
 

 

 

Sound Categories Are Represented as Distributed
Patterns in the Human Auditory Cortex
Citation for published version (APA):

Staeren, N., Renvall, H. L. M., de Martino, F., Goebel, R., & Formisano, E. (2009). Sound Categories Are
Represented as Distributed Patterns in the Human Auditory Cortex. Current Biology, 19(6), 498-502.
https://doi.org/10.1016/j.cub.2009.01.066

Document status and date:
Published: 01/01/2009

DOI:
10.1016/j.cub.2009.01.066

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:

www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 07 Nov. 2022

https://doi.org/10.1016/j.cub.2009.01.066
https://doi.org/10.1016/j.cub.2009.01.066
https://cris.maastrichtuniversity.nl/en/publications/bd9062e5-00b8-467b-af12-75429be15f77


Current Biology 19, 498–502, March 24, 2009 ª2009 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2009.01.066

Report
Sound Categories Are Represented
as Distributed Patterns
in the Human Auditory Cortex
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Summary

The ability to recognize sounds allows humans and animals

to efficiently detect behaviorally relevant events, even in the
absence of visual information. Sound recognition in the

human brain has been assumed to proceed through several
functionally specialized areas, culminating in cortical

modules where category-specific processing is carried out
[1–5]. In the present high-resolution fMRI experiment, we

challenged this model by using well-controlled natural audi-
tory stimuli and by employing an advanced analysis strategy

based on an iterative machine-learning algorithm [6] that
allows modeling of spatially distributed, as well as localized,

response patterns. Sounds of cats, female singers, acoustic
guitars, and tones were controlled for their time-varying

spectral characteristics and presented to subjects at three
different pitch levels. Sound category information—not

detectable with conventional contrast-based methods anal-

ysis—could be detected with multivoxel pattern analyses
and attributed to spatially distributed areas over the supra-

temporal cortices. A more localized pattern was observed
for processing of pitch laterally to primary auditory areas.

Our findings indicate that distributed neuronal populations
within the human auditory cortices, including areas conven-

tionally associated with lower-level auditory processing,
entail categorical representations of sounds beyond their

physical properties.

Results

During the fMRI measurements, subjects (n = 8) listened to
sounds from three ‘‘real life’’ categories (Singers, Cats,
Guitars) and synthetic control sounds (Tones), presented at
three different pitch levels. All ‘‘real life’’ sounds were tonal
and had the same fundamental frequency and similar
harmonic structure (see Experimental Procedures). Besides
being matched in terms of duration, root-mean-square (RMS)
power, and temporal envelope, our stimuli were further manip-
ulated by matching of the temporal profile of their harmonic
structure (see Figure 1 and Audio Files S1–S3 [available
online]). This novel stimulus manipulation is particularly
relevant, because it ensured that the perceptual ‘‘pitch’’
dimension, mainly dependent on the sound fundamental
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frequency, was matched across categories. All sounds were
delivered binaurally via headphones, in blocks of four, at
a comfortable listening level, with the use of a clustered-
volume acquisition technique that allowed for presentation
of auditory stimuli in silence between subsequent acquisitions
(see Experimental Procedures). Sounds within a block were
from the same category and had the same of three possible
fundamental frequencies (250 Hz = Low, 480 Hz = Middle,
920 Hz = High), resulting altogether in twelve experimental
conditions.

Univariate Statistical Analysis

Sounds from all of the categories (Singers, Guitars, Cats,
Tones) evoked significant BOLD responses in a large expanse
of the auditory cortex, including bilaterally the Heschl’s gyrus
(HG), the superior temporal gyrus (STG), and the upper bank
of the superior temporal sulcus (STS) (see Figure S1). With
conventional univariate statistical contrasts, consistent differ-
ences were detected in the superior temporal regions only for
the Cats versus Tones comparison in six out of eight subjects
at a rather lenient voxel-wise threshold of p = 0.01 (uncor-
rected; see Figure S2). Our control on the acoustic sound
properties presumably reduced the voxel-by-voxel differences
of BOLD responses evoked by the different sound categories.

