Chapter II The geometry of classical groups

We denote by V a vector space over the field \mathbb{F} . For simplicity we assume that its dimension is finite. Our main references here will be [11], [14], [15] and [21].

1 Sesquilinear forms

Let σ be an automorphism of \mathbb{F} with $\sigma^2 = id$. Set $\alpha^{\sigma} := \sigma(\alpha)$ for all $\alpha \in \mathbb{F}$.

(1.1) Definition A σ -sesquilinear form on V is a map $(,): V \times V \to \mathbb{F}$ such that, for every $\lambda, \mu \in \mathbb{F}$ and for every $u, v, w \in V$:

(1)
$$(u, v + w) = (u, v) + (u, w),$$

(2)
$$(u+v,w) = (u,w) + (v,w),$$

(3) $(\lambda u, \mu v) = \lambda \mu^{\sigma} (u, v).$

The form is said to be:

- i) bilinear symmetric if $\sigma = id_{\mathbb{F}}$ and $(v, w) = (w, v), \forall v, w \in V$;
- *ii*) bilinear antisymmetric if $\sigma = id_{\mathbb{F}}$ and $(v, v) = 0, \forall v \in V$;
- *iii*) hermitian if $\sigma \neq id_{\mathbb{F}}$, $\sigma^2 = id_{\mathbb{F}}$ and $(v, w) = (w, v)^{\sigma}$, $\forall v, w \in V$;
- iv) non singular if, for every $v \in V \setminus \{0_V\}$, there exists $u \in V$ such that $(u, v) \neq 0_{\mathbb{F}}$.

(1.2) Definition V is non-singular (or non-degenerate) when the form is non-singular.

(1.3) Lemma If the form is bilinear antisymmetric, then:

$$(v,w) = -(w,v), \quad \forall \ v,w \in V.$$

$$Proof 0 = (v+w, v+w) = (v, v) + (v, w) + (w, v) + (w, w) = (v, w) + (w, v) \implies (v, w) = -(w, v).$$
■

(1.4) **Definition** Let V, V' be vector spaces over \mathbb{F} , endowed with sesquilinear forms

 $(,): V \times V \to \mathbb{F}, \quad (,)': V' \times V' \to \mathbb{F}.$

(1) An isometry from V to V' is an invertible element $f \in \operatorname{Hom}_{\mathbb{F}}(V, V')$ such that

$$(f(v), f(w))' = (v, w), \quad \forall v, w \in V.$$

(2) The spaces $(V, \mathbb{F}, (,))$ and $(V', \mathbb{F}, (,)')$ are called isometric if there exists an isometry $f: V \to V'$.

(1.5) Lemma When V = V', the set of isometries of V is a subgroup of $Aut_{\mathbb{F}}(V)$, called the group of isometries of the form (,).

The proof is left as an exercise.

(1.6) Theorem (Witt's Extension Lemma) Let V be equipped with a non-degenerate form, either bilinear (symmetric or antisymmetric) or hermitian. Let U and W be subspaces and suppose that

$$\tau: U \to W$$

is an isometry with respect to the restriction of the form to U and W, Then there exists an isometry $\hat{\tau}: V \to V$ which extends τ , namely such that $\hat{\tau}_U = \tau$.

For the proof of this important result see [1, page 81] or [14, page 367].

$\mathbf{2}$ The matrix approach

Given a σ -sesquilinear form (,) on V, let us fix a basis $\mathcal{B} = \{v_1, \ldots, v_n\}$ of V over \mathbb{F} . propert to B is defined by e matrix I of the above form with (2.1) Definiti

(1) Definition The the matrix
$$J$$
 of the above form with respect to \mathcal{B} is defined by

$$J := \left((v_i, v_j) \right), \quad 1 \le i, j \le n.$$

Given $v = \sum_{i=1}^{n} k_i v_i$, $w = \sum_{i=1}^{n} h_i v_i$ in V, it follows from the axioms that

(2.2)
$$(v,w) = \sum_{i,j=1}^{n} k_i h_j^{\sigma}(v_i, v_j) = v_{\mathcal{B}}^T J w_{\mathcal{B}}^{\sigma}, \quad \forall v, w \in V.$$

(2.3) Lemma J is the only matrix of $Mat_n(\mathbb{F})$ which satisfies (2.2) for the given form.

Proof Let $A = (a_{ij}) \in \operatorname{Mat}_n(\mathbb{F})$ satisfy $(v, w) = v_{\mathcal{B}}^T A w_{\mathcal{B}}^{\sigma}$ for all v, w in V. Letting v, w vary in \mathcal{B} and noting that $v_{i\mathcal{B}} = e_i, 1 \leq i \leq n$ we have:

$$(v_i, v_j) = v_{i\mathcal{B}}{}^T A v_{j\mathcal{B}}{}^\sigma = e_i{}^T A e_j = a_{ij}, \quad 1 \le i, j \le n$$

We conclude that J = A.

