjC
Y
ij (ȳ) =

∑
j

(
1
2
wjpijzij +

1
2
wjpijz

2
ij +

∑
k≺ij

wjpikzijzik) +

+
∑

j

wj

pij

1
2
(αij − βij)(αij + βij − 1)

=
∑

j

(
1
2
wjpijzij +

1
2
wjpijz

2
ij +

∑
k≺ij

wjpikzijzik) +

+
K−1∑
j=1

1
2
(βij − β2

ij)(
wj

pij
− wj+1

pi,j+1
) +

1
2
(βiK − β2

iK)
wK

piK

≥
∑

j

(
1
2
wjpijzij +

1
2
wjpijz

2
ij +

∑
k≺ij

wjpikzijzik). (2.37)

The last inequality is true as 0 ≤ βij < 1 and thus βij −β2
ij ≥ 0 and by the ordering

of the jobs, we have that wj

pij
≥ wj+1

pi,j+1
.

Hence, we have that∑
i,j

(
1
2
wjpijzij +

1
2
wjpijz

2
ij +

∑
k≺ij

wjpikzijzik) ≤
∑
i,j

wjC
Y
ij (ȳ) ≤

∑
i,j

wjC
Y
ij (y).

The last inequality is due to Lemma 2.3. And thus ZCQP (z) ≤ ZLPY (y). �

(LPY ) plus constraints (2.15) yields a higher lower bound than (LPY ). How-
ever, as (LPY ′) is a underestimate of (LPY ) plus constraints (2.15), it does not
need to be the case that ZLPY ′ ≥ ZCQP , where ZLPY ′ is the optimal solution to
(LPY ′).

The inequalities in the above theorems are strict, as is shown in the following
example.

Example 2.1. Consider an instance with three jobs and two machines. Job J1

can only be processed on machine M1 and has processing time p11 = 3 and weight
w1 = 11. J2 can only be processed on machine M2 and has weight w2 = 1 and
processing time p22 = 1. Job J3 can be processed on both machines. Its processing
times are p13 = 2 and p23 = 6 and its weight is w3 = 7.



2.4 Local search 23

Mh Jj

JjMi

Mh

Mi

Figure 2.1: jump

Mi

Mh

JkMi Jj

JkMh Jj

Figure 2.2: swap

The optimal solution to (LPX) is the optimal schedule: J1 and J3 are processed
by M1 and J2 is scheduled on machine M2. The optimal value to (LPX) is ZLPX =
69. The optimal solution to (LPY ) with or without constraints (2.15) has value
ZLPY = 671

2 and in this solution J1 is assigned to the time slots [0, 1), [1, 2), and
[2, 3) on M1, J2 is assigned to the time slot [2, 3) on M2, and J3 is fully assigned to
the time slots [3, 4) on M1 and [0, 1) and [1, 2) on M2 and for one third to time slot
[4, 5) on M1. Finally, the optimal solution to (CQP ) assigns J3 for 41

56 to M1 and
for 15

56 to M2. The optimal value to (CQP ) is ZCQP = 7503
112 = 66.991.

2.4 Local search

We compare the algorithms described in the previous section to local search heuris-
tics. As mentioned in Chapter 1, a local search procedure iteratively moves from
a solution to a neighboring solution. Hence, we need to specify the neighborhood
functions. Recall that the problem can be reduced to the problem of assigning
the jobs appropriately to the machines. We, therefore, represent a schedule by the
assignment of the jobs to the machines.

We consider two types of neighborhood functions. First, for the jump neighbor-
hood, we select a job Jj and a machine Mi such that Jj is not scheduled on machine
Mi. A neighbor is formed by moving job Jj to machine Mi (see Figure 2.1).

The second neighborhood function is called swap. For this neighborhood, we se-
lect two jobs Jj and Jk, assigned to different machines, and the neighbor is obtained
by interchanging their machine allocation (see Figure 2.2).

Besides applying the local search methods to the solutions obtained by the heuris-
tics described in the previous section, they are also applied to randomly generated



24 2. Scheduling unrelated parallel machines

initial solutions. We have two strategies to generate these random solutions. The
first strategy is the completely random strategy, in which we assign each job inde-
pendently and uniformly to one of the m machines. In the second strategy, called
random greedy, the jobs are, in random order, greedily assigned to the machines,
that is, given a partial schedule and the first job that still has to be scheduled, the
job is assigned to the machine for which the total weighted completion time of the
new partial schedule is minimal.

We have implemented two local search heuristics: multi-start iterative improve-
ment and tabu search.

2.4.1 Multi-start iterative improvement
There are several ways to select the neighbor to move to. First there is first im-
provement: we move to the first neighbor encountered that has lower cost. Another
strategy for selecting the neighbor is best improvement: move to the neighbor that
has lowest cost among all neighbors. Initial tests showed that the neighbor selecting
methods perform equally well.

Multi-start iterative improvement refers to a repeated application of the iterative
improvement procedure on multiple initial solutions. Note that we only apply multi-
start iterative improvement on randomly generated starting solutions. To make a
fair comparison with the other methods, the number of repetitions is chosen such
that the total time spent on this procedure is about the same as that for the others.

2.4.2 Tabu search
Recall that in tabu search, we make use of a tabu list to avoid returning to the
same solution. The information stored in the tabu list due to a jump move is the
job that has changed its machine allocation. If the move is due to a swap, we look
at the contribution of the two swapped jobs to the objective function before and
after the swap. The swapped job that has lowest decrease or highest increase in
its contribution is stored in the tabu list. Hence, after each move, jump or swap,
we store one job in the tabu list. This job has to remain on its new machine for
a number of iterations, unless moving it yields a better solution than found so far.
The number of iterations during which a job has a fixed machine allocation is equal
to the length of the tabu list, which, after some initial experiments, we have chosen
to be n/2 whenever n < 40 and 20 otherwise.

In our tabu search procedure, we use best improvement for finding the neighbor
to move to. However, if a move is made to a non-improving neighbor, we only allow
jumps. The reason for this is that a jump creates more space on the machine from
which the job is leaving than a swap and thus allows for better improvements in the
subsequent iterations. Initial tests show indeed that tabu search with this feature
gives better results than tabu search where non-improving swaps are also accepted.

Another feature of our tabu search procedure is the backjump, cf. the tabu search
procedure of Nowicki and Smutnicki (1996) for the job-shop scheduling problem: if
we have made 500 non-improving moves without improving the best found solution,
we return to this solution and move to a neighbor that has not been visited yet
directly from this solution.



2.5 Computational experience 25

In the case that tabu search is applied to the solutions obtained by the heuristics
with constant performance guarantee, the procedure terminates when there have
been too many, that is 20, backjumps to the same solution. In the case of randomly
generated start solutions, we repeat the procedure of applying tabu search to a start
solution until the total time spent is about the same as for the other procedures.

2.5 Computational experience

2.5.1 Test instances
Our heuristics have been tested on instances with size varying from 10 jobs and 5
machines to 100 jobs and 50 machines. The solution quality may depend on the
structure of the test instances. To allow for possible variations in performance,
three classes of test instances were considered, each of which is based on a different
method of generating the processing time pij of job Jj on machine Mi.

• No correlation: all processing times pij are independently drawn from the uni-
form distribution over [10, 100]; wj is an integer from the uniform distribution
over [1, 100].

• Machine correlation: pij is an integer from the uniform distribution over
[αi, αi + 10] where αi is an integer from the uniform distribution over [1, 100];
wj is an integer from the uniform distribution over [1, 100].

• Favorite machines: each job Jj has two favorite machines, Mi1(j) and Mi2(j),
which are randomly selected; pi1(j),j and pi2(j),j are drawn from the uniform
distribution over [βj , βj + 4], where βj is an integer from the uniform dis-
tribution over [15, 25], and pij (i �= i1(j), i2(j)) is drawn from the uniform
distribution over [70, 90]; wj is an integer from the uniform distribution over
[1, 100].

For each value of m and n, 50 instances have been generated for each of the
three instance classes.

2.5.2 Implementational details
Multi-start iterative improvement, tabu search and both LP approaches have been
implemented in C, using CPLEX for solving the LP problems. The CQP approach
has been coded in Matlab, and we use SeDuMi Sturm (1999) for solving the CQP
problem. The reason for implementing the CQP approach in Matlab instead of
C is that SeDuMi is only available in Matlab. The tests have been run on a Sun
Ultra-1, 140 MHz, with 256 MB memory.

2.5.3 Computational results
Before looking how good the schedules, obtained by the several algorithms, are, we
first look at the quality of the lower bounds. In Table 2.1, we show the average
relative deviation of the lower bounds obtained by the CQP and LPY ′-relaxation
from the best obtained lower bounds, which are all obtained by the LPX-relaxation
as shown in Section 2.3. The average and maximum are taken over all instances.



26 2. Scheduling unrelated parallel machines

n × m 10 × 10 20 × 20 50 × 50 10 × 5 20 × 10 50 × 20 100 × 50 average
CQP −5.13 −5.17 −4.35 −3.69 −3.67 −2.76 −3.35 −4.02

(−11.82) (−10.23) (−9.02) (−8.02) (−8.46) (−4.98) (−5.69)
LPY ′ −4.48 −4.41 −3.85 −5.01 −5.10 −4.95 −5.00 −4.68

(−10.28) (−9.20) (−8.65) (−9.08) (−8.65) (−7.14) (−7.81)

Table 2.1: Lower bounds: average (maximum) relative deviation in % from
best lower bound

n × m 10 × 10 20 × 20 50 × 50 10 × 5 20 × 10 50 × 20 100 × 50 average
CQP −6.27 −6.04 −5.27 −4.12 −4.57 −3.68 −3.83 −4.83
LPY ′ −7.17 −7.31 −7.12 −6.26 −6.61 −6.25 −6.52 −6.75

Table 2.2: Lower bounds: average relative deviation in % from best lower
bound - machine correlated instances

We see that for the square instances, where the number of jobs is equal to the
number of machines, the LPY ′-relaxation yields somewhat better lower bounds,
whereas the CQP -relaxation yields the better lower bounds for the rectangular in-
stances. The reason can be found in the fact that the schedule length for square
instances is on average shorter than for the rectangular instances with the same num-
ber of machines and therefore the LPY ′-relaxation is closer to the LPY -relaxation.
On average, the CQP and LPY ′-relaxation are about 4% to 5% from the lower
bounds obtained by the LPX-relaxation. For the uncorrelated and favorite ma-
chine instances, there is the same behavior, whereas for the machine correlated
instances the CQP -relaxation is better for the square as well as the rectangular in-
stances; these results are found in Table 2.2. In the machine correlated instances all
jobs have the same favored machine, which results in a somewhat higher schedule
length. Because of this higher schedule length, the LPY ′-relaxation has a larger
deviation from the LPY -relaxation, resulting in a worse lower bound.

The upper bounds, i.e., values of schedules, obtained by the CQP , LPY , and
LPX approach are given in Table 2.3.

The LPX approach yields the best upper bounds of these three methods, on
average around 0.13% from the best lower bound. The reason that the LPX ap-
proach yields better solutions is that the solution to the LPX-relaxation is much
closer to a real schedule than the solutions to the CQP and LPY ′-relaxations, that
is, the number of jobs Jj for which there is a machine Mi such that

∑
t xijt = 1

is much larger than the number of jobs for which there is a machine Mi such that∑
t

yijt

pij
= 1 or zij = 1, respectively.

In Table 2.4 we report on the average relative deviation from the best lower
bound obtained by the CQP , LPY and LPX approach for the machine correlated
instances. Although the lower bounds for the LPY ′-relaxation are worse than those



2.5 Computational experience 27

n × m 10 × 10 20 × 20 50 × 50 10 × 5 20 × 10 50 × 20 100 × 50 average
CQP 1.20 1.23 1.48 1.02 1.19 1.19 1.37 1.24

(9.38) (6.57) (3.56) (5.61) (4.55) (3.46) (3.26)
LPY 0.69 0.77 0.81 0.84 0.96 1.05 1.12 0.89

(7.05) (2.99) (2.68) (4.77) (4.10) (3.07) (3.01)
LPX 0.07 0.08 0.06 0.15 0.16 0.20 0.17 0.13

(1.51) (1.25) (0.71) (3.48) (2.65) (0.91) (1.24)

Table 2.3: Heuristics with constant guarantee: average (maximum) relative
deviation in % from best lower bound

n × m 10 × 10 20 × 20 50 × 50 10 × 5 20 × 10 50 × 20 100 × 50 average
CQP 1.54 1.56 1.69 1.16 1.63 1.75 1.68 1.57
LPY 0.94 1.30 1.43 1.15 1.36 1.63 1.61 1.34
LPX 0.05 0.09 0.11 0.07 0.04 0.06 0.07 0.07

Table 2.4: Heuristics with constant guarantee: average relative deviation in %
from best lower bound - machine correlated instances

for the CQP -relaxation, we see that the values of the schedules obtained by the
LPY approach are not worse than those obtained by the CQP approach. The
reason for this is that the average number of fractional assignments obtained by the
CQP -relaxation is not less than the number of fractional assignment obtained by
the LPY ′-relaxation.

Table 2.5 shows the results of applying iterative improvement, denoted by II,
and tabu search, denoted by TS, to the solutions of the heuristics with a constant
guarantee. We see that applying a simple iterative improvement procedure to the
CQP and LPY solutions, although improving the solutions significantly, still yields
results that are not better than the solution of the LPX approach. Applying tabu
search to the solutions of the CQP and LPY approach yields results that are on
average as good as the LPX approach; note that the tabu search solutions are all
very close to optimal as their values are only about 0.1% away from the best lower
bound. Tabu search applied to the LPX solution yields the best results: on average
less than 0.1% from the best lower bound.

In Table 2.6, the results of the local search heuristics are given. We have used two
different time bounds as stopping criteria for the local search heuristics. The first
one is that the time is equal to the time used by the LPX approach; the second time
bound is that the time equal to the time used by the LPX approach and applying
tabu search to these solutions. The latter will be denoted by the extension “long”.
We see that tabu search applied to a good starting solution yields better results
than applying it to random start solutions and the multi-start iterative improvement
procedures. The multi-start iterative improvement procedures perform better than
the tabu search applied to the randomly generated start solutions. This implies



28 2. Scheduling unrelated parallel machines

n × m 10 × 10 20 × 20 50 × 50 10 × 5 20 × 10 50 × 20 100 × 50 average
CQP 1.20 1.23 1.48 1.02 1.19 1.19 1.37 1.24
CQP + II 0.50 0.45 0.68 0.34 0.40 0.44 0.59 0.48
CQP + TS 0.06 0.06 0.18 0.12 0.11 0.18 0.27 0.14
LPY 0.69 0.77 0.81 0.84 0.96 1.05 1.12 0.89
LPY + II 0.29 0.23 0.36 0.25 0.35 0.40 0.47 0.34
LPY + TS 0.06 0.07 0.15 0.12 0.11 0.16 0.23 0.13
LPX 0.07 0.08 0.06 0.15 0.16 0.20 0.17 0.13
LPX + II 0.06 0.07 0.04 0.13 0.13 0.14 0.11 0.10
LPX + TS 0.04 0.05 0.03 0.12 0.09 0.11 0.08 0.08

Table 2.5: Heuristics with constant guarantee plus local search: average
relative deviation in % from best lower bound

n × m 10 × 10 20 × 20 50 × 50 10 × 5 20 × 10 50 × 20 100 × 50 average
LPX 0.07 0.08 0.06 0.15 0.16 0.20 0.17 0.13
LPX + TS 0.04 0.05 0.03 0.12 0.09 0.11 0.08 0.08
II 0.06 0.07 0.27 0.12 0.09 0.10 0.38 0.16
II long 0.05 0.05 0.22 0.12 0.09 0.09 0.37 0.14
TS 0.09 0.30 0.56 0.13 0.19 0.30 0.39 0.28
TS long 0.08 0.19 0.45 0.12 0.12 0.20 0.35 0.22

Table 2.6: LPX versus local search: average relative deviation in % from best
lower bound

that it is hard to get out of the local optima and it is better to have many start
solutions and do a simple improvement procedure than to do a more sophisticated
improvement procedure on few start solutions.

In Table 2.7, we report on the performance of the several heuristics on the
hardest instances for the LPX approach. For each size, we have chosen from all
the instances the one for which the LPX approach has the worst performance ratio.
We see that for these instances the tabu search procedure applied to the schedule
obtained by the LPX approach yields a schedule that is the best found or close to
the best found schedule. Moreover, we see that the CQP and LPY approach on
these hard instances for the LPX approach do not perform much better, except for
the CQP approach on the instance of size 10 × 10.

Finally, Table 2.8 reports on the time it takes to find the solutions for the heuris-
tics with guarantees. As the local search procedures that are applied to the randomly
generated start solutions take about the same time as the LPX approach, we do
not report on the time usage of these heuristics. Applying iterative improvement to
the solutions obtained by the good start solutions takes about 0.02 seconds for the
largest instances. Therefore, the time for obtaining the good start solution hardly
differs from the time of obtaining it and then applying iterative improvement to
it. Although solving the LPX-relaxation has no polynomial-time guarantee, we see



2.6 Concluding remarks 29

n × m 10 × 10 20 × 20 50 × 50 10 × 5 20 × 10 50 × 20 100 × 50
CQP 0.03 0.62 1.51 4.11 2.25 1.52 1.43
LPY 1.51 0.62 2.21 4.11 1.38 1.49 1.40
LPX 1.51 1.25 0.71 3.48 2.65 0.91 1.24
CQP + TS 0.03 0.33 0.34 3.48 1.14 0.46 0.61
LPY + TS 0.03 0.33 0.64 3.48 1.14 0.46 0.55
LPX + TS 0.03 0.33 0.26 3.48 1.14 0.52 0.60
II 0.03 0.33 0.04 3.48 1.19 0.48 0.48
II long 0.03 0.33 0.03 3.48 1.14 0.48 0.48
TS 0.77 0.79 0.24 3.48 1.57 0.52 0.57
TS long 0.77 0.33 0.24 3.48 1.35 0.52 0.57

Table 2.7: Hardest instances for LPX approach

n × m 10 × 10 20 × 20 50 × 50 10 × 5 20 × 10 50 × 20 100 × 50
CQP 1.66 6.72 153.92 1.12 3.46 41.22 985.98
CQP + TS 1.75 8.92 225.79 1.21 5.25 95.66 1278.72
LPY 2.00 13.33 442.15 0.81 5.93 68.58 2407.76
LPY + TS 2.08 15.40 507.83 0.90 7.70 122.55 2684.35
LPX 0.05 0.41 14.36 0.08 0.59 28.56 684.89
LPX + TS 0.12 2.04 42.47 0.16 1.98 66.57 883.09

Table 2.8: Time usage in seconds: average over all instances

that this method is fastest. The smallest instances are solved in a few seconds. The
CQP approach needs on average more than 15 minutes and the LPY approach even
needs around 40 minutes for solving instances of size 100× 50. The LPX approach
is much faster: it takes about 10 minutes. The application of tabu search takes
about another 3 to 5 minutes for the largest instances.

