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Dietary protein, metabolism, and body-weight
regulation: dose–response effects
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A Nieuwenhuizen1,2, MPKJ Engelen2,3, NEP Deutz2,3, D Azzout-Marniche4, D Tome4 and
KR Westerterp1,2

1Department of Human Biology, Nutrim, Maastricht University, MD Maastricht, The Netherlands; 2Wageningen Centre of
Food Sciences, Wageningen, The Netherlands; 3Department of Surgery, Nutrim, Maastricht University, MD Maastricht,
The Netherlands and 4Institut National de la Recherche Agronomique, Unité INRA-INAPG de Physiologie de la Nutrition
et du Comportement Alimentaire, Institut National Agronomique Paris-Grignon, F75231 Paris Cedex 05, France

Body-weight management requires a multifactorial approach. Recent findings suggest that an elevated protein intake seems to
play a key role herein, through (i) increased satiety related to increased diet-induced thermogenesis; (ii) its effect on
thermogenesis; (iii) body composition; and (iv) decreased energy-efficiency, all of which are related to protein metabolism.
Supported by these mechanisms, relatively larger weight loss and subsequent stronger body-weight maintenance have been
observed. Increased insulin sensitivity may appear, but it is unclear whether this is due to weight loss or type of diet. The
phenomenon of increased satiety is utilized in reduced energy-intake diets, mainly in the ad libitum condition, whereby
sustained satiety is achieved with sustained absolute protein intake in grams, despite lower energy intake. Elevated
thermogenesis and glucagon-like peptide-1 (GLP-1) appear to play a role in high-protein induced satiety. Under conditions of
weight maintenance, a high-protein diet shows a reduced energy efficiency related to the body composition of the body weight
regained, that is, in favor of fat-free mass. Indeed, during body-weight loss, as well as during weight regain, a high-protein diet
preserves or increases fat-free mass and reduces fat mass and improves the metabolic profile. In the short-term this may be
supported by a positive protein and a negative fat balance, through increased fat oxidation. As protein intake is studied under
various states of energy balance, absolute and relative protein intake needs to be discriminated. In absolute grams, a normal
protein diet becomes a relatively high-protein diet in negative energy balance and at weight maintenance. Therefore, ‘high
protein negative energy balance diets’ aim to keep the grams of proteins ingested at the same level as consumed at energy
balance, despite lower energy intakes.

International Journal of Obesity (2006) 30, S16–S23. doi:10.1038/sj.ijo.0803487
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Introduction

Obesity, with its co-morbidities such as the metabolic syn-

drome and cardiovascular diseases, is one of the major bio-

medical problems of the last decades. Efficient, effective and

satisfying treatments are necessary. The system of body-weight

regulation shows a high degree of redundancy: when one

pathway is modulated, another one appears to compensate, at

least in part.1 Therefore, it is imperative to find a treatment

that affects different short- and long-term mechanisms. We

suggest that an elevated protein intake may serve this purpose

because of its: (i) increased satiety effect despite similar or

lower energy intake;2,3 (ii) contribution to storage of fat-free

mass(FFM);4–6 and (iii) low energy efficiency during over-

feeding.7,8 The low energy efficiency may, in part, be owing to

the increased thermogenesis and/or the composition of the

body-mass gained (i.e. storing energy as FFM is more costly

than as fat mass (FM)).9 Although studies have confirmed that

these mechanisms contribute to greater weight loss and more

sustained body-weight maintenance discrepant results between

studies appear to be owing to the quantity of protein

consumed. Accordingly, ‘low’, ‘normal’ and ‘high’ protein

contents must be clearly defined. Furthermore, as it has been

suggested10 that protein metabolism may play a role in satiety

and thermogenesis, this too will be discussed.
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Absolute or relative ‘normal’ and ‘high’ protein
diets

The World Health Organization, recommends that dietary

protein should account for B10–15% of energy when in

energy balance and weight stable.11 Average daily protein

intakes in various countries indicate that these recommenda-

tions are reflective of what is being consumed worldwide.12–16

Protein intake may be expressed in grams or as percentage of

energy intake. When advising subjects to consume a high-

protein diet, the difference between these two measures should

be taken into account. For instance, a weight loss diet of

2.5 MJ/day with a protein content of 60 g/day consists for 40%

of energy of protein, whereas an energy-balance diet of 10MJ/

day with 60 g/day protein contains 10% of energy of protein.