Multivariate Pattern Recognition—Learning of Sound
‘‘Category’’

Contrast-based methods can detect only localized surplus of
hemodynamic activity for one condition compared with
another, therefore ignoring the potential information of non-
maximal responses. As the next step, we therefore used
a statistical pattern-recognition approach [6] and tested the
hypothesis that the overall spatial patterns of observed
responses would convey information on the sound being
presented. In each subject, we conducted six pair-wise classi-
fication experiments in which sound-evoked response
patterns were labeled according to their category (Singers,
Cats, Guitars, Tones), irrespective of their fundamental
frequency. We examined whether our learning algorithm, after
being trained with a subset of labeled brain responses (20 trials
per category), would accurately classify the remaining unla-
beled responses (10 trials per category; see Supplemental
Experimental Procedures).

For all classifications, the recursive algorithm was able to
learn the functional relation between the sounds and the
corresponding evoked spatial patterns and classify the unla-
beled sound-evoked patterns significantly above chance level
(0.5), with mean classification correctness across subjects of
0.69 for Singers versus Guitars (p = 2.8401 3 1024, two-sided
t test, n = 8), 0.69 for Singers versus Cats (p = 2.5552 3
1025), and 0.70 for Guitars versus Cats (p = 2.6351 3 1024)
(Figure 2, left).

In order to quantify the consistency of the discriminative
maps across subjects, we generated group-level maps
(Figure 2, right) by cortical realignment [7] of individual
discriminative maps. Given that single-subject maps included
only voxels that ‘‘survived’’ the recursive elimination of
irrelevant features in the algorithm, the group maps can be
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Figure 1. Spectrograms of Exemplary Stimuli

The four stimulus categories at High (920 Hz; top) and Medium (480 Hz; bottom) fundamental-frequency levels. The time-varying fundamental frequency of

the cat sound (purple rectangle) was imposed onto the other stimuli. The harmonic structure of the sounds was modified accordingly.
interpreted as a representation of spatial patterns that were
consistently informative across subjects (see Supplemental
Experimental Procedures).

At the group level, the distributed activation patterns that
differentiated Singers from Guitars were located at the antero-
lateral HG, the planum temporale (PT), and the posterior STG
and/or STS in the left hemisphere and at the lateral HG and
the middle-posterior STG and/or STS in the right hemisphere.
Singers were differentiated from Cats at the HS, the PT, and
the posterior STG in the left hemisphere and at the middle-
posterior STG and the PT in the right hemisphere. Guitars
were differentiated from Cats at the left anterolateral HG, the

HS, and the posterior STG and at the right anterolateral HG,
the PT, and the middle-posterior STG and/or STS. These
results suggest that spatially distributed patterns encoded
information on sound category in the superior temporal
regions (see Figure S3 for classification accuracies and
discriminative maps for differentiating between Categories
and control Tones).

Multivariate Pattern Recognition—Learning of Sound

‘‘Fundamental Frequency’’
Because the stimuli were presented at three different funda-
mental frequency levels, we conducted a second analysis to

Figure 2. Multivariate Pattern Recognition—Learning of

Sound ‘‘Category’’

Group-averaged classification accuracies (left) and group

discriminative maps (right) for between-category compari-

sons. For all binary discriminations, the black dots indicate

the classification accuracy of test trials for each individual

category and the colored dots indicate the classification

accuracy averaged over the two categories. Error bars indi-

cate the standard errors. For all classifications, the recursive

algorithm was able to learn the functional relation between

the sounds and the corresponding evoked spatial patterns

and to classify the unlabeled sound-evoked patterns signif-

icantly above chance level (0.5). Discriminative patterns are

visualized on the inflated representation of the auditory

cortex resulting from the realignment of the cortices of the

eight participants. A location was color-coded if it was

present on the individual maps of at least five of the eight

subjects.
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investigate the regions that were most discriminative with
respect to the fundamental frequency. The same sound-
evoked response patterns as used in the first analysis were
now labeled according to their fundamental frequency (High,
Medium, Low), irrespective of their category. The recursive
algorithm was then trained to discriminate the fundamental
frequencies. All frequency discriminations were statistically
significant, with mean classification correctness across