(2.4) Lemma Let J be the matrix of a σ -sesquilinear form (,) on V.

- (1) If $\sigma = id_{\mathbb{F}}$, then the form is symmetric if and only if $J^T = J$;
- (2) if $\sigma = id_{\mathbb{F}}$, then the form is antisymmetric if and only if $J^T = -J$;
- (3) if σ has order 2, then the form is hermitian if and only if $J^T = J^{\sigma}$.

Moreover the form (,) is non-degenerate if and only if det $J \neq 0$.

(2.5) Lemma Let $J \in Mat_n(\mathbb{F})$ be the matrix of a sesquilinear form on V with respect to a basis \mathcal{B} . Then $J' \in Mat_n(\mathbb{F})$ is the matrix of the same form with respect to a basis \mathcal{B}' if and only if J and J' are cogradient, namely if there exists P non-singular such that:

$$(2.6) J' = P^T J P^{\sigma}.$$

Proof Let J' be the matrix of the form with respect to $\mathcal{B}' = \{v'_1, \ldots, v'_n\}$. Then:

(2.7)
$$v_{\mathcal{B}}^T J w_{\mathcal{B}}^{\sigma} = v_{\mathcal{B}'}^T J' w_{\mathcal{B}'}^{\sigma}, \quad \forall \ v, w \in V.$$

Setting $P := ((v'_1)_{\mathcal{B}} | \dots | (v'_n)_{\mathcal{B}})$, we have $v_{\mathcal{B}} = Pv_{\mathcal{B}'}$ for all $v \in V$. It follows:

(2.8)
$$v_{\mathcal{B}}^T J w_{\mathcal{B}}^{\sigma} = \left(v_{\mathcal{B}'}^T P^T \right) J \left(P^{\sigma} w_{\mathcal{B}'}^{\sigma} \right) = v_{\mathcal{B}'}^T \left(P^T J P^{\sigma} \right) w_{\mathcal{B}'}^{\sigma}, \quad \forall \ v, w \in V.$$

Comparing (2.7) with (2.8) we get $J' = P^T J P^{\sigma}$.

Vice versa, let $J' = P^T J P^{\sigma}$, for some non-singular P. Set $\mathcal{B}' = \{v'_1, \ldots, v'_n\}$ where $(v'_i)_{\mathcal{B}} = Pe_i$. Then \mathcal{B}' is a basis of V and $v_{\mathcal{B}} = Pv_{\mathcal{B}'}$ for all $v \in V$. From (2.8) it follows that J' is the matrix of the form with respect to \mathcal{B}' .

(2.9) Theorem

(1) Let J be the matrix of a sesquilinear form on $V = \mathbb{F}^n$ with respect to the canonical basis \mathcal{B} . Then its group of isometries is the subgroup:

$$H := \left\{ h \in \mathrm{GL}_n(\mathbb{F}) \mid h^T J h^\sigma = J \right\}.$$

(2) Let \mathcal{B}' be another basis of \mathbb{F}^n . Then the group of isometries of the same form is:

 $P^{-1}HP$

where P is the matrix of the change of basis from \mathcal{B} to \mathcal{B}' .

Proof

(1) If $\mathcal{B} = \{e_1, \ldots, e_n\}$ is the canonical basis, we have $v = v_{\mathcal{B}}$ for all $v \in V$. Thus:

$$(v,w) = v^T J w^\sigma, \quad \forall v, w \in V.$$

It follows that an element $h \in GL_n(\mathbb{K})$ is an isometry if and only if:

$$v^T J w^{\sigma} = (hv)^T J (hw)^{\sigma} = v^T (h^T J h^{\sigma}) w^{\sigma}, \quad \forall \ v, w \in \mathbb{F}^n$$

Equivalently h is an isometry if and only if

$$e_i^T J e_j = e_i^T (h^T J h^\sigma) e_j, \quad 1 \le i, j \le n \quad \iff \quad J = h^T J h^\sigma.$$

(2) $J' = P^T J P^{\sigma}$ is the matrix of the form with respect to \mathcal{B}' . For every $h \in H$ we have:

$$(P^{-1}hP)^T J' \left(P^{-1}hP\right)^\sigma = J' \quad \Longleftrightarrow \quad h^T J h^\sigma = J.$$

3 Orthogonality

Let $(,): V \times V \to \mathbb{F}$ be a bilinear (symmetric or antisymmetric) or an hermitian form.