To ensure that subjects are not in a negative nitrogen and

protein balance during weight loss, and therefore lose their

metabolically active FFM, the absolute amount of protein is of

greater importance than the percentage of protein. Varying the

protein content of a formula diet from 0 to 50 g/day resulted in

a protein loss varying between 91 and 1202g measured over 28

days, respectively.17,18 The fat loss as percentage of total weight

loss varied from 43% with 0 g/day protein, up to 79% with

50g/day protein.18 These results indicate that a higher protein

intake changes body composition in a way that spares FFM.

Similarly, when weight maintenance after weight loss is

sustained, FFM is preserved. FM still reduces and FFM increases

on a relatively high-protein diet, that is, 18–25% of energy

intake, which is in absolute terms 60–75g/day protein. As

weight maintenance after weight loss usually implies a slight

weight regain, Stock’s model can be applied.7 Here, the greatest

metabolic efficiency of weight gain is shown when protein

intake is 10–15% of energy during overfeeding, and ineffi-

ciency is shown with o5% and 420% of energy from protein.

The latter metabolic inefficiency is related to the body

composition. To build 1 kg body weight with 60% FM and

40% FFM, 30MJ needs to be ingested additionally, whereas to

build only 1 kg FFM 50–70MJ is needed additionally.7,9 There-

fore, a high-protein diet may promote weight maintenance by

its metabolic inefficiency because of the cost involved in

sparing FFM. Taken together, an absolutely normal protein diet

of 60g/day as ingesting 10 MJ/day becomes a relatively high-

protein diet in a negative energy balance of 2.5MJ/day (i.e.

40% of energy) and at weight maintenance of 5 MJ/day (i.e.

20% of energy). Therefore, recommendations of ‘high protein

negative energy balance diets’ only imply to keep the grams of

proteins ingested at the same level, that is, representing 10–

15% of energy at energy balance, despite lower energy intakes.

The satiating effect of protein

A hierarchy has been observed for the satiating efficacies

of the macronutrients protein, carbohydrate and fat, with

protein as most satiating and fat as least satiating. At the

same time, a priority is shown with respect to the magnitude

of the rate at which these macronutrients are metabo-

lized.2,19,20 In the controlled environment of a respiration

chamber, satiety and metabolic rate, with high- vs normal-

protein diets (protein (P)/carbohydrate (C)/fat (F): 30/60/10

vs 10/30/60% of energy (en%)), was assessed over 24 h

whereas subjects were in energy balance. Throughout the

day, and in between meals, satiety and fullness were higher

on the absolute high-protein diet, whereas hunger, appetite,

desire to eat and estimated quantity to eat, were lower than

on the normal protein diet. Only on the high-protein diet

was satiety positively related to 24 h diet-induced thermo-

genesis (DIT). The theoretical basis of this relationship

between satiety and DIT may be that increased energy

expenditure at rest implies an increased oxygen consump-

tion and an increase in body temperature that may be lead to

feeling deprived of oxygen and translated into satiety

feelings.2 This idea is in line with higher satiety scores under

limited oxygen availability conditions, as observed at high

altitude and in COPD patients, who also very quickly feel

deprived of oxygen when feeding.21 Subsequently, in a

similar respiration chamber experiment, several mechanisms

of protein-induced satiety were assessed simultaneously.3

Lean women were fed in energy balance an adequate-protein

(10 en% P (i.e. B60 g)/60 en% C/30 en% F) or an absolute

high-protein (30 en% protein i.e. B180 g)/40 en% C/30en%

F) diet for 4 days. Results showed that the high-protein diet

compared to the adequate-protein diet when eaten over 4

days increased the 24-h satiety and decreased hunger,

without differences in energy intake. This supports the

hypothesis that protein increases satiety to a higher extent

than does carbohydrate or fat. The finding was also reflected

in the relationship between 24 h satiety and protein intake,

which was seen only in the absolute high-protein diet. The

protein intake during the high-protein diet (2.670.3 g/kg)

resulted in a positive protein balance, whereas the protein

intake during the adequate-protein diet (1.070.1 g/kg)