Figure 3. Multivariate Pattern Recognition—Learning of

Sound ‘‘Fundamental Frequency’’

Group-averaged classification accuracies (left) and group

discriminative maps (right) for between-frequency compari-

sons. For all binary discriminations, the black dots indicate

the classification accuracy of test trials for each individual

frequency and the colored dots indicate the classification

accuracy averaged over the two frequencies. Error bars

indicate the standard errors. For all classifications, the recur-

sive algorithm was able to learn the functional relation

between the sounds and corresponding evoked spatial

patterns and to classify the unlabeled sound-evoked

patterns significantly above chance level (0.5). Discrimina-

tive patterns are visualized on the inflated representation of

the auditory cortex resulting from the realignment of the

cortices of the eight participants. A location was color-coded

if it was present on the individual maps of at least five of the

eight subjects.

Figure 4. Comparison of Discriminative Maps

The cortex-based aligned group discriminative maps for category (blue) and

fundamental frequency (red) discrimination. Category and fundamental

frequency discriminative maps were obtained by the logic union of the

discriminative maps corresponding to the three binary classifications

(Figures 2 and 3, respectively). A vertex was color-coded if it was present

on the individual maps of at least five of the eight subjects. This corresponds

to a false discovery rate-corrected threshold of q = 7.9 3 1023 for the cate-

gory map and q = 2.6 3 1023 for the fundamental frequency map (see

Supplemental Experimental Procedures). Note that the discrimination

map for fundamental frequency was more clustered than that for category.

subjects of 0.66 for Low versus Medium (p =
1.8187 3 1024, two-sided t test, n = 8), 0.68 for
Low versus High (p = 2.3 3 1023), and 0.68 for
Medium versus High (p = 1.224 3 1024). Figure 3
shows the resulting group discriminative maps
(right) and the corresponding correctness values
(left). The group discriminative maps related to

fundamental frequencies were more clustered than the cate-
gory discriminative maps, and they were circumscribed to
the most lateral portion of HG and/or HS bilaterally and to
the posterior STG. This finding is in accordance with previous
studies indicating the lateral portion of the HG as relevant for
pitch processing [8, 9].

Figure 4 summarizes the group discriminative maps
obtained for the discrimination of categories (blue) and funda-
mental frequencies (red). The individual subject maps were in
accordance with the group results and are illustrated in
Figure S4.

Discussion

Localized Versus Distributed Representation
of Sound Categories

In the present study, we investigated the representation and
processing of auditory categories within the human supratem-
poral cortex. In particular, we asked whether the areas around
the primary auditory cortex would code for sound categories
irrespective of their physical attributes and, if so, whether
these representations would be localized in specialized areas
or, rather, distributed across the auditory cortex.

Our investigation differs from previous studies of the ‘‘what’’
auditory-processing stream in terms of stimulus design and
data analysis. Because sounds from different categories also
tend to differ acoustically, differences in the cortical responses
between categories may also reflect merely acoustic-stimulus
properties. Use of synthetic sounds would allow a more
precise acoustic control [8, 10]; however, natural and synthetic
sounds unavoidably differ in terms of ecological validity and
familiarity [11, 12]. Here, we used sounds from three ‘‘real-
life’’ categories and matched them with respect to many
acoustic dimensions, including their duration, average RMS
level, amplitude envelope, and harmonic-to-noise ratio [5,
13], as well as the temporal profile of the sound spectrum.
Furthermore, by utilizing our recursive method for multivoxel
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pattern analysis, we could directly address the issue of local-
ized versus distributed coding of auditory categories in STG
and/or STS.

