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Abstract

We propose an approach to investigate the stationarity properties of individual units

in a panel based on testing user-defined increasing proportions of hypothesized stationary

units sequentially. Asymptotically valid critical values are obtained using the block boot-

strap. This sequential approach has an advantage over multiple testing approaches, in

particular ifN is large and T is small, as it can exploit the cross-sectional dimension, which

the multiple testing approaches cannot do effectively. A simulation study is conducted

to analyze the relative performance of the approach in comparison with multiple testing

approaches. The method is also illustrated by two empirical applications, in testing for

unit roots in real exchange rates and log earnings data of households. The simulation

study and applications demonstrate the usefulness of our method, in particular in panels

with large N and small T .

Keywords : Sequential testing; unit roots; panel data; block bootstrap.

JEL Classification: C15, C23.

1 Introduction

Over the last decade a large number of unit root tests have been designed that can be applied

in panel data. Most of these tests have as a null hypothesis that all units in the panel have a

unit root. The alternative hypothesis differs; some tests have the alternative hypothesis that

at least some series are stationary.1 A rejection for such a test is hard to interpret; it could

∗Department of Quantitative Economics, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The
Netherlands. E-mail: S.Smeekes@maastrichtuniversity.nl. This research was supported financially by the
Netherlands Organisation for Scientific Research (NWO). I would like to thank Christoph Hanck for sharing
his data. I also thank Eric Beutner, Stefano Fachin, Franz Palm and Jean-Pierre Urbain as well as participants
at the Panel Data Conference 2010 in Amsterdam for helpful comments and suggestions.

1Throughout this paper, “stationary” should be read to mean integrated of order zero (I(0)). In the same
way, “nonstationary” implies I(1).
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be that just a few units are stationary, or that all units are stationary. These two opposites

will usually have very different consequences for the economic interpretation of the tests, yet

there is no way to distinguish. Other tests have as alternative hypothesis that all units are

stationary. While such an alternative hypothesis might seem to help interpreting a rejection,

this is often not so; many of these tests also have power if not all units are stationary (cf.

Westerlund and Breitung, 2009, Myth 1); and hence a rejection is not convincing evidence

that all series are indeed stationary.

For this reason, it is important to consider methods that can provide more information

than just a rejection or no rejection for the whole panel. Methods that can give an estimate

of the proportion of stationary units, or, even better, methods that can test which units are

stationary, are therefore very valuable.

Recently several papers have investigated such methods. Ng (2008) proposes an estimator

of the proportion of stationary units based on the value of the trend in cross-sectional averages

of variances. This method delivers an estimate of the fraction of (non)stationary units, but

cannot test which units are stationary. Hanck (2009) and Moon and Perron (2010) apply

methods from the literature on multiple testing to determine which units are stationary.

Hanck (2009) employs the bootstrap approach of Romano and Wolf (2005) to control the

family-wise error rate (FWE) in testing for which countries PPP holds, an approach that

is mainly suited for relatively small cross-sectional dimension N . Moon and Perron (2010)

on the other hand aim to control the false discovery rate (FDR), an approach that is better

suited to panels with larger N . Moon and Perron (2010) consider both asymptotic methods

and the bootstrap method of Romano, Shaikh, and Wolf (2008a) to control the FDR, and

find that the bootstrap method performs best in general.

In this paper, we propose an approach to determine the stationary units based on se-

quential testing, thereby avoiding the difficulties of controlling size in multiple testing. Our

approach is similar in spirit to that of Kapetanios (2003), who was the first to consider sequen-

tial testing for the number of stationary units. Our method proceeds by testing user-specified

fractions, or quantiles, of the units sequentially. The quantiles can be selected in such a way

that the method tests individual units sequentially, in which case the method is mainly suited

to panels with small N . We will show that this version of the method is closely related to the

approach of Romano and Wolf (2005) to control for FWE; as a side-product of this analysis

we propose a modification of their method that can be more powerful. By selecting “wider”

quantiles the method can be made suitable for panels with large N . It is demonstrated that

this method has several advantages over other large N methods; this holds in particular in

large N , small T models, as unlike the existing methods, our approach is able to exploit the

cross-sectional dimensional to increase power.

The structure of the paper is as follows. The DGP is introduced in Section 2. In Section

3 the sequential tests are constructed and their asymptotic properties are derived. Section
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4 presents two simulation studies comparing the properties for small and large N models to

those of comparable multiple testing approaches. In Section 5 we present two applications.

Section 6 concludes. Proofs are given in the Appendix.

A word on notation. ⌊x⌋ is the largest integer smaller than or equal to x. We denote x

rounded to the nearest integer by [x]. Convergence in distribution (probability) is denoted

by
d
−→ (

p
−→). Bootstrap quantities (conditional on the original sample) are indicated by ap-

pending a superscript ∗ to the standard notation. Convergence in distribution (probability)

of bootstrap statistics is denoted
d∗
−→ (

p∗
−→), where this convergence is taken to take place in

probability. |x| applied to a complex number x denotes its absolute value, while |G | applied

to a set G denotes the cardinality of the set. G c denotes the compliment of the set G taken

with respect to the set NN = {i ∈ N : i ≤ N}, i.e. G c ∪ G = NN while G c ∩ G = ∅.

2 The model

Suppose we have a panel of observations yi,t, i = 1, . . . , N and t = 1, . . . , T . Let yt =

(y1,t, . . . , yN,t)
′ be generated as

yt = βzt + ΛFt + wt, (1)

where β = (β1, . . . , βN )′, Λ = (λ1, . . . , λN )′, Ft = (F1,t, . . . , Fd,t)
′ and wt = (w1,t, . . . , wN,t)

′.

Ft are common factors (d in total), Λ are the (non-random) factor loadings, wt are idiosyn-

cratic components and zt are deterministic components, where zt = 1 or zt = (1, t)′.

We let the factors and the idiosyncratic components be generated by

Ft = ΦFt−1 + ft, F0 = 0,

wt = Γwt−1 + vt, w0 = 0,
(2)

where Φ = diag(φ1, . . . , φd) and Γ = diag(γ1, . . . , γN ).

Furthermore we let ft and vt be constructed as

[

vt

ft

]

= Ψ(L)εt =

[

Ψ11(L) Ψ12(L)

Ψ21(L) Ψ22(L)

][

εv,t

εf,t

]

, (3)

where Ψ(z) =
∑

∞

j=0 Ψjz
j (Ψ0 = I). We impose the following conditions on Ψ(z) and εt.

Assumption 1.

(i) det(Ψ(z)) 6= 0 for all {z ∈ C : |z| = 1} and
∑

∞

j=0 j|Ψj | <∞.

(ii) εt is i.i.d. with E εt = 0, E εtε
′

t = Σ and E |εt|
2+ǫ <∞ for some ǫ > 0.
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This is the same DGP as used by Palm, Smeekes, and Urbain (2010). Now define ρi as

ρi = lim
t→∞

E(yi,t−1yi,t)

E(y2
i,t−1)

.

If ρi = 1, unit i has a unit root, if |ρi| < 1, unit i is stationary. Unit i has a unit root if there

is a unit root in one of its two components λ′iFt or wi,t. That is, ρi = 1 if γi = 1 or if φj = 1

and λi,j 6= 0 for some j = 1, . . . , d, where λi,j is the j-th element of λi.

Let k0 = 0, 1, . . . , N be the number of stationary units. Formally, define S = {i ∈ NN :

|ρi| < 1} as the set of stationary units, such that k0 = |S |, and U = {i ∈ NN : ρi = 1} as the

set of nonstationary units. Furthermore, let q0 = k0/N denote the proportion of stationary

units.

Remark 1. Note that our DGP is very general as we allow for a wide range of temporal and

cross-sectional dependencies. It is therefore not entirely appropriate to call wt “idiosyncratic

components”. For an extensive discussion of the DGP and the appropriateness of the termi-

nology, see Remark 1 and 2 of Palm et al. (2010). We will not pay any more attention to

this here, as our focus here is whether or not yi,t has a unit root, and we are not interested

in the cause of the unit root. Moreover, the whole sequential testing setup that we propose

is independent of the structure of the DGP, and so this is a minor issue in this paper.

3 Sequential testing for unit roots

3.1 Bootstrap Sequential Quantile Test

Let 0 = q1 < . . . < qr < 1 denote a set of r user-defined numbers, representing the proportions

of stationary units to be tested sequentially. Let kj = [qjN ] be the number of stationary units

corresponding to qj. We will go into detail later on how to select the numbers qj; we first

focus on the method. Let H0(qj) denote the null hypothesis that a proportion of qj units is

stationary, or equivalently that kj out of N units are stationary. In other wordsH0(qj) : |S | =

kj = [qjN ]. Let H1(qj+1) denote the alternative hypothesis that at least a proportion of qj+1

units, (or, equivalently, kj+1 out of N units) is stationary, i.e. |S | ≥ kj+1. Let τ(qj , qj+1) be

a test statistic to test H0(qj) vs. H1(qj+1), which rejects H0(qj) if τ(qj , qj+1) < cα(qj , qj+1),

where cα(qj, qj+1) is an appropriate level α critical value. The sequential testing procedure

can now be described as below.

Algorithm 1 (Sequential Quantile Test).

1. Test H0(q1) against H1(q2) using test statistic τ(q1, q2). Reject H0(q1) if τ(q1, q2) <

cα(q1, q2).

2. If H0(q1) is not rejected, set q̂ = q1. If H0(q1) is rejected, test H0(q2) against H1(q3).
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3. Keep testing until the null hypothesis H0(qj) cannot be rejected. In that case, set

q̂ = qj. If all null hypotheses up to H0(qr) are rejected, set q̂ = 1.

We now focus on how to construct the test statistic τ(qj, qj+1). To do so we first need

individual unit root tests statistics on each unit. Let θi be any unit root test statistic applied

to unit i that satisfies the following assumption.

Assumption 2. Let θi be a statistic applied to unit i = 1, . . . , N that rejects the null

hypothesis of a unit root for small values of θi. Furthermore

(i) Under the null hypothesis θi is asymptotically distributed as ξi, i.e. if ρi = 1, then

θi
d
−→ ξi, as T → ∞.