(3.1) Definition Two vectors $u, w \in V$ are said to be orthogonal if $(u, w) = 0_{\mathbb{F}}$.

(3.2) Lemma For every $W \subseteq V$ the subset

$$W^{\perp} := \{ v \in V \mid (v, w) = 0, \ \forall \ w \in W \}$$

is a subspace, called the subspace orthogonal to W.

(3.3) Definition Let W be a subspace of V. Then W is said to be

- (1) totally isotropic (or totally singular) if $W \leq W^{\perp}$;
- (2) non-degenerate if $rad(W) := W \cap W^{\perp} = \{0_V\}.$

Clearly V non singular \iff rad $(V) = \{0_V\}$.

(3.4) Lemma If V is non-degenerate then, for every subspace W of V:

 $\dim W^{\perp} = \dim V - \dim W.$

In particular:

- (1) $(W^{\perp})^{\perp} = W;$
- (2) the dimension of a totally isotropic space is at most $\frac{\dim V}{2}$.

Proof Let $\mathcal{B}_W = \{w_1, \ldots, w_m\}$ be a basis of W. For every $v \in V$ we have:

(3.5)
$$v \in W^{\perp} \iff (w_i, v) = 0_{\mathbb{F}}, \ 1 \le i \le m.$$

Extend \mathcal{B}_W to a basis $\mathcal{B} = \{w_1, \ldots, w_m, w_{m+1}, \ldots, w_n\}$ of V and let J be the matrix of the form with respect to \mathcal{B} . From $(w_i)_{\mathcal{B}} = e_i, 1 \leq i \leq m$, it follows:

(3.6)
$$v \in W^{\perp} \iff e_i{}^T J v_{\mathcal{B}}^{\sigma} = 0_{\mathbb{F}}, \ 1 \le i \le m.$$

Since J is non-degenerate, its rows are independent. Hence the m equations of the linear homogeneous system (3.6) are independent. This system has n indeterminates, so the space of solutions has dimension n - m. We conclude that W^{\perp} has dimension

$$n - m = \dim V - \dim W.$$

(1) $W \leq (W^{\perp})^{\perp}$ and dim $(W^{\perp})^{\perp} = \dim V - \dim W^{\perp} = \dim W$. (2) Let W be totally isotropic, i.e., $W \leq W^{\perp}$. Then:

$$\dim W \le \dim W^{\perp} = \dim V - \dim W \implies 2 \dim W \le \dim V.$$

(3.7) Definition Let U, W be subspaces of V. We write $V = U \perp W$ and say that V is an orthogonal sum of U and W if $V = U \oplus W$ and U is orthogonal to W, namely if:

- (1) V = U + W;
- (2) $U \cap W = \{0_V\};$
- (3) $U \leq W^{\perp}$.

(3.8) Corollary If V and W are non-degenerate, then

$$V = W \perp W^{\perp}.$$

Moreover W^{\perp} is non-degenerate.

Proof Since V is non-degenerate, Lemma 3.4 gives dim $V = \dim W + \dim W^{\perp}$. Since W is non-degenerate, we have $W \cap W^{\perp} = \{0\}$. It follows $V = W \oplus W^{\perp}$. Finally W^{\perp} is non-degenerate as $W^{\perp} \cap (W^{\perp})^{\perp} = W^{\perp} \cap W = \{0\}$.

As a consequence of Witt's Lemma, we have the following:

(3.9) Corollary Let V be endowed with a non-degenerate, either bilinear (symmetric or antisymmetric) or hermitian form. Then all the maximal totally isotropic subspaces have the same dimension, which is at most $\frac{\dim V}{2}$.

Proof Let M be a totally isotropic subspace of largest possible dimension m. Clearly M is a maximal totally isotropic subspace. Take any totally isotropic subspace U. Since $\dim U \leq m$, there exists an injective \mathbb{F} -linear map $\tau : U \to M$. Now $\tau : U \to \tau(U)$ is an isometry, as the restriction of the form to U and to $\tau(U)$ is the zero-form. By theorem 1.6, there exists an isometry $\hat{\tau} : V \to V$ which extends τ . Thus $U \leq \hat{\tau}^{-1}(M)$ with $\hat{\tau}^{-1}(M)$ totally isotropic as $\hat{\tau}^{-1}$ is an isometry of V. If U is a maximal totally isotropic subspace, then $U = \hat{\tau}^{-1}(M)$ has dimension m. By Lemma 3.4 we have $m \leq \frac{\dim V}{2}$.

4 Symplectic spaces

(4.1) Definition A vector space V over \mathbb{F} , endowed with a non-degenerate antisymmetric bilinear form is called symplectic.