Our results indicate that, similar to the representation of
visual-object categories in the ventral temporal cortex [14],
representations of sound categories in the superior temporal
cortex are widely distributed. Removing most of the physical
differences between categories diminished the differences
between localized BOLD responses, as reflected by the
absence of between-category effects in our univariate anal-
ysis. Nevertheless, our iterative multivariate classification
analysis showed that the activation patterns could be decoded
into categories. Information in the spatially distributed
patterns of activity may thus reflect a more abstract perceptual
level of representation of sounds.

These findings suggest a revision of previous models that
imply a hierarchical processing of auditory categories in the
auditory cortices. In these models, the superior temporal
cortex is organized in specialized areas among which the
neural processing of a sound proceeds from the analysis of
its low-level physical constituents to higher perceptual dimen-
sions. Auditory areas with a clear selectivity for a given cate-
gory, e.g., voice [4, 15, 16], are seen as functional units in which
a more abstract representation of a sound is formed. However,
the ‘‘higher-level’’ areas show vigorous BOLD responses also
to relatively simple stimuli (see the responses to Tones in
Figure S1), implying sensitivity to ‘‘lower-level’’ sound proper-
ties as well. In the present study, the discriminative activation
patterns overlapped with—but were not limited to—locations
that have been indicated in the previous investigations as
functionally specialized areas for human [4] and animal [17]
vocalizations. We suggest that a ‘‘categorical’’ representation
of a sound emerges from the joint encoding of information
occurring not only in a small set of ‘‘higher-level’’ selective
areas but also in areas conventionally associated with
‘‘lower-level’’ auditory processing. This suggestion is not
without prerequisites: The temporal auditory areas are
anatomically heavily interconnected [18], and, even in the
‘‘early’’ auditory areas, neurons exhibit complex dependencies
on the auditory input [11, 12]. Furthermore, a distributed
cortical coding of sound properties could explain why several
auditory regions have been implicated in the processing of
many different auditory attributes [19]. The discriminative
maps of ‘‘category’’ and ‘‘fundamental frequency’’ overlapped
substantially, thus suggesting that regions encoding relatively
basic attributes of sounds, such as pitch, or higher level prop-
erties, such as category, are not mutually exclusive.

Univariate Versus Multivariate Modeling of Responses
Machine learning methods allow modeling of distributed
patterns of cortical activations. These methods provide better
sensitivity than the conventional univariate statistical anal-
yses, by integrating weak but consistent discriminative
responses at the single locations and by exploiting the corre-
lations between multiple locations. Thus, these methods can
allow the detection of small effects, e.g., those produced by
perceptual differences between stimulus categories [20, 21].

We want to point out that in cases in which significant differ-
ences between conditions could be detected already at single-
voxel level, high classification accuracies were obtained with
our multivariate method, and—as expected—the multivariate
discriminative maps and the univariate contrast maps overlap-
ped (see Figures S2 and S3). Discriminative maps, however,
included additional areas whose joint activity and correlations
were equally informative with respect to the classification of
conditions. In the between-category discriminations, accu-
racy levels were above chance in all of our subjects and
were not accompanied by any significant univariate effects.
Importantly, corresponding discriminative patterns were
highly consistent across subjects.

The minimization of acoustical differences between cate-
gories may partly explain why accuracy levels reached in our
analyses were lower than those obtained in analogous anal-
yses in the visual domain [14, 22].

With our method, a multivariate analysis does not invariably
lead to distributed results. For instance, relabeling of the
stimuli on the basis of their fundamental frequency led the
same learning algorithm used in the analysis of categories to
find substantially different discriminative maps.

Limitations of Present Stimuli and Extension

to Auditory Scenes
The present stimuli were relatively simple: For example, even
though our Singers stimuli were real voices, their complexity
was minimal compared with, e.g., spoken language. Although
this resulted in greater stimulus control, it also restricted the
spectral richness and ecological validity of our stimuli. Despite
our efforts in equalizing low-level acoustic properties, the
degree of acoustical similarities between sounds of the same
category was higher than between sounds from different cate-
gories. It is thus possible that our learning process reflected
decoding of a complex combination of spectral and temporal
features of our ‘‘sound categories.’’ In future studies, the
higher-order representations of natural sounds may also be
addressed—for example, by testing the ability of a brain-
based classifier to generalize its performance to realistic
auditory situations, such as recognizing a voice embedded
in a noisy scene after being trained with voices presented in
silence.