(ii) θi is consistent; in particular, if ρi < 1, then

θi
p
−→ −∞, as T → ∞.

Obviously many unit root tests statistics satisfy these conditions,2 including the popular

Dickey-Fuller tests (in this case ξi is the Dickey-Fuller distribution, or one of its detrended

variants).3 Note that in general ξi and ξj will be correlated if there is cross-sectional depen-

dence in the data.

Now let θ(1), . . . , θ(N) denote the order statistics of θ1, . . . , θN , defined such that

θ(1) ≤ . . . ≤ θ(N).

Then we take the test statistic as the order statistic corresponding to the alternative hypoth-

esis to be tested, that is

τ(qj , qj+1) = θ(kj+1) = θ([qj+1N ]). (4)

While this choice of test statistic is a natural choice, it is not used often as asymptotic

theory for the order statistics is notoriously difficult, in particular as θ1, . . . , θN will not be

2Note that the assumption that the tests reject to the left is made for expositional simplicity (and because
it is true for many unit root tests), it is in no way crucial for the construction of the methods as all arguments
just turn around for tests that reject to the right.

3As is usual, we will use ξi interchangeably to denote the asymptotic distribution of θi and the random
variable with this distribution. For instance for the Dickey-Fuller distribution (for the coefficient test) we have

ξi =

∫ 1

0
Bi(r)dBi(r)
∫ 1

0
Bi(r)2dr

,

where Bi is a standard Brownian motion, which, just as is usual, can be interpreted both as the distribution
itself or the random variable with that distribution.
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independent due to the cross-sectional dependence in the panel. For this reason we propose

to use the bootstrap to obtain critical values.

We now present the bootstrap implementation of our sequential test, which we call the

Bootstrap Sequential Quantile Test (BSQT ). Note that we can not only use this method to

estimate q0, but also to determine the members of S . Let us first introduce the notation

z(k:G ) as the k-th smallest element of the set {zi : i ∈ G }, or formally

z(k:G ) = {zi : i ∈ G and |{j ∈ G : zj < zi}| = k − 1} .

Algorithm 2 (BSQT ). To testH0(qj) vs.H1(qj+1) in Algorithm 1, let τ(qj, qj+1) = θ([qj+1N ]) =

θ(kj+1) and let

Skj
= {i : θi ≤ θ(kj)}. (5)

1. For each unit obtain the detrended series

ỹi,t = yi,t − β̂′izt,

where β̂i is an estimator of βi obtained for example through OLS or GLS.

2. For each unit estimate

ρ̂i =

∑T
t=1 ỹi,t−1ỹi,t
∑T

t=1 ỹ
2
i,t−1

,

and calculate

ûi,t = ỹi,t − ρ̂iỹi,t−1 −
1

T − 1

T
∑

t=2

(ỹi,t − ρ̂iỹi,t−1).

Let ût = (û1,t, . . . , ûN,t)
′.

3. Choose a block length b. Draw i0, . . . , ik−1 i.i.d. from the uniform distribution on

{1, 2, . . . , T − b}, where k = ⌊(T − 2)/b⌋ + 1 is the number of blocks.

4. Construct the bootstrap errors u∗2, . . . , u
∗

T as follows.

u∗t = ûim+s,

where m = ⌊(t− 2)/b⌋ and s = t−mb− 1.

5. Let

y∗i,t = ρ∗i y
∗

i,t−1 + u∗i,t,

6



where

ρ∗i = 1 for all i = 1, . . . , N.

6. Obtain θ∗i for all i ∈ S
c
kj

, and obtain the bootstrap test statistic as

τ∗(qj, qj+1) = θ∗(kj+1−kj :Sc
kj

).

7. Repeat Steps 3 to 6 B times, obtaining bootstrap test statistics τ∗m(qj, qj+1), for m =

1, . . . , B, and select the bootstrap critical value c∗α(qj, qj+1) as c∗α(qj, qj+1) = max{c :

B−1
∑B

m=1 I(τ
∗m(qj , qj+1) < c) ≤ α}, or equivalently as the α-quantile of the ordered

τ∗m(qj , qj+1) statistics.

It now follows directly that the set of units deemed stationary is simply equal to Sk̂ = S[q̂N ]

as defined in (5).

Before we develop the asymptotic properties of the procedure, let us briefly digress on

the choice of the quantiles q1, . . . , qr. We argue that the choice of the quantiles should be

determined by both economic and statistical arguments.

First of all note that, unless the quantiles are selected such that each unit is tested

sequentially, the method will leave “holes” in between the units. For example, suppose that

the quantiles to be tested are taken as qj = (j − 1)/4 (that is 0, 0.25, 0.5 and 0.75). Then

the method will obviously not be able to detect if 35% or 40% of the units are stationary.

Moreover, it is from the outset not clear how the method will behave if the true proportion of

stationary units is in between selected quantiles.4 In that sense, if the outcome of the method

is that q̂ = qj, this should not be interpreted to say that qj is the true stationary proportion,

but rather that the true stationary proportion should be found in the interval (qj−1, qj+1)

(also see Section 3.3). Hence, for a very precise result the quantiles should be taken close to

one another.

On the other hand, the “holes” that are created are also the method’s strength. By

skipping units, all information in these units is cross-sectionally bundled together in one

test, which will increase power. Basically, in each step the method uses the cross-sectional

information to increase power in the same way that a “regular” panel unit root test does. As

such, for power purposes, it is best to take the quantiles as far away as possible.

Therefore we suggest to take the quantiles such that they are as far spread out as possible,

while still being able to draw economically relevant conclusions from the outcomes. It is

pointless to give a general rule of thumb, as for each specific application a different amount of

precision is needed. The optimal quantiles will also depend on the sample sizes; the larger N

4The intuition that the method is more likely to reject if the true proportion is closer to the alternative
hypothesis will be confirmed in the asymptotic analysis.
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is, the more units are in between two quantiles, and so they could be taken closer while still

maintaining power. Power is also heavily influenced by T , and larger T also means quantiles

can be taken closer to each other. Also, note that the quantiles do not have to be equally

spaced; one could for instance imagine that the outcome of the question whether 0% or 10%

of the units are stationary has a very different impact on the interpretation of the results

than the outcome of the question whether 10% or 20% of the units are stationary.

Finally, we have already alluded to setting the quantiles such that each unit is tested

sequentially. Specifically, this amounts to setting qj = (j− 1)/N , j = 1, . . . , N . This deserves

special attention, as it has a fundamentally different interpretation than when setting “fixed”

quantiles. First, note that all problems mentioned above related to the holes do not apply

here. Second, while the fixed quantile method has a nice interpretation for large and even

increasing N , this is not so for the unit based method (the quantiles collapse). As such,

this method is really designed for panels with small or moderate N . Because of the special

significance of this option, we refer to this method by a different name: BSUT , for Bootstrap

Sequential Unit Test.

Remark 2. Strictly speaking the computation of the test statistic does not depend on qj,

and so we would not have to let it depend on it. However the distribution of the test statistic

under the null obviously does depend on it, and consequently the bootstrap variant depends

on it as well.

Remark 3. While the statistics θi could be any unit root test statistics, we will from now

mainly focus on the case where θi is chosen as a Dickey-Fuller (DF) type statistic. The tests

could contain an initial demeaning or detrending procedure that could either be standard

OLS or GLS as in Elliott, Rothenberg, and Stock (1996). As DF statistic one could either

take the coefficient test or the t-test, and the statistic can be augmented with lags (ADF)

or not (also see Remark 5 below). For the applications in Section 5 we will also consider

combinations of DF tests based on Harvey, Leybourne, and Taylor (2010) and Smeekes and

Taylor (2010).

3.2 Asymptotic properties

We now proceed with the asymptotic analysis of the method. The asymptotic theory requires

the following assumption on the block length (also see Remark 8).

Assumption 3. Let b→ ∞ and b = o(T 1/2) as T → ∞.

The asymptotic distributions of the test statistics and bootstrap test statistics in a single

step of the sequential procedure are given in Theorem 1. These distributions are not of much

interest by themselves, but they are necessary to make statements about the asymptotic

properties of the whole sequential method.
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Theorem 1.

(i) Let yi,t be generated by (1)-(3) and let Assumption 1 hold. Let θ1, . . . , θN satisfy As-

sumption 2 and let τ(qj , qj+1) be defined as in (4). Then, as T → ∞, we have that

τ(qj, qj+1)
p
−→ −∞ if qj+1 ≤ q0, (6a)

τ(qj, qj+1)
d
−→ ξ(kj+1−k0:U ) if qj+1 > q0. (6b)

(ii) In addition to the conditions used in (i), let θ∗i and τ∗(qj , qj+1) be defined as in Algorithm

2 and let Assumption 3 hold. Then, as T → ∞, for any q0,

θ∗i
d∗
−→ ξi in probability for all i ∈ S

c
kj

(jointly), (7)

and

τ∗(qj , qj+1)
d∗
−→ ξ(kj+1−kj :Sc

kj
) in probability. (8)

This theorem shows the asymptotic validity of the bootstrap order statistics. Note that

the bootstrap also correctly reproduces the cross-sectional dependence between the individual

unit root test statistics, as shown in detail by Palm et al. (2010).

As mentioned above, we can now consider the properties of the sequential approach as a

whole. The implications of Theorem 1 for the sequential approach are given in Corollary 1.

Corollary 1. Under the assumptions of Theorem 1, we have that

lim
T→∞

P(q̂ = qj) = 0 if qj+1 ≤ q0, (9a)

lim
T→∞

P(q̂ = qj) = 1 − aα
j,k0

if qj < q0 < qj+1, (9b)

lim
T→∞

P(q̂ = qj) = 1 − α if qj = q0, (9c)

lim
T→∞

P(q̂ = qj) ≤ aα
j−1,k0

if qj−1 < q0 < qj, (9d)

lim sup
T→∞

P(q̂ = qj) ≤ α if qj−1 ≥ q0, (9e)

where

aα
j,m = P

{

ξ(kj+1−m:U m) < cα,∞(qj, qj+1)
}

, (10)

with U m the set of N −m I(1) units, and cα,∞(qj , qj+1) is such that

P

{

ξ(kj+1−kj :Sc
kj

) < cα,∞(qj, qj+1)

}

= α. (11)
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Furthermore, for any kj ≤ m < kj+1,

α ≤ aα
j,m ≤ aα

j,m+1 ≤ 1. (12)

Several conclusions follow from the results above. First, note that if we were to restrict

ourselves to situations where we are able to pick the true proportion exactly, the method works

perfectly asymptotically; that is, if qj = q0, we choose a too low quantile with probability

0 and a too high quantile with at most probability α; compare for instance Swensen (2006,

Corollary 1) for a similar result in the context of sequential testing for cointegration rank.