resulted in a protein balance that was not significantly

different from zero. Thus, when protein intake exceeds the

protein requirement, satiety is positively related to absolute

protein intake. Simultaneously, measurements of the blood-

parameters ghrelin and GLP-1 were executed throughout the

day, showing no difference in ghrelin concentrations

between diets. GLP-1 concentrations after dinner, however,

were significantly higher on the high-protein diet.3 Thus,

when lean women ingested identical amounts of energy and

volume, in identical meal patterns and comparable foods

with respect to the organoleptic characteristics and in energy

balance, a difference in the satiety level owing to an absolute

high-protein vs an adequate-protein diet was related to a

difference in the 24-h DIT component of energy expendi-

ture, to the absolute amount of protein ingested, and

coincided with the increased GLP-1 concentrations after

dinner.2,3

Related to the protein metabolism, evidence for differ-

ences in short-term satiety between protein from different
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sources (i.e. whey and casein) has been shown.10 Post-

prandial satiety appeared to be larger after a whey-preload

than after a casein-preload, and was related to more elevated

concentrations of amino acids in the blood as well as with

greater elevation of both cholecystokinin and GLP-1.10

The digestion and absorption of whey and casein differ in

that casein, unlike whey, coagulates in the stomach owing to

its precipitation by gastric acid.22 As a result, overall gastric

emptying time for casein appeared to be longer and a smaller

post-prandial increase in plasma amino acids compared with

the non-coagulating whey protein was observed. The peak

total amino-acid concentration after whey ingestion occurs

within 30–45 min; whey protein is a highly digestible

protein.22,23 In contrast, after the intake of the slowly

absorbed casein, the increase in the plasma total amino-acid

concentrations is less. Rapid increase of amino-acid concen-

trations after a meal is related to stimulation of oxidation

and protein syntheses.22–24

In a longer term study, Weigle et al.25 showed the satiating

effect of a high-protein diet was increased when the high-

protein diet (30 en% P (B180 g), 20 en% F, 50 en% C) was

fed iso-energetically to the normal protein diet (15 en%

P(B90 g), 35 en% F, 50 en% C) for 2 weeks in energy balance

of B10 MJ/day. Thereafter, a reduction in energy intake

with B2 MJ/day was observed, when the high-protein diet

was offered ad libitum, achieving the previous level of

satiety at the same time. Although the diet was still relatively

high in protein (30 en%), the absolute amount being

reduced to B144 g was sufficiently high to sustain satiety

at the original, probably desired level, as decreasing energy

intake.25

In rats, protein was also shown to be more potent than

carbohydrate for reducing appetite, in a dose-dependent

manner. The animals were more satiated by protein when

the proportion was 35–50%, than by carbohydrate. However,

the animals had to learn the post-ingestive effects of the

loads before the response stabilized. The authors concluded

that in rats, the larger the protein proportion of the food, the

larger is the satiating effect, The quality of protein did not

seem to play a significant role,26 and neither did conditioned

taste aversion.27

In conclusion, evidence is shown for protein being more

satiating than carbohydrate and fat, in short term, over 24 h

and, in the long term. Absolute amount of protein given,

elevations in GLP-1 concentrations, thermogenesis and

protein metabolism appear to play a role in the satiety

effect. This may however differ between different protein

sources.

Thermogenic effects of proteins

The metabolizable energy of protein, as defined in the

Atwater factor, is 17 kJ/g. However, protein is particularly

thermogenic and the net metabolizable energy is actually

13 kJ/g, making it lower than either carbohydrate or fat.28

The thermic effect of nutrients is related to the stimulation

of energy-requiring processes during the post-prandial

period. It is based on the amount of ATP required for the

initial steps of metabolism and storage. Reported values for

separate nutrients are 0–3% for fat, 5–10% for carbohydrate

and 20–30% for protein.29 Thus, a high-protein diet induces

a greater thermic response in healthy subjects compared to a

high-fat diet.30 This even implied a higher fat oxidation, thus

a negative fat balance and a positive protein balance.3

The relatively strong thermic effect of protein may be

mediated by the high ATP costs of post-prandial protein

synthesis.31,32 Additionally, amino-acid oxidation may also

play a major role, especially when amino acids are given in

excess of protein deposition. In elderly women, increasing

the amount of dietary protein from 10 to 20% energy

resulted in a 63–95% increase in protein oxidation, depend-

ing on the protein source.33 The largest (95%) increase in

protein oxidation was observed when the predominant

protein source was of animal origin, whereas this increase

was only 63% when soy protein was the predominant dietary

protein source.33 Accordingly, Mikkelsen et al. observed a

higher DIT with pork meat than with soy protein.34

The studies cited above indicate that protein metabolism

and, consequently, energy expenditure is dependent on the

protein source. An important factor that determines post-

prandial protein metabolism is its digestion rate. Thus,

ingestion of rapidly digested protein, such as whey, results

in a stronger increase in post-prandial protein synthesis

and amino-acid oxidation than slowly digested protein,

such as casein.35–37

The amino-acid composition of the protein may also be an

important determinant of the metabolic efficacy of protein

oxidation (hence, heat production) because large differences

exist in the efficacy with which amino acids are oxidized.