2.6 Concluding remarks

Our main goal in this chapter was to make an empirical comparison of approximation
algorithms with performance guarantees and local search heuristics for R‖∑

wjCj .
The algorithms with worst-case performance guarantees are based on rounding solu-
tions to relaxations of the scheduling problem; these relaxations also provide us with
lower bounds. In Section 2.3, we proved that the best lower bounds are obtained
by the LPX-relaxation. In Section 2.5, we saw that rounding the solution to this
relaxation and then applying tabu search on this feasible schedule also yields the
best upper bounds.

Comparing our results with the work of Savelsbergh et al. (1998) and Uma and
Wein (1998) on 1|rj |

∑
wjCj , we come to the same conclusions: rounding a better

relaxation yields a better schedule and the best schedules are obtained by combining
a heuristic based on a good relaxation and local search.



30 2. Scheduling unrelated parallel machines

With the work of Hariri and Potts (1991) and Glass et al. (1994) on R‖Cmax

there is some difference. In an empirical evaluation of heuristics with a constant
performance guarantee, Hariri and Potts concluded that the performance of these
heuristics is unsatisfactory as a deviation from the optimal solution of more than
10% was normal. Applying a simple improvement procedure resulted in a significant
improvement of the schedules. Glass et al. observed that some good local search
heuristics usually yield schedules within 1% of the best found solution. The proce-
dures with a constant performance guarantee that we evaluated resulted in solutions
that were within 1 or 2% of optimal and for the LPX approach even within 0.2%.
The reason that the heuristics with constant performance guarantee we considered
are much better can be found in the objective function. We considered the sum of
weighted completion times and each job contributes to the objective function. Some
jobs will have a smaller completion time compared to theirs in an optimal sched-
ule and other jobs will have a higher one. In R‖Cmax the objective is makespan
minimization, so we only look at the last job to be completed. Also the objective
value for the sum of weighted completion times is much larger than for makespan
minimization and the same absolute difference yields a lower relative difference for
the problem considered in this chapter than for makespan minimization problems.



3
Max cut: an empirical evaluation

3.1 Introduction

Consider an undirected graph G = (V,E) and a weight function w : E → ZZ. We
denote the number of vertices |V | by n and the number of edges |E| by m. We
assume that V = {1, . . . , n}. A set S ⊆ V defines the cut δ(S) consisting of all
edges with one end point in S and the other in V \S. The weight of this cut is the
sum of the weights of the edges in the cut, i.e., w(S) =

∑
e∈δ(S) we. The max cut

problem is the problem of finding a set S that maximizes the weight of the cut.
It is one of the original NP-hard problems in Karp (1972). Even when the graph
is unweighted, i.e., we = 1 for all e ∈ E, it is NP-hard, see Garey, Johnson, and
Stockmeyer (1976). Besides its theoretical importance, max cut has applications in,
among others, VLSI design and statistical physics.

In this chapter, we make an empirical comparison of local search heuristics
and polynomial-time ρ-approximation algorithms. The first polynomial-time ρ-
approximation algorithm for max cut is due to Sahni and Gonzalez (1976). The
performance guarantee of their algorithm is 1

2 . In the twenty years thereafter,
polynomial-time algorithms were presented with performance guarantees of 1

2 + 1
2m

(Vitányi, 1981), 1
2 + n−1

4m (Poljak and Turzik, 1986), 1
2 + 1

2n (Haglin and Venkatesan,
1991), and 1

2 + 1
2∆ (Hofmeister and Lefmann, 1996), where ∆ denotes the maximum

degree in the graph G. No progress was made in improving the constant in the per-
formance guarantee beyond that of Sahni and Gonzalez’s straightforward algorithm,
until in 1995 Goemans and Williamson (1995) presented a polynomial-time algo-
rithm with performance guarantee 0.878. Their algorithm is based on a semidefinite
relaxation of max cut. Feige, Karpinski, and Langberg (2000) showed that applying

31



32 3. Max cut

a simple local search procedure to the solution obtained by the Goemans-Williamson
algorithm improves the performance guarantee to 0.878+ ε∆, where ε∆ is a positive
constant depending on the maximum degree of the graph. For ∆ = 3, the per-
formance guarantee is 0.921, and for 3-regular graphs, the performance guarantee
is even 0.924. In general, ε∆ = 1/(233∆4). On the negative side, H̊astad (1997)
showed that, unless P = NP, there cannot exist a polynomial-time ρ-approximation
algorithm for any ρ > 16

17 .
In their paper, Goemans and Williamson also made a small computational eval-

uation of their algorithm. For the instances they used the cuts obtained were usu-
ally within 4% of the semidefinite upper bound and never lower than 91% of this
upper bound. Homer and Peinado (1997) made a parallel implementation of the
Goemans-Williamson algorithm and also implemented a simulated annealing proce-
dure to compare the quality of the cut. They concluded that simulated annealing
in most of their test instances yields the largest cut and both methods yield cuts
that differ at most 5% from the upper bound.

Poljak and Rendl (1994) tried to obtain good upper bounds for max cut through
eigenvalue optimization and as a by-product they also obtained some cuts which
were typically about 2–6% and never more than 9% away from the upper bound.
Helmberg and Rendl (2000) also used eigenvalue optimization to find good up-
per bounds. Experiments using polyhedral approaches are reported by Barahona,
Grötschel, Jünger, and Reinelt (1988), Barahona, Jünger, and Reinelt (1989) and
De Simone, Diehl, Jünger, Mutzel, Reinelt, and Rinaldi (1995), who tested cutting
plane algorithms. Branch-and-bound algorithms are proposed by Carter (1984) and
Pardalos and Rodgers (1990).

There is not much literature on computational experiments with local search
methods for max cut. Empirical evaluations of local search methods of some graph
partitioning problems include the work of Lang and Rao (1993), who considered
the minimum quotient cut problem, i.e., the problem of minimizing the value of
the cut divided by the size of the smallest of the two partitions, and compared
a flow based algorithm with the Fiduccia and Mattheyses (1982) variant of the
neighborhood proposed by Kernighan and Lin (1970) for graph partitioning. Berry
and Goldberg (1999) compared their so-called path optimization algorithm to the
Kernighan-Lin method and a simulated annealing heuristic for the min-quotient-
cut-problem as well as max cut. The path optimization heuristic is a variant of
the Kernighan-Lin method in which not necessarily all vertices are examined. For
max cut, the simulated annealing procedure yielded slightly better cuts. Johnson,
Aragon, McGeoch, and Schevon (1989) report on an experimental study of simulated
annealing for the graph partitioning problem, that is, the problem of partitioning
the vertex set in two equal sized parts such that the weight of the cut edges is
minimized. For more references on max cut, we refer to the survey by Poljak and
Tuza (1995) and the annotated bibliography by Laurent (1997).

The quality of the obtained cuts are given relative to an upper bound. In the
following section, we discuss some methods to obtain upper bounds. In Section 3.3,
we present the polynomial-time ρ-approximation algorithms. The solutions obtained



3.2 Upper bounds 33

by these methods can be improved by using the local search heuristics described in
Section 3.4. Then we make some remarks on the implementational details and the
test instances, and we present the results of our empirical evaluation. Finally, we
make some concluding remarks.

3.2 Upper bounds

Polyhedral bound. The max cut problem can be formulated as a linear program
over the cut polytope. This polytope is the convex hull of the incidence vectors of
the edges of the cuts of the graph. More formally, let χ(S) ∈ {0, 1}m denote the
characteristic vector of the cut induced by S ⊆ V , i.e.,

χe(S) =
{

1 if e ∈ δ(S),
0 otherwise.

Then the cut polytope of the graph G, PC(G), is defined by PC(G) = conv{χ(S) :
S ⊆ V }. Using this polytope, max cut can be formulated as

(P )
max

∑
e∈E weye

s.t. y ∈ PC(G).

Note that PC(G) is an integral polyhedron. Thus there exists an optimal solution
to (P ) that is integral. In such a solution, the binary variable ye denotes whether
edge e ∈ E is in the cut or not.

Obviously, we do not know how to optimize over PC(G) in polynomial time.
Therefore, we optimize over a relaxation of the cut polytope. The relaxation we
consider is the metric polytope, which consists of all vectors y ∈ IRm satisfying∑

e∈F

ye −
∑

e∈C\F

ye ≤ |F | − 1 for all cycles C and all F ⊆ C, |F | odd, (3.1)

0 ≤ ye ≤ 1 for all e ∈ E. (3.2)

These inequalities are clearly valid for PC(G) since a cycle can only contain an even
number of edges in the cut. Moreover, inequalities (3.1) define a facet for PC(G) if
and only if C is a chordless cycle (Barahona and Mahjoub, 1986). Inequalities (3.2)
define a facet if and only if e is not an edge of a triangle in G (Barahona and Mahjoub,
1986). Barahona and Mahjoub (1986) showed that the separation problem for the
metric polytope can be solved in polynomial time. That is, given a point y it can
be verified in polynomial time whether or not y is in the polytope and if not, a
hyperplane is found in polynomial time that separates the point from the polytope.
Hence, we can optimize a linear function over the metric polytope in polynomial
time using the ellipsoid algorithm, see Grötschel, Lovász, and Schrijver (1981, 1984).
Using an LP solver like cplex, we cannot add all inequalities a priori to the LP,
as the number of constraints may be an exponential in the input size, e.g., when G
is a cycle on a odd number of vertices. Hence, we solve a smaller LP, e.g. the one
with only constraints (3.2), and we iteratively add a number of violated constraints
until there are no violated constraints.



34 3. Max cut

Another way to deal with a possibly large number of constraints is to extend G
to the complete graph by setting wij = 0 whenever {i, j} �∈ E. The only chordless
cycles in the complete graph are triangles and the metric polytope is thereby com-
pletely defined by the inequalities corresponding to the triangles. The number of
inequalities in this case is O(n3). However, this number of inequalities is still too
large to add directly to an LP. Therefore, also in this case, we have to iteratively add
violated constraints. In practice this method performs not as well as the previously
mentioned method, as we cannot add more than 5,000 triangle constraints due to
memory limitations.

Eigenvalue bound This bound was introduced by Mohar and Poljak (1990) and
is defined in terms of the maximum eigenvalue of the Laplacian matrix L of the
weighted graph (G,w). This matrix has elements lij , for i, j ∈ V , defined by lij =
−wij if i �= j and lii =

∑
j wij . For S ⊆ V , we define the associated node incidence

vector x(S) ∈ {−1, 1}n by xi(S) = 1 if and only if i ∈ S. The weight of the cut
induced by S is w(S) = 1

4xT (S)Lx(S). The max cut problem can be formulated as

max 1
4xT Lx

s.t. x ∈ {−1, 1}n.

Clearly, for all u ∈ IRn satisfying
∑

i ui = 0, we have that xT diag(u)x = 0 for all
vectors x ∈ {−1, 1}n, where diag(u) denotes the diagonal matrix with entries ui

on the diagonal. Define f(u) = max{n
4 xT (L + diag(u))x : xT x = 1}. Since, for

all u ∈ IRn with
∑

i ui = 0, f(u) is an upper bound on the value of the maximum
cut, the upper bound can be defined as min{f(u) : u ∈ IRn,

∑
i ui = 0}. Since

f(u) = n
4 λmax(L+diag(u)), where λmax(A) is the maximum eigenvalue of the matrix

A, the function can be computed efficiently for all u and the eigenvalue bound is
the following:

(EV )
min n

4 λmax(L + diag(u))
s.t.

∑
i ui = 0.

Delorme and Poljak (1993) showed that this program can be solved up to an additive
error ε > 0 in time polynomial in the input size and log 1

ε .

Semidefinite bound. For the semidefinite bound, we also use the node incidence
vector x(S) ∈ {−1, 1}n associated with a subset S ⊆ V . If an edge {i, j} is in the
cut induced by S, then xi(S)xj(S) = −1 and otherwise xi(S)xj(S) = 1. Hence,
1
2 (1−xi(S)xj(S)) = 1 if {i, j} is in the cut and 0 otherwise. Using the node incidence
variables, we can formulate the problem as

(IQP ) max
∑

i<j wij
1−xixj

2

s.t. xi ∈ {−1, 1} i ∈ V,

where we set wij = 0 whenever {i, j} is not an edge.
For a vector x ∈ {−1, 1}n the matrix X defined by X = xxT is a positive

semidefinite matrix which has diagonal entries equal to 1. The rank of this matrix



3.2 Upper bounds 35

is 1. Hence (IQP ) can be reformulated as

(IQP ′)

max
∑

i<j wij
1−Xij

2

s.t. Xii = 1 i ∈ V,
X � 0,
rank(X) = 1,

where X � 0 denotes that X is positive semidefinite. Given a solution X to (IQP ′),
the corresponding solution x ∈ {−1, 1}n to (IQP ) is equal to the first column of
the rank-one matrix X. The semidefinite bound is obtained by relaxing the rank-
one-condition:

(SDP )
max

∑
i<j wij

1−Xij

2

s.t. Xii = 1 i ∈ V,
X � 0.

This semidefinite program can be solved up to an additive error ε > 0 in time
polynomial in the input size and log 1

ε , see e.g. Alizadeh (1995). Feige and
Schechtman (2002) showed that the integrality gap for the semidefinite bound is
α = min0<θ<π

2
π

θ
1−cos θ > 0.878.

Strengthened semidefinite bound. The semidefinite bound (SDP ) can be
strengthened by adding some valid inequalities, such as the triangle inequalities.
These inequalities are given by

Xij + Xik + Xjk ≥ −1, ∀1 ≤ i < j < k ≤ n,
Xij − Xik − Xjk ≥ −1, ∀1 ≤ i < j < k ≤ n,
−Xij + Xik − Xjk ≥ −1, ∀1 ≤ i < j < k ≤ n,
−Xij − Xik + Xjk ≥ −1, ∀1 ≤ i < j < k ≤ n.

To see that these inequalities are valid, note that at most two edges of a triangle
can be in the cut. Adding these inequalities to (SDP ), we obtain a semidefinite
program, denoted by (SDP+), which can be solved in polynomial time up to an
additive error ε > 0. The integrality gap for this bound is bounded from above by
0.891 (Feige and Schechtman, 2002).

The number of additional constraints is too large to be handled by an SDP
solver. Hence, we iteratively add some of the most violated constraints to our SDP
problem. After each iteration, we can round the obtained solution to a feasible
solution, in the way that will be described in the following section. If this lower
bound is equal to the upper bound, we have found an optimal solution and we stop.
Due to memory limitations, we could not add more than 2,000 triangle constraints.

Dominance relations. Poljak and Rendl (1995) showed that the eigenvalue
bound and the semidefinite bound are equivalent. As any feasible solution to
(SDP+) is a feasible solution to (SDP ), the strengthened semidefinite bound dom-
inates the semidefinite bound. The semidefinite bound does not dominate the poly-
hedral bound, and the polyhedral bound does not dominate the semidefinite bound,
as can be seen by the following two examples. For the 5-cycle with unit weights



36 3. Max cut

on the edges, the polyhedral bound yields the optimal cut value, 4, whereas the
semidefinite bound has value 4.52. On the other hand, the complete graph on
five vertices yields a polyhedral bound of 62

3 , whereas the semidefinite is equal to
6.25. Finally, the strengthened semidefinite bound dominates the polyhedral bound.
Given a solution, X, to (SDP+), we can construct a solution, y, to (LP ) by setting
yij = (1 − Xij)/2, whenever {i, j} is an edge. It is easy to verify that this solution
y satisfies the odd cycle inequalities of the polyhedral bound and it yields the same
objective value as the strengthened semidefinite bound.

3.3 Constructive heuristics

We have considered three randomized polynomial-time ρ-approximation algorithms.
The first one, called greedy, is due to Sahni and Gonzalez (1976). This algorithm
iterates through the vertex set and based on the assignment of vertices 1, . . . , i it
assigns vertex i + 1 to S if the cut induced by S ∪ {i + 1} has a larger weight than
the cut induced by S in the induced subgraph on {1, . . . , i + 1}. In the case that
all edge weights are nonnegative, this algorithm has performance guarantee 1

2 . If
there are also negative edge weights, the weight of the cut found by greedy minus
the sum of the negative edge weights is at least half of the optimal cut value minus
the sum of the negative edge weights. Note that the order in which the vertices
are processed may influence the obtained cut and thus we can get different cuts by
labeling the vertices in different ways.

The second method is called coin flip, which flips, independently, an unbiased
coin for each vertex to decide whether or not to assign it to S. The randomized
performance guarantee of this algorithm for graphs with nonnegative edge weights
is also 1

2 , i.e., the expected weight of the cut is at least half of the optimal cut. If
there are also negative edge weights, then the expected weight of the cut minus the
sum of the negative edge weights is at least half of the optimal cut minus the sum
of the negative edge weights. Note that a derandomized version of coin flip is the
greedy algorithm.

The last constructive heuristic that we consider is the celebrated algorithm of
Goemans and Williamson (1995). First, they solve the semidefinite program (SDP )
presented in the previous section. Using Cholesky decomposition, the matrix X
obtained from this relaxation can be decomposed into vectors v1, . . . , vn ∈ IRn such
that Xij = vT

i vj . A vector vi represents the vertex i ∈ V . This vector solution can
be rounded to a feasible solution using the so-called random hyperplane method: we
choose randomly and uniformly a vector r on the unit sphere Bn = {x ∈ IRn : ‖x‖ =
1} and we set S = {i : rT vi ≥ 0}. In other words, we choose a random hyperplane
through the origin with r as its normal and partition the vertices into those vectors
that lie above or in it (rT vi ≥ 0) and those that lie below the hyperplane. If ZSDP

denotes the value of the semidefinite bound and all edge weights are nonnegative,
then the expected weight of the cut obtained in this manner is bounded from below
by αZSDP , where α = min0<θ<π

2
π

θ
1−cos θ > 0.878. Karloff (1999) showed that

the performance ratio does not improve when triangle inequalities are added to the
semidefinite relaxation. As a Cholesky decomposition can be done in polynomial



3.4 Improvement heuristics 37

time and (SDP ) can be solved in polynomial time up to any additive error ε > 0,
this algorithm is a randomized polynomial-time (α− ε)-algorithm. In the case that
there are also negative edge weights, we have that E[w(S)]−W− ≥ α(ZSDP −W−),
where W− is the sum of all negative edge weights. In the following sections, this
algorithm will be denoted by GW. The randomized way of rounding the vectors vi

can be derandomized, as was shown by Mahajan and Ramesh (1999).

3.4 Improvement heuristics

We compare the algorithms described in the previous section to local search heuris-
tics. A local search method starts from some initial solution. Our starting solutions
are obtained by the three constructive heuristics from the previous section. In the
case that the initial solutions are obtained by the greedy and coin flip procedures,
we use multi-start local search, i.e., we start the local search procedure from several
initial solutions. For the coin flip procedure, we used multiple random assignments;
for the greedy algorithm we generated several random orders of the vertices. The
number of starting solutions generated by the coin flip and the greedy method is
chosen such that the total time spent on a local search heuristic is about equal to
the time for obtaining the cut from the GW algorithm.

We mentioned that in local search, a move is made to a neighboring solution.
We have chosen to use two basic neighborhoods. The first one, called flip, selects a
single vertex and moves it to the other side of the partition, i.e., if the vertex is in
S it is outside of S after the flip and vice versa. The other neighborhood function
is called swap. In this neighborhood, we select an edge that is in the cut and flip
both vertices that form this edge.