Experimental Procedures

Subjects

We studied, after obtaining informed consent, eight Dutch and one Belgian

undergraduate university students (mean age 6 SD: 24 6 5 yrs; eight

females and one male; all right-handed). Subjects had no history of hearing

or neurological impairments and were naive to the experimental setup. The

study received a prior approval by the Ethical Committee of the Faculty of

Psychology, University of Maastricht.

Auditory Stimuli

The stimuli were 800-ms sounds (sampled at 44.1 kHz) from four sound

categories: cats, singing female voices, acoustic guitars, and tones. Each

category except the tone category consisted of three different representa-

tives (e.g., three different singers). For the addition of acoustical variability

to the stimuli, all sounds were transposed to three different fundamental

frequencies (250, 480, and 920 Hz), thus resulting altogether in twelve condi-

tions. The values of fundamental frequencies were chosen so as to ensure

that stimuli were clearly recognizable and to avoid pure octave pitch differ-

ences (e.g., 250, 500, and 1000 Hz).

For equalization of the spectrotemporal profiles and the perceptual pitch

of the stimuli, the time-varying fundamental frequency of the cat sounds

was extracted on 25 time points within each stimuli, with Praat software

[13]. These pitch profiles were then used as references for pitch bending

in Adobe Audition and applied to all other sounds. Note that not only was

the fundamental frequency of the manipulated sounds adjusted, but all

related harmonics (see Figure 1 and Audio Files S1–S3) were adjusted as

well. For the selected sound categories, continuous pitch changes are

natural (e.g., sliding in between two tones when singing, or bending a guitar

string). Tones were used as control sounds.

The sounds were low-pass filtered at 14 kHz for five subjects and, for

further minimization of the acoustical differences between sound
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categories, at 7 kHz for three subjects. No significant differences between

the results of these groups were found in the statistical analyses, and

subjects were thus grouped together in the reported results. The sound

amplitude envelopes and average root-mean-square levels were matched

with MATLAB 7.0.1 (MathWorks, Natick, MA, USA). The harmonic-to-noise

ratio [5, 13] was significantly different only between tones and sound

categories (p < 0.001), not between categories (p > 0.05).

Experimental Paradigm

Brain imaging was performed with a 3 Tesla Siemens Allegra (head setup) at

the Maastricht Brain Imaging Center. During the measurements, the stimuli

were delivered binaurally via magnetic resonance-compatible headphones

(Commander XG, Resonance Technology, Northridge, CA) in blocks of four

at a comfortable listening level. For minimizing the effect of scanner noise,

the sounds were presented during 1600-ms silent periods between 2000-ms

scans; the 800-ms sounds were preceded and followed by a 400-ms silence,

with the use of a clustered volume EPI technique (23 slices covering the

perisylvian cortex; see Supplemental Experimental Procedures) that

allowed for presentation of auditory stimuli in silence between subsequent

volume acquisitions [23–25]. The stimuli within a block were from the same

category and frequency level, resulting in altogether twelve experimental

conditions. The experimental blocks had a duration of 14.4 s. The conditions

were repeated in a pseudorandom order and were followed by a rest period

of identical length, at the beginning of which the subjects were asked

to respond with a button press to indicate whether the last two sounds in the

block were the same (50% of the trials). The response hand was alternated

across subjects.

See Supplemental Data for details on stimulus training, scanning param-

eters, preprocessing, cortex-based alignment procedure, univariate data

analysis, and multivariate pattern recognition.

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures,

four figures, one table, and four audio files and can be found with this

article online at http://www.current-biology.com/supplemental/

S0960-9822(09)00740-4.
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