(4.2) Theorem Let V be a symplectic space over \mathbb{F} , of dimension n. Then:

(1) n = 2m is even;

(2) there exists a basis \mathcal{B} of V with respect to which the matrix of the form is:

(4.3)
$$J = \begin{pmatrix} \mathbf{0} & I_m \\ -I_m & \mathbf{0} \end{pmatrix}.$$

Proof Induction on n.

Suppose n = 1, $V = \mathbb{F}v$, $0 \neq v \in V$. For every $\lambda, \mu \in \mathbb{F}$: $(\lambda v, \mu v) = \lambda \mu(v, v) = 0_{\mathbb{F}}$, in contrast with the assumption that V is non degenerate. Hence $n \geq 2$. Fix a non-zero vector $v_1 \in V$. There exists $w \in V$ such that $(v_1, w) \neq 0_{\mathbb{F}}$. In particular $v_1 \in w$ are linearly independent. Setting $w_1 := \lambda^{-1}w$, we have:

$$(v_1, w_1) = (v_1, \lambda^{-1}w) = \lambda^{-1}(v_1, w) = 1_{\mathbb{F}}.$$

If n = 2 our claim is proved since the matrix of the form w. r. to $\mathcal{B} = \{v_1, w_1\}$ is

$$J = \left(\begin{array}{cc} 0 & 1\\ -1 & 0 \end{array}\right).$$

If n > 2 we note that the subspace $W := \langle v_1, w_1 \rangle$ is non-singular. Thus:

$$V = W \perp W^{\perp}$$

 W^{\perp} is non-degenerate, hence it is a symplectic space of dimension n-2. By induction on n we have that n-2=2(m-1) whence n=2m, and moreover that W^{\perp} admits a basis $\{v_2, \ldots, v_m, w_2, \ldots, w_m\}$ with respect to which the matrix of the form is

$$J_{W^{\perp}} = \left(\begin{array}{cc} \mathbf{0} & I_{m-1} \\ -I_{m-1} & \mathbf{0} \end{array}\right).$$

Choosing $\mathcal{B} = \{v_1, v_2, \ldots, v_m, w_1, w_2, \ldots, w_m\}$ we obtain our claim.

(4.4) **Definition** The group of isometries of a symplectic space V over \mathbb{F} of dimension 2m is called the symplectic group of dimension 2m over \mathbb{F} and indicated by $\operatorname{Sp}_{2m}(\mathbb{F})$.

By the previous considerations, up to conjugation we may assume:

$$\operatorname{Sp}_{2m}(\mathbb{F}) = \left\{ g \in \operatorname{GL}_{2m}(\mathbb{F}) \mid g^T J g = J \right\}.$$

where J is as in (4.3). The subspace $\langle e_1, \ldots, e_m \rangle$, is a maximal totally isotropic space.

5 Some properties of finite fields

In contrast with the symplectic case, the classification of the non-singular, bilinear symmetric or hermitian forms, depends on the field \mathbb{F} and may become very complicated. Thus our treatment will need further assumptions on \mathbb{F} . Since our interest is focused on finite fields, we will recall here a few specific facts, needed later, assuming the basic properties. As usual \mathbb{F}_q denotes the finite field of order q, a prime power.

Consider the homomorphism $f : \mathbb{F}_q^* \to \mathbb{F}_q^*$ defined by $f(\alpha) := \alpha^2$. Clearly $\operatorname{Ker} f = \langle -1 \rangle$. If q is odd, $\operatorname{Ker} f$ has order 2. In this case $\operatorname{Im} f$, the set of non-zero squares in \mathbb{F}_q , has order $\frac{q-1}{2}$. Moreover, for any $\epsilon \in \mathbb{F}_q^* \setminus \operatorname{Im} f$, the coset $(\operatorname{Im} f) \epsilon = \{\alpha^2 \epsilon \mid \alpha \in \mathbb{F}_q^*\}$ is the set of non-squares.

If q is even, Kerf has order 1. So f is surjective, i.e., every element of \mathbb{F}_q is a square.

(5.1) Lemma Every element of \mathbb{F}_q is the sum of two squares.

Proof By what observed above we may suppose q odd. Consider the set

$$X := \left\{ \alpha^2 + \beta^2 \mid \alpha, \beta \in \mathbb{F}_q \right\}$$

Note that |X| does not divide $q = |\mathbb{F}_q|$, since:

$$|X| \ge \frac{q-1}{2} + 1 = \frac{q+1}{2} > \frac{q}{2}.$$

If every element of X were a square, X would be an additive subgroup of \mathbb{F}_q , in contrast with Lagrange's Theorem. So there exists a non-square $\epsilon \in X$. Write $\epsilon = \gamma^2 + \delta^2$. It follows that every non-square is in X. Indeed a non-square has shape $\alpha^2 \epsilon = (\alpha \gamma)^2 + (\alpha \delta)^2$.