This confirms the asymptotic validity of the bootstrap critical values. Also note that, at least

asymptotically, there is a simple way to avoid selecting quantiles that do no equal the true

proportion, and that is by setting qj = (j − 1)/N and using the BSUT method. However,

as has been discussed before, this method will not always work well in finite samples, and is

unsuited for applications when N is large in particular.

Corollary 1 also gives an insight into what happens asymptotically if the true proportion is

in between the selected quantiles. Combining equations (9b) and (9d) with (12) shows that the

closer qj is to q0, the higher the asymptotic probability is that qj is selected by the sequential

procedure. This is an intuitively logical and comforting result, which provides validation

for the quantile-based approach. Obviously this does not eliminate the issues arising in this

situation, but at least the method behaves in an appropriate way in these cases, such that

one can reliably apply it when the quantiles are selected appropriately.5

Remark 4. Note that results (9b) and (12) are not only useful in our sequential context, but

can also be used to describe the asymptotic power of “conventional” bootstrap panel unit root

tests based on order statistics, such as the median, minimum and maximum.6 In short, if the

true number of stationary units is larger than the hypothesized number of stationary units

under the null hypothesis, but smaller than the hypothesized number under the alternative

hypothesis, asymptotic power is increasing with the true number of stationary units.

Remark 5. Although any unit root test can be used for θi, in practice it is usually the best

option to use tests for which their marginal distribution is “as nuisance-parameter free as pos-

sible”. If the marginal distributions of the individual tests depend on nuisance parameters,

they may not live on the same scale. As a consequence any ranking of them becomes unreli-

able.7 It is therefore important to make all the individual tests live on the same scale, which

is the case if their marginal distributions are the same; also see the discussion in Romano and

Wolf (2005, p. 1255).

5In Section 3.3 we discuss an extension which aims at eliminating this issue.
6See for example Di Iorio and Fachin (2008) for an application of such statistics to cointegration testing.
7This occurs for example if the variances differ. Suppose that the variance of θi is greater than that of θj .

If in that case θi is smaller than θj , θi does not necessarily indicate more evidence against the unit root null
than θj , but it does get ranked before it.
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Remark 6. Kapetanios (2003) used the IPS group-mean statistic of Im, Pesaran, and Shin

(2003) as test statistic, deleting the “most stationary” unit every round. The major problem

with this approach is that the IPS test, being an average of the individual DF tests, is strongly

influenced by the nonstationary units. As such it may lack power compared to the test based

on order statistics, in particular if only a few units are stationary. Moreover, the IPS test

does not allow for cross-sectional dependence, although it can be augmented to deal with

cross-sectional dependence as in the CIPS test of Pesaran (2007).

Remark 7. The properties of the BSQT method are only analyzed for fixed N , as currently

all relevant bootstrap theory (in particular by Palm et al., 2010) only provides results for fixed

N .8 The extension to infinite N is very difficult with a general DGP as ours. However, neither

in Palm et al. (2010) nor in our case is there any restriction on N ; N may be very large, just

not increasing to infinity. The same caveat holds for the multiple testing approaches that we

discuss later. Note though that the formulation of the BSQT approach with the quantiles

directly lends itself to be extended to a setting with N increasing to infinity.

Remark 8. Block length selection in practice remains an open issue, in particular in the

context of nonstationary time series. It is discussed in Palm et al. (2010, Section 5.3), where

it found that the Warp-speed calibration method of Giacomini, Politis, and White (2007)

performs reasonably well. However, that method depends on the test statistic employed,

and that makes it more difficult to apply in a sequential context where a sequence of test

statistics is used. An alternative method could be to set it equal to choice of bandwidth

for long-variance estimation in Andrews (1991), as done by Gonçalves (2010) and Moon and

Perron (2010). However, this method faces similar issues in a sequential context and its

optimality properties in a nonstationary setting are unknown. In practice it seems advisable

for empirical work to run the method at different fixed block lengths and investigate the

sensitivity to these differences.

3.3 Extensions

We now consider two possible extensions of the proposed method. The first aims at increasing

power, while the second deals with the case where the true proportion of stationary units lies

between the selected quantiles.

3.3.1 BSQT2

To motivate the first extension, note that the properties of the sequential approach and the

limit distributions are for a large part based on the consistency of the individual unit root test

8Gonçalves (2010) considers the block bootstrap for panel linear regression models and proves asymptotic
validity for increasing N . These results however are only valid for stationary data, and can therefore not be
directly extended to the unit root model.
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statistics θi; that is, if unit i is stationary, θi
p
−→ −∞ and as such it will have no influence on

the distribution of the order statistics corresponding to the nonstationary units. While this

is true asymptotically, this may not be so in finite samples. While the unit root test statistics

should take smaller values for stationary units, their finite sample distributions may overlap

the distributions of the statistics corresponding to the nonstationary units and thus influence

the finite sample distributions of the order statistics.

The BSQT method ignores this effect by deleting the units found stationary from the

sample used in the next round. Therefore we now propose a modification, that we label

BSQT2,
9 that tries to mimic the effect of the stationary units on the distribution of the order

statistics by including the units as being stationary in the bootstrap. Unlike BSQT it does

not delete the stationary units but instead includes these units as stationary in the bootstrap.

The advantage of this second method is that the information in the stationary units is not

discarded. While asymptotically negligible, it may increase the finite sample power of the

BSQT2 method.

Algorithm 3 (BSQT2). To test H0(qj) vs. H1(qj+1) in Sequential Test 1, let τ(qj , qj+1) =

θ([qj+1N ]) = θ(kj+1) and let Skj
be as defined in (5). Perform bootstrap steps 1 to 4 of Algorithm

2 to obtain bootstrap errors u∗t .

4. Let

y∗i,t = ρ∗i y
∗

i,t−1 + u∗i,t,

where

ρ∗i =

{

ρ̂i if i ∈ Skj

1 if i ∈ S
c
kj

.

5. Obtain θ∗i for all units, and let

τ∗2 (qj, qj+1) = θ∗(kj+1)
.

6. Repeat Steps 3 to 6 B times, obtaining bootstrap test statistics τ∗m2 (qj, qj+1), for m =

1, . . . , B, and select the bootstrap critical value c∗α(qj, qj+1) as c∗α(qj, qj+1) = max{c :

B−1
∑B

m=1 I(τ
∗m(qj , qj+1) < c) ≤ α}, or equivalently as the α-quantile of the ordered

τ∗m2 (qj , qj+1) statistics.

Remark 9. The asymptotic properties of BSQT2 are very similar to those of BSQT . Given

the results that are available regarding the validity of autoregressive bootstrapping in station-

ary time series (cf. Bose, 1988), combined with results for the block bootstrap (Künsch, 1989),

9When we apply the modification to the BSUT approach, we label it BSUT2.
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we have that ρ̂∗i − ρi = o∗p(1), from which it then easily follows that, for i ∈ S , θ∗i
p∗
−→ −∞ as

T → ∞. Hence, whenever |S | ≥ |Skj
|, the properties of both methods are identical. The only

difference between the two methods occurs in the setting of (9e), as there |S | < |Skj
|, which

means that some units that are in fact I(1) are generated in the bootstrap algorithm with

ρ̂∗i . It is known that in that case the unit root distribution will not be replicated correctly

(Basawa, Mallik, McCormick, Reeves, and Taylor, 1991) but as we only reach this situation

at the end of the algorithm with a small probability, it is not a problem for the validity of

the approach.

3.3.2 Iterative BSQT

As has been discussed extensively before, the major issue with the BSQT approach is that the

true proportion of stationary units may lie in between the selected quantiles. While we argue

that this problem can be overcome by careful consideration of the quantiles to be selected, it

may still be desirable in some applications to have a more precise estimate of q0.
10

To this end we propose a modification of the BSQT method (which can be applied to

BSQT2 as well) that can provide more precise estimates. If q̂ is the estimate found from the

sequential procedure, define q̂−1 and q̂+1 as one selected quantile smaller and larger than the

estimate, respectively. In other words, if q̂ = qm, then q̂−1 = qm−1 and q̂+1 = qm+1. Now

note that

P {q0 ∈ [q̂−1, q̂+1]} = 1 − P {q0 < q̂−1} − P {q0 > q̂+1} .

By (9a) and (9e) it follows that

lim
T→∞

P {q0 < q̂−1} = lim
T→∞

P {q̂ = qj|qj−1 > q0} ≤ α,

lim
T→∞

P {q0 > q̂+1} = lim
T→∞

P {q̂ = qj|qj+1 < q0} = 0,

from which we can conclude that

lim
T→∞

P {q0 ∈ [q̂−1, q̂+1]} ≥ 1 − α.

This confirms that we should interpret finding a certain q̂ as evidence that q0 is between q̂−1

and q̂+1. The BSQT method stops here, but we may instead apply the sequential method

again only on the interval [q̂−1, q̂+1]. Of course, after the second step the interval can further

be shortened and the method applied again and so on until convergence to one unit takes

place. Below we describe this iterative application of the BSQT method, denoted by IBSQT ,

more formally.

10As discussed before the problem can be avoided by using the BSUT method, but this is not always
appropriate.
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Algorithm 4 (IBSQT ).

1. Select a set of quantiles to be tested q
(1)
1 < . . . < q

(1)
r1 , where q

(1)
1 = 0 and q

(1)
r1 < 1 and

apply BSQT or BSQT2 to obtain an estimate q̂(1).

2. Select a new set of quantiles to be tested q
(2)
1 < . . . < q

(1)
r2 , where q

(2)
1 = q̂

(1)
−1 and

q
(2)
r2 < q̂

(1)
+1 and obtain a second round estimate q̂(2).