This is due to the large variety of carbon chains and co-

factors that result from amino-acid catabolism.32,38 For

instance, the number of amino groups that undergo

conversion to urea in the urea cycle, at a cost of four ATP,

ranges from one for an amino acid such as proline or alanine,

to three for histidine.32,38 Therefore, taking into account the

stoichiometry of amino-acid catabolism and urea synthesis,

the calculated energy expenditure to produce ATP is ranging

from 153 kJ/ATP for cysteine, to 99 kJ/ATP for glutamate. For

glucose, this value is 91 kJ/ATP.32

Gluconeogenesis

De novo synthesis of glucose from gluconeogenic precursors

is stimulated when glucose availability is reduced during

fasting or with a low or carbohydrate-free diet, and is also

increased by a high-protein diet.39–41 This effect on gluco-

neogenesis could be involved in the satiating effect of

protein through a modulation of glucose homeostasis and

glucose signaling to the brain.
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The main gluconeogenic organ is the liver. The activity

of hepatic phosphoenolpyruvate carboxykinase (PEPCK), an

enzyme involved in gluconeogenesis, is increased in rats

fed a high-protein diet. This effect is observed with diet

containing protein or not carbohydrates suggesting that the

level of protein per se in the diet is able to stimulate hepatic

gluconeogenesis.42,43 Interestingly, when increasing the

protein content of the diet, PEPCK (which controls the

initial conversion of oxaloacetate to phosphoenolpyruvate)

is upregulated either in the fasted and in the fed state,

whereas glucose 6-phosphatase (G6Pase) (which controls the

last step of gluconeogenesis) is upregulated in the fasted state

and downregulated in the fed state.43,44 These observations

strongly suggest that liver gluconeogenesis is stimulated by a

high-protein diet but that in the fed state the newly

synthesized glucose 6-phosphate (G6P) is directed toward

glycogen synthesis whereas in the fasted state it is converted

to glucose and released from hepatocyte. The control of

PEPCK and G6Pase activity in the liver by nutrients has a

profound impact on hepatic metabolism and glucose homeo-

stasis45,46 and the satiating effect of high-protein feeding

could be related to the improvement of glucose homeostasis

through the modulation of hepatic gluconeogenesis and

subsequent glucose metabolism.

A stimulation of intestinal gluconeogenesis and glucose

portal sensing through portal vagal afferent fibres has also

been proposed as an alternative hypothesis for the elevated

satiety related to a high-protein diet.47 However, the

depressant effect of a high-protein diet was not abolished

after vagotomy in the rat.48 Moreover, the relevance and

physiological significance of intestinal gluconeogenesis

remains a subject of debate.49 Firstly, the expression of the

genes encoding PEPCK and G6Pase is very low in the

intestine and only represents 0.5 and 6.5% of the mRNA

abundance found in the liver, respectively.50,51,44 Moreover,

despite a slight increase in enzyme activities, no changes in

intestinal PEPCK and G6Pase protein and mRNA abundance

could be observed in rats fed a high-protein diet52 or after

5 days fasting.53 In addition, the small intestine has been

classified as a gluconeogenic organ because of the expression

of the G6Pase in this tissue,54,55 but this is mainly due to

expression of the ubiquitous G6PC3 isoform catalytic

subunit, which is 8–19-fold higher than the expression of

the gluconeogenic G6PC1 isoform in the intestine.44 Taken

together, these observations do not support portal sensing of

glucose produced from intestinal gluconeogenesis as the

main mechanism involved in the effect of high-protein

feeding on food intake.

Insulin sensitivity

The post-prandial pattern of plasma amino acids may be an

important entity for the insulinogenic properties of food

proteins. The insulin stimulating effect of proteins may be

mediated through specific amino acids released during

digestion. Several amino acids are potent stimulators of

insulin release, and certain amino acids (e.g. leucine,

arginine, phenylalanine and tyrosine) are more insulino-

genic than are others.56,57 The magnitude and the duration

of changes in amino acid and insulin availability determine

the anabolic effects. It is however unclear whether the

composition of dietary protein has a positive or negative

impact on glycemic control.