Aut $(\mathbb{F}_{p^a}) = \operatorname{Gal}_{\mathbb{F}_p}(\mathbb{F}_{p^a})$ has order a. So Aut (\mathbb{F}_{p^a}) is generated by the Frobenius automorphism $\alpha \mapsto \alpha^p$, which has has order a. It follows that \mathbb{F}_{p^a} has an automorphism σ of order 2 if and only if a = 2b is even. In this case, we set $q = p^b$, so that $\mathbb{F}_{p^a} = \mathbb{F}_{q^2}$. The automorphism $\sigma : \mathbb{F}_{q^2} \to \mathbb{F}_{q^2}$ of order 2 is the map: $\alpha \mapsto \alpha^q$. Moreover $\alpha \alpha^q \in \mathbb{F}_q$ for all $\alpha \in \mathbb{F}_{q^2}$, since $(\alpha \alpha^q)^q = \alpha \alpha^q$.

(5.2) Theorem The Norm map $N : \mathbb{F}_{q^2} \to \mathbb{F}_q$ defined by $N(\alpha) := \alpha \alpha^q$, is surjective.

Proof The restriction of N to $\mathbb{F}_{q^2}^*$ is a group homomorphism into \mathbb{F}_q^* . Its kernel consists of the roots of $x^{q+1} - 1$, hence has order $\leq q + 1$. Thus its image has order q - 1.

6 Unitary and orthogonal spaces

We recall that σ denotes an automorphism of the field \mathbb{F} such that $\sigma^2 = \text{id}$. More precisely, $\sigma = \text{id}$ in the orthogonal case, $\sigma \neq \text{id}$ in the hermitian case.

(6.1) Lemma Consider a non-degenerate, bilinear symmetric or hermitian form (,): $V \times V \rightarrow \mathbb{F}$. If char $\mathbb{F} = 2$ assume that the form is hermitian. Then V admits an orthogonal basis, i.e., a basis with respect to which the matrix of the form is diagonal.

Proof We first show that there exists v such that $(v, v) \neq 0$. This is clear when dim V = 1, since the form is non-degenerate. So suppose dim V > 1.

For a fixed non-zero $u \in V$, there exists $w \in V$ such that $(u, w) \neq 0_{\mathbb{F}}$. Clearly we may assume (u, u) = (w, w) = 0. If char $\mathbb{F} \neq 2$, setting $\lambda = (u, w)$, $v = \lambda^{-1}u + w$ we have:

$$(v,v) = \lambda^{-1}(u,w) + \left(\lambda^{-1}\right)^{\sigma}(w,u) = \lambda^{-1}\lambda + \left(\lambda^{\sigma}\right)^{-1}\lambda^{\sigma} = 2 \cdot 1_{\mathbb{F}} \neq 0_{\mathbb{F}}.$$

If char $\mathbb{F} = 2$, the form is hermitian by assumption. So there exists $\alpha \in \mathbb{F}$ such that $\alpha^{\sigma} \neq \alpha$. In this case, setting $v = \lambda^{-1}\alpha u + w$ we have $(v, v) = \alpha + \alpha^{\sigma} = \alpha - \alpha^{\sigma} \neq 0_{\mathbb{F}}$. Induction on dim V, applied to $\langle v \rangle^{\perp}$, gives the existence of an orthogonal basis of V.

(6.2) Remark The hypothesis char $\mathbb{F} \neq 2$ when the form is bilinear symmetric, is necessary. Indeed the matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ defines a non-degenerate symmetric form on $V = \mathbb{F}_2^2$. Since (v, v) = 0 for all v, no orthogonal basis can exist.

Even the existence of an orthogonal basis is far from a complete classification as shown, for example, by a Theorem of Sylvester ([14, Theorem 6.7 page 359]).

(6.3) Example By the previous theorem, the symmetric matrices

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

are pairwise not cogradient in $Mat_3(\mathbb{R})$.

6.1 Unitary spaces

(6.4) Definition A space V, with a non-degenerate hermitian form, is called unitary.

(6.5) Theorem Let V be a unitary space. Suppose that, for all $v \in V$, there exists $\mu \in \mathbb{F}$ such that $N(\mu) := \mu \mu^{\sigma} = (v, v)$. Then there exists an orthonormal basis of V, i.e., a basis with respect to which the matrix of the hermitian form is the identity.

In particular such basis exists for $\mathbb{F} = \mathbb{C}$, σ the complex conjugation, and for $\mathbb{F} = \mathbb{F}_{q^2}$.