3. Select a third round set of quantiles restricted to the set [q̂
(2)
−1, q̂

(2)
+1 ] to obtain an estimate

q̂(3). Continue in this fashion until convergence to one unit takes place in the I-th

iteration and obtain a final estimate q̂(I).

If at any stage of the algorithm q̂(s) is equal to the boundaries q̂
(s−1)
−1 or q̂

(s−1)
+1 , only

consider the interval [q̂(s), q̂
(s)
+1] or [q̂

(s)
−1, q̂

(s)], respectively, in the next stage.

In this way the IBSQT method can yield a precise estimate of the number of stationary

units, while still being able to exploit the cross-sectional dimension. However, there is an

asymptotic price to pay for these benefits. As the method is applied iteratively, with every

iteration the probability of making an error is accumulated. If I iterations are needed, then

it can be shown that

lim
T→∞

P
{

q̂(I) = q0

}

≥ (1 − α)I .

It should be added though that usually the number of iterations will be fairly small (also

see Remark 10), and that the probability of an error is generally smaller than α in most

iterations.11

Remark 10. In general the number of quantiles in the BSQT ∗ procedures should be rel-

atively small to properly utilize the cross-sectional dimension. In every iteration the cross-

sectional dimension grows smaller, and thus it becomes progressively harder to exploit it

effectively. Choosing a relatively fine grid for the quantiles in the first stage will leave only

few units within the second stage interval and will affect the power in the second stage nega-

tively, in particular if a fine grid is chosen again. The same holds for every further iteration.

Of course, even if only few quantiles are selected in each stage, finite sample power will drop

fairly quickly with every iteration as the cross-sectional dimension is effectively reduced, of-

ten terminating the method quickly as from some point on it will keep ending up on the left

boundary of the interval.

3.4 Sequential approaches in a multiple testing framework

It is interesting to investigate the similarities between our approach and approaches based on

size control in multiple testing. An overview of multiple testing techniques is given by Ro-

11If the selected quantile at any stage is on the left boundary the probability is even equal to 0.
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mano, Shaikh, and Wolf (2008b). In a panel context these methods have been used by Hanck

(2009), Deckers and Hanck (2009) and Moon and Perron (2010) among others. Hanck (2009)

tests for which countries PPP holds. To control for size in this multiple testing framework he

employs the bootstrap method by Romano and Wolf (2005), which controls the family-wise

error rate (FWE), which is defined as the probability of at least one false rejection.

Our BSUT approach, even though originating from a sequential perspective, is very sim-

ilar to the method of Romano and Wolf (2005). Their method, which we call RW , can be

described as follows using our terminology.

1. Test H0(0) against H1(1/N). That is, obtain τ(0, 1/N). Reject H0(0) if τ(0, 1/N) <

cα(0, 1/N).

2. If H0(0) is not rejected, set q̂ = 0. If H0(0) is rejected, test H0(1/N) against H1(2/N),

still using the critical value cα(0, 1/N). That is, reject H0(1/N) if τ(1/N, 2/N) <

cα(0, 1/N).

3. Keep testing using critical value cα(0, 1/N) until the null hypothesis H0(j/N) cannot

be rejected. If 0 < j/N < 1, continue to the second step: Test H0(j/N) against

H1((j + 1)/N) by rejecting H0(j/N) if τ(j/N, (j + 1)/N) < cα(j/N, (j + 1)/N). If

H0(j/N) cannot be rejected, set q̂ = j/N . If H0(j/N) is rejected, test H0((j + 1)/N)

against H1((j + 2)/N) using critical value cα(j/N, (j + 1)/N).

4. Keep testing using critical value cα(j/N, (j + 1)/N) until the null hypothesis H0(m/N)

cannot be rejected. If j < m < N , continue to the next step, and so on. If all null

hypotheses up to H0((N − 1)/N) can be rejected, set q̂ = 1.

The critical values cα((k − 1)/N, k/N) are obtained in the same way as in BSUT . Very

informally one could see the RW method as a “shortcut” to our BSUT method: instead of

calculating critical values at every step, first the critical value from the previous step is used,

given that cα((k − 1)/N, k/N) ≤ cα(k/N, (k + 1)/N) for all k = 1, . . . , N − 1.

Given the similarity between the two methods, the modification of BSUT immediately

leads to an extension of RW : in analogy to the difference between BSUT and BSUT2, we

could change how the critical values cα(k/N, (k + 1)/N) in the RW procedure are found;

instead of deleting the units deemed stationary, they can be incorporated into the bootstrap

as stationary units. We will denote this modified RW procedure by RW2. In analogy with

the sequential approaches we might expect the RW2 method to be more powerful.

A different approach is to control the false discovery rate (FDR), as done by Deckers and

Hanck (2009) and Moon and Perron (2010) in a panel setup. To define the FDR we must

first define the false discovery proportion (FDP ). The FDP is equal to the proportion of

rejections that are false. The FDR is then defined as the expectation of the FDP . This

generalized error rate is more “liberal” than the FWE, and therefore more suitable in large
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N panels. Controlling the FWE, the probability of just one false rejection, becomes very

difficult for a large N , and does not even make sense if N → ∞. This makes the FWE

unsuitable in large panels, and controlling FDR is then an attractive alternative. In small

panels however some researchers might be uncomfortable with the error that the FDR allows

for. Moreover, controlling for FDR has the disadvantage that the expectation of FDP is

controlled for, and not FDP itself; the realized FDP may be very different from its expected

value (cf. Romano et al., 2008b, p. 423).

Moon and Perron (2010) develop unit root tests that can be applied in panel data to de-

termine which units are stationary, based on controlling the FDR. They use several methods

to control FDR but find that the bootstrap approach of Romano et al. (2008a) works best

in controlling FDR. Deckers and Hanck (2009) also find favorable results for this bootstrap

method.

Note though that this method cannot be directly compared to the BSQT method, as

both are based on different principles. We can however compare the performance of both

approaches, as they are designed for the same goal, although we have to keep the different

philosophies (and therefore sometimes different results) in mind.

4 Simulations

4.1 Simulation DGP

We now perform two simulation studies; one in panels with small N , the second in panels

with large N . While the methods that we analyze depend on this setting (details below), we

use the same DGP for both, although with different T and N . Our DGP is very similar to

the DGP used by Moon and Perron (2010) in their simulation study.12

yi,t = µi + xi,t i = 1, . . . , N t = 1, . . . , T,

xi,t = ρi,Txi,t−1 + ui,t, x0 = 0,

where ui,t is a sum of a common and an idiosyncratic component

ui,t = λift + wi,t,

and the individual effects µi are N(0, 1).

12Our DGP is fairly simple and could be extended to allow for dynamic cross-dependencies, cointegration,
etc, as Palm et al. (2010) showed that in such models the block bootstrap procedure is asymptotically valid.
These issues however are not the focus of the present work, and our current DGP suffices to analyze the
finite sample performance of the methods discussed here given the focus on the (non)stationarity properties of
individual units.
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For the common factor we let

ft = 0.5ft−1 + νi,t,

where νi,t ∼ i.i.d.N(0, 1). For the factor loadings, λi, we either take λi = 0, in which case

there is no cross-sectional dependence, or take λi ∼ U [−1, 3], in which the cross-sectional

dependence is generated by a factor structure.

The idiosyncratic components wi,t are modeled as an ARMA(1, 1) process,

wi,t = φiwi,t−1 + εi,t + θiεi,t−1.

Here we take φi = 0 or φi = U [−0.5, 0.5] for all i, and ψi = 0 or ψi = U [−0.5, 0.5] for all i.

Finally we take εi,t ∼ i.i.d.N(0, 1).

We take N = 10 combined with T = 50 and T = 100 for the small N panel, while we take

N = 50 with T = 100 and N = 200 with T = 25 for the large N panel. Furthermore, for the

stationary units in the panel, i ≤ k0, we take ρi,T ∼ U [0, 1−cT−1] with c = 10, and for i > k0

we take ρi,T = 1. Table 1 gives all the combinations of parameters we use. All computations

were performed in GAUSS 10.

Insert Table 1 about here

4.2 Simulation study in small N panels

In the small N panel we compare the BSUT , BSUT2, RW and RW2 procedures, while we

also add the bootstrap approach of Moon and Perron (2010) which is denoted by MP . For all

methods we apply the block bootstrap based on residuals as described above. Note that Moon

and Perron (2010) propose their method with the block bootstrap based on first differences.

We slightly modified their method to make sure that any differences found are not caused

by differences in bootstrap method. Also, for all methods we use the ADF t-test with OLS

demeaning. As in Moon and Perron (2010), lag lengths were selected by MAIC (Ng and

Perron, 2001) with a maximum of 4 lags. Block lengths are taken as b = 1.75T 1/3 as in Palm

et al. (2010). For k0, the number of stationary units in the panel, we take k0 = 0, 2, 5, 9 for all

parameter combinations. The level of all tests (or FWE/FDR when appropriate) is taken

to be 5%.

The simulation results are given in Tables 2 and 3. We report the average k̂, denoted

by M(k̂), the standard deviation of k̂, denoted by S(k̂), the average proportion of correctly

found stationary units, denoted by CP , the FWE and the FDR. All results are based on

1000 Monte Carlo simulations and 499 bootstrap replications.

Insert Table 2 about here
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Insert Table 3 about here

The four tests that asymptotically control FWE can be seen to control FWE in finite

samples as well; FWE is always close to α across all models. While the FWE control is

not sensitive to the dynamic parameters, the ability to (correctly) reject is, as can be seen

from the CP results in particular. The increase from T = 50 to T = 100 greatly improves

the methods’ ability to correctly pick up the stationary units; CP increases from roughly

0.5 to roughly 0.8. The FWE on the other hand is not very much affected. Cross-sectional

dependence appears to have a small negative effect on the methods’ ability to pick up the

stationary units.

Comparing the MP test with the other tests, we see that it is usually able to identify

more stationary units than the other methods, in particular if k0 is high. This is not strange,

as if k0 is large, and correspondingly the number of rejections is high, more false rejections are

allowed by the FDR. This is also reflected in the FWE, which can rise up to about 0.5 for

large k0. Note however that the MP does control FDR as it is supposed to do. It is therefore

not very fair to compare the MP method directly with the FWE controlling methods; both

have a different goal, and it is up to the applied researcher to determine if he is comfortable

with controlling the FDR in such a small panel or wishes to control the FWE.