Aerobic and/or resistance exercise increase insulin sensi-

tivity as well as the ability of protein/amino acid intake to

stimulate muscle anabolism.58,59 Exercise accelerates muscle

protein turnover; however, stimulation of protein synthesis

exceeds activation of proteolysis.60 The rate of muscle

protein synthesis is increased up to 48 h after a resistance

exercise session.61 The kinetic and regulatory properties of

dietary protein may enhance the ability of aerobic and/or

resistance exercise to regulate glucose metabolism and

enhance protein anabolism. By preventing excessive stimu-

lation of proteolysis after exercise, for example, with rapidly

absorbed whey protein, the exercise effects on glucose

control may be improved. In addition, slowly absorbed

casein protein may enhance and prolong for several hours

the stimulation of muscle protein synthesis after each

exercise session. Also leucine is known to stimulate insulin

release.62 Leucine seems to be an important regulator of

muscle protein synthesis.63 Leucine appears to regulate

oxidative use of glucose by skeletal muscle through stimula-

tion of glucose recycling via the glucose–alanine cycle

and, thus is (in)directly linked to protein sparing and

glycemic control. Protein sparing during restricted energy

intake could be improved by enhanced dietary leucine

intake. Leucine infusion in obese subjects may induce

protein sparing.64

Short and longer-term feeding studies (6–12 months)

examining the effect of increased protein diets on the

insulin sensitivity of obese, but not diabetic, individuals

have been performed and as the findings appear favorable,

they remain inconclusive. Over 21 days, Piatti

et al.65compared two energy-restricted (3.3 MJ/day), low-fat

(20% of energy) diets with either 45 or 20% of energy as

protein (B82 vs 36.6 g/day), in 25 obese hyperinsulinaemic

women. A significant improvement in insulin sensitivity

after weight loss was observed on the higher-protein diet

(after an euglycaemic, hyperinsulinaemic clamp, glucose

oxidation significantly increased by 0.55 mg/kg FFM/min

and the rate of disappearance of glucose significantly

increased by 2.10% over the basal rate). No improvement

was found with the lower protein diet (glucose oxidation was

reduced by 0.55 mg/kg FFM/min and the rate of disappear-

ance of glucose was reduced by 11.5% over the basal rate).

They proposed that the improvement in insulin mediated

glucose uptake in skeletal muscle resulted from the observed

preservation of lean body mass after weight loss. Lean mass

was on average reduced by 3 kg on the lower protein diet as

compared to only 1.4 kg on the higher-protein diet.65 Baba
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et al.66 also reported that mean fasting insulin concentra-

tions of hyperinsulinaemic men were reduced to within the

normal range, (HP group, reduced from 38 to 20.5 mU/l vs NP

group, reduced from 41.5 to 27.4 mU/l), after 4 weeks of

weight loss (2.3 kg, 38%) on iso-energetic high as compared

to normal protein diets (45 en% P (B183 g/day) vs 12 en% P

(B49 g/day), 30 en% F, B7.3 MJ/day). In contrast, despite

findings that FFM loss was smaller in the group consuming

a high-protein diet, neither Farnsworth et al.67nor Layman

et al.68 found that increased protein enhanced insulin

sensitivity independent of weight loss. Farnsworth et al.67

reported that although total lean mass in hyperinsulinaemic

women, but not men, was better preserved with the high

protein (27%, B90–110 g/day) as compared to normal

protein (16%, B53–62 g/day) diet, no differential improve-

ment in insulin resistance was conferred.

Over the longer-term, Samaha et al.69 observed that insulin

sensitivity was improved more (6 vs �3%, P¼0.01) among

81 obese, non-diabetic, men and women following a high as

compared to normal protein (16% (B59 g/day) vs 22%

(B83 g/day),) diet and these improvements remained for 6

months. In contrast, in the 12-month follow-up to Farns-

worth et al.’s study,67 Brinkworth et al.70 reported that both

the 15 and 30% protein, low-fat diets resulted in a sustained

reduction in fasting insulin levels and HOMA in 43

hyperinsulinaemic individuals. Although the insulin levels

were moved towards normalization, the approximate 40 g/

day difference in protein intake resulted in no greater

benefits on insulin sensitivity. In fact, it was concluded that

a sustained fat loss and preservation of FFM was responsible

for the improved insulin resistance. Confirming these

findings, Brehm et al.71 also saw no difference in the fasting

insulin concentrations of 53 obese women after a higher as

compared to lower protein weight loss diet (23–25 en% P

(B65 g/day) vs B18 en% P (B52 g/day)) over 6 months.