In the following subsections, we describe the implemented local search heuristics:
iterative improvement, tabu search, simulated annealing, and variable-depth flip.

3.4.1 Iterative improvement

As mentioned in Chapter 1, iterative improvement is the simplest form of local
search. We have implemented this search strategy using a neighborhood consisting
of all flip and swap neighbors.

There are several ways to select the neighbor to move to. In first improvement,
we move to the first better neighbor that we encounter. In best improvement, we
move to the neighbor with highest cut value among all neighbors.

For this simple form of local search, some effort has been put in the time complex-
ity of finding local optimal solutions. Schäffer and Yannakakis (1991) have shown
that max cut with the flip neighborhood is PLS-complete, see Johnson, Papadim-
itriou, and Yannakakis (1988). Schäffer and Yannakakis also showed that there exist
instances of max cut and starting solutions such that the number of flips needed
to find a local optimum is exponential in the input size. For cubic graphs Poljak
(1995) showed that a flip optimal solution can be found using O(n2) flips.



38 3. Max cut

3.4.2 Tabu search

Recall that in tabu search we make use of a tabu list to avoid cycling. The infor-
mation we store in the tabu list is the move, i.e., the vertex that has been flipped
or the edge that has been swapped. Storing a move in the tabu list means that we
cannot undo this move in the next few iterations. The number of iterations during
which this is not allowed is equal to the length of the tabu list, which, after some
initial experiments, we have set to 10.

Another feature of our tabu search procedure is the so-called backjump, an idea
that Nowicki and Smutnicki (1996) applied to the job shop scheduling problem: if
we have made 100 non-improving moves without improving the best found solution,
we return to this best found solution and move to a neighbor that has not been
visited yet directly from this solution.

3.4.3 Simulated annealing

As mentioned in Chapter 1, simulated annealing uses a control parameter, called
the temperature, for determining the probability for accepting deteriorations. We
need to specify some parameters for simulated annealing: an initial temperature, the
cooling schedule, and the stopping criteria. The initial temperature is chosen such
that in the beginning approximately 80% of the neighboring solutions are accepted.
Most of the simulated annealing procedures perform a number of iterations with the
same temperature. These iterations form a Markov chain. When the temperature
is high, many solutions will be accepted. Therefore, we let the length of the Markov
chain be small when the temperature is high. For the initial temperature this
length is set to the number of vertices. Each time the temperature decreases, we
increase the length by n, until it reaches its maximum value of 25 times the number
of vertices. Finally, after some initial tests, we have decided to use the cooling
schedule proposed by Aarts and Van Laarhoven (1985a,b). The decrement of the
temperature depends on a parameter δ. Let Tk be the temperature in the kth
Markov chain. Then the temperature in the (k + 1)st Markov chain, Tk+1, is given
by

Tk+1 =
Tk

1 + (log(1 + δ)/3σk)
,

where σk is the standard deviation of the cut values of the solutions obtained during
the iterations where the temperature was Tk. After some initial test, δ was set equal
to 0.1.

We stop when the temperature has dropped below 0.05, or when the process
seems frozen, i.e., when for the last six temperatures less than 2% of the number of
neighbors examined, has been accepted.

As we do not want to spend much time on choosing our random neighbor, we
have decided only to use the flip neighborhood, for which we can generate a random
neighbor in constant time, whereas to generate a swap neighbor, we might need
time proportional to the number of edges.



3.5 Computational experience 39

3.4.4 Variable-depth flip
This search strategy is a variant of the neighborhood of Kernighan and Lin (1970)
for graph partitioning. We generate a sequence of n solutions using the following
procedure. We start by labeling all vertices as unflipped. As long as there are
vertices labeled unflipped, we select among these vertices the one for which flipping
it yields the highest increase or lowest decrease in the cut value. We flip this vertex
and label it flipped. After n iterations all vertices are labeled flipped and we have
constructed n different solutions. Note that the last solution yields the same cut
as the original one. We move to the best of these n cuts and repeat the above
procedure, until among the sequence of n solutions, no better cut is found than the
solution at the beginning of that iteration.

3.5 Computational experience

3.5.1 Test instances
We have tested the described heuristics on graphs with sizes varying from 50 vertices
to 1000 vertices. The first set of instances is an extension of the instances used by
Helmberg and Rendl (2000). They generated a set of 21 graphs with 800 vertices us-
ing rudy, a machine independent graph generator written by Rinaldi. We generated
graphs with 50, 100, 200, 300 . . . , 1000 vertices in the same manner. The command
line arguments for rudy specifying these graphs are given in Vredeveld (2001). For
each of these values of n we have generated the following types of graphs:

1. unweighted random graphs with a density of 6%: five instances;

2. same graphs as in 1, with edge weights uniformly drawn from {−1, 1};
3. toroidal grids with random edge weights uniformly drawn from {−1, 1}: three

instances;

4. unweighted almost planar graphs, having as edge set the union of two planar
graphs: four instances;

5. same graphs as in 4, with edge weights uniformly drawn from {−1, 1}.
We also tested our methods on some instances from the Ising model of spin

glasses. These instances are obtained from the web-site of the seventh DIMACS
Implementation Challenge, see Pataki and Schmieta (1999). There are two instances
with 512 vertices and 1536 edges, toruspm8-50 and torusg3-8. Toruspm8-50 has edge
weights in {−1, 1}, torusg3-8 has arbitrary edge weights, which were made integer
by multiplying them by 100, 000. These instances will be called torus instances.
There are two other instances on the web-site, toruspm3-15-50 and torusg3-15, with
3375 vertices and 10125 edges, but these instances could not be solved by the SDP
solver, and are therefore excluded from our tests.

3.5.2 Implementational details
All algorithms have been coded in C. For solving the linear program, we used cplex

6.6.1; for solving the semidefinite programs, we used cutsdp by Karish (1998). The



40 3. Max cut

SDP and LP relaxations have been run on a Sun Ultra-1, 140 MHz with 256 MB
and the other methods have been run on faster machines but with less memory. The
time usage has been corrected to the Sun Ultra-1.

3.5.3 Computational results
We start by comparing the performance of the obtained upper bounds. These results
are given in Table 3.1 and Figures 3.1 and 3.2. In the table the average ratio of
the upper bound to the best lower bound and its standard deviation are given; the
figures denote the minimum, maximum, and average ratio. As the torus instances
behave similarly to the weighted instances with 500 vertices, we have included their
results in those of the weighted graphs of 500 vertices. Note that for each other
number of vertices, there are 9 unweighted instances and 12 weighted ones.

LP SDP SDP+

unweighted 1.005 1.028 1.000
50 (0.008) (0.009) (0.000)

weighted 1.000 1.078 1.000
(0.000) (0.041) (0.000)

unweighted 1.014 1.044 1.002
100 (0.010) (0.009) (0.002)

weighted 1.006 1.121 1.000
(0.010) (0.023) (0.000)

unweighted 1.201 1.045 1.018
200 (0.079) (0.009) (0.005)

weighted 1.507 1.149 1.036
(0.385) (0.032) (0.027)

unweighted 1.323 1.046 1.026
300 (0.106) (0.006) (0.005)

weighted 1.775 1.181 1.075
(0.644) (0.036) (0.051)

unweighted 1.501 1.043 1.032
400– (0.080) (0.003) (0.004)

800 weighted 2.491 1.182 1.115
(1.066) (0.045) (0.065)

unweighted 1.568 1.041
900– (0.099) (0.002)

1000 weighted 3.077 1.191
(1.562) (0.047)

unweighted 1.381 1.042 1.024
all (0.219) (0.007) (0.013)

weighted 2.195 1.167 1.079
(1.219) (0.053) (0.071)

Table 3.1: Upper bounds: average ratio to best lower bound (standard
deviation)

The SDP+ relaxation could not be solved for instances with 900 or more vertices
and for the unweighted almost planar graphs on 100 vertices. The LP relaxation
yields good upper bounds for the smaller instances, i.e., those with 50 and 100
vertices. On unweighted graphs with 50 vertices the bound is 0.5% above the best
lower bound and for the weighted instances of this size it yields optimal bounds.
On graphs with 100 vertices the LP bound is better than the SDP bound. On
instances of 200 or more vertices the LP relaxation performs rather poorly: on
average, for unweighted instances it is almost 50% above the best lower bound and
for the weighted graphs it is even more than twice the best lower bound. The SDP



3.5 Computational experience 41

method yields reasonable bounds: on average, the ratio of this bound to the best
lower bound is 1.04 for the unweighted instances and for the weighted instances this
ratio is 1.17. For instances on which it could be solved, the SDP+ relaxation gives
good bounds: 2.4% above the best lower bound for the unweighted instances and
8% for the weighted ones.

The time required to solve the relaxation is given in Table 3.2, which reports
on the average time usage and its standard deviation in seconds, and Figures 3.3
and 3.4, which report on the minimum, maximum, and average time usage in sec-
onds. The LP relaxation could be solved in reasonable time: for graphs with 1000
vertices it needs about 6 minutes for the almost planar graphs and the time required
for the other instances varies from half a minute to 2 hours. The SDP relaxation
can be solved fast for the smaller instances: within a second for graphs with 50
vertices. However, the running time grows to more than 3 hours for graphs with
1000 vertices. Adding triangle constraints to the SDP relaxation results in huge
running times.

We now look at the heuristics for obtaining cuts. The results for the three
described constructive methods are given in Table 3.3, which report on the average
ratio of the cut value to the best upper bound and its standard deviation, and in
Figures 3.5 and 3.6, which report on the minimum, maximum, and average ratio
for unweighted and weighted graphs. Recall that in the GW procedure, we round
the solution to the SDP relaxation by choosing a random hyperplane through the
origin. We have tested this procedure using 50 and 100 random hyperplanes. The
quality of the obtained cuts when using 100 random hyperplanes is on average .03%
better than the cuts obtained when using 50 random hyperplanes. Therefore, we
report on the cuts obtained by using 100 random hyperplanes. The time needed for
this rounding procedure varies from 0.24 seconds for the graphs with 50 vertices to
106 seconds for instances with 1000 vertices. When using 50 random hyperplanes,
the time required for rounding is halved. Note that the time needed for the GW
heuristic is dominated by the time usage of solving the SDP relaxation: on average
the rounding procedure requires less than 3% of the total time of the procedure.
We have repeated the Greedy and Coin Flip methods several times using random
orders on the vertices for the Greedy heuristic. The number of repetitions is chosen
such that the time spent on either procedures is the same as the time spent on the
GW heuristic.

The GW procedure yields the best cuts and the Greedy heuristic outperforms the
Coin Flip method. For the smallest instances the GW heuristic produces almost
optimal cuts. On average the cuts are 4% below the best upper bound for the
unweighted graphs and 14% for the weighted ones. These values for the Greedy
procedure are 6% and 25% respectively. The Coin Flip procedure performs poorly,
especially when the weights may be negative.

As the amount of time used for the GW procedure is rather large, we also ran the
Greedy and Coin Flip heuristics with a time bound of 450 seconds, for graphs with
400 or more vertices. For the greedy heuristic this resulted in cuts that are about
0.1% worse than the cuts using the large time bound for graphs with 400 vertices up



42 3. Max cut

 5
0 

10
0 

20
0 

30
0 

40
0 

50
0 

60
0 

70
0 

80
0 

90
0 

10
00

1

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
92

LP S
D

P
S

D
P

+

F
ig

ur
e

3.
1:

U
pp

er
bo

un
ds

fo
r

un
w
ei

gh
te

d
in

st
an

ce
s:

m
in

im
um

,
m

ax
im

um
,

an
d

av
er

ag
e

ra
ti
o

to
be

st
lo

w
er

bo
un

d



3.5 Computational experience 43

 5
0 

10
0 

20
0 

30
0 

40
0 

50
0 

60
0 

70
0 

80
0 

90
0 

10
00

1

1.
52

2.
53

3.
54

4.
55

5.
56

LP S
D

P
S

D
P

+ F
ig

ur
e

3.
2:

U
pp

er
bo

un
ds

fo
r

w
ei

gh
te

d
in

st
an

ce
s:

m
in

im
um

,
m

ax
im

um
,
an

d
av

er
ag

e
ra

ti
o

to
be

st
lo

w
er

bo
un

d



44 3. Max cut

 5
0 

10
0 

20
0 

30
0 

40
0 

50
0 

60
0 

70
0 

80
0 

90
0 

10
00

10
−

2

10
−

1

10
0

10
1

10
2

10
3

10
4

10
5

LP S
D

P
S

D
P

+

F
ig

ur
e

3.
3:

T
im

e
us

ag
e

fo
r

al
m

os
t
pl

an
ar

gr
ap

hs
:

m
in

im
um

,
m

ax
im

um
,
an

d
av

er
ag

e
ti
m

e
us

ag
e



3.5 Computational experience 45

 5
0 

10
0 

20
0 

30
0 

40
0 

50
0 

60
0 

70
0 

80
0 

90
0 

10
00

10
−

2

10
−

1

10
0

10
1

10
2

10
3

10
4

10
5

LP S
D

P
S

D
P

+

 5
0 

10
0 

20
0 

30
0 

40
0 

50
0 

60
0 

70
0 

80
0 

90
0 

10
00

10
−

2

10
−

1

10
0

10
1

10
2

10
3

10
4

10
5

LP S
D

P
S

D
P

+

F
ig

ur
e

3.
4:

T
im

e
us

ag
e

fo
r

ot
he

r
in

st
an

ce
s:

m
in

im
um

,
m

ax
im

um
,
an

d
av

er
ag

e
ti
m

e
us

ag
e



46 3. Max cut

LP SDP SDP+

almost planar 7.731 0.979 691.452
50 (4.370) (0.060) (486.883)

other 0.062 0.886 2327.394
(0.048) (0.089) (5835.023)

almost planar 78.678 8.694 21374.075
100 (35.802) (0.854) (586.267)

other 36.698 7.088 19562.456
(22.004) (0.671) (6058.644)

almost planar 45.109 75.629 13576.806
200 (118.861) (6.266) (849.846)

other 441.748 53.049 13187.638
(458.763) (5.284) (1036.620)

almost planar 138.812 309.644 14276.344
300 (216.808) (25.786) (449.588)

other 201.779 211.297 13605.327
(474.550) (14.096) (525.764)

almost planar 64.650 851.533 17107.233
400 (154.100) (74.301) (896.006)

other 2086.738 557.592 16744.181
(3237.235) (24.895) (669.912)

almost planar 88.653 4265.094 20482.123
500 (129.859) (6657.051) (493.893)

other 767.648 1249.038 19355.184
(1883.494) (145.807) (1782.154)

almost planar 49.659 3670.529 27719.696
600 (37.617) (142.764) (759.953)

other 897.075 2138.437 25569.642
(1841.572) (96.474) (1568.883)

almost planar 48.372 6021.508 37393.148
700 (12.359) (397.335) (991.841)

other 822.952 3478.990 33046.105
(1855.661) (188.462) (2150.615)

almost planar 94.609 10050.567 44703.392
800 (69.548) (1015.959) (1392.681)

other 839.235 5632.110 39781.328
(1780.554) (449.884) (3576.028)

almost planar 205.203 15129.900
900 (266.315) (1273.643)

other 595.458 8252.656
(607.490) (516.801)

almost planar 373.488 20176.985
1000 (399.289) (854.201)

other 1277.160 11168.191
(1887.007) (807.100)

Table 3.2: Average time usage in seconds (standard deviation)



3.5 Computational experience 47

Greedy Coin Flip GW

unweighted 0.986 0.805 0.999
50 (0.011) (0.062) (0.002)

weighted 0.951 0.503 0.994
(0.028) (0.080) (0.011)

unweighted 0.960 0.785 0.981
100 (0.010) (0.047) (0.013)

weighted 0.907 0.378 0.977
(0.030) (0.061) (0.017)

unweighted 0.944 0.788 0.968
200 (0.009) (0.037) (0.006)

weighted 0.821 0.229 0.918
(0.038) (0.052) (0.041)

unweighted 0.933 0.786 0.958
300 (0.007) (0.022) (0.004)

weighted 0.765 0.137 0.881
(0.050) (0.060) (0.057)

unweighted 0.927 0.796 0.949
400– (0.004) (0.012) (0.004)

800 weighted 0.713 0.129 0.839
(0.054) (0.037) (0.066)

unweighted 0.920 0.801 0.941
900– (0.008) (0.026) (0.007)

1000 weighted 0.655 0.110 0.775
(0.035) (0.032) (0.047)

unweighted 0.936 0.795 0.958
all (0.021) (0.030) (0.018)

weighted 0.753 0.187 0.863
(0.101) (0.129) (0.086)

Table 3.3: Constructive heuristics: average ratio to upper bound (standard
deviation)

to 1.7% worse for graphs with 1000 vertices. For the Coin Flip procedure the cuts
obtained using this smaller time bound resulted in cuts that are about 10% worse.

The results of applying local search methods are given in Table 3.4, which gives
the average ratio to the best upper bound and its standard deviation, and Fig-
ures 3.7–3.10, in which the minimum, maximum, and average ratio are given. We
applied multi-start local search to the Greedy and Coin Flip starting solutions. The
number of starting solutions is chosen such that the time spent on each of these
local search procedures is the same as the time spent on the GW heuristic plus that
of the local search method. As there is hardly any difference in the performance
of a local search method applied to multiple greedy solutions and that of a local
search procedure applied to Coin Flip solutions, we only report on the methods
applied to Greedy solutions. For iterative improvement, we implemented two neigh-
bor selecting rules: first and best improvement. The strategies performed equally
well and we therefore only present the results of best improvement. For iterative
improvement (II) and tabu search (TS), we see that these methods when they are
applied to the GW solution perform better than when they are applied to multiple
Greedy solutions. Variable-depth flip (VDF) performs better when it is applied to
multiple Greedy solution than when it is applied to the GW solution. The best cuts
are obtained by applying simulated annealing (SA) applied to either of the starting
solutions: on average the ration is 0.973 for the unweighted instances and 0.913 for
the weighted ones.



48 3. Max cut

 5
0 

10
0 

20
0 

30
0 

40
0 

50
0 

60
0 

70
0 

80
0 

90
0 

10
00

0.
7

0.
750.

8

0.
850.