The BSUT , BSUT2, RW and RW2 procedures perform very similarly. In general the

BSUT2 and RW2 methods are slightly more powerful, indicating that there may indeed be a

gain to including the stationary units as stationary in the bootstrap as opposed to deleting

them. The gain is fairly small however. The BSUT and RW methods perform, as predicted,

almost identically, and it would be hard to argue that the difference between them is more

than simulation randomness.

Concluding, the sequential BSUT methods perform well in small N panels, but do not

improve on the RW method. One might therefore argue what their added value is, beside

offering the small modification that can be applied to RW as well. The answer, as expected

from much of the foregoing, lies not in small N panels, but in large N panels.

4.3 Simulation study in large N panels

We now consider the case of large N panels. We now take T = 100 and N = 50, which

represents a large macro panel, and T = 25 and N = 200, which represents a micro panel.

As true proportions of stationary units we take q0 = 0, 0.2, 0.5, 0.9. The tests considered are

BSQT , BSQT2, IBSQT , IBSQT2 and MP . Unit root tests used and lag selection are the

same as in the previous section. We do not consider the BSUT and RW tests here, as these

are mainly designed for small panels. For the sequential methods we take four equally spaced

quantiles to be tested for the model with N = 50, and eight for N = 200. For the iterative

approaches the same quantiles are used in the first step, with four quantiles in the following

steps.
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Results are given in Tables 4 and 5. As in the previous simulation study, we report

M(q̂), CP and FDR. We do not report S(q̂), as this is not a fair comparison, given that

not all methods can select the same numbers. We also do not report the FWE, for reasons

given before. The FDR of course remains a sensible criterion, but it is not entirely fair in this

situation. As the BSQT and BSQT2 methods can only select the user-defined quantiles, they

are bound to have a number of false rejections whenever the true number of stationary units

lies in between two quantiles, and the higher number is selected. We know from Corollary

1 that this occurs with a probability larger than α. This will obviously increase the FDR;

this behavior of the procedure however is known and accepted if we choose to apply the

test. Therefore we construct a new criterion. Suppose that qj < q0 < qj+1. Then, given

the properties of the BSQT procedures, we would want the method to either select qj or

qj+1. To have a comparable criterion for the IBSQT and MP methods, we construct an

interval around q0 comparable to the interval [qj , qj+1]. We do not take this interval exactly

however, as it could be that q0 is very close to qj; in such a case the MP or IBSQT methods

could select a value slightly below qj, which would be good, but be outside this interval.

Therefore we select the interval as I0 = [q0 − q∗, q0 + q∗], where q∗ = max(q0 − qj, qj+1 − q0)

if qj < q0 < qj+1, and q∗ = (qj+1 − qj)/2 if q0 = qj.
13 The proportion of selected q̂ that is

within I0 is reported as WI, and could be interpreted as a “power” measure. We also report

the proportion selected higher than this interval in HI, which could be interpreted as a “size”

measure.

Insert Table 4 about here

Insert Table 5 about here

For the macro panel, the MP method works very well; it is able to identify most of the

stationary units, and controls FDR well. For the micro panel with N = 200, while FDR is

still controlled, the proportion of stationary units picked up decreases quite strongly. This is

not so unexpected, as the MP test cannot exploit the cross-sectional dimension effectively,

and there are only 25 time series observations in this model. It therefore seems that the MP

method performs well as long as T is not too small, and N is not too large.

While the pattern described above also applies to some extent to the BSQT methods,

there are still some significant differences with the MP method. In the macro panel the

BSQT methods are able to pick up slightly fewer stationary units than MP if q0 is not equal

to a selected quantile, but if it is equal, the BSQT methods perform quite similarly. In the

micro panel though the BSQT methods pick up much more stationary units than the MP

method (although still not nearly all). Here the ability of the BSQT methods to exploit the

13Given our choices for the quantiles described above, this results in intervals around q0 = 0, 0.2, 0.5, 0.9 of
[0, 0.125], [0, 0.4], [0.375, 0.525] and [0.75, 1] for N = 50 and [0, 0.063], [0.125, 0.275], [0.437, 0.563] and [0.8, 1]
for N = 200
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cross-sectional dimension really shows. Furthermore, from the reported HI, we can see that

the estimates of stationary units are rarely too high. As expected, FDR is not controlled by

BSQT if q0 is not equal to a tested quantile; if they are equal the methods do seem to control

FDR.

The IBSQT approaches appear to perform quite well; even though they are not especially

designed to do so, they appear to be able to control FDR. They do however tend to pick up

somewhat less of the stationary units than the BSQT tests, although still more than the MP

tests in the micro panel. This is caused by the fact that they lose power in higher iterations, as

the cross-sectional dimension then effectively decreases. The BSQT2 and IBSQT2 methods

are on average somewhat more powerful than the BSQT and IBSQT methods, although the

difference is again fairly small.

All methods are less able to pick up the stationary units if there is a common factor; this

is not surprising for the sequential tests, as their power basically comes from “pooling” the

cross-section, and it is well known in the panel unit root literature that pooling is less effective

if there is strong dependence across the units.

Also, in the micro panel serial correlation seems to have quite a negative effect on power.

This is most likely caused by the fact that larger lag lengths are needed in those models, and

the power of unit root tests are known to be affected quite a lot by the selected lag length.

It might thus be a good idea in such panels to restrict the allowed lag lengths, and try to

find other ways to make the marginal distributions live on the same scales, such as by scaling

with bootstrap critical values (we will go into more detail in Section 5).

Concluding, the sequential methods perform well in panels with large N , even if T is small.

In panels where T is large and N relatively large, the sequential methods perform nearly as

well as the MP method. In panels with small T but very large N , the sequential methods

keep performing reasonably well whereas the performance of the MP method deteriorates

significantly.

5 Applications

In this section we consider two applications of the tests proposed in this paper. We first test

if Purchasing Power Parity (PPP) holds, using a panel of real exchange rates from a group of

countries. The second application is based on income data from the Panel Study of Income

Dynamics (PSID).

5.1 Tests for PPP

One of the most popular applications of panel unit root tests has been in the analysis of PPP

(see for example Wagner, 2008, for an overview). In such applications, evidence for PPP is
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found if the (log) real exchange rate ri,t is found stationary, where ri,t is defined as

ri,t = pi,t − p∗ − si,t.

pi,t is the log price index (CPI) of country i, p∗ is the log price index of the reference country,

and si,t is the log nominal exchange rate between country i and the reference country.

Many studies apply a panel unit root test to the panel of real exchange rates and conclude

that a rejection of the unit root null hypothesis is evidence for PPP in the panel. As discussed

before, such a rejection does not automatically mean that PPP holds for all countries in the

panel. It is well conceivable that PPP only holds for a subset of the countries, but that

the evidence within this subset is strong enough to make the panel unit root test reject.

The alternative approach is apply a unit root test such as the ADF test to each country

individually (see for example Taylor, 2002). However, this approach does not control size and

is likely to lead to false rejections of the null hypothesis.

For these reasons, Hanck (2009) proposes to test for PPP using the multiple testing

approach of Romano and Wolf (2005), where he applies sieve bootstrap ADF tests as the unit

root tests. Moon and Perron (2010) consider a similar application to PPP of their multiple

testing approaches.

We now revisit the dataset of Hanck (2009), which is based on the long annual exchange

rate data of Taylor (2002) and consists of data for 19 countries (with the US as reference

country) for 105 years to illustrate the performance of the BSQT approach. Next to the

BSQT approach, we consider the BSQT2 approach, the RW and RW2 approaches, and the

bootstrap approach of Romano et al. (2008a) to control for FDR employed in Moon and

Perron (2010) (denoted by MP ). To make all results comparable, we use the same block

bootstrap approach and same individual unit root statistics for all methods. In all methods,

the “level” (size, FWE or FDR) is set to 5%.

As the individual unit root test statistics θi, we consider the union of rejections (UR)

statistic proposed by Smeekes and Taylor (2010),14 which has the form of a scaled minimum

of the four statistics.

θi(α) = min

((

xi

cµ∗i,GLS(α)

)

DF −GLSµ
i ,

(

xi

cτ∗i,GLS(α)

)

DF −GLSτ
i ,

(

xi

cµ∗i,OLS(π)

)

DF −OLSµ
i ,

(

xi

cτ∗i,OLS(α)

)

DF −OLSτ
i

)

.

Here DF −OLSi and DF −GLSi are the ADF test performed on unit i with OLS and GLS

detrending respectively, while superscript µ and τ indicate whether demeaning or detrending

is used respectively. The bootstrap critical values such as cµ∗i,GLS(α) used in the scaling factors

14We use the “A” version of their statistic, which is asymptotically valid.
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are determined in a preliminary bootstrap step as the individual level α critical values of the

four tests. This test statistic is the bootstrap adaptation of the method proposed by Harvey

et al. (2010) of rejecting the null if either one of the four tests rejects (corrected to have

the correct size). This way the test can deal with uncertainty regarding the initial condition

(which affects the relative power of the OLS and GLS tests) and the presence of deterministic

trends,15 thus obviating the need to report multiple tests which is again subject to problems

with controlling size.

In a panel context this becomes even more important, as for instance some exchange rates

may exhibit deterministic trends while others do not.16 In such a case it would be most

beneficial to the power of the methods to only include the linear trend for those countries

that actually contain the trend, which is clearly infeasible in a panel. However, because the

union test statistic is applied to each individual unit, this statistic does automatically take

this trend uncertainty into account.

A second benefit in a sequential/multiple testing framework is the use of the scaling factor

xi. Smeekes and Taylor (2010) take xi = cµ∗i,GLS , which implies that the test statistics of unit

i are scaled towards the critical values of the DF −GLSµ
i statistic. However, they argue in

Remark 6 that any xi < 0 suffices. We therefore take xi = −1 for all i = 1, . . . , N , which

means that all statistics are scaled towards -1. This step further ensures that the marginal

distributions of the θi are “as free of nuisance parameters as possible” as discussed in Remark

5, as the statistics are not scaled towards individual critical values (which may vary over i)

but to a fixed constant.