Proof By Lemma 6.1 there exists $v \in V$ with $(v, v) \neq 0$. Under our assumptions there exists $\mu \in \mathbb{F}$ such that $\mu\mu^{\sigma} = (v, v)$. Substituting v with $\mu^{-1}v$ we get (v, v) = 1. For n = 1 the claim is proved. So suppose n > 1. The subspace $\langle v \rangle$ is non-degenerate. It follows that $V = \langle v \rangle \perp \langle v \rangle^{\perp}$. As $\langle v \rangle^{\perp}$ is non-degenerate of dimension n - 1, our claim follows by induction.

(6.6) Definition The group of isometries of a unitary space V over \mathbb{F} of dimension n, called the unitary group of dimension n over \mathbb{F} , is indicated by $\operatorname{GU}_n(\mathbb{F})$.

By Theorem 6.5, if $\mathbb{F} = \mathbb{C}$ and σ is the complex conjugation or $\mathbb{F} = \mathbb{F}_{q^2}$, we may assume:

$$\operatorname{GU}_{n}(\mathbb{F}) = \left\{ g \in \operatorname{GL}_{n}(\mathbb{F}) \mid g^{T}g^{\sigma} = I_{n} \right\}.$$

(6.7) **Remark** There are fields which do not admit any automorphism of order 2: so there are no unitary groups over such fields. To the already mentioned examples of \mathbb{R} and $\mathbb{F}_{p^{2b+1}}$, we add the algebraic closure \overline{F}_p of \mathbb{F}_p , as shown below.

By contradiction suppose there exists an automorphism σ of order 2 of $\mathbb{F} := \overline{F}_p$. Let $\alpha \in \mathbb{F}$ be such that $\sigma(\alpha) \neq \alpha$. Since α is algebraic over \mathbb{F}_p , we have that $\mathbb{K} = \mathbb{F}_p(\alpha)$ is finite of order p^n for some n. Thus \mathbb{K} is the splitting field of $x^{p^n} - x$. It follows that \mathbb{K} is fixed by σ and $\sigma_{|\mathbb{K}}$ has order 2. Thus n = 2m, $|\mathbb{K}| = q^2$ with $q = p^m$ and $\sigma(\alpha) = \alpha^q$. Now consider the subfield \mathbb{L} of \mathbb{F} of order q^4 . Again \mathbb{L} is fixed by σ and $\sigma(\beta) = \beta^{q^2}$ for all β in \mathbb{L} . From $\mathbb{K} \leq \mathbb{L}$ we get the contradiction $\alpha \neq \sigma(\alpha) = \alpha^{q^2} = \alpha$.

6.2 Quadratic Forms

(6.8) **Definition** A quadratic form on V is a map $Q: V \to \mathbb{F}$ such that:

(1)
$$Q(\lambda v) = \lambda^2 Q(v)$$
 for all $\lambda \in \mathbb{F}, v \in V$;

(2) the polar form $(v, w) := Q(v + w) - Q(v) - Q(w), \forall v, w \in V$, is bilinear.

Q is non-degenerate if its polar form is non-degenerate.

Note that:

(6.9)
$$Q(0_V) = Q(0_{\mathbb{F}} 0_V) = (0_{\mathbb{F}})^2 Q(0_V) = 0_{\mathbb{F}}.$$

Q uniquely determines its polar form (,) which is clearly symmetric. Moreover

(6.10)
$$2Q(v) = (v, v), \quad \forall \ v \in V.$$

Indeed: Q(2v) = Q(v + v) = Q(v) + Q(v) + (v, v) gives 4Q(v) = 2Q(v) + (v, v). It follows from (6.10) that, if char (\mathbb{F}) = 2, the polar form (,) is antisymmetric. On the other hand, if car $\mathbb{F} \neq 2$, every symmetric bilinear form (,) is the polar form of

$$Q(v) := \frac{1}{2}(v, v), \quad \forall \ v \in V.$$

Direct calculation shows that Q is quadratic and that

$$Q(v + w, v + w) - Q(v) - Q(w) = (v, w).$$

By the above considerations, in characteristic $\neq 2$, the study of quadratic forms is equivalent to the study of symmetric bilinear forms. But, for a unified treatment, we study the orthogonal spaces via quadratic forms.

6.3 Orthogonal spaces

the quadratic form Q defined by:

(6.11) Definition Let (V, Q) and (V', Q') be vector spaces over \mathbb{F} , endowed with quadratic forms Q and Q' respectively. An isometry from V to V' is an invertible element $f \in \operatorname{Hom}_{\mathbb{F}}(V, V')$ such that

$$Q'(f(v)) = Q(v), \quad \forall \ v \in V.$$

The spaces (V,Q) and (V',Q') are isometric if there exists an isometry $f: V \to V'$.