9

0.
951

G
re

ed
y

C
oi

n 
F

lip
G

W

F
ig

ur
e

3.
5:

C
on

st
ru

ct
iv

e
he

ur
is

ti
cs

fo
r

un
w
ei

gh
te

d
in

st
an

ce
s:

m
in

im
um

,
m

ax
im

um
,
an

d
av

er
ag

e
ra

ti
o

to
up

pe
r

bo
un

d



3.5 Computational experience 49

 5
0 

10
0 

20
0 

30
0 

40
0 

50
0 

60
0 

70
0 

80
0 

90
0 

10
00

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

G
re

ed
y

C
oi

n 
F

lip
G

W

F
ig

ur
e

3.
6:

C
on

st
ru

ct
iv

e
he

ur
is

ti
cs

fo
r

w
ei

gh
te

d
in

st
an

ce
s:

m
in

im
um

,
m

ax
im

um
,
an

d
av

er
ag

e
ra

ti
o

to
up

pe
r

bo
un

d



50 3. Max cut

II TS SA VDF
Greedy GW Greedy GW Greedy GW Greedy GW

unweighted 1.000 0.999 0.996 1.000 1.000 1.000 1.000 0.999
50 (0.000) (0.002) (0.008) (0.000) (0.000) (0.000) (0.000) (0.002)

weighted 1.000 0.995 0.997 1.000 1.000 1.000 1.000 0.995
(0.000) (0.011) (0.009) (0.000) (0.000) (0.000) (0.000) (0.011)

unweighted 0.988 0.985 0.985 0.987 0.989 0.989 0.989 0.985
100 (0.012) (0.014) (0.012) (0.013) (0.011) (0.011) (0.011) (0.014)

weighted 0.983 0.990 0.999 0.998 1.000 1.000 1.000 0.992
(0.018) (0.011) (0.002) (0.004) (0.000) (0.000) (0.000) (0.009)

unweighted 0.975 0.976 0.978 0.980 0.981 0.982 0.981 0.977
200 (0.006) (0.003) (0.004) (0.005) (0.006) (0.004) (0.005) (0.004)

weighted 0.920 0.942 0.955 0.957 0.963 0.964 0.965 0.948
(0.025) (0.032) (0.026) (0.025) (0.028) (0.024) (0.026) (0.026)

unweighted 0.966 0.970 0.971 0.973 0.974 0.974 0.973 0.970
300 (0.004) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

weighted 0.879 0.911 0.923 0.921 0.930 0.930 0.929 0.919
(0.032) (0.045) (0.042) (0.043) (0.044) (0.043) (0.045) (0.047)

unweighted 0.958 0.963 0.965 0.966 0.968 0.968 0.965 0.965
400– (0.003) (0.004) (0.004) (0.004) (0.004) (0.004) (0.003) (0.004)

800 weighted 0.832 0.877 0.885 0.890 0.898 0.898 0.891 0.887
(0.030) (0.050) (0.057) (0.051) (0.052) (0.053) (0.055) (0.051)

unweighted 0.949 0.956 0.956 0.959 0.960 0.960 0.957 0.957
900– (0.007) (0.004) (0.003) (0.003) (0.002) (0.002) (0.004) (0.003)

1000 weighted 0.770 0.817 0.821 0.828 0.840 0.840 0.829 0.826
(0.011) (0.033) (0.038) (0.033) (0.034) (0.034) (0.038) (0.035)

unweighted 0.965 0.969 0.970 0.972 0.973 0.973 0.971 0.970
all (0.017) (0.014) (0.013) (0.013) (0.013) (0.013) (0.014) (0.013)

weighted 0.860 0.894 0.902 0.906 0.913 0.913 0.908 0.902
(0.076) (0.069) (0.072) (0.067) (0.066) (0.066) (0.070) (0.067)

Table 3.4: Local search methods: average ratio to best upper bound (standard
deviation)

For graphs with 400 or more vertices, we have also ran the local search procedures
applied to the Coin Flip and Greedy solutions with a time limit of 450 seconds. In
the case of simulated annealing this time bound is obtained by using a faster cooling
schedule: the parameter δ is increased. For all local search procedures the average
performance is about 0.1% worse than those reported in the table and figures.

3.6 Concluding remarks

We have investigated how well polynomial-time ρ approximation algorithms behave
in practice for the max cut problem and we have also considered the quality of
some upper bounds for this problem. The best upper bounds are obtained by
using a semidefinite programming relaxation to which some triangle constraints are
added: about 2.5% above the best lower bound for unweighted instances and 8%
for the weighted graphs. The time usage for solving this relaxation is large, and the
relaxation could not be solved for graphs with 900 or more vertices. If the triangle
constraints are not added, then the difference between the obtained upper bound
and the best lower bound is approximately doubled, whereas the time usage for the
large instances is still large. The LP relaxation could be solved in reasonable time,
but the quality of the bound is poor.

Of the constructive heuristics, the one with the best performance guarantee,
i.e., the heuristic of Goemans and Williamson, yields the best cuts: on average 4%
below the best upper bound for unweighted graphs and for the weighted graphs



3.6 Concluding remarks 51

this deviation was 14%. Our results coincide with the results of Goemans and
Williamson (1995), who tested their algorithm on a few unweighted instances.

For iterative improvement and tabu search better solutions were obtained when
they were applied to the solution obtained by GW heuristic than when they were
applied to multiple Greedy or Coin Flip solutions, whereas variable-depth search
performed better on multiple Greedy solutions than on the GW solution. The best
results are obtained by simulated annealing regardless of the starting solution used:
on average the ratio of the obtained cut to the best upper bound is 0.973 for the
unweighted instances and 0.913 for the weighted ones. If we impose a time bound
of 450 seconds for the local search method applied to multiple Greedy solutions, the
performance of each method decreases on average by 0.1%.



52 3. Max cut

 5
0 

10
0 

20
0 

30
0 

40
0 

50
0 

60
0 

70
0 

80
0 

90
0 

10
00

0.
94

0.
95

0.
96

0.
97

0.
98

0.
991

II 
G

re
ed

y
II 

G
W

T
S

 G
re

ed
y

T
S

 G
W

F
ig

ur
e

3.
7:

It
er

at
iv

e
im

pr
ov

em
en

t
an

d
ta

bu
se

ar
ch

fo
r

un
w
ei

gh
te

d
in

st
an

ce
s:

m
in

im
um

,
m

ax
im

um
,
an

d
av

er
ag

e
ra

ti
o

to
up

pe
r

bo
un

d



3.6 Concluding remarks 53

 5
0 

10
0 

20
0 

30
0 

40
0 

50
0 

60
0 

70
0 

80
0 

90
0 

10
00

0.
7

0.
750.

8

0.
850.

9

0.
951

II 
G

re
ed

y
II 

G
W

T
S

 G
re

ed
y

T
S

 G
W F
ig

ur
e

3.
8:

It
er

at
iv

e
im

pr
ov

em
en

t
an

d
ta

bu
se

ar
ch

fo
r

w
ei

gh
te

d
in

st
an

ce
s:

m
in

im
um

,
m

ax
im

um
,
an

d
av

er
ag

e
ra

ti
o

to
up

pe
r

bo
un

d



54 3. Max cut

 5
0 

10
0 

20
0 

30
0 

40
0 

50
0 

60
0 

70
0 

80
0 

90
0 

10
00

0.
94

0.
95

0.
96

0.
97

0.
98

0.
991

S
A

 G
re

ed
y

S
A

 G
W

V
D

 G
re

ed
y

V
D

 G
W

F
ig

ur
e

3.
9:

Si
m

ul
at

ed
an

ne
al

in
g

an
d

va
ri

ab
le

-d
ep

th
fli

p
fo

r
un

w
ei

gh
te

d
in

st
an

ce
s:

m
in

im
um

,
m

ax
im

um
,
an

d
av

er
ag

e
ra

ti
o

to
up

pe
r

bo
un

d



3.6 Concluding remarks 55

 5
0 

10
0 

20
0 

30
0 

40
0 

50
0 

60
0 

70
0 

80
0 

90
0 

10
00

0.
7

0.
750.

8

0.
850.

9

0.
951

S
A

 G
re

ed
y

S
A

 G
W

V
D

 G
re

ed
y

V
D

 G
W

F
ig

ur
e

3.
10

:
Si

m
ul

at
ed

an
ne

al
in

g
an

d
va

ri
ab

le
-d

ep
th

fli
p

fo
r

w
ei

gh
te

d
in

st
an

ce
s:

m
in

im
um

,
m

ax
im

um
,
an

d
av

er
ag

e
ra

ti
o

to
up

pe
r

bo
un

d





4
Multiprocessor scheduling:
guarantees for local search

4.1 Introduction

We now turn to the worst-case analysis of the quality of local optima. In this
chapter, we consider multiprocessor scheduling problems. In these problems, we
are given a set of n jobs, J1, . . . , Jn, each of which has to be processed without
preemption on one of m machines, M1, . . . , Mm. A machine can process at most
one job at a time and all jobs and machines are available at time 0. The objective
we consider is makespan minimization, that is, we want the last job to complete
as early as possible. The time, pij , it takes for a job Jj to be fully processed on a
machine Mi depends on the machine environment:

• Identical parallel machines, denoted by P : a job has the same processing time
on all machines, i.e., pij = pj , where pj is a positive integer.

• Uniform parallel machines, denoted by Q: the machines have positive inte-
gral speeds, s1, . . . , sm, and each job has a given positive integral processing
requirement pj ; the processing time is pij = pj/si.

• Unrelated parallel machines, denoted by R: the time it takes to process job
Jj on machine Mi is dependent on the machine as well as the job; pij is a
positive integer.

In the case that the number of machines is part of the input, Graham et al.
(1979) denote these problems by P‖Cmax, Q‖Cmax, and R‖Cmax. If the number of

57



58 4. Multiprocessor scheduling

Mh

σ

Jj

σ′

JjMi

Mh

Mi

Figure 4.1: jump

machines is a constant m, then they denote the problems by Pm‖Cmax, etc.
Even the simplest case, P2‖Cmax, is NP-hard; see Garey and Johnson (1979).

Therefore, it is unlikely that there exist polynomial-time algorithms that solve these
problems to optimality. Hence, we search for approximate solutions. For P‖Cmax

and Q‖Cmax, Hochbaum and Shmoys (1987, 1988) develop polynomial-time ap-
proximation schemes. For R‖Cmax, Lenstra, Shmoys, and Tardos (1990) present
a polynomial-time 2-approximation algorithm; they also prove that there does not
exists a polynomial-time (3

2 − ε)-algorithm for any ε > 0, unless P = NP. For an
overview of previous work on the worst-case analysis of local search, we refer to
Chapter 1.

As mentioned in Chapter 1, one way to find approximate solutions is through
local search. In this chapter, we analyze the performance of local search for the jump,
the swap and the newly defined push neighborhood from a worst-case perspective.

This chapter is organized as follows. In the following section we discuss the
neighborhoods and in Section 4.3 we establish performance guarantees for the var-
ious local optima and scheduling problems. In Section 4.4, we make some remarks
on the running time for iterative improvement to obtain the local optima, and in
Section 4.5 we make some concluding remarks.

4.2 Neighborhoods

Before discussing the neighborhoods, we first describe our representation of a sched-
ule. As the sequence in which the jobs are processed does not influence the makespan
of a schedule for a given assignment of the jobs to the machines, we represent a sched-
ule by such an assignment. This is equivalent to a partitioning of the set of jobs
into m disjoint subsets J1, . . . ,Jm, where Ji is the set of jobs scheduled on Mi. The
load of a machine is the total processing time of its jobs. A critical machine is a
machine with maximum load.

The first neighborhood that we consider is the jump neighborhood, also known
as the move neighborhood: we select a job Jj and a machine Mi on which job Jj is
not scheduled. The neighbor is obtained by moving Jj to Mi, as shown in Figure 4.1.
We say that we are in a jump optimal solution, if no jump decreases the makespan
or the number of critical machines without increasing the makespan.

In the swap neighborhood, we select two jobs, Jj and Jk, scheduled on different
machines. The neighbor is formed by interchanging the machine allocations of the
jobs (see Figure 4.2). If all jobs are scheduled on the same machine, then the swap
neighborhood is empty; therefore, we define the swap neighborhood as one that



4.2 Neighborhoods 59

Mi

Mh

JkMi

σ

Jj

JkMh

σ′

Jj

Figure 4.2: swap

consists of all possible jumps and all possible swaps. A swap optimal solution is a
solution in which no swap decreases the makespan or the number of critical machines
without increasing the makespan.

As we will show in the next section, the jump and swap neighborhoods have
no constant performance guarantee for Q‖Cmax. Therefore, we introduce a push
neighborhood, for which any local optimum is at most a factor 2 − 2

m+1 of optimal
for Q‖Cmax. The push neighborhood is a form of variable-depth search, introduced
by Kernighan and Lin (1970) for graph partitioning; see also Lin and Kernighan
(1973). A push is a sequence of jumps.

Starting with a schedule σ = (J1, . . . ,Jm) having makespan Cmax(σ), a push
is initiated by selecting a job Jk on a critical machine and a machine Mi to move
it to. We say that Jk fits on Mi if

∑
Jj∈Ji:pij≥pik

pij + pik < Cmax(σ). If Jk

does not fit on any machine, then it cannot be pushed. If, after moving Jk to Mi,
the load of this machine is at least as large as the original makespan, that is, if∑

Jj∈Ji
pij + pik ≥ Cmax(σ), then we iteratively remove the smallest job from Mi

until the load of Mi is less than Cmax(σ). The removed jobs are gathered in a
queue. We now have a queue of pending jobs and a partial schedule that has lower
makespan or fewer critical machines. If the queue is non-empty, then the largest job
in the queue is removed and moved to some machine on which it fits, in the same
way as the first job was pushed. Thus, if necessary, we allow some smaller jobs to
be removed. If the largest job in the queue does not fit on any machine, then we say
that the push is unsuccessful. We repeat the procedure of moving the largest job
in the queue to a machine until the queue is empty or we have determined that the
push is unsuccessful. When pushing all jobs on the critical machines is unsuccessful,
we are in a push optimal solution.

We illustrate a push in the following example.

Example 4.1. Consider an instance for P3‖Cmax, with n = 8 jobs. The processing
times are p1 = 8, p2 = p3 = p4 = 6, p5 = p6 = 5, p7 = 3 and p8 = 2. The
starting schedule is σ = (J1,J2,J3), with J1 = {J2, J5, J6}, J2 = {J1, J7, J8},
and J3 = {J3, J4}, and has makespan Cmax(σ) = 16. This schedule is depicted in
Figure 4.3a. In the first step of the push, we select job J6, with p6 = 5, to be pushed
onto machine M2. When moving J6 to M2, jobs J8 and J7 have to be removed from
M2 (Figure 4.3b). At this point, we have a partial schedule σ′ = (J ′

1,J ′
2,J ′

3),
J ′

1 = {J2, J5}, J ′
2 = {J1, J6}, J ′

3 = {J3, J4} and a queue of pending jobs containing
J7 and J8. In the next step, we remove J7 from the queue and move it to M1 and then



60 4. Multiprocessor scheduling

J2 J5

J1 J7 J8

J3 J4

J6M1

M2

M3

Cmax(σ) = 16σ

(a)

J2 J5

J1

J3 J4

J6 J7 J8

J8

J7

Queue:

M1

M2

M3

σ′ Cmax(σ) = 16

(b)

J2 J5

J1

J3 J4

J6

J7

J8

J8

J7

Queue:

M1

M2

M3

Cmax(σ̄) = 14σ̄

(c)

Figure 4.3: push



4.3 Performance guarantees 61

J1 J3 J4

J2 J5 J6 J7

Figure 4.4: push optimal schedule

we move J8 to M3. After moving J8, the queue is empty and we have a new schedule
σ̄ = (J̄1, J̄2, J̄3), with J̄1 = {J2, J5, J7}, J̄2 = {J1, J6}, and J̄3 = {J3, J4, J8}, which
has makespan Cmax(σ̄) = 14 (Figure 4.3c).

A push optimal solution is given in Example 4.2. As the schedule in this example
is not swap optimal, it shows that a push optimal solution is not necessarily swap
optimal. Of course, as a push is a sequence of one or more jumps, a push optimal
solution is jump optimal.

Example 4.2. In Figure 4.4, we give an example for P2‖Cmax. There are n = 7
jobs, J1, . . . , J7, and the processing times are p1 = 9, p2 = 8, p3 = 6, p4 = 5,
p5 = 4, and p6 = p7 = 3. The schedule σ = (J1,J2), with J1 = {J1, J3, J4} and
J2 = {J2, J5, J6, J7}, is a push optimal schedule. When trying to push J1, jobs
J7, J6, and J5 are moved to the queue of pending jobs. Then jobs J5 and J6 are
moved to machine M1, resulting in a partial schedule with a load of 18 for M1 and
of 17 for M2. The queue of pending jobs consists of job J7 of length p7 = 3. As
18+3 ≥ 20 = Cmax(σ) and 17+3 ≥ 20 = Cmax(σ), J7 does not fit on M1 as well as
on M2. Hence, pushing J1 is unsuccessful. In the same manner, we see that pushing
J3 or J4 is also unsuccessful. The schedule σ can be improved by swapping e.g. J1

and J2, and thus it is not swap optimal.

By our way of defining a push, we know that when moving a job Jk, only smaller
jobs than Jk can be removed from the machine. Hence, during one push, at most
n jobs need to be moved. As one move can straightforwardly be implemented such
that it needs O(n) time, a push requires O(n2) elementary operations. If we use
appropriate data structures, like binary heaps for the queue of pending jobs and for
the list of machines and doubly linked lists for the jobs, and if we select the machine
to move a job to in a greedy manner, a push neighbor can be found in O(n log n)
time.

Note that, as we always take the largest job from the queue, the push neigh-
borhood is only defined for scheduling problems where the largest job is defined
unambiguously. Therefore, in the case of unrelated parallel machines, a push is not
well defined.

4.3 Performance guarantees

In this section, we establish performance guarantees for the various local optima
and scheduling problems. These are given in Table 4.1. “UB = ρ” denotes that ρ



62 4. Multiprocessor scheduling

jump swap push

P2‖Cmax
4
3

4
3

8
7

P‖Cmax 2 − 2
m+1† 2 − 2

m+1† UB = 2 − 2
m+1

LB = 4m
3m+1

Q2‖Cmax
1+

√
5

2
1+

√
5

2

√
17+1
4

Q‖Cmax
1+

√
4m−3
2 ‡ 1+

√
4m−3
2 ‡ UB = 2 − 2

m+1

LB = 3
2 − ε

R2‖Cmax LB = pmax
C∗

max
LB = n − 1 undefined

R‖Cmax LB = pmax
C∗

max
LB = pmax−1

C∗
max

undefined

Table 4.1: performance guarantees: CLS
max/C∗

max; † UB due to Finn and
Horowitz (1979); ‡ UB due to Cho and Sahni (1980)

is a performance guarantee and “LB = ρ” denotes that the performance guarantee
cannot be less than ρ; “ρ” denotes that UB = ρ and LB = ρ. For the unrelated
parallel machines cases, we use pmax, which is defined by pmax = maxi,j pij .

In the following subsection we prove the performance guarantees for the identical
parallel machines cases, and in the subsequent two subsections we consider the
uniform and unrelated parallel machines cases, respectively. In the following, we
denote the value of an optimal schedule by C∗

max and Cj
max, Cs

max, and Cp
max denote

the makespan of respectively a jump optimal, a swap optimal, and a push optimal
schedule.

4.3.1 Identical parallel machines

Recall that in the identical parallel machine environment, all machines need the
same amount of time to process a job. Hence the processing time of a job Jj on
a machine Mi is pij = pj . Theorem 4.1 is due to Finn and Horowitz (1979); for
completeness we include the proof.

Theorem 4.1. A jump optimal schedule for P‖Cmax has makespan at most 2− 2
m+1

times the optimal solution value.

Proof. Consider a jump optimal schedule with value Cj
max and assume w.l.o.g.

that machine M1 is a critical machine. If M1 processes only one job, say Jk, then
Cj

max = pk, and as the optimal makespan is at least as large as the size of any job,
we know that Cj

max = C∗
max.