The lag lengths of the ADF statistics are selected by MAIC (with maximum lag length

12(T/100)1/4), with lag length selection also done within the bootstrap. For the DF-GLS

tests we apply the modification to MAIC proposed by Perron and Qu (2007) of selecting lags

from OLS instead of GLS detrended data. We take a fairly large block length (20) to be able

to deal with possible cross-unit cointegration (cf. Palm et al., 2010, Section 4.2.2).

In a (relatively) small N panel as this it would be natural to apply the BSUT method

as well. As for this panel BSUT and BSUT2 give exactly the same results as RW and

RW2 respectively, we do not report these separately. Instead, we apply the BSQT and

BSQT2 procedures with the selected quantiles qj = (j − 1)/5, j = 1, . . . , 5, to clearly see the

differences with the unit-by-unit methods. Results are based on 4999 bootstrap replications,

and all calculations were performed in GAUSS 10.17

Insert Table 6 about here

15Harvey, Leybourne, and Taylor (2009) show in detail how uncertainty about the initial condition and/or
the presence of deterministic trend affects ADF unit root tests.

16While it might seem natural to model exchange rates without a linear trend, Taylor (2002) provides
evidence that such trends are present in the real exchange rates of some countries.

17GAUSS code to conduct the BSQT methods in combination with (possibly unions of) ADF statistics is
available on www.personeel.unimaas.nl/s.smeekes/research.htm.
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The results are presented in Table 6. The second column, θi, gives the values of the UR

statistics for each country. It follows from the third column, which reports the result of the

individual bootstrap UR tests, that for 9 countries the unit root null would have been rejected

if each country was tested separately. The BSQT , BSQT2 and MP test each reject for 8

countries, thus seeming to indicate that one UR rejection is false. Notably, the RW and RW2

methods only reject for one or two countries, which seems rather low.18 It might therefore be

that these methods already suffer from low power, even in this panel with moderate (but still

not very large) T . The higher rejections of BSQT and BSQT2 on the one hand and MP on

the other hand are caused by different factors though; BSQT and BSQT2 have higher power

because they exploit the panel dimension, while MP controls size in a more liberal way.

5.2 Unit root tests for PSID income data

Pesaran (2007) assesses the validity of the claim of Meghir and Pistaferri (2004) that the log

of real earnings of households in the Panel Study of Income Dynamics (PSID) have a unit

root. He applies his CIPS panel unit root test to the whole sample consisting of N = 181

units, as well as to three subsamples consisting of college graduates (CLG, N = 58), high

school graduates (HSG, N = 87) and high school drop outs (HSD, N = 36). As T = 22 this

is a typical example of large N , small T panel, or what in the previous section was labeled a

micro panel.

Pesaran (2007) finds mixed evidence regarding the unit root; the CIPS rejects for the

full sample, but not for all subsamples.19 This might lead to the conclusion that there is

a relation between education level and stationarity properties, such that certain education

groups have a unit root while others do not, and that the rejection for the subgroup drives

the full sample rejection. An alternative explanation is that in all three subsamples there are

both stationary and nonstationary units, without a pattern related to the education level,

and that whether a rejection is observed or not is more of a “coincidence”, depending on a

variety of factors.

There is however no way to find out which of the assertions is true with standard panel

unit root tests. Therefore we now apply our BSQT and IBSQT methods (as well as the MP

method) to the data used in Pesaran (2007).20. As quantiles to be tested we take qj = j−1
6 ,

j = 1, . . . , 6, while for the iterative approaches we divide the intervals in the later iterations

into three quantiles. We again consider the UR test statistics already considered in the

18The results for RW and RW2, unlike the other methods, are somewhat sensitive to the selected block
length. However, the number of stationary units found using these methods does remain significantly lower
than the other methods irrespective of the block length, and so varying the block length does not change the
overall conclusions.

19Which subgroups are rejected depends on the specification of the CIPS test, see Pesaran (2007) for
details.

20The dataset used in Pesaran (2007) is available from the Journal of Applied Econometrics Data Archive
(www.econ.queensu.ca/jae)
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previous application. We take a block size of 5 (corresponding to 1.75T 1/3), while we select

lags again using MAIC with the Perron and Qu (2007) modification with a maximum lag

length of 3 to avoid losing too many observations.21

Insert Table 7 about here

Results are listed in Table 7. Our results from BSQT and BSQT2 indicate that about one

third to one half of the units are stationary. IBSQT and IBSQT2 result in fewer rejections,

which is a typical example of the iterative method stopping at the left boundary because the

power decreases in each subsequent iteration. Also note that BSQT2 is more powerful here

than BSQT .

Note how the MP method leads to a very different result for these data; according to

the MP method only very few units are stationary, which is not consistent with the results

of Pesaran (2007), nor with the sequential methods. It therefore seems likely that the MP

method suffers from low power because of the small T , as found in the simulation study. As

discussed before, the BSQT methods overcome the small T by exploiting the cross-sectional

dimension, which the MP method is unable to do.

The results for the subsamples are not obtained by applying the tests to the subsamples

directly, but instead by ordering the units for which rejections were found in the complete

sample into the three subgroups. It seems that the proportion of stationary units in each of

the subsamples is fairly similar, from which we may conclude that there appears to be no

relation between education level and unit root properties.

6 Conclusion

We have proposed new methods based on sequential tests to investigate the stationarity

properties of individual units in a panel. The approach is based on testing user-defined

quantiles sequentially, representing the proportions of stationary data the researcher wants

to test for. By being based on quantiles, the method is applicable in panels with a large N ,

while it can also be made suitable for small N panels by testing individual units sequentially.

The critical values are based on the block bootstrap and shown to be asymptotically valid.

We also consider two modifications. The first is a modification of the bootstrap procedure

that leads to (somewhat) higher power in finite sample. This modification can also be applied

to existing bootstrap methods based on multiple testing procedures. The second modification

is an iterative application of the sequential approach designed to give more precise estimates

of the number of stationary units, not restricted to the user-defined quantiles.

21We do not have to worry about the lag length being too small to cancel out nuisance parameters, as the
scaling inherent in the UR approach (by setting xi = −1 for i = 1, . . . , N) will take care of that automatically.
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Through a simulation study we demonstrated the good performance of these methods in

finite samples, where the sequential (and iterative) methods have a significant advantage over

multiple testing approaches if N is rather large but T is small.

We also illustrated the tests by two empirical applications, in testing for unit roots in real

exchange rates and log earnings data of households. These applications, and in particular

the earnings application with large N and small T , again demonstrate the usefulness of these

methods.

The methods developed in this paper are not restricted to unit root testing in panels;

these sequential approaches can be used in many settings where multiple testing methods are

used, but may not be optimal, especially in applications where N is very large but T may

not be.
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A Appendix: Proofs

Proof of Theorem 1. We first show (6). Note that θi
p
−→ −∞ for i ∈ S as T → ∞ by

Assumption 2. Therefore, if k0 = |S |, we have that

θ(1), . . . , θ(k0)
p
−→ −∞. (13)

If qj+1 ≤ q0, kj+1 ≤ k0 and therefore θ(kj+1)
p
−→ −∞, which proves (6a).

If kj+1 > k0, then by (13) all order statistics below k0 have no effect on the distribution of

the remaining order statistics. Therefore we only have to consider those θi for which i ∈ U ,

and hence

θ(kj+1)
p
−→ θ(kj+1−k0:U ).

The result in (6b) then follows directly from the continuous mapping theorem (cf. White,

2000, Lemma 2).

The result in (7) follows directly from Paparoditis and Politis (2003) and Palm et al.

(2010), as their proofs of asymptotic validity can straightforwardly be extended to general
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unit root statistics. While Paparoditis and Politis (2003) and Palm et al. (2010) focus on the

DF coefficient test (without detrending), their results can easily be extended to more general

test statistics. The crucial result that lies at the heart of any proof of validity is the invariance

principle of the bootstrap partial sum process, which is derived in Lemmas 2 and 4 of Palm

et al. (2010). As this result still applies here, it can be used to establish the asymptotic

validity of more general unit root test statistics.

Finally, the result in (8) follows from the fact that in the bootstrap all units are generated

under the null of a unit root, and the application of the continuous mapping theorem.

Proof of Corollary 1. (9a) directly follows from (6a) coupled with (8). To prove (9b)

note that for qj < q0 < qj+1,

lim
T→∞

P(q̂ = qj) = lim
T→∞

P(H0(qj) not rejected) = lim
T→∞

P
{

θ(kj+1) ≥ c∗α(qj, qj+1)
}

= lim
T→∞

P
{

θ(kj+1−k0:U ) ≥ c∗α(qj, qj+1)
}

= P
{

ξ(kj+1−k0:U ) ≥ cα,∞(qj, qj+1)
}

= 1 − aα
j,k0

,

where the third equality follows from (13). (9c) is the probability of not rejecting the true null

hypothesis H0(qj), which is equal to 1 - α as S
c
kj

is equal to U in the limit with probability

1 by (13). To show (9d), note that if qj−1 < q0 < qj,

lim
T→∞

P(q̂ = qj) ≤ lim
T→∞

P(H0(qj − 1) rejected) = lim
T→∞

P
{

θ(kj) < c∗α(qj−1, qj)
}

= aα
j−1,k0

,

which follows in the same way as (9b). To show (9e) assume without loss of generality that

qj−1 = q0. The result then follows from the fact that

r
∑

m=1

P(q̂ = qm) =

j−2
∑

m=1

P(q̂ = qm) + P(q̂ = qj−1) +

r
∑

m=j

P(q̂ = qm)

= 1 − α+

r
∑

m=j

P(q̂ = qm) = 1.

Finally, the middle inequality in (12) follows if

P
{

ξ(kj+1−m:U m) < x
}

≤ P
{

ξ(kj+1−m−1:U m+1) < x
}

for any x ∈ R, which is equivalent to

ξ(kj+1−m−1:U m+1) ≤st ξ(kj+1−m:U m), (14)

where “X ≤st Y ” denotes that X is smaller in the usual stochastic order than Y (cf. Shaked

and Shanthikumar, 2007, p. 3). (14) then follows directly from Corollary 6.B.24 in Shaked
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and Shanthikumar (2007), as |U m| = N − m and therefore |U m+1| − (kj+1 − m − 1) =

N − kj+1 = |U m| − (kj+1 −m). The first inequality in (12) then follows by setting m = kj

along with (11), while the last inequality follows by definition. This completes the proof.