Clearly, when V = V', Q = Q', the isometries of V form a subgroup of $Aut_{\mathbb{F}}(V)$.

(6.12) Definition Let Q be a non degenerate quadratic form on V.

- (1) (V,Q) is called an orthogonal space;
- (2) the group of isometries of (V,Q), called the orthogonal group relative to Q, is denoted by $O_n(\mathbb{F},Q)$, where $n = \dim V$.

Note that, in an orthogonal space, we may consider orthogonality with respect to the polar form, which is non-singular by definition of orthogonal space.

(6.13) Lemma Suppose char $\mathbb{F} = 2$.

- (1) any orthogonal space (V, Q) over \mathbb{F} has even dimension;
- (2) the orthogonal group $O_{2m}(\mathbb{F}, Q)$ is a subgroup of the symplectic group $\operatorname{Sp}_{2m}(\mathbb{F})$.

Proof

(1) The polar form of any quadratic form is antisymmetric by (6.10), hence degenerate in odd dimension.

(2) The polar form associated to Q is non-degenerate, antisymmetric and it is preserved by every $f \in O_{2m}(\mathbb{F}, Q)$. Indeed:

$$\begin{aligned} (v,w) &:= Q(v+w) - Q(v) - Q(w) = Q(f(v+w)) - Q(f(v)) - Q(f(w)) = \\ Q(f(v) + f(w)) - Q(f(v)) - Q(f(w)) = (f(v), f(w)), \quad \forall \; v, w \in V. \end{aligned}$$

(6.14) Lemma Let (V,Q) be an orthogonal space of dimension ≥ 2 . If $Q(v_1) = 0$ for some non-zero vector $v_1 \in V$, then there exists $v_{-1} \in V \setminus \langle v_1 \rangle$ such that:

(6.15)
$$Q(x_1v_1 + x_{-1}v_{-1}) = x_1x_{-1}, \quad \forall \ x_1, x_{-1} \in \mathbb{F}.$$

The subspace $\langle v_1, v_{-1} \rangle$ is non-singular.

Proof $Q(v_1) = 0$ gives $(v_1, v_1) = 2Q(v_1) = 0$. As the polar form of Q is non-degenerate, there exists $u \in V$ with $(v_1, u) \neq 0$. In particular v_1 and u are linearly independent. Set

$$v_{-1} := (v_1, u)^{-1} u - (v_1, u)^{-2} Q(u) v_1.$$

Then $v_{-1} \notin \langle v_1 \rangle$ and:

$$(v_1, v_{-1}) = 1$$
, $Q(v_{-1}) = (v_1, u)^{-2} Q(u) - (v_1, u)^{-2} Q(u) = 0$.

Using the assumption $Q(v_1) = 0$ we get (6.15). The subspace is non-singular as the matrix of the polar form with respect to $\{v_1, v_{-1}\}$ is $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \blacksquare$

(6.16) Definition An orthogonal space (V, Q) is called anisotropic if $Q(v) \neq 0$ for all non-zero vectors $v \in V$.

Non-singular anisotropic spaces exist.

(6.17) Example Let V be a separable, quadratic field extension of \mathbb{F} . Then

$$|\operatorname{Gal}_{\mathbb{F}}(V)| = \dim_{\mathbb{F}} V = 2 \implies \operatorname{Gal}_{\mathbb{F}}(V) = \langle \sigma \rangle, \quad \mathbb{F} = V_{\langle \sigma \rangle}.$$

The Norm map $N_{\mathbb{F}}^{V}: V \to \mathbb{F}$ defined by:

$$N_{\mathbb{F}}^{V}(v) := vv^{\sigma}, \quad \forall \ v \in V$$

is a non-degenerate anisotropic quadratic form on V.

More details are given in the next Lemma.

(6.18) Lemma Let $f(t) = t^2 + at + b \in \mathbb{F}[t]$ be separable, irreducible and consider

$$V = \frac{\mathbb{F}[t]}{\langle t^2 + at + b \rangle} = \{ x_1 + x_{-1}t \mid x_1, \ x_{-1} \in \mathbb{F} \}$$

with respect to the usual sum of polynomials and product modulo f(t). Then :

(6.19)
$$N_{\mathbb{F}}^{V}(x_{1}+x_{-1}t) = x_{1}^{2}-ax_{1}x_{-1}+bx_{-1}^{2}, \quad \forall x_{1},x_{-1} \in \mathbb{F}.$$