If M1 processes at least two jobs, then the smallest job on this machine, say job
Jk, has processing time pk ≤ 1

2Cj
max. Jump optimality implies for all machines Mi



4.3 Performance guarantees 63

that ∑
Jj∈Ji

pj + pk ≥ Cj
max.

Summing this inequality over all machines Mi for i > 1 and adding Cj
max =∑

Jj∈J1
pj yields

mCj
max ≤

∑
i

∑
Jj∈Ji

pj + (m − 1)pk =
∑

j

pj + (m − 1)pk. (4.1)

As C∗
max ≥ 1

m

∑
j pj , inequality (4.1) implies

Cj
max ≤ 1

m

∑
j

pj +
m − 1

m
pk ≤ C∗

max +
m − 1
2m

Cj
max,

where the last inequality is due to pk ≤ 1
2Cj

max.
Rearranging terms yields the performance guarantee:

Cj
max ≤ 2m

m + 1
C∗

max = (2 − 2
m + 1

)C∗
max.

�

Corollary 4.2. A swap optimal schedule for P‖Cmax has makespan at most
2 − 2

m+1 times the optimal makespan.

The bounds given in Theorem 4.1 and Corollary 4.2 are tight, as can be seen in
the following example.

Example 4.3. For given K > 1, consider the instance in which there are m ma-
chines and the number of jobs is n = 2 + (m−1)(Km+1). The processing times of
the jobs are p1 = p2 = Km and pj = 1 (j = 3, . . . , n). The optimal makespan is
obtained by a schedule in which jobs J1 and J2 are processed on different machines
and the other jobs are divided over the machines such that the loads of any two
machines differ by at most 1. The optimal makespan is C∗

max = K(m + 1) + 1.
In Figure 4.5, a swap optimal schedule is given: jobs J1 and J2 are both pro-

cessed on machine M1 and the other jobs are equally divided over the machines
M2, . . . , Mm. It is easy to see that this schedule is jump optimal and swap op-
timal, as swapping job J1 or J2 with any of the unit length jobs does not de-
crease the makespan and a jump of J1 or J2 increases the makespan. The value
of this schedule is Cs

max = 2Km = ( 2m
m+1+1/K )C∗

max and for large values of K,
the ratio Cs

max / C∗
max is close to 2 − 2

m+1 . For a jump optimal schedule, we
can even remove one job from each of the machines M2, . . . , Mm. The value of
the optimum is then C∗

max = K(m + 1) and the jump optimal schedule remains
Cj

max = 2Km = (2 − 2
m+1 )C∗

max.



64 4. Multiprocessor scheduling

M1 Km Km

Mm

M2

Figure 4.5: swap optimal schedule

This example also holds for m = 2, and thus we have the following corollary to
Theorem 4.1.

Corollary 4.3. The performance guarantee for a jump optimal schedule and a swap
optimal schedule for P2‖Cmax is 4

3 , and this bound is tight.

As a push optimal schedule is also jump optimal, the following is also a corollary
to Theorem 4.1.

Corollary 4.4. A push optimal schedule for P‖Cmax has value at most 2 − 2
m+1

times the optimal solution value.

In contrast to the jump and swap optimal solutions, we have no tightness guaran-
tees. The following example shows that the performance guarantee for push optimal
solutions for P‖Cmax cannot be less than 4m

3m+1 .

Example 4.4. Consider the following instance, with m machine and n = 2m + 2
jobs. The processing times of jobs J1, . . . , Jn−4 are pj = m+� j

2� for j = 1, . . . , n−4,
i.e., there are exactly two jobs of size p for p = m + 1, . . . , 2m − 1. The processing
times of the last four jobs are pn−3 = pn−2 = pn−1 = pn = m. The optimal
makespan is C∗

max = 3m + 1 and is attained by σ∗ = (J ∗
1 , . . . ,J ∗

m), with J ∗
1 =

{J1, Jn−3, Jn−2}, J ∗
2 = {J2, Jn−1, Jn}, and J ∗

i = {Ji, Jn−1−i} for i = 3, . . . , m.
In the schedule in Figure 4.6 the jobs of size pj = m are assigned to M1 and Mi

processes Ji−1 and Jn−i−2, for i = 2, . . . , m. This is a push optimal schedule with
makespan Cp

max = 4m = 4m
3m+1 C∗

max.

The performance guarantee for push optimal solutions for P2‖Cmax is better
than the 4

3 obtained by jump and swap optimal schedules, as stated by the following
theorem.

Theorem 4.5. A push optimal solution for P2‖Cmax has value at most 8/7 times
the optimal solution value.



4.3 Performance guarantees 65

mm m m

2m − 1 m + 1

2m − 1 m + 1

�(3m + 1/2)� �(3m + 1)/2 − 1�

M1

M2

Mm

M3

Figure 4.6: push optimal schedule

Proof. Suppose, to the contrary, that there exists a push optimal schedule with
makespan Cp

max > 8
7C∗

max. Let Li =
∑

Jj∈Ji
pj be the load of machine Mi (i = 1, 2).

W.l.o.g. we assume that L1 ≥ L2, thus Cp
max = L1.

For the difference in loads of the two machines, we know that

L1 − L2 = L1 − (
∑

j

pj − L1) ≥ 2L1 − 2C∗
max >

1
4
L1.

The first inequality is due to the lower bound C∗
max ≥ 1

2

∑
j pj and the second

inequality is due to the assumption that L1 > 8
7C∗

max. Let J1 be the smallest job
on M1. Then, by push optimality, we know that p1 ≥ L1 − L2 > 1

4L1. Hence,
there are at most three jobs on M1. We assume that M1 processes three jobs, i.e.,
J1 = {J1, J2, J3}, J2 = {J4, . . . , Jn}, and that p1 ≤ p2 ≤ p3 and p4 ≥ . . . ≥ pn. Let
Jk be the job such that the smaller of Jk and J1 is the largest job that has to be
removed, when pushing J1 to M2, i.e.,

p4 + . . . + pk−1 + p1 < L1,

p4 + . . . + pk + p1 ≥ L1. (4.2)

As L1 − L2 > 1
4L1 ≥ 3

4p1, we know that L2 + p1 < L1 + 1
4p1 and

1
4
p1 > L2 + p1 − L1

(4.2)

≥ L2 − (p4 + . . . + pk) = pk+1 + . . . + pn. (4.3)

Because of push optimality, we know that p1 ≤ pk + . . . + pn and thus

pk ≥ p1 − (pk+1 + . . . + pn)
(4.3)
>

3
4
p1. (4.4)



66 4. Multiprocessor scheduling

If pk < p1, then by pushing J1 to M2, Jk is moved to M1 and jobs Jk+1, . . . , Jn are
distributed among M1 and M2 yielding a schedule with makespan

C ′
max ≤ max(L1 − p1 + pk, L2 + p1 − pk)

(4.4)
< max(L1, L1 − 1

2
p1) = L1.

Thus the schedule is not push optimal and it must be the case that p1 ≤ pk.
Suppose M2 processes at least three jobs at least as large as Jk, then L2 ≥ 3p1.

By push optimality, we know that p1 ≥ L1 − L2 > 1
4L1 and thus L2 ≥ 3p1 > 3

4L1.
However, as L1 − L2 > 1

4L1, it must be that L2 < 3
4L1. Therefore, M2 can process

at most two jobs of size greater than or equal to p1.
If M2 processes only one job of size at least pk, i.e., k = 4, then the current

schedule is optimal, as the sub-schedule for J1, J2, J3, J4 is optimal, because by (4.2)
p1 +p4 ≥ p1 +p2 +p3. In the case that M2 processes two jobs of size at least pk, i.e.,
p4 ≥ p5 = pk, we consider two sub-cases: p3 ≤ p5 and p3 > p5. If p3 ≤ p5, then the
sub-schedule for J1, . . . , J5 is optimal and C∗

max ≥ C∗
max[1, 5] = L1 = Cp

max, where
C∗

max[1, 5] denotes the makespan of an optimal sub-schedule for J1, . . . , J5.
If p3 > p5, then an optimal schedule for J1, . . . , J5 has value C∗

max[1, 5] ≥ p1 +
p2 + p5. As L2 < 3p1, we know that p4 < 2p1 and by push optimality we know that
p5 +

∑
j≥6 pj ≥ p3. Hence,

Cp
max

C∗
max

≤ p1 + p2 + p3

p1 + p2 + p5
≤ p1 + p2 + p5 + . . . + pn

p1 + p2 + p5

(4.3)

≤ 1 +
1/4p1

3p1
=

13
12

<
8
7
.

This contradicts the assumption that Cp
max > 8

7C∗
max.

In the case that M1 processes only two jobs, i.e., J1 = {J1, J2} and J2 =
{J3, . . . , Jn}, we can prove in a similar way that C∗

max = Cp
max. If M1 only processes

J1, then Cp
max = C∗

max.
Hence, Cp

max ≤ 8
7C∗

max. �

The bound in Theorem 4.5 is tight: if we set m = 2 in Example 4.4, we have a
push optimal schedule with makespan Cp

max = 8
7 C∗

max.

4.3.2 Uniform parallel machines

In this environment, jobs have processing requirements pj for j = 1, . . . , n and
machines have speeds si for i = 1, . . . , m. The processing time of job Jj on machine
Mi is pij = pj/si.

The following theorem is a restatement of Lemma 1 of Cho and Sahni (1980), who
prove that that a performance guarantee for list schedules in the uniform parallel
machine environment is 1+

√
4m−3
2 . For completeness, we include the proof.

Theorem 4.6. A jump optimal schedule for Q‖Cmax has makespan at most
1+

√
4m−3
2 times the optimal makespan.



4.3 Performance guarantees 67

Proof. We assume w.l.o.g. that p1 ≥ p2 ≥ . . . ≥ pn and s1 ≥ s2 ≥ . . . ≥ sm. To
prove the theorem, we use two lower bounds on the optimal makespan:

C∗
max ≥

∑
j pj∑
i si

, (4.5)

C∗
max ≥ p1

s1
. (4.6)

Let job Jk be a job on a critical machine in a jump optimal schedule. Then we know
that for each machine Mi, ∑

Jj∈Ji

pj

si
+

pk

si
≥ Cj

max. (4.7)

Multiplying this inequality with si and summing over all machines yields∑
i

siC
j
max ≤

∑
j

pj + (m − 1)pk,

or equivalently,

Cj
max ≤

∑
j pj∑
i si

+ (m − 1)
pk∑
i si

≤ C∗
max + (m − 1)

s1∑
i si

C∗
max.

The last inequality is due to inequalities (4.5) and (4.6). On the other hand, using
inequality (4.7) for machine M1, yields

Cj
max ≤

∑
j pj

s1

(4.5)

≤
∑

i si

s1
C∗

max,

Combining both bounds on Cj
max and replacing

∑
i si

s1
by x, we have

Cj
max ≤ min(x, 1 + (m − 1)/x)C∗

max. (4.8)

The maximum of the right hand side of inequality (4.8) is obtained when x =
1 + (m − 1)/x, i.e., for x = 1+

√
4m−3
2 . Hence, Cj

max ≤ 1+
√

4m−3
2 C∗

max. �

Corollary 4.7. A swap optimal schedule for Q‖Cmax has makespan at most
1+

√
4m−3
2 times the optimum.

In Example 4.5, we give a jump and swap optimal schedule for Q‖Cmax with
Cs

max = 1+
√

4m−3
2 C∗

max and thus the bounds in the above theorem and corollary are
tight.

Example 4.5. For given s > 1, consider the following instance. There are n = m+
1 jobs and m = s2 − s + 1 machines, that is, s = 1+

√
4m−3
2 . Job J1



68 4. Multiprocessor scheduling

has processing requirement p1 = s and all other jobs have processing requirement
pj = 1 (j = 2, . . . , n). Machine M1 has speed s1 = s and all other machines have
speed si = 1 (i = 2, . . . , m). In an optimal schedule, machine M1 processes job J1

and one job of unit length and each of machines M2, . . . , Mm processes exactly one
job of unit length. The optimal makespan is C∗

max = 1 + 1
s .

In Figure 4.7 a swap optimal schedule is given. The second machine processes
job J1 and machine M1 processes all other jobs. The makespan of this swap optimal
schedule is Cs

max = s = s
1+1/s C∗

max and for large s the ratio Cs
max / C∗

max is close

to s = 1+
√

4m−3
2 . For a jump optimal schedule, we can even remove one of the

unit sized jobs, so that the optimum has value C∗
max = 1 and the value of the local

optimal solution remains Cj
max = s = 1+

√
4m−3
2 C∗

max.

Mm

M3

J2 J3 J4 J5 Jn

s2 − s + 1 jobs

J1
M2

M1

Figure 4.7: Swap optimal schedule for Q‖Cmax.

Corollary 4.8. The performance guarantee of jump and swap optimal schedules for
Q2‖Cmax is 1+

√
5

2 and this is tight.

Proof. The performance guarantee is a direct consequence of Theorem 4.6. To
see that the bound is tight, consider the instance with two jobs with processing
requirements p1 = 1+

√
5

2 and p2 = 1 and with speeds s1 = 1+
√

5
2 and s2 = 1 for

machine M1 respectively M2. Obviously, the optimal makespan is C∗
max = 1 and

the schedule in which J1 is processed by M2 and J2 is scheduled on M1 is a jump
optimal schedule with makespan Cj

max = 1+
√

5
2 .

This schedule clearly is not swap optimal. To make a swap optimal one, we
chop job J2 of unit length into 1

ε jobs with processing requirements pj = ε, for some



4.3 Performance guarantees 69

ε > 0, and we add one job of size ε. The optimal makespan is C∗
max = 1+ 2ε

1+
√

5
and

the schedule in which all jobs of size ε are scheduled on M1 and J1 is processed by
M2 is a swap optimal schedule, with makespan Cs

max = 1+
√

5
2 . Hence, for small ε

the ratio Cs
max / C∗

max is close to 1+
√

5
2 . �

Theorem 4.9. A push optimal schedule for Q‖Cmax has makespan at most 2 − 2
m+1

times the optimal solution value.

Proof. Assume w.l.o.g. that s1 ≥ . . . ≥ sm. If we consider an unsuccessful push,
then there is a partial schedule, (J ′

1, . . . ,J ′
m), and a queue of pending jobs. The

largest job in this queue does not fit on any machine. Let job Jk be this job and let
L′

i =
∑

j∈J ′
i :pj≥pk

pj

si
be the total processing time of the large jobs on machine Mi,

i.e., at least as large as Jk. By push optimality, we know that for all i = 1, . . . , m:

L′
i +

pk

si
≥ Cp

max. (4.9)

Let Mh be the slowest machine on which job Jk has a processing time that is
not larger than the optimal makespan, that is, h = max{i : pk

si
≤ C∗

max}. Thus
C∗

max ≥ pk

sh
. Another lower bound on the optimal makespan is then

C∗
max ≥

∑
j:pj≥pk

pj∑h
i=1 si

.

By push optimality (4.9), we know that

h∑
i=1

siC
p
max ≤

h∑
i=1

siL
′
i + hpk ≤

∑
j:pj≥pk

pj + (h − 1)pk. (4.10)

If s1 ≥ 2sh, then
∑h

i=1 si ≥ (h + 1)sh and rearranging the terms in (4.10) yields

Cp
max ≤ C∗

max +
h − 1
h + 1

pk

sh
≤ C∗

max +
h − 1
h + 1

C∗
max ≤ 2m

m + 1
C∗

max.

The second inequality is due to our choice of h. If s1 ≤ 2sh, then
∑h

i=1 si ≥ h+1
2 s1.

We may assume that C∗
max ≥ 2pk

s1
, as otherwise there are at most h large jobs and

the push optimal schedule is optimal. Rearranging terms in (4.10) yields

Cp
max ≤ C∗

max +
h − 1

(h + 1)/2
pk

s1
≤ 2m

m + 1
C∗

max.

�

Theorem 4.10. The performance guarantee of push optimal schedules for Q‖Cmax

is at least 3
2 − ε, for ε > 0.



70 4. Multiprocessor scheduling

M1

M2

Mm

M3

JnJn−1

J1

J2

Jn−2

Figure 4.8: Push optimal schedule for Q‖Cmax

Proof. Consider the following instance for Q‖Cmax. For given r ∈ (2
3 , 1), there

are m = �log(2−3r
1−2r )� machines and n = m + 1 jobs. The speeds of the machines are

given by s1 = 2 and si = rsi−1 + 1, i = 2, . . . , m. The processing requirements are
given by pj = rsj for j = 1, . . . , n − 2 and pn−1 = pn = 1. As by our choice of m
we have that 2

sm
≤ r, the optimal makespan is C∗

max = r.
The schedule in Figure 4.8 is push optimal: M1 processes both jobs of size 1

and Jj is scheduled on Mj+1 for j = 1, . . . , m − 1. This schedule has makespan
Cp

max = 1 = 1
r C∗

max. Hence, for any ε > 0 there exists a push optimal schedule with
Cp

max ≥ ( 3
2 − ε)C∗

max. �

In the case of two uniform machines, we establish a better performance guaran-
tee. To do so, we need the following two lemmata, in which we consider instances
with only three jobs and different speeds for the two machines. We prove in Theo-
rem 4.13 that a smallest worst-case instance for push for the problem of scheduling
two uniform parallel machines has exactly three jobs.

Lemma 4.11. Consider an instance for Q2‖Cmax with three jobs in which the ma-
chines do not have the same speed. Assume w.l.o.g that p1 ≥ p2 ≥ p3 and s1 > s2.
If in an optimal schedule J1 is processed on M1, then in any push optimal schedule a
job of size p1 is scheduled on M1 and this push optimal schedule is globally optimal.

Proof. Suppose to the contrary that there is a push optimal schedule in which J1

is processed on M2. Then J2 is scheduled on M1, as otherwise a push is possible.
If p1 = p2, then the first part of the lemma is proven. Consider the case that

p1 > p2. If M2 is the critical machine, then J1 can be pushed, and the schedule is not
push optimal. Therefore, M1 is the critical machine and it processes J2 as well as J3.
In the optimal schedule J1 is assigned to M1 and the optimal makespan has value
C∗

max ≥ min{p1+p3
s1

, p2+p3
s2

}. As p1+p3
s1

> p2+p3
s1

= Cp
max and p2+p3

s2
> p2+p3

s1
= Cp

max,
we have that C∗

max > Cp
max, which is a contradiction. Therefore, in a push optimal

schedule, J1 must be processed by M1, whenever J1 is scheduled on M1 in an optimal
schedule.



4.3 Performance guarantees 71

By enumerating over all possible schedules with J1 scheduled on M1 for the push
optimal schedule as well as the optimal schedule, it is easy to see that whenever such
a schedule is push optimal it is globally optimal. �

Lemma 4.12. Consider an instance for Q2‖Cmax with three jobs in which the ma-
chines do not have equal speed and assume w.l.o.g. that p1 ≥ p2 ≥ p3 and s1 > s2.
If Cp

max > C∗
max, then in the optimal schedule M1 processes J2 and J3, and J1 is

scheduled on M2. In a push optimal schedule with Cp
max > C∗

max, the machine allo-
cation of the jobs is reversed, that is, J1 is scheduled on M1, and M2 processes J2

and J3. This push optimal schedule has makespan Cp
max = p2+p3

s2
.