What is clear from the literature is that energy restriction

and weight loss both have independent effects on insulin

sensitivity. Further research however is warranted to deter-

mine whether increased dietary protein and what quantity,

in absolute grams per day, has sustained beneficial effects on

the insulin sensitivity of obese individuals.

Relatively high-protein diets for body-weight loss

Relatively high-protein diets for body-weight loss have been

assessed during different periods of time. A relatively high-

protein diet was compared with a control diet in order to

evaluate weight loss over 6 months, when energy intake was

ad libitum.72 The effects of 25% vs 12% energy intake from

protein (45 en% C, 30 en% F vs 58 en% C, 30 en% F) on

weight loss in obese subjects (body mass index (BMI)¼30

kg/m2) was examined. It was found that weight loss (8.9

vs 5.1 kg) and fat loss (7.6 vs 4.3 kg) were higher in the

high-protein group, owing to a lower energy intake (5.0 vs

6.2 MJ/day, Po0.05).72 Again, here 25% of energy from

protein at an intake of 5 MJ/day implies 75 g of protein. In a

follow-up study it was observed that after 12 months the

weight loss was not significantly greater among the subjects

in the high-protein group, but they had a greater reduction

in intra-abdominal adipose tissue.73 Also a favourable effect

of a high-protein diet on body weight was found during 6

days ad libitum feeding.74 The low-glycaemic index low-fat-

high-protein diet resulted in a spontaneous decrease in

energy intake of 25% compared to a high-carbohydrate-low-

fat diet (8.8 vs 11.7 MJ/day), in the ad lib situation. In

addition, the metabolic profile was considerably improved.74

Body-weight loss was 2.3 kg over 6 days compared to no

weight loss on the high-carbohydrate diet.74 However, in

comparison to an iso-energetic high-carbohydrate diet, there

was no significant difference in body-weight loss.74 An

improved body composition owing to a reduced ratio of

dietary carbohydrate to protein and improved blood lipid

profiles was found during weight loss in adult women.75

However, weight loss on the high-protein diet was not

different from the control group; probably owing to the lack

of difference in energy intake. This phenomenon was

confirmed again by Weigle et al.25 who first served 19

subjects in a controlled situation an iso-energetic high-

protein diet (P/F/C: 30/20/50 en%) vs the previously offered

normal protein diet (P/F/C: 15/35/50 en%), and after the iso-

energetic high-protein diet an ad libitum high-protein diet

(P/F/C: 30/20/50 en%). During the iso-energetic high-protein

diet the subjects did not lose body weight whereas during the

ad libitum high-protein diet they lost 4.970.5 kg, with a

decrease in FM by 3.770.4 kg.25 Also Johnston et al.76 came

to a similar conclusion, when they assigned healthy adults

(n¼20) randomly to one of two low-fat (o30% energy),

energy-restricted groups: high-protein (30% energy) or high-

carbohydrate (60% energy). They controlled 24 h intakes

during the 6 weeks trial. Both diets were equally effective at

reducing body weight (�6%, Po0.05) and FM (�9 to �11%,

Po0.05); however, subjects consuming the high-protein diet

reported more satisfaction and less hunger in the first month

of the trial. Both diets significantly lowered total cholesterol

(�10 to �12%), insulin (�25%), and uric acid (�22 to �30%)

concentrations in blood from fasting subjects. Urinary

calcium excretion increased 42% in subjects consuming the

high-protein diet, mirroring the 50% increase in dietary

calcium with consumption of this diet; thus, apparent

calcium balance was not adversely affected. Creatinin

clearance was not altered by diet treatments, and nitrogen

balance was more positive in subjects consuming the high-

protein diet vs the high-carbohydrate diet (3.971.4 and

0.771.7 gN/day, respectively, Po0.05).76 They concluded

that low-fat, energy-restricted diets of varying protein

content (15 or 30% energy) promoted healthful weight loss,

but diet satisfaction was greater in those consuming the

high-protein diet.76

Taken together, body-weight loss on a relatively high-

protein diet appears to be greater under ad libitum energy
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intake conditions, leading to decreased energy intake that

still includes a sufficient absolute amount of protein,

suggesting that in addition to metabolic effects of protein

on body-weight loss, energy intake plays an important role.