29



DGP T N λi φi θi

Panel A: Small N simulations

1 50 10 0 0 0
2 50 10 0 U[-0.5,0.5] U[-0.5,0.5]
3 50 10 U[-1,3] 0 0
4 50 10 U[-1,3] U[-0.5,0.5] U[-0.5,0.5]
5 100 10 0 0 0
6 100 10 0 U[-0.5,0.5] U[-0.5,0.5]
7 100 10 U[-1,3] 0 0
8 100 10 U[-1,3] U[-0.5,0.5] U[-0.5,0.5]

Panel B: Large N simulations

9 100 50 0 0 0
10 100 50 0 U[-0.5,0.5] U[-0.5,0.5]
11 100 50 U[-1,3] 0 0
12 100 50 U[-1,3] U[-0.5,0.5] U[-0.5,0.5]
13 25 200 0 0 0
14 25 200 0 U[-0.5,0.5] U[-0.5,0.5]
15 25 200 U[-1,3] 0 0
16 25 200 U[-1,3] U[-0.5,0.5] U[-0.5,0.5]

Table 1: Parameter combinations simulation DGPs
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k0 = 0 k0 = 2
DGP BSUT BSUT2 RW RW2 MP BSUT BSUT2 RW RW2 MP

1 M(k̂) 0.038 0.035 0.037 0.040 0.039 0.291 0.307 0.291 0.294 0.322

SD(k̂) 0.201 0.199 0.199 0.215 0.213 0.508 0.537 0.502 0.527 0.600
CP 0.000 0.000 0.000 0.000 0.000 0.121 0.126 0.121 0.122 0.130

FWE 0.036 0.032 0.035 0.036 0.035 0.049 0.054 0.048 0.049 0.058
FDR 0.036 0.032 0.035 0.036 0.035 0.043 0.045 0.043 0.040 0.043

2 M(k̂) 0.055 0.059 0.053 0.056 0.061 0.392 0.395 0.389 0.395 0.414

SD(k̂) 0.253 0.264 0.249 0.259 0.278 0.528 0.547 0.534 0.547 0.599
CP 0.000 0.000 0.000 0.000 0.000 0.165 0.165 0.164 0.166 0.167

FWE 0.049 0.052 0.047 0.049 0.053 0.060 0.062 0.058 0.060 0.074
FDR 0.049 0.052 0.047 0.049 0.053 0.052 0.050 0.049 0.049 0.053

3 M(k̂) 0.026 0.030 0.027 0.029 0.033 0.342 0.353 0.343 0.362 0.381

SD(k̂) 0.171 0.208 0.174 0.205 0.210 0.517 0.592 0.523 0.606 0.659
CP 0.000 0.000 0.000 0.000 0.000 0.158 0.160 0.158 0.163 0.166

FWE 0.024 0.024 0.025 0.023 0.027 0.023 0.022 0.023 0.024 0.033
FDR 0.024 0.024 0.025 0.023 0.027 0.019 0.017 0.019 0.018 0.021

4 M(k̂) 0.030 0.042 0.032 0.045 0.048 0.244 0.278 0.243 0.288 0.296

SD(k̂) 0.212 0.326 0.217 0.356 0.371 0.508 0.686 0.500 0.694 0.775
CP 0.000 0.000 0.000 0.000 0.000 0.101 0.102 0.100 0.109 0.109

FWE 0.025 0.026 0.025 0.028 0.027 0.037 0.041 0.037 0.041 0.043
FDR 0.025 0.026 0.025 0.028 0.027 0.033 0.034 0.034 0.033 0.033

5 M(k̂) 0.041 0.039 0.037 0.044 0.042 1.732 1.738 1.732 1.743 1.931

SD(k̂) 0.198 0.194 0.189 0.210 0.206 0.573 0.569 0.566 0.567 0.631
CP 0.000 0.000 0.000 0.000 0.000 0.843 0.846 0.845 0.849 0.900

FWE 0.041 0.039 0.037 0.043 0.041 0.046 0.046 0.042 0.045 0.113
FDR 0.041 0.039 0.037 0.043 0.041 0.018 0.018 0.016 0.017 0.042

6 M(k̂) 0.047 0.048 0.042 0.048 0.047 0.986 1.000 0.995 0.989 1.123

SD(k̂) 0.216 0.232 0.201 0.232 0.221 0.596 0.615 0.584 0.614 0.737
CP 0.000 0.000 0.000 0.000 0.000 0.466 0.470 0.469 0.465 0.507

FWE 0.046 0.045 0.042 0.045 0.045 0.051 0.056 0.054 0.055 0.098
FDR 0.046 0.045 0.042 0.045 0.045 0.031 0.031 0.033 0.030 0.047

7 M(k̂) 0.032 0.044 0.036 0.045 0.052 1.356 1.402 1.348 1.387 1.569

SD(k̂) 0.217 0.400 0.262 0.404 0.444 0.752 0.831 0.742 0.813 1.015
CP 0.000 0.000 0.000 0.000 0.000 0.657 0.670 0.655 0.663 0.723

FWE 0.025 0.023 0.026 0.023 0.026 0.030 0.036 0.028 0.036 0.066
FDR 0.025 0.023 0.026 0.023 0.026 0.015 0.018 0.015 0.018 0.030

8 M(k̂) 0.026 0.024 0.027 0.026 0.025 1.068 1.120 1.074 1.119 1.295

SD(k̂) 0.159 0.153 0.168 0.165 0.162 0.622 0.705 0.641 0.689 0.819
CP 0.000 0.000 0.000 0.000 0.000 0.519 0.537 0.521 0.540 0.606

FWE 0.026 0.024 0.026 0.025 0.024 0.028 0.039 0.030 0.031 0.066
FDR 0.026 0.024 0.026 0.025 0.024 0.015 0.018 0.016 0.015 0.030

Table 2: Simulation results for small N panels, part 1

31



k0 = 5 k0 = 9
DGP BSUT BSUT2 RW RW2 MP BSUT BSUT2 RW RW2 MP

1 M(k̂) 2.823 2.849 2.796 2.856 3.503 4.104 4.532 4.135 4.499 6.757

SD(k̂) 1.169 1.197 1.168 1.187 1.405 1.775 1.889 1.748 1.919 2.435
CP 0.556 0.561 0.551 0.562 0.667 0.455 0.501 0.459 0.498 0.728

FWE 0.042 0.044 0.038 0.043 0.151 0.007 0.019 0.006 0.018 0.201
FDR 0.013 0.013 0.012 0.013 0.036 0.001 0.003 0.001 0.002 0.022

2 M(k̂) 1.992 2.019 1.976 2.038 2.562 4.828 5.108 4.830 5.086 7.670

SD(k̂) 1.018 1.061 1.022 1.060 1.414 1.572 1.719 1.616 1.745 2.116
CP 0.393 0.399 0.390 0.402 0.490 0.534 0.564 0.534 0.562 0.821

FWE 0.026 0.025 0.025 0.029 0.101 0.019 0.030 0.022 0.029 0.280
FDR 0.009 0.008 0.009 0.009 0.026 0.003 0.004 0.004 0.004 0.029

3 M(k̂) 0.933 0.969 0.912 0.976 1.351 4.040 4.299 4.076 4.316 6.382

SD(k̂) 0.912 0.998 0.901 0.998 1.505 2.267 2.387 2.267 2.412 2.995
CP 0.183 0.190 0.179 0.191 0.258 0.448 0.477 0.452 0.479 0.690

FWE 0.016 0.019 0.015 0.019 0.052 0.005 0.006 0.006 0.009 0.173
FDR 0.011 0.010 0.011 0.010 0.018 0.001 0.001 0.001 0.001 0.018

4 M(k̂) 1.766 1.835 1.756 1.810 2.287 3.555 3.830 3.561 3.858 5.558

SD(k̂) 1.204 1.297 1.205 1.272 1.687 2.232 2.393 2.210 2.390 3.175
CP 0.347 0.358 0.345 0.353 0.433 0.394 0.425 0.395 0.427 0.601

FWE 0.028 0.030 0.025 0.031 0.066 0.005 0.008 0.004 0.012 0.145
FDR 0.011 0.011 0.009 0.013 0.022 0.001 0.001 0.001 0.002 0.015

5 M(k̂) 3.795 3.844 3.815 3.845 4.635 7.880 7.990 7.885 7.996 9.388

SD(k̂) 0.785 0.772 0.754 0.771 0.833 1.132 1.096 1.140 1.087 0.667
CP 0.752 0.761 0.755 0.761 0.880 0.871 0.883 0.872 0.884 0.990

FWE 0.037 0.040 0.040 0.041 0.191 0.037 0.045 0.040 0.044 0.482
FDR 0.008 0.008 0.009 0.009 0.039 0.004 0.005 0.004 0.005 0.048

6 M(k̂) 3.329 3.443 3.319 3.450 4.443 7.430 7.543 7.427 7.528 9.191

SD(k̂) 1.070 1.120 1.077 1.136 1.252 1.080 1.058 1.084 1.080 0.780
CP 0.658 0.677 0.656 0.679 0.836 0.823 0.836 0.823 0.834 0.977

FWE 0.040 0.056 0.040 0.053 0.207 0.023 0.023 0.022 0.023 0.401
FDR 0.009 0.013 0.010 0.011 0.044 0.003 0.002 0.002 0.002 0.040

7 M(k̂) 2.151 2.227 2.147 2.227 3.060 4.809 4.936 4.793 4.937 6.684

SD(k̂) 0.895 1.045 0.897 1.018 1.493 1.269 1.351 1.269 1.364 1.898
CP 0.428 0.440 0.427 0.442 0.588 0.534 0.547 0.532 0.547 0.724

FWE 0.010 0.014 0.009 0.011 0.064 0.007 0.013 0.007 0.016 0.170
FDR 0.004 0.005 0.003 0.004 0.019 0.001 0.002 0.001 0.002 0.018