Proof. By Lemma 4.11, we know that whenever Cp
max > C∗

max, in the optimal
schedule J1 is scheduled on M2. As p1+p2

s2
≥ p1+p3

s2
> p2+p3

s1
, J2 as well as J3 is

assigned to M1 in the optimal schedule.
If, in a push optimal schedule, J1 is processed by M2, then this schedule must

be globally optimal. Hence, for each push optimal schedule with Cp
max > C∗

max, J1

is scheduled on M1 and the critical machine is M2 as otherwise J1 can be pushed.
If J2 or J3 are also scheduled on M1, then M2 cannot be critical and the schedule is
not push optimal. Therefore, a push optimal schedule with makespan Cp

max > C∗
max

processes J1 on M1 and J2 and J3 on M2, and as M2 is the critical machine Cp
max =

p2+p3
s2

. �

Theorem 4.13. A push optimal schedule for Q2‖Cmax has performance guarantee√
17+1
4 .

Proof. Consider a push optimal schedule with Cp
max > 5

4C∗
max. We may assume

that such a schedule exists as otherwise Cp
max/C∗

max ≤ 5
4 <

√
17+1
4 . Pushing the

smallest job on the critical machine leads to an unsuccessful push. Hence, there is a
largest job in the queue of pending jobs that does not fit on both machines. Let this
job be Jk. Note that this job is at most as large as the smallest job on the critical
machine. Because of push optimality, we now have∑

Jj∈Ji:pj≥pk

pj

si
+

pk

si
≥ Cp

max, i = 1, 2.

Thus,
(s1 + s2)Cp

max ≤
∑

j:pj≥pk

pj + pk ≤ (s1 + s2)C∗
max + pk.

By the assumption that Cp
max > 5

4C∗
max, we have that

∑
j pj ≤ (s1 +s2)C∗

max < 4pk.
Hence, there are at most three large jobs, that is, at least as large as Jk.

If we remove all jobs that are smaller than Jk from the push optimal schedule,
then we still have a push optimal schedule and the makespan has not changed, as all
the jobs that are smaller than Jk are scheduled on the non-critical machine. As the
optimal makespan of the instance with only the large jobs is at most equal to the



72 4. Multiprocessor scheduling

optimal makespan of the original instance, the smallest worst-case instance consists
of only those, at most three, large jobs.

Any push optimal schedule on an instance with at most two jobs is an optimal
schedule, and therefore the worst-case instance for the ratio Cp

max/C∗
max consists of

three jobs. Consider such a worst-case instance, and assume w.l.o.g. that p1 ≥ p2 ≥
p3 and that s1 > s2. Note that if s1 = s2, then we actually have two identical
parallel machines and by Theorem 4.5 we know that Cp

max/C∗
max ≤ 8

7 .
Consider a worst-case instance, and assume w.l.o.g. that p1 ≥ p2 ≥ p3 and that

s1 > s2. By Lemma 4.12, we know that in this worst-case push optimal schedule J1

is scheduled on M1 and M2 processes J2 and J3. We also know that Cp
max = p2+p3

s2

and C∗
max = max{p1

s2
, p2+p3

s1
}.

By push optimality, we know that p1+p3
s1

≥ p2+p3
s2

, and thus Cp
max/C∗

max is
bounded by

Cp
max/C∗

max = min{s1

s2
,
p2 + p3

p1
} ≤ min{p1 + p3

p2 + p3
,
p2 + p3

p1
}.

This minimum is maximal, when p1+p3
p2+p3

= p2+p3
p1

. Then (p2 + p3)2 = p2
1 + p1p3 and

thus

Cp
max/C∗

max ≤
√

p2
1 + p1p3

p1
=

√
1 +

p3

p1
. (4.11)

As p2 ≥ p3, we know that p2
1 + p1p3 = (p2 + p3)2 ≥ 4p2

3 and, thus p1 ≥
√

17−1
2 p3.

Using this bound in inequality (4.11) yields

Cp
max/C∗

max ≤
√

1 +
2√

17 − 1
=

√
17 + 1

4
.

�

In the following example, we have an instance for Q2‖Cmax and a push optimal
schedule for which Cp

max =
√

17+1
4 C∗

max.

Example 4.6. Consider the following instance with three jobs: p1 =
√

17−1
2 , p2 =

p3 = 1, and s1 =
√

17+1
4 and s2 = 1. In the optimal schedule M1 processes J2

and J3 and J1 is scheduled on M2. The optimal makespan is C∗
max =

√
17−1
2 . The

schedule in which J1 is processed by M1 and J2 and J3 are scheduled on M2 is
a push optimal schedule with makespan Cp

max = 2. This schedule is depicted in
Figure 4.9; Cp

max/C∗
max = 2/(

√
17−1
2 ) = 4√

17−1
=

√
17+1
4 .

4.3.3 Unrelated parallel machines
In the unrelated parallel machine environment, the processing times are job and
machine dependent, i.e., the processing time of job Jj on machine Mi is pij . The
maximum processing time is denoted by pmax = maxi,j pij .



4.3 Performance guarantees 73

J2 J3M2

J1M1

Figure 4.9: Push optimal schedule

Theorem 4.14. A jump optimal solution for R‖Cmax can have makespan pmax

times the optimal solution value.

Proof. For given K > 1 consider the following instance. We are given n jobs and
m = n machines. The processing times of the jobs are

pij =
{

1 if i = j,
K otherwise.

In the optimal schedule, machine Mi processes job Ji, and this schedule has
makespan C∗

max = 1. The schedule in which machine M1 processes job Jn and
machine Mi processes job Ji−1 (i = 2, . . . , m) is jump optimal and has makespan
Cj

max = K. �

As the above example also is a jump optimal schedule in the case of only two
machines, we have the following corollary.

Corollary 4.15. A jump optimal schedule for R2‖Cmax has performance guarantee
at least pmax/C∗

max.

For the identical and uniform parallel machine environments, a jump optimal
schedule with ratio ρ = Cj

max/C∗
max can be converted into a swap optimal schedule

with the same ratio ρ, in the same way as was done in the proof of Corollary 4.8. For
the unrelated parallel machine environments, this is not possible. In the following
two theorems we establish a lower bound on the performance guarantee for swap
optimal schedules.

Theorem 4.16. A performance guarantee for a swap optimal solution for R‖Cmax

is at least (pmax − 1)/C∗
max.

Proof. For given K > 2 consider the following instance. We are given m machines
and n = m jobs. The processing times of the jobs are

pij =


1 if i = j,
K + 1 if j = i + 2 (mod n),
K otherwise.

The optimal schedule has makespan C∗
max = 1.



74 4. Multiprocessor scheduling

The schedule in which machine Mi processes job Ji+1, i = 1, . . . , m − 1,
and Mm processes job J1 has makespan Cs

max = K. This schedule is swap op-
timal, as swapping job Ji with job Ji+1, results in a schedule with makespan
Cmax = pi−1,i+1 = K + 1 > Cs

max and any other swap does not change the
makespan and the number of critical machines in the schedule. �

The example in the above proof needs at least three machines. In the case of
two machines a swap optimal schedule can be as bad as n − 1 times the optimal
makespan.

Theorem 4.17. The performance guarantee of swap optimal schedules for R2‖Cmax

is at least n − 1.

Proof. Consider a instance with n jobs, where J1 has processing times

pi1 =
{

1 if i = 1,
n − 1 − 1

n−1 if i = 2,

and the other jobs have processing times

pij =
{

1 if i = 1, j > 1,
1

n−1 if i = 2, j > 1.

In the optimal schedule, J1 is scheduled on M1 and the other jobs are processed
by M2. The makespan of this schedule is C∗

max = 1. The schedule in which J1 is
processed by M2 and the other jobs are scheduled on M1 is swap optimal, having
makespan Cs

max = n − 1. �

4.4 Running time

Until now, we have focused on the quality of local optima with respect to three
neighborhoods. In this section, we make some remarks on the time it takes a form of
iterative improvement to find jump optimal solutions. For identical machines, Finn
and Horowitz (1979) and Brucker et al. (1997) proposed an iterative improvement
procedure in which a job jumps from a critical machine to a machine with minimum
load. Finn and Horowitz claimed that this procedure would terminate in O(n)
jumps. In the following example we provide an example using Ω(n2) jumps and
thus contradicting this claim.

Example 4.7. Consider the following instance for two identical parallel machines.
Let q be a positive integer. Then the number of jobs is given by n = 3(q + 1). The
processing times of the jobs are 1, 2, . . . , 2q, each length occurring three times.

The schedules below are described by giving the processing times of the jobs on
the two machines. Let the initial schedule be given by



4.4 Running time 75

S0 M1 1, . . . , 2q−1 2q 1, . . . , 2q

M2 1, . . . , 2q−1 2q

In step i + 1, for i = 0, . . . , q − 2 the algorithm moves a job of length 2i from
machine M1 to machine M2:

Si+1 M1 1, . . . , 2q−1 2q 2i+1, . . . , 2q

M2 1, . . . , 2q−1 2q 1, . . . , 2i

After this, we end up at schedule Sq−1:

Sq−1 M1 1, . . . , 2q−1 2q 2q−1, 2q

M2 1, . . . , 2q−1 2q 1, . . . , 2q−2

Note that the machine loads differ by 2q + 1, and in the next step the algorithm
may therefore move a job of length 2q to arrive at Sq:

Sq M1 1, . . . , 2q−1 2q 2q−1

M2 1, . . . , 2q−1 2q 1, . . . , 2q−2 2q

which can be rearranged to

Sq M1 1, . . . , 2q−2 2q−1, 2q−1 2q

M2 1, . . . , 2q−2 2q 2q 1, . . . , 2q−2 2q−1

Thus q jobs have been moved, with lengths 1, . . . , 2q−2 and 2q, and we can
repeat this procedure, moving q − 1 jobs from machine M2 to M1, and so on. This
continues until the machine loads differ by 1. In this scenario, the number of steps
is q + (q − 1) + (q − 2) + . . . + 1 = q(q+1)

2 ≈ n2

18 .

Brucker et al. showed that the proposed procedure terminates in O(n2) itera-
tions.

Theorem 4.18. A jump optimal solution for P‖Cmax can be found by the above
mentioned iterative improvement procedure using O(n2) jumps.

We next describe an iterative improvement procedure that finds jump optimal
solutions in the case of uniform parallel machines. Hereto, we need to define the slack
of a machine. The slack of a machine is the total amount of processing requirement
that can be added to this machine such that its load does not become larger than
the makespan. We denote the slack of a machine Mi by ∆i = si(C∗

max −Li), where
Li =

∑
Jj∈Ji

pij . Note that when no job on a critical machine has a processing
requirement that is less than the maximum slack, we have found a jump optimal
solution.

We propose an iterative improvement procedure in which in each iteration a job
is selected from a critical machine and jumps to a machine with maximum slack.



76 4. Multiprocessor scheduling

Theorem 4.19. The iterative improvement procedure described above finds a jump
optimal solution for Q‖Cmax after O(n2m) jumps.

Proof. Note that this algorithm computes a sequence of schedules with non-
increasing makespan and maximum slack. We denote the values of Li, Cmax, ∆i,
and ∆ = max1≤i≤m ∆i in an iteration t by Li(t), etc.

Consider a machine Mi that was critical in iteration t0 and had maximum slack
in iteration t1 > t0, where t0 and t1 are chosen such that Mi is neither critical
nor has maximum slack in iterations t, for t0 < t < t1. Note that if none of the
machines satisfy this condition, the algorithm is finished after O(nm) iterations: if
a job has been moved onto m different machines, it will certainly have been moved
to a machine from which it was moved before.

Let job Jj be the job that was moved in iteration t0. Then Li(t1) = Li(t0) −
pj/si = Cmax(t0)−pj/si. By monotonicity of Cmax, we have ∆(t1) = si(Cmax(t1)−
Li(t1)) ≤ si(Cmax(t0) − Li(t0)) + pj = pj . So, pj ≥ ∆(t1) and by monotonicity of
∆ job Jj cannot be moved.

Hence, after at most nm iterations, at least one job cannot be moved and thus
after O(n2m) iterations no job can move and the algorithm terminates. �

This result can be improved by always selecting the largest job on a critical ma-
chine that can jump. Using this neighbor selecting rule, the iterative improvement
procedure finds a jump optimal solution in O(nm) iterations. This is stated in the
following theorem.

Theorem 4.20. The iterative improvement procedure that always selects the largest
possible job on a critical machine to jump to the machine with maximal slack finds
a jump optimal solution for Q‖Cmax in O(nm) iterations.

Proof. We show that once a job has jumped away from a machine, it can never
return to this machine. Hence, a job can jump at most m−1 times and the number
of jumps in the described iterative improvement procedure is O(nm).

We use the same notation as in the previous proof. Let Jj jump from machine
Mi in iteration t0. Let t2 > t0 be the iteration in which Mi is a machine with
maximum slack such that Mi is not a machine with maximum slack in iterations t,
for t0 < t < t2. If this situation does not occur, then Jj can never jump to Mi again.
Otherwise, there exists a t1 ≥ t0 such that Mi is a critical machine in iteration t1
and is not critical in iterations t for t1 < t < t2. Let Jk be the job that jumps from
Mi in iteration t1. Then, by the same arguments as in Theorem 4.19, we know that
pk ≥ ∆(t2). As Mi is not a machine with maximum slack in iterations t0 ≤ t ≤ t1,
the jobs assigned to Mi in iteration t1 were also scheduled on Mi in iteration t0. By
our selection rule and the fact that ∆ is non-increasing, we know that pj ≥ pk and
therefore pj ≥ ∆(t2). Hence, job Jj cannot return to machine Mi. �

As a corollary of the above theorem, we can also improve the result of Theo-
rem 4.18.



4.5 Concluding remarks 77

Corollary 4.21. The iterative improvement that always selects the largest possible
job on a critical machine to jump to a machine with minimum load finds a jump
optimal solution for P‖Cmax in O(nm) jumps.

4.5 Concluding remarks

The main focus of this chapter was the quality of local optima with respect to
three neighborhoods. We have seen that, with respect to the three neighborhoods
we considered, the local optima have a constant performance guarantee for the
problem of minimizing makespan on identical parallel machines. In the case of
uniform parallel machines, the two basic neighborhoods do not have a constant
performance guarantee. The neighborhood based on variable-depth search provides
us with local optima that have a constant performance guarantee. It would be
interesting to see whether we can extend the push neighborhood to the unrelated
parallel machine environment.

We also saw that only a polynomial number of iterations is needed to find a jump
optimal solution for P‖Cmax and Q‖Cmax. It is still an open question how many
iterations iterative improvement needs to find a swap or a push optimal solution.
We conjecture that a push optimal solution cannot be found in polynomial time
through an iterative improvement procedure.





5
Generalized graph coloring:

the worst-case of local search

5.1 Introduction

Consider the following problem. Given a graph G = (V,E), a weight function w :
E → ZZ on its edges, and an integer k ≥ 2, find a color assignment c : V → {1, . . . , k}
of the vertices that minimizes the total weight of the monochromatic edges, i.e.,
edges that have end points with the same color. The problem was first stated by
Carlson and Nemhauser (1966), who write about ‘scheduling to minimize interaction
cost’. The problem may occur when one wishes to partition a set of items into a
given number of groups so as to minimize the total pairwise interaction cost. The
problem is also referred to as the generalized graph coloring problem (ggcp) (Kolen
and Lenstra, 1995), graph k-partitioning (Kann, Khanna, Lagergren, and Panconesi
1997), and k-min cluster (Sahni and Gonzalez, 1976). For k = 2 the problem is
equivalent to the well-known max cut problem, as for two colors minimizing the
total weight of the monochromatic edges is equivalent to maximizing the weight of
the cut edges. For general k, the problem is equivalent to the max k-cut problem.
As max cut is NP-hard, see Karp (1972), the ggcp is also NP-hard, even for fixed
k. If k is not part of the input, we denote the problem by k-ggcp.

From an approximation point of view, the ggcp is not equivalent to the max
k-cut problem. Under the assumption that P �= NP, Kann et al. (1997) show that
for k > 2 and every ε > 0 there exists a constant α > 0 such that the ggcp

cannot be approximated in polynomial time within a factor α|V |2−ε of optimal.
For the 2-ggcp, Garg, Vazirani, and Yannakakis (1996) gave a polynomial-time

79



80 5. Generalized graph coloring

O(log n)-approximation algorithm. On the negative side, as a direct consequence
of the hardness of approximating max cut by H̊astad (1997), there cannot exist a
polynomial-time algorithm for 2-ggcp such that the solution is guaranteed to have
value within 18

17 times the optimal solution value, unless P = NP.
In this chapter, we recall a result that is implicit in Carlson and Nemhauser

(1966) on the relation between the Karush-Kuhn-Tucker conditions and so-called
flip-optimal solutions. Moreover, we show that the quality of local optima may
be bad, and we mention some results on the time required to find locally optimal
solutions.

5.2 Neighborhoods

In this section, we describe the neighborhood flip, its extension m-flip, and a
variable-depth search variant of flip, called vd-flip.

Given a solution, a flip neighbor is obtained by choosing a single vertex and
assigning it a different color. A solution is flip-optimal if flipping any single vertex
does not decrease the total weight of monochromatic edges.

To obtain an m-flip neighbor of a given solution, we choose at most m vertices
and flip them. A solution is m-flip-optimal if it has no m-flip neighbor of smaller
objective value.

The third neighborhood, vd-flip, is a form of variable-depth search, introduced
by Kernighan and Lin (1970) for the graph partitioning problem. To obtain a neigh-
bor of a given solution, we start by labeling all vertices ‘unflipped’. We iteratively
choose the unflipped vertex that is best to flip, assign it the best new color, and
label it ‘flipped’. After |V | iterations all vertices have been flipped and we have
obtained a series of |V | solutions, of which we choose the best one as our neighbor.
Note that if there are only two colors, the last solution in the series is equivalent to
the first solution. We say that a solution is vd-flip-optimal if its vd-flip neighbor
does not have a smaller objective value.

5.3 KKT conditions and flip-optimality

Carlson and Nemhauser (1966) gave a quadratic programming formulation for the
ggcp. It uses binary variables xhi for i ∈ V , h = 1, . . . , k: xhi = 1 if and only if
vertex i is colored with color h. The weight function is extended to the complete
graph on V by setting wij = 0 whenever {i, j} is not an edge in E. The quadratic
formulation is then the following:

min
1
2

∑
h

∑
i,j

wijxhixhj

(QP ) s.t.
∑

h

xhi = 1, i ∈ V, (5.1)

xhi ∈ {0, 1}, i ∈ V, h = 1, . . . , k. (5.2)

As there is a one-to-one correspondence between feasible solutions to (QP ) and a
color assignment of the vertices, we can denote a feasible color assignment c by its
corresponding feasible solution x ∈ {0, 1}k|V | to (QP ).



5.3 KKT conditions and flip-optimality 81

Let us replace the integrality constraint (5.2) by xhi ≥ 0. Carlson and Nemhauser
showed that there exists an optimal solution to this program that is integral. The
Karush-Kuhn-Tucker (KKT) conditions for this quadratic program are∑

j

wijxhj − λi = µhi, i ∈ V, h = 1, . . . , k, (5.3)∑
h

xhi = 1, i ∈ V,

µhi ≥ 0, i ∈ V, h = 1, . . . , k, (5.4)
xhi ≥ 0, i ∈ V, h = 1, . . . , k, (5.5)

µhixhi = 0, i ∈ V, h = 1, . . . , k. (5.6)

The following result is implicit in Carlson and Nemhauser (1966), and also men-
tioned by Lenstra (1976).