This is underscored by the phenomenon that under iso-

energetic conditions no statistically significant difference

between body-weight loss on a high-protein or high-

carbohydrate diet was shown. Moreover, most of the studies

on protein intake in relation to body-weight management

show an improved body composition (i.e. an increased FFM/

FM) and metabolic profile with a relatively high-protein diet,

The relatively high protein negative energy balance diets

all consist of 25–30% of energy from protein implying a

sustained normal protein intake in grams whereas energy

intake is decreased.

Relatively high-protein diets for body-weight
maintenance

Observations on maintenance of body weight with a high-

protein diet, after body-weight loss show that overweight to

moderately obese men and women who consumed 18% of

energy intake as protein, regained less weight, that is, 1 kg,

during 3 months after 7.572.0% body-weight loss over 4

weeks, compared to the 2 kg their counterparts who con-

sumed 15% of energy intake as protein regained. The result

was not owing to possible differences in dietary restraint or in

physical activity between the high-protein and the control

group, indicating a metabolic effect of protein.5

The composition of the body mass regained was more

favorable in the additional protein group (i.e. no regain of

FM, but only of FFM, resulting in a lower percentage body

fat).5 Leptin concentrations from fasting blood samples

during weight regain increased significantly slower in the

additional-protein group, and only in the control group was

the increase of leptin related to the increase of FM. Moreover,

metabolic risk characteristics were reduced in the additional

protein group.5 Energy efficiency (kilogram body-mass

regain/EI) was significantly lower in the additional-protein

group. Similar observations were reported by Lacroix et al.,77

from a long-term high-protein diet that markedly reduced

adipose tissue without major side effects in Wistar male rats.

The observations with respect to energy efficiency during

weight regain is comparable to the ‘Stock hypothesis’

described for weight gain.7 Satiety was higher on the high-

protein diet, whereas there was no indication of a difference

in the energy intake.5

With a similar design, after 6 months a weight main-

tenance of 0.8 kg (high-protein group) vs 3.0 kg weight

regain (Po0.05) was shown;6 6 months later, when the

follow-up took place, these figures were 1.0 kg vs 3.9 kg

(Po0.05).6

Taken together, evidence shows that a relatively increased

protein intake did sustain weight maintenance by (i)

favoring regain of FFM at the cost of FM at a similar physical

activity level, (ii) reducing the energy efficiency with respect

to the body mass regained and (iii) increasing satiety.5

Conclusions

The role of protein in body-weight regulation, in comparison

to other macronutrients, consists of different aspects: (i)

satiety, (ii) thermogenesis, (iii) energy efficiency and (iv)

body composition. These aspects are partly related to each

other.

First of all, protein appears to increase satiety when given

iso-energetically. This phenomenon is used in reduced

energy-intake diets, mainly in the ad libitum condition, in

which sustained satiety is achieved with sustained absolute

protein intake, despite lower energy intake. The highly

satiating effect of protein has been observed in the post-

prandial as well as post-absorptive state. Post-prandially the

type and source of protein may be of importance, but post-

absorptively the satiating effect is still present with varying

types and sources. Elevated thermogenesis and GLP-1 appear

to play a role in protein-induced satiety.

Second, high-protein diets imply a high thermogenesis,

with animal protein showing a higher thermogenesis than

vegetable protein. In the longer term, this high thermo-

genesis contributes to the low energy-efficiency of protein.

In the short-term a positive protein and a negative fat

balance, through increased fat oxidation, was observed,

which may support FFM sparing mechanisms.

Third, under conditions of slight body-weight regain (as

aiming for weight maintenance), a high-protein diet shows

reduced energy efficiency related to the body composition of

the body weight regained, that is, in favor of FFM.

Fourth, during body-weight loss, as well as during weight

regain, a high-protein diet preserves or increases FFM and

reduces FM and improves the metabolic profile.

Finally, an absolute and relative protein needs to be

discriminated, as protein intake is studied under various

energy balances. An absolutely normal protein diet thus

becomes a relatively high-protein diet in negative energy

balance as well as at weight maintenance. Therefore, ‘high

protein negative energy balance diets’ imply that the grams

of proteins ingested are kept at the same level, that is,

representing 10–15% of energy at energy balance, despite

lower energy intakes.
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