8 M(k̂) 3.296 3.447 3.283 3.455 4.372 6.897 7.111 6.915 7.160 9.263

SD(k̂) 1.124 1.174 1.120 1.178 1.322 1.729 1.769 1.725 1.743 1.094
CP 0.652 0.677 0.649 0.679 0.822 0.764 0.787 0.766 0.792 0.978

FWE 0.033 0.049 0.034 0.050 0.194 0.021 0.026 0.018 0.029 0.460
FDR 0.008 0.012 0.009 0.012 0.043 0.002 0.003 0.002 0.003 0.046

Table 3: Simulation results for small N panels, part 2
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q0 = 0 q0 = 0.2
DGP BSQT BSQT2 IBSQT IBSQT2 MP BSQT BSQT2 IBSQT IBSQT2 MP

9 M(q̂) 0.002 0.002 0.001 0.001 0.001 0.230 0.230 0.118 0.123 0.148
CP 0.000 0.000 0.000 0.000 0.000 0.829 0.828 0.576 0.597 0.709

FDR 0.006 0.006 0.036 0.036 0.035 0.246 0.245 0.021 0.025 0.037
WI 0.994 0.994 1.000 1.000 1.000 0.995 0.995 1.000 1.000 1.000
HI 0.006 0.006 0.000 0.000 0.000 0.005 0.005 0.000 0.000 0.000

10 M(q̂) 0.008 0.007 0.001 0.001 0.001 0.231 0.232 0.120 0.125 0.151
CP 0.000 0.000 0.000 0.000 0.000 0.829 0.833 0.583 0.607 0.718

FDR 0.031 0.026 0.047 0.049 0.048 0.250 0.251 0.021 0.025 0.042
WI 0.969 0.974 1.000 1.000 1.000 0.999 0.998 1.000 1.000 1.000
HI 0.031 0.026 0.000 0.000 0.000 0.001 0.002 0.000 0.000 0.000

11 M(q̂) 0.015 0.018 0.008 0.014 0.002 0.038 0.046 0.120 0.135 0.141
CP 0.000 0.000 0.000 0.000 0.000 0.097 0.104 0.558 0.600 0.677

FDR 0.036 0.036 0.038 0.047 0.020 0.044 0.051 0.022 0.032 0.022
WI 0.964 0.964 0.980 0.970 0.996 0.975 0.959 0.981 0.968 0.994
HI 0.036 0.036 0.020 0.030 0.004 0.025 0.041 0.019 0.032 0.006

12 M(q̂) 0.008 0.011 0.002 0.006 0.001 0.073 0.077 0.072 0.091 0.087
CP 0.000 0.000 0.000 0.000 0.000 0.242 0.241 0.338 0.393 0.417

FDR 0.026 0.029 0.020 0.031 0.019 0.085 0.086 0.024 0.038 0.020
WI 0.974 0.971 0.994 0.985 0.999 0.983 0.972 0.996 0.979 0.999
HI 0.026 0.029 0.006 0.015 0.001 0.017 0.028 0.004 0.021 0.001

13 M(q̂) 0.001 0.001 0.000 0.000 0.000 0.123 0.124 0.040 0.045 0.015
CP 0.000 0.000 0.000 0.000 0.000 0.462 0.464 0.184 0.205 0.073

FDR 0.004 0.005 0.019 0.017 0.019 0.241 0.242 0.059 0.071 0.013
WI 0.996 0.995 1.000 1.000 1.000 0.976 0.978 0.008 0.009 0.000
HI 0.004 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

14 M(q̂) 0.000 0.000 0.000 0.000 0.000 0.003 0.004 0.001 0.001 0.001
CP 0.000 0.000 0.000 0.000 0.000 0.009 0.010 0.002 0.003 0.003

FDR 0.000 0.000 0.010 0.011 0.010 0.011 0.012 0.013 0.012 0.012
WI 1.000 1.000 1.000 1.000 1.000 0.026 0.028 0.000 0.000 0.000
HI 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

15 M(q̂) 0.010 0.013 0.005 0.008 0.001 0.029 0.031 0.015 0.020 0.008
CP 0.000 0.000 0.000 0.000 0.000 0.076 0.079 0.044 0.056 0.029

FDR 0.047 0.047 0.038 0.045 0.014 0.059 0.060 0.034 0.039 0.014
WI 0.953 0.953 0.973 0.968 0.998 0.148 0.145 0.028 0.023 0.002
HI 0.047 0.047 0.027 0.032 0.002 0.018 0.022 0.009 0.017 0.004

16 M(q̂) 0.013 0.016 0.007 0.011 0.002 0.029 0.035 0.021 0.028 0.018
CP 0.000 0.000 0.000 0.000 0.000 0.074 0.079 0.073 0.087 0.079

FDR 0.055 0.051 0.072 0.075 0.051 0.065 0.067 0.043 0.053 0.028
WI 0.945 0.949 0.972 0.965 0.997 0.150 0.133 0.039 0.031 0.004
HI 0.055 0.051 0.028 0.035 0.003 0.016 0.032 0.005 0.021 0.002

Table 4: Simulation results for large N panels, part 1

33



q0 = 0.5 q0 = 0.9
DGP BSQT BSQT2 IBSQT IBSQT2 MP BSQT BSQT2 IBSQT IBSQT2 MP

9 M(q̂) 0.505 0.505 0.389 0.401 0.479 0.820 0.819 0.768 0.782 0.915
CP 0.944 0.943 0.770 0.792 0.918 0.880 0.880 0.848 0.861 0.977

FDR 0.062 0.061 0.010 0.011 0.041 0.029 0.028 0.007 0.008 0.037
WI 0.970 0.969 0.476 0.661 0.996 1.000 1.000 0.772 0.807 0.999
HI 0.024 0.024 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 M(q̂) 0.508 0.508 0.375 0.392 0.451 0.830 0.830 0.785 0.807 0.933
CP 0.928 0.929 0.735 0.763 0.863 0.887 0.888 0.867 0.889 0.988

FDR 0.081 0.081 0.019 0.023 0.040 0.032 0.032 0.006 0.008 0.046
WI 0.956 0.956 0.312 0.548 0.963 1.000 1.000 0.889 0.921 0.999
HI 0.037 0.038 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

11 M(q̂) 0.338 0.344 0.304 0.330 0.409 0.769 0.771 0.648 0.686 0.858
CP 0.630 0.632 0.590 0.631 0.784 0.835 0.836 0.717 0.756 0.919

FDR 0.037 0.041 0.016 0.023 0.030 0.019 0.020 0.004 0.007 0.032
WI 0.229 0.208 0.084 0.167 0.722 0.897 0.897 0.282 0.385 0.842
HI 0.048 0.066 0.016 0.034 0.030 0.000 0.000 0.000 0.000 0.000

12 M(q̂) 0.357 0.375 0.201 0.269 0.199 0.801 0.808 0.686 0.784 0.830
CP 0.648 0.670 0.386 0.497 0.389 0.863 0.868 0.755 0.856 0.891

FDR 0.071 0.079 0.026 0.047 0.019 0.026 0.028 0.008 0.015 0.029
WI 0.389 0.415 0.043 0.184 0.046 0.974 0.980 0.396 0.707 0.799
HI 0.016 0.040 0.000 0.024 0.000 0.000 0.000 0.000 0.000 0.000

13 M(q̂) 0.281 0.293 0.178 0.206 0.110 0.575 0.602 0.457 0.500 0.343
CP 0.506 0.523 0.338 0.387 0.215 0.627 0.655 0.502 0.548 0.379

FDR 0.094 0.101 0.044 0.055 0.018 0.018 0.021 0.011 0.013 0.005
WI 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
HI 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

14 M(q̂) 0.108 0.109 0.008 0.015 0.003 0.226 0.245 0.112 0.133 0.014
CP 0.183 0.185 0.016 0.027 0.006 0.244 0.264 0.122 0.145 0.016

FDR 0.129 0.130 0.017 0.032 0.006 0.027 0.029 0.016 0.018 0.002
WI 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
HI 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

15 M(q̂) 0.102 0.111 0.055 0.068 0.034 0.281 0.312 0.194 0.240 0.153
CP 0.185 0.196 0.104 0.124 0.066 0.309 0.341 0.214 0.265 0.170

FDR 0.044 0.047 0.021 0.030 0.007 0.010 0.011 0.005 0.006 0.003
WI 0.007 0.013 0.002 0.004 0.000 0.016 0.038 0.002 0.012 0.004
HI 0.002 0.005 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000

16 M(q̂) 0.100 0.106 0.055 0.066 0.047 0.252 0.275 0.172 0.204 0.141
CP 0.181 0.189 0.104 0.120 0.092 0.277 0.301 0.190 0.225 0.156

FDR 0.046 0.048 0.027 0.032 0.016 0.010 0.011 0.004 0.006 0.003
WI 0.006 0.008 0.001 0.003 0.000 0.008 0.017 0.000 0.003 0.000
HI 0.001 0.004 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000

Table 5: Simulation results for large N panels, part 2
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Country θi UR BSQT BSQT2 RW RW2 MP
Argentina -1.597 * * * * *
Australia -0.949
Belgium -1.255 * * * *
Brazil -1.389 * * * *

Canada -0.922
Denmark -0.627
Finland -1.807 * * * * * *
France -1.336 * * * *

Germany -1.308 * * * *
Italy -1.421 * * * *
Japan -1.006
Mexico -1.419 * * * *

Netherlands -0.790
Norway -0.772
Portugal -0.807
Spain -0.856

Sweden -1.127 *
Switzerland -0.900

UK -1.096

Total 9 8 8 1 2 8

Table 6: Tests for PPP on real exchange rates; ‘*’denotes a rejection of the unit root hypoth-
esis at a 5% level.
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BSQT BSQT2 IBSQT IBSQT2 MP

Total rejections (N = 181) 60 91 30 60 7
Proportion of rejections 0.33 0.50 0.17 0.33 0.04

Rejections in subsamples

CLG (N = 58) 16 25 7 16 2
Proportion 0.28 0.43 0.12 0.28 0.03
HSG (N = 87) 29 45 34 16 5
Proportion 0.33 0.52 0.18 0.33 0.06
HSD (N = 36) 15 21 7 15 0
Proportion 0.42 0.58 0.19 0.42 0.00

Table 7: Unit root tests on log real earnings of households in PSID data at 5% level
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