Theorem 5.1. An integral solution satisfies the KKT conditions if and only if it
is flip-optimal.

Proof. Suppose x ∈ {0, 1}k|V | satisfies the KKT conditions, for some λ ∈ IR|V |

and µ ∈ IRk|V |
+ , and let x′ be the solution obtained by flipping a vertex, say vertex

j. Assume w.l.o.g. that this vertex has color g in x and color g′ in x′. The change
in costs due to this flip is

1
2

∑
h

∑
p,q

wpqx
′
hpx

′
hq −

1
2

∑
h

∑
p,q

wpqxhpxhq =
∑

p

wpjxg′p −
∑

p

wpjxgp

(5.3)
= (λj + µg′j) − (λj + µgj)

(5.6)
= µg′j ≥ 0.

Thus this new solution is not better than x and hence x is flip-optimal.
Now, consider a flip-optimal solution x ∈ {0, 1}k|V |. Let λi be the total weight

of monochromatic edges incident to vertex i ∈ V , i.e., if xgi = 1, then

λi =
∑

j

wijxgj , i ∈ V.

Let µhi denote the change in the weight of monochromatic edges incident to vertex
i ∈ V when we change its color to h, i.e.,

µhi =
∑

j

wijxhj − λi, h = 1, . . . , k, i ∈ V.

As x is flip-optimal, µhi ≥ 0 and µgi = 0 if xgi = 1, and thus (x, λ, µ) satisfies
(5.5), (5.4), and (5.6). As x is a feasible solution, it certainly satisfies (5.1) and by
definition of λ and µ, (x, λ, µ) satisfies (5.3). Hence, (x, λ, µ) is a KKT-point. �



82 5. Generalized graph coloring

In their paper, Carlson and Nemhauser propose an iterative improvement proce-
dure that always moves to the best flip neighbor, i.e., the one yielding the highest
decrease in the objective value; one may escape from local optima by making a zero-
cost flip. They report that this method is efficient and frequently attains global
minima. For an instance with 45 vertices, Kolen and Lenstra (1995) report that
iterative improvement over the flip neighborhood always finds the same local min-
imum in the case of two colors, while for three and four colors several local minima
are being found. In the subsequent sections, we prove worst-case results on the
quality of local optima and the running time of iterative improvement.

5.4 Local optima may be bad

We will now show that a large class of local optima can be arbitrarily bad. The
underlying neighborhood functions for this class are so-called polynomially search-
able neighborhoods, which are neighborhoods for which in polynomial-time either
a better neighbor will be found if one exists or it is determined that the current
solution is locally optimal.

Theorem 5.2. Consider the ggcp with k ≥ 3. For any constant ρ > 1, a local
optimum w.r.t. a polynomially searchable neighborhood is not guaranteed to have
value at most ρ times the optimum, unless P = NP.

Proof. Consider a graph G = (V,E) with unit weights on the edges. For k ≥ 3, the
problem of deciding whether G is k-colorable, i.e., it can be colored with k colors
without monochromatic edges, is NP-complete (Karp, 1972). If G is k-colorable,
then the optimal value for ggcp is 0 and otherwise it will be at least 1. If there exists
a constant ρ > 1 such that a local optimum is guaranteed to have value at most ρ
times the optimal value, then any locally optimal solution for a k-colorable graph has
value 0 and it would be a global optimum, whereas a local optimum for a graph that
cannot be properly colored with k colors has value at least 1. Hence, any procedure
that finds a local optimum decides on the k-colorability of G. An arbitrary coloring
has value at most |E|, because of the unit weights. Thus an iterative improvement
procedure needs at most |E| iterations to find a local optimum. As the time spent
to find each neighbor is by assumption polynomially bounded in the input size, the
total time spent by iterative improvement is polynomially bounded. �

For the three neighborhoods defined in Section 5.2, we show stronger results, as
these results hold without the assumption P �= NP and are also true for k = 2.

Theorem 5.3. For any constant ρ > 1, there exists a class of instances and a flip-
optimal solution for each instance, such that the value of this flip-optimal solution
is larger than ρ times the optimal solution value.

Proof. Consider the graph G = (V,E) with V = {1, 2, 3, 4} and E =
{{1, 2}, {2, 3}, {3, 4}} and let the weights on the edges be 1. As this graph is bipar-



5.4 Local optima may be bad 83

tite, the optimum for the 2-ggcp has value 0.
It is easy to see that the solution c in which vertices 1 and 4 are colored blue

and the other two vertices are colored red, is flip-optimal for the 2-ggcp and that
this solution has value 1.

This graph can be extended to the general case of k colors by adding k−2 vertices
all adjacent to the vertices 2 and 3. This extended graph has unit weights on the
edges. As this graph is k-colorable, the optimal value is 0. In the flip-optimal
solution, the coloring of V remains as in c and the k − 2 new vertices are matched
to the k − 2 unused colors. �

Theorems 5.4 and 5.5 extend this result to m-flip-optimal and vd-flip-optimal
solutions, respectively.

Theorem 5.4. For any constant ρ > 1, there exists a class of instances and an m-
flip-optimal solution for each instance, such that the value of this m-flip-optimal
solution is larger than ρ times the optimal solution value.

Proof. Choose a positive integer m ≥ 2. Define a graph G = (V,E) by V =
{1, 2, . . . , 2m+2}, E = {{1, 2}, {2, 3}, . . . , {2m+1, 2m+2}}, let it have unit weights
on the edges, and let k = 2. This graph is bipartite and therefore the optimum has
value 0.

Consider a coloring c in which the odd numbered vertices between 1 and m + 1
and the even vertices between m + 2 and 2m + 2 are colored red and the other
vertices are colored blue. Because of the edge {m + 1,m + 2}, the coloring c has
value 1. We claim that c is m-flip-optimal.

Suppose we flip at most m vertices to obtain a neighboring coloring c′. If both
m + 1 and m + 2 are flipped, or if neither of them is, then c′ is no better than c. If
exactly one of m + 1 and m + 2 is flipped, say m + 1, then consider the connected
component of the subgraph induced by the flipped vertices containing vertex m+1.
Obviously, there is an unflipped vertex m′ with 1 ≤ m′ < m+1. Hence, in this case
c′ is no better than c either.

The graph and the locally optimal solution in the above proof can be extended
to the general problem with k colors by adding a (k − 2)-clique to the graph, and
making all vertices of this clique adjacent to the 2m + 2 vertices of the bipartite
graph. All additional edges have unit weight. The m-flip-optimal solution c is
extended by matching the k − 2 new vertices to the k − 2 unused colors. �

Theorem 5.5. For any constant ρ > 1, there exists a class of instances and a vd-

flip-optimal solution for each instance, such that the value of this locally optimal
solution is more than ρ times the optimal solution value.

Proof. Consider the graph G = (V,E), with V = {1, . . . , 8} and E =
{{1, 7}, {2, 7}, {3, 4}, {3, 7}, {4, 8}, {5, 8}, {6, 8}}. The weights on the edges are de-
picted in Figure 5.1. This graph is bipartite and has optimal value 0. The coloring



84 5. Generalized graph coloring

c in which we color vertices 7 and 8 red and the other vertices are colored blue has
weight 1. We claim that this solution is vd-flip-optimal.

In Figure 5.2, we show how the variable-depth search will proceed. All unflipped
vertices are denoted by circles and the flipped vertices are denoted by squares. The
value next to an unflipped vertex denotes the increase in the objective value if this
vertex is flipped. We iteratively choose the best unflipped vertex, which is denoted
by an extra circle. In Figure 5.2(a), the coloring c is shown. The best vertex to
flip is vertex 3 and we proceed as shown in Figures 5.2(b–i). The intermediate
solution in Figure 5.2(f) and the starting and final solution all have objective value
1; the other intermediate solutions have all value at least 2. Thus the coloring c is
vd-flip-optimal.

We extend this graph to the general case of k colors by adding a (k − 2)-clique
of which all vertices are adjacent to the vertices in V . All added edges have weight
at least 7 and in the coloring c, the k − 2 new vertices are matched to the k − 2
unused colors. �

5.5 Local optima may be hard to find

For the computational complexity of finding local optima, Johnson, Papadimitriou,
and Yannakakis (1988) introduced the class of polynomial-time local search (PLS)
problems; see also Yannakakis (1997). This class contains local search problems
whose neighborhoods are polynomially searchable. The local search problems of the
ggcp with one of the neighborhoods defined in Section 5.2 are all in PLS. Johnson
et al. also defined a reduction among problems in this class and showed that there
exist PLS-complete problems. If a local optimum for such a complete problem can
be found in polynomial time by whatever means, then for all problems in PLS a local
optimum can be found in polynomial time. This is generally not believed to be true,
as it would require a general approach to finding local optima at least as clever as
the ellipsoid algorithm, since linear programming with the simplex neighborhood is
in PLS. On the other hand, Johnson et al. showed that if a PLS problem is NP-hard,
then NP = co-NP.

Schäffer and Yannakakis (1991) showed that the max cut problem with the flip

neighborhood is PLS-complete. As a generalization of this the ggcp with the flip

neighborhood is PLS-complete. As an m-flip-optimal and a vd-flip-optimal solu-
tion are also flip-optimal, the ggcp with the m-flip or the vd-flip neighborhood
are PLS-complete too. Schäffer and Yannakakis introduced the notion of tight PLS
reductions. If there is a tight PLS reduction from a problem Π1 to a problem Π2 and
Π1 contains instances and starting solutions for which iterative improvement needs
an exponential number of iterations, then there exist instances and starting solu-
tions for Π2 with the same property. By constructing a tight PLS reduction, they
showed that finding a flip-optimal solution for max cut by iterative improvement
may take an exponential number of iterations, regardless of the neighbor selecting
rules. Hence, finding a flip-optimal solution for the ggcp by iterative improve-
ment may take an exponential number of iterations as well. As the reductions for



5.5 Local optima may be hard to find 85

1 2 3 4 5 6

87

22 2

1

13 2

Figure 5.1: Graph

532

7

1 6

8

4

i

1 4 6

−2 4 2

4

3 52

7 8e

4 6

4 2

4

532

7

1

8f

4

−2

532

7

1 6

8h

4

0

532 4

7

1 6

8g

1 2 4 6

2 4 2

2 4

2

3 5

7 8c

1 4 6

2 4 2

−2 4

3 52

7 8d

1 2 3 4 5 6

2 1 2 2

6 6

2 1

7 8
a

1 2 4 5 6

2 4 2

2 6

2 1

3

7 8
b

Figure 5.2: Variable-depth flip



86 5. Generalized graph coloring

3

4

6

5

7

11

8

102

9

1
4 · 20i−1−5 · 20i−1

−M−8 · 20i−1

−8 · 20i−1

−
2 · 20 i−

1

−2
· 2

0
i−

1

−
M

−
5

·2
0

i
−

1
−

5
·2

0
i
−

1

−
2

·2
0

i
−

1

−20i−1−20i
−8

· 2
0
i−

1 −
2
−i

−
8 · 20 i−

1
−

1

Figure 5.3: Module i

−M M

Figure 5.4: Chain

the ggcp with the m-flip and with the vd-flip neighborhoods are not tight, this
result does not extend to iterative improvement procedures for finding m-flip- and
vd-flip-optimal solutions. This does not imply that there does not exist a tight
PLS reduction for these problems.

To illustrate the exponential number of iterations needed for finding a flip-
optimal solution, we give an example of a graph and an initial solution for 2-ggcp for
which best improvement, i.e., always flipping the best vertex, needs an exponential
number of iterations to find a flip-optimal solution. This graph consists of K
modules with weights on the edges as shown in Figure 5.3 for i = 1, . . . , K and a
chain of three additional vertices as shown in Figure 5.4.

Vertex 1 is called the input node and vertex 7 is called the output node of a
module. The input node of module i is adjacent to the output node of module i+1,
for i = K − 1, . . . , 1, and the input node of module K is adjacent to the right most
vertex of the chain of Figure 5.4. The output node of module 1 is only adjacent
to vertices 4, 5, 6, and 10 of this module. An edge of weight −M , where M is
some large positive value, makes sure that the two vertices incident to this edge
have the same color. We claim that the best improvement procedure starting from
the solution in which all vertices are colored red, flips the output node of the first
module 2K times.

In our starting solution, only flipping the right most vertex of the chain yields an
improvement. This flip results in a solution in which the input node of module K is
unhappy, i.e., flipping this vertex improves the solution. We now show by induction
on K that the output node of module 1 flips 2K times. For K = 0, the output node
is the right most vertex of the chain and it is flipped once.

Assume the claim is true for K − 1 modules. Consider a graph on K modules of



5.5 Local optima may be hard to find 87

which the only unhappy vertex is the input node of module K. Flipping this vertex
yields a solution in which vertices 2 and 3 of module K are unhappy. Changing
vertex 2 yields an improvement of 2−K and by our choice of edge weights, best
improvement will only change the color of this vertex when all other vertices are
happy. Hence, vertices 3, 5 and 7 are flipped, which results in a solution in which the
input node of module K−1 is unhappy. By induction we know that the output node
of module 1 will now flip 2K−1 times and then we have found a solution in which
all vertices in the modules 1, . . . , K − 1 are happy and the only unhappy vertex is
vertex 2 of module K. Thus this vertex is flipped and then successively vertices 4
and 6 and the output node of module K are flipped. This yields a solution in which
the input node of module K−1 is unhappy. By induction, we know that the output
node of module 1 flips another 2K−1 times and then we have found a flip-optimal
solution. Hence, the number of times that the output node of module 1 is flipped is
2K .





Bibliography

E.H.L. Aarts and J.K. Lenstra (editors) (1997). Local Search in Combinatorial
Optimization, Wiley, Chichester.

E.H.L. Aarts and P.J.M. Van Laarhoven (1985a). A new polynomial time cool-
ing schedule, In Proceedings IEEE International Conference on Computer-Aided
Design, pages 206–208.

E.H.L. Aarts and P.J.M. Van Laarhoven (1985b). Statistical cooling: A general
approach to combinatorial optimization problems, Philips Journal of Research
40, 193–226.

F. Alizadeh (1995). Interior point methods in semidefinite programming with appli-
cations to combinatorial optimization, SIAM Journal on Optimization 5, 13–51.

G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi (1999). Complexity and Approximation: Combinatorial optimization
problems and their approximability properties, Springer, Berlin.

F. Barahona and A.R. Mahjoub (1986). On the cut polytope, Mathematical Pro-
gramming 36, 157–173.

F. Barahona, M. Grötschel, M. Jünger, and G. Reinelt (1988). An application of
combinatorial optimization to statistical physics and circuit layout design, Oper-
ations Research 36, 493–513.

F. Barahona, M. Jünger, and G. Reinelt (1989). Experiments in quadratic 0–1
programming, Mathematical Programming 44, 127–137.

J.W. Berry and M.K. Goldberg (1999). Path optimization for graph partitioning
problems, Discrete Applied Mathematics 90, 27–50.

F. Bock (1958). An algorithm for solving ‘traveling-salesman’ and related network
optimization problems. Manuscript associated with talk presented at the Four-
teenth National Meeting of the Operations Research Society of America. St. Louis,
MO.

Y. Boykov, O. Veksler, and R. Zabih (1999). A new algorithm for energy mini-
mization with discontinuities, In International Workshop on Energy Minimization
Methods in Computer Vision and Pattern Recognition, pages 205–220, Springer,
Berlin.

P. Brucker, J. Hurink, and F. Werner (1996). Improving local search heuristics for
some scheduling problems I, Discrete Applied Mathematics 65, 97–122.

89



90 Bibliography

P. Brucker, J. Hurink, and F. Werner (1997). Improving local search heuristics for
some scheduling problems II, Discrete Applied Mathematics 72, 47–69.

J.L. Bruno, E.G. Coffman, Jr., and R. Sethi (1974). Scheduling independent tasks
to reduce mean finishing time, Communications of the ACM 17, 382–387.

R.C. Carlson and G.L. Nemhauser (1966). Scheduling to minimize interaction cost,
Operations Research 14, 52–58.

M.W. Carter (1984). The indefinite zero-one quadratic problem, Discrete Applied
Mathematics 7, 23–44.

V. Černy (1985). Thermodynamical approach to the traveling salesman problem: An
efficient simulation algorithm, Journal of Optimization Theory and Applications
45, 41–51.

B. Chandra, H. Karloff, and C. Tovey (1999). New results on the old k-opt algorithm
for the traveling salesman problem, SIAM Journal on Computing 28, 1998–2029.

Y. Cho and S. Sahni (1980). Bounds for list schedules on uniform processors, SIAM
Journal on Computing 9, 91–103.

G.A. Croes (1958). A method for solving traveling salesman problems, Operations
Research 6, 791–812.

K.M.J. De Bontridder, B.V. Halldórsson, M.M. Halldórsson, C.A.J. Hurkens, J.K.
Lenstra, R. Ravi, and L. Stougie (2001). Approximation algorithms for the min-
imum test set problem, Manuscript.

C. De Simone, M. Diehl, M. Jünger, P. Mutzel, G. Reinelt, and G. Rinaldi (1995).
Exact ground states of Ising spin glasses: new experimental results with a branch-
and-cut algorithm, Journal of Statistical Physics 80, 487–496.

C. Delorme and S. Poljak (1993). Laplacian eigenvalues and the maximum cut
problem, Mathematical Programming 62, 557–574.

M.E. Dyer and L.A. Wolsey (1990). Formulating the single machine sequencing
problem with release dates as a mixed integer program, Discrete Applied Mathe-
matics 26, 255–270.

U. Feige and G. Schechtman (2002). On the optimality of the random hyperplane
rounding technique for MAX CUT, Random Structures and Algorithms, to ap-
pear.

U. Feige, M. Karpinski, and M. Langberg (2000). Improved approximation of MAX-
CUT on graphs of bounded degree, Technical Report 85215 CS, Institut für In-
formatik, Universität Bonn.

C.M. Fiduccia and R.M. Mattheyses (1982). A linear-time heuristic for improving
network partitions, In Proceedings of the 19th IEEE Design Automation Confer-
ence, pages 175–181.

G. Finn and E. Horowitz (1979). A linear time approximation algorithm for multi-
processor scheduling, BIT 19, 312–320.



Bibliography 91

P.M. França, M. Gendrau, G. Laporte, and F.M. Müller (1994). A composite heuris-
tic for the identical parallel machine scheduling problem with minimum makespan
objective, Computers and Operations Research 21, 205–210.

M.R. Garey and D.S. Johnson (1979). Computers and Intractability: A Guide to
the Theory of NP-Completeness, Freeman, San Francisco.

M.R. Garey, D.S. Johnson, and L. Stockmeyer (1976). Some simplified NP-complete
graph problems, Theoretical Computer Science 1, 237–267.

N. Garg, V.V. Vazirani, and M. Yannakakis (1996). Approximate max-flow min-
(multi)cut theorems and their applications, SIAM Journal on Computing 25,
235–251.

C.A. Glass, C.N. Potts, and P. Shade (1994). Unrelated parallel machine scheduling
using local search, Mathematical and Computer Modelling 20, 41–52.

F. Glover (1989). Tabu search: part 1, ORSA Journal on Computing 1, 190–206.

F. Glover (1990). Tabu search: part 2, ORSA Journal on Computing 2, 4–32.

M.X. Goemans and D.P. Williamson (1995). Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite programming,
Journal of the ACM 42, 1115–1145.

R.L. Graham (1966). Bounds for certain multiprocessing anomalies, Bell System
Technical Journal 45, 1563–1581.

R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan (1979). Opti-
mization and approximation in deterministic sequencing and scheduling: a survey,
Annals of Discrete Mathematics 5, 287–326.

M. Grötschel, L. Lovász, and A. Schrijver (1981). The ellipsoid method and its
consequences in combinatorial optimization, Combinatorica 1, 169–197.

M. Grötschel, L. Lovász, and A. Schrijver (1984). Corrigendum to our paper “the
ellipsoid method and its consequences in combinatorial optimization”, Combina-
torica 4, 291–295.

A. Gupta and É. Tardos (2000). A constant factor approximation algorithm for
a class of classification problems, In Proceedings of 32nd ACM Symposium on
Theory of Computing , pages 652–658.

D.J. Haglin and S.M. Venkatesan (1991). Approximation and intractability results
for the maximum cut problem and its variants, IEEE Transactions on Computers
40, 110–113.

L.A. Hall, A.S. Schulz, D.B. Shmoys, and J. Wein (1997). Scheduling to minimize
average completion time: off-line and on-line algorithms, Mathematics of Opera-
tions Research 22, 513–544.

A.M.A. Hariri and C.N. Potts (1991). Heuristics for scheduling unrelated parallel
machines, Computers and Operations Research 18, 323–331.

J. H̊astad (1997). Some optimal inapproximability results, In Proceedings of 29th
ACM Symposium on Theory of Computing , pages 1–10.



92 Bibliography

R. Haupt (1989). A survey of priority rule-based scheduling, OR Spektrum 11, 3–16.

C. Helmberg and F. Rendl (2000). A spectral bundle method for semidefinite pro-
gramming, SIAM Journal on Optimization 10, 673–696.

D.S. Hochbaum (editor) (1997). Approximation Algorithms for NP-hard problems,
PWS Publishing Company, Boston.

D.S. Hochbaum and D.B. Shmoys (1987). Using dual approximation algorithms for
scheduling problems: theoretical and practical results, Journal of the ACM 34,
144–162.

D.S. Hochbaum and D.B. Shmoys (1988). A polynomial approximation scheme
for machine scheduling on uniform processors: using the dual approximation ap-
proach, SIAM Journal on Computing 17, 539–551.

T. Hofmeister and H. Lefmann (1996). A combinatorial design approach to MAX-
CUT, In Proceedings of the 13th Annual Symposium on Theoretical Aspects of
Computer Science, LNCS 1046, pages 441–452, Springer, Berlin.

S. Homer and M. Peinado (1997). Design and performance of parallel and distributed
approximation algorithms for maxcut, Journal of Parallel and Distributed Com-
puting 46, 48–61.

J.A. Hoogeveen, P. Schuurman, and G.J. Woeginger (1998). Non-approximability re-
sults for scheduling problems with minsum criteria, In Proceedings of the 6th Con-
ference on Integer Programming and Combinatorial Optimization, LNCS 1412,
pages 353–366, Springer, Berlin.

W.A. Horn (1973). Minimizing average flow time with parallel machines, Operations
Research 21, 846–847.

C.A.J. Hurkens and A. Schrijver (1989). On the size of systems of sets every t of
which have an sdr, with an application to the worst-case ratio of heuristics for
packing problems, SIAM Journal on Discrete Mathematics 2, 68–72.

C.A.J. Hurkens and T. Vredeveld (2002). Bounding the number of local search
moves for multiprocessor scheduling problems, Manuscript.

D.S. Johnson and L.A. McGeoch (1997). The traveling salesman problem: a case
study, In E.H.L. Aarts and J.K. Lenstra (editors), Local Search in Combinatorial
Optimization, chapter 8, pages 215–310, Wiley, Chichester.

D.S. Johnson, C.H. Papadimitriou, and M. Yannakakis (1988). How easy is local
search?, Journal of Computer and System Sciences 37, 79–100.

D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon (1989). Optimization
by simulated annealing: an experimental evaluation; part I, graph partitioning,
Operations Research 37, 865–892.

V. Kann, S. Khanna, J. Lagergren, and A. Panconesi (1997). On the hardness of
approximating max k-cut and its dual, Chicago Journal of Theoretical Computer
Science, http://cjtcs.cs.uchicago.edu/.



Bibliography 93

S.E. Karish (1998). cutsdp – a toolbox for a cutting-plane approach based on
semidefinite programming, Technical Report IMM-REP-1998-10, Department of
Mathematical Modelling, Technical University of Denmark.

H. Karloff (1999). How good is the Goemans-Williamson MAX CUT algorithm,
SIAM Journal on Computing 29, 336–350.

R.M. Karp (1972). Reducibility among combinatorial problems, In R.E. Miller and
J.W. Thatcher (editors), Complexity of Computer Computations, pages 85–103,
Plenum Press, New York.

B.W. Kernighan and S. Lin (1970). An efficient heuristic procedure for partitioning
graphs, Bell System Technical Journal 49, 291–307.

S. Kirkpatrick, C.D. Gelatt, Jr., and M.P. Vecchi (1983). Optimization by simulated
annealing, Science 220, 671–680.

A.W.J. Kolen and J.K. Lenstra (1995). Combinatorics in operations research, In
R.L. Graham, M. Grötschel, and L. Lovász (editors), Handbook of Combinatorics,
pages 1875–1910, Elsevier Science, Amsterdam.

M.R. Korupolu, C.G. Plaxton, and R. Rajaraman (1998). Analysis of a local search
heuristic for facility location problems, In Proceedings of 9th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1–10.

K. Lang and S. Rao (1993). Finding near-optimal cuts: An empirical evaluation, In
Proceedings of 4th ACM-SIAM Symposium on Discrete Algorithms, pages 212–
221.

M. Laurent (1997). Max-cut problem, In M. Dell’Amico, F. Maffioli, and S. Martello
(editors), Annotated Bibliographies in Combinatorial Optimization, chapter 15,
Wiley, Chichester.

E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys (editors) (1985).
The traveling salesman problem: a guided tour of combinatorial optimization,
Wiley, Chichester.

J.K. Lenstra (1976). Sequencing by Enumerative Methods, Ph.D. thesis, Universiteit
van Amsterdam.

J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker (1977). Complexity of machine
scheduling problems, Annals of Discrete Mathematics 1, 343–362.

J.K. Lenstra, D.B. Shmoys, and É. Tardos (1990). Approximation algorithms for
scheduling unrelated parallel machines, Mathematical Programming 46, 259–271.

S. Lin and B.W. Kernighan (1973). An effective heuristic for the traveling salesman
problem, Operations Research 21, 498–516.

S. Mahajan and H. Ramesh (1999). Derandomizing approximation algorithms based
on semidefinite programming, SIAM Journal on Computing 28, 1641–1663.

B. Mohar and S. Poljak (1990). Eigenvalues and the max-cut problem, Czechoslovak
Mathematical Journal 40, 343–352.



94 Bibliography

E. Nowicki and C. Smutnicki (1996). A fast taboo search algorithm for the job shop
problem, Management Science 42, 797–913.

P.M. Pardalos and G.P. Rodgers (1990). Computational aspects of a branch and
bound algorithm for quadratic zero-one programming, Computing 45, 131–144.

G. Pataki and S.H. Schmieta (1999). The DIMACS library of mixed semidefinite-
quadratic-linear programs.
http://dimacs.rutgers.edu/Challenges/Seventh/Instances/

C. Phillips, C. Stein, and J. Wein (1997). Task scheduling in networks, SIAM
Journal on Discrete Mathematics 10, 573–598.

S. Poljak (1995). Integer linear programs and local search for max-cut, SIAM Jour-
nal on Computing 24, 822–839.

S. Poljak and F. Rendl (1994). Node and edge relaxations of the max-cut problem,
Computing 52, 123–137.

S. Poljak and F. Rendl (1995). Solving the max-cut problem using eigenvalues,
Discrete Applied Mathematics 62, 249–278.

S. Poljak and D. Turzik (1986). A polynomial time heuristic for certain subgraph
optimization problems with guaranteed worst case bound, Discrete Mathematics
58, 99–104.

S. Poljak and Z. Tuza (1995). Maximum cuts and large bipartite subgraphs, In W.
Cook, L. Lovász, and P. Seymour (editors), Special Year on Combinatorial Opti-
mization, volume 20 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pages 181–2443, American Mathematical Society.

S. Sahni and T. Gonzalez (1976). P-Complete approximation problems, Journal of
the ACM 23, 555–565.

M.W.P. Savelsbergh, R.N. Uma, and J. Wein (1998). An experimental study of
linear programming-based scheduling heuristics, In Proceedings of 8th ACM-SIAM
Symposium on Discrete Algorithms, pages 453–461.

A.A. Schäffer and M. Yannakakis (1991). Simple local search problems that are
hard to solve, SIAM Journal on Computing 20, 56–87.

A.S. Schulz and M. Skutella (1997a). Random-based scheduling: new approxima-
tions and LP lower bounds, In J. Rolim (editor), Randomization and Approxi-
mation Techniques in Computer Science, LNCS 1296, pages 119–133, Springer,
Berlin.

A.S. Schulz and M. Skutella (1997b). Scheduling-LPs bear probabilities: random-
ized approximations for min-sum criteria, In R.E. Burkard and G.J. Woeginger
(editors), Algorithms – ESA’97 , LNCS 1284, pages 416–429, Springer, Berlin.

P. Schuurman and T. Vredeveld (2001). Performance guarantees of local search
for multiprocessor scheduling, In Proceedings of 8th Integer Programming and
Combinatorial Optimization Conference, LNCS 2081, pages 370–382, Springer,
Berlin.



Bibliography 95

D.B. Shmoys and E. Tardos (1993). An approximation algorithm for the generalized
assignment problem, Mathematical Programming 62, 461–474.

M. Skutella (1998). Approximation and Randomization in Scheduling , Ph.D. thesis,
Fachbereich Mathematik, Technische Universität Berlin.

M. Skutella (2001). Convex quadratic and semidefinite programming relaxations in
scheduling, Journal of the ACM 48, 206–242.

W.E. Smith (1956). Various optimizers for single-stage production, Naval Research
Logistics Quarterly 3, 59–66.

J.F. Sturm (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over
symmetric cones, Optimization Methods and Software 11–12, 625–653.

R.N. Uma and J. Wein (1998). On the relationship between combinatorial and LP-
based approaches to NP-hard scheduling problems, In Proceedings of 6th Integer
Programming and Combinatorial Optimization Conference, LNCS 1412, Springer,
Berlin.

J.M. Van den Akker, C.A.J. Hurkens, and M.W.P. Savelsbergh (2000). Time-
indexed formulations for machine scheduling problems: column generation, IN-
FORMS Journal on Computing 12, 111–124.

S.J. Van der Linden (2000). Convex Quadratic Relaxations and Approximation
Algorithms: A Computational Study , Master’s thesis, Department of Operational
Research and Management, University of Amsterdam.

V.V. Vazirani (2001). Approximation Algorithms, Springer, Berlin.

P.M.B. Vitányi (1981). How well can a graph be n-colored?, Discrete Mathematics
34, 69–80.

T. Vredeveld (2001). Test instances max cut, www.win.tue.nl/˜ tjark/.

T. Vredeveld and C.A.J. Hurkens (2001). Experimental comparison of approxima-
tion algorithms for scheduling unrelated parallel machines, INFORMS Journal on
Computing , to appear.

T. Vredeveld and J.K. Lenstra (2002). On local search for the generalized graph
coloring problem, Manuscript.

M. Yannakakis (1997). Computational complexity, In E.H.L. Aarts and J.K. Lenstra
(editors), Local Search in Combinatorial Optimization, chapter 2, pages 19–55,
Wiley, Chichester.





Samenvatting

In de combinatorische optimalisering wordt veel onderzoek gedaan naar benade-
ringsalgoritmen. Dit zijn methoden die voor een optimaliseringsprobleem niet zozeer
de beste oplossing als wel een goede oplossing zoeken. Sommige van deze algoritmen
zijn ontwikkeld vanuit een theoretisch oogpunt en geven een garantie ten aanzien
van de kwaliteit van de oplossing en de benodigde tijd om die te vinden. Andere zijn
ontworpen om goed te werken in de praktijk: ze geven goede oplossingen binnen re-
delijke tijd, maar we kunnen nauwelijks garanties geven ten aanzien van de kwaliteit
of de looptijd van zo’n algoritme. Deze laatste categorie bevat lokale-zoekmethoden.
In deze methoden gaan we steeds van de huidige oplossing naar een buuroplos-
sing totdat aan bepaalde stopcriteria voldaan is. Zo’n lokale-zoekmethode begint
dus vanuit een toegelaten oplossing en voor iedere oplossing is een verzameling van
buren gedefinieerd, de buurruimte.

In dit proefschrift beschouwen voor een aantal moeilijke problemen methoden
uit een van de twee beschreven categorieën en analyseren deze met de maatstaf
van de andere categorie. We hebben een aantal approximatie-algoritmen, waarvoor
garanties bekend zijn, gëımplementeerd en hun empirische prestatie vergeleken met
die van een aantal lokale-zoekalgoritmen. Vervolgens analyseren we, vanuit theore-
tisch oogpunt, de kwaliteit van lokale optima. We beschouwen ook de tijd die een
iteratieve verbeteringsmethode nodig heeft om deze oplossingen te vinden.

In hoofdstuk 2 bekijken we het probleem van het plaatsen van taken op ongere-
lateerde parallelle machines. In dit probleem heeft iedere taak machine-afhankelijk
behandelingsduren en een niet-negatief gewicht. Het doel is om de som van de gewo-
gen completeringstijden te minimaliseren. De benaderingsalgoritmen met garanties
ten aanzien van kwaliteit en looptijd zijn alle gebaseerd op het afronden van een
oplossing voor een relaxatie van dit probleem. Deze relaxaties geven ondergrenzen
voor de optimale waarde. Naast het maken van een empirische vergelijking is in dit
hoofdstuk ook aandacht besteed aan de dominantierelatie tussen de verschillende
ondergrenzen. Het bleek dat het algoritme dat gebaseerd is op de relaxatie die de
beste ondergrens geeft, ook de beste bovengrens levert onder de algoritmen met
garanties. Dit algoritme gaf ook betere resultaten dan de lokale-zoekstrategieën ite-
ratieve verbetering en tabu search, wanneer die vanaf willekeurige startoplossingen
uitgaan. De beste resultaten werden verkregen door tabu search toe te passen op de
oplossing verkregen met het beste benaderingsalgoritme met garantie.

In hoofdstuk 3 beschouwen we het max cut-probleem, waarin de knopenverza-
meling van een graaf in tweeën gedeeld moet worden. De doelstelling is om de som
van de gewichten van de kanten tussen knopen in verschillende delen te maximali-

97



98 Samenvatting

seren. Het algoritme dat de beste garantie geeft voor de kwaliteit van de oplossing,
levert ook de beste oplossingen, als we ons beperken tot de algoritmen met garan-
ties. Simulated annealing levert gelijkwaardige oplossingen als de tijd die simulated
annealing mag gebruiken gelijk is aan de tijd die het beste benaderingsalgoritme
gebruikt. Het nadeel van deze twee methoden is dat voor de wat grotere grafen
de tijd behoorlijk groot wordt. Als we de tijd die simulated annealing mag gebrui-
ken verkleinen, dan wordt de kwaliteit van de gevonden oplossing niet veel slechter:
gemiddeld ongeveer 0.1%.

In hoofdstuk 4 kijken we naar een aantal buurruimtes voor machinevolgorde-
problemen. De doelstelling is de laatste taak zo vroeg mogelijk te laten eindigen.
In deze problemen beschouwen we drie verschillende soorten parallelle machines.
Bij identieke machines heeft een taak op iedere machine dezelfde tijd nodig. In
het geval van uniforme machines heeft een taak een gegeven behandelingsbehoefte
en een machine een gegeven snelheid; de behandelingsduur van een taak is haar
behandelingsbehoefte gedeeld door de snelheid van de machine. Tenslotte zijn er
ongerelateerde machines, waarbij de behandelingsduur van een taak bepaald wordt
door de machine waarop zij geplaatst wordt. Voor deze machinevolgordeproblemen
analyseren we de kwaliteit van lokale optima ten aanzien van de jump-, de swap-
en de nieuw gedefinieerde push-buurruimte. Voor identieke machines is de waarde
van een lokaal optimum ten aanzien van alle drie de buurruimtes altijd kleiner dan
twee keer het optimum. Voor uniforme machines levert de push-buurruimte nog
steeds een garantie van twee, terwijl lokale optima ten aanzien van de jump en
swap-buurruimte slechts een garantie hebben die groeit met de wortel van het aan-
tal machines. De push-buurruimte is niet gedefinieerd voor ongerelateerde machines;
we laten zien dat jump- en swap- optimale oplossingen erg slecht kunnen zijn.

In hoofdstuk 5 beschouwen we het gegeneraliseerde graafkleuringsprobleem. Het
doel is hier om de knopen van de graaf zodanig te kleuren dat de totale interactie
tussen knopen van dezelfde kleur minimaal is. We leggen een verband tussen de
Karush-Kuhn-Tucker punten van een kwadratische formulering van dit probleem en
flip-optimale oplossingen, d.w.z., oplossingen waarbij het verplaatsen van precies
één punt naar een andere kleurgroep niet leidt tot een verbetering. We laten zien
dat voor drie of meer kleuren lokale optima ten aanzien van een grote verzameling
buurruimtes niet een waarde kunnen hebben die gegarandeerd begrensd is door een
constante maal de optimale waarde, tenzij P = NP. Voor de flip-, m-flip- en
vd-flip-buurruimtes bewijzen we dit ook voor het geval van twee kleuren, zelfs
als P = NP. Ook geven we een voorbeeld waaruit blijkt dat het vinden van een
flip-optimale oplossing exponentieel veel tijd kan kosten.



Curriculum vitae

Tjark Vredeveld was born on July 14th 1973 in Leiden, The Netherlands. In 1991, he
received his Atheneum diploma from the St.-Janscollege, Heerlen. In September of
the same year he started studying Econometrics with specialty operations research
at Erasmus University in Rotterdam. He received his Master’s degree in August
1996. From 1995 until 1997, Tjark was employed as a consultant by PLS Point
Logic Systems, nowadays known as PointLogic. In February 1997, he started as
a PhD student at Erasmus University in Rotterdam. A year later, he switched to
Eindhoven University of Technology, which also implied a switch of research subject
to approximation algorithms for combinatorial optimization problems. The results
of his research are presented in this thesis.

99




	Contents
	Preface
	1. Introduction
	2. Scheduling unrelated parallel machines: an experimental investigation
	3. Max cut : an empirical evaluation
	4. Multiprocessor scheduling
	5. Generalized graph coloring : the worst-case of local search
	Bibliography
	Samenvatting
	Curriculum Vitae