With respect to the basis $\{1,t\}$, the polar form of $N_{\mathbb{F}}^V$ is the non-singular matrix

$$J = \begin{pmatrix} 2 & -a \\ -a & 2b \end{pmatrix}.$$

Proof Let $\operatorname{Gal}_{\mathbb{F}}(V) = \langle \sigma \rangle$. Then t and t^{σ} are the roots of f(t) in V. Thus

$$t + t^{\sigma} = -a, \quad tt^{\sigma} = b, \quad x^{\sigma} = x, \ \forall \ x \in \mathbb{F}.$$

It follows:

$$N_{\mathbb{F}}^{V}(x_{1}+x_{-1}t) = (x_{1}+x_{-1}t)(x_{1}+x_{-1}t^{\sigma}) = -ax_{1}x_{-1}+x_{1}^{2}+bx_{-1}^{2}.$$

J is non-degenerate since Det $(J) = 4b - a^2 \neq 0$ by the irreducibility of $t^2 + at + b$ (and its separability when char $\mathbb{F} = 2$). ■

(6.20) Remark If $\mathbb{F} = \mathbb{F}_q$ then $V = \mathbb{F}_{q^2}$ and the map $N_{\mathbb{F}}^V : \mathbb{F}_{q^2} \to \mathbb{F}_q$ coincides with $v \mapsto vv^q = v^{q+1}$. As shown in Section 5 it is surjective. It follows that the map $\begin{pmatrix} x_1 \\ x_{-1} \end{pmatrix} \mapsto x_1^2 - ax_1x_{-1} + bx_{-1}^2$ from \mathbb{F}_q^2 to \mathbb{F}_q is surjective.

The anisotropic orthogonal spaces are only those of Example 6.17. We first show:

(6.21) Theorem Let (W, Q) be an anisotropic orthogonal space of dimension 2.

(1) For each non-zero vector $v_1 \in W$ there exists $v_{-1} \in W \setminus \{v_1\}$ such that

(6.22)
$$Q(x_1v_1 + x_{-1}v_{-1}) = Q(v_1)\left(x_1^2 + \zeta x_{-1}^2 + x_1x_{-1}\right) \quad \forall x_1, x_{-1} \in \mathbb{F}$$

where $t^2 - t + \zeta$ is irreducible in $\mathbb{F}[t]$.

(2) If the map $\mathbb{F}^2 \to \mathbb{F}$ defined by $\begin{pmatrix} x_1 \\ x_{-1} \end{pmatrix} \mapsto x_1^2 + \zeta x_{-1}^2 + x_1 x_{-1}$ is onto, the space (W, Q) is isometric to $(V, N_{\mathbb{F}}^V)$, where $V = \frac{\mathbb{F}[t]}{\langle t^2 - t + \zeta \rangle}$.

In particular:

- if \mathbb{F} is algebraically closed, no such W exists;
- if $\mathbb{F} = \mathbb{F}_q$, all orthogonal anisotropic 2-dimensional spaces are isometric.

Proof

(1) We first show that there exists $w \in W \setminus \langle v_1 \rangle$ such that $(v_1, w) \neq 0$. Indeed, if $(v_1, v_1) \neq 0$, then $W = \langle v_1 \rangle \oplus \langle v_1 \rangle^{\perp}$ and we take $w = v_1 + u$ with $u \in \langle v_1 \rangle^{\perp}$. If $(v_1, v_1) = 0$, then $\langle v_1 \rangle \leq \langle v_1 \rangle^{\perp} \neq W$ and we take $w \in W \setminus \langle v_1 \rangle^{\perp}$. Now set:

$$v_{-1} := Q(v_1)(v_1, w)^{-1}w, \quad \zeta = \frac{Q(v_{-1})}{Q(v_1)}.$$

It follows $(v_1, v_{-1}) = Q(v_1)$ and, for all $x_1, x_{-1} \in \mathbb{F}$:

$$Q(x_1v_1 + x_{-1}v_{-1}) = x_1^2 Q(v_1) + x_{-1}^2 Q(v_{-1}) + x_1 x_{-1} Q(v_1) = Q(v_1) \left(x_1^2 + \zeta x_{-1}^2 + x_1 x_{-1}\right).$$

In particular, for $x_{-1} = 1$, we get $x_1v_1 + v_{-1} \neq 0$, whence:

$$0 \neq Q(x_1v_1 + v_{-1}) = Q(v_1) \left(x_1^2 + x_1 + \zeta \right), \quad \forall \ x_1 \in \mathbb{F}$$

Thus $t^2 + t + \zeta$ is irreducible in $\mathbb{F}[t]$, since it has no roots in \mathbb{F} . It follows that $t^2 - t + \zeta$ is also irreducible.

(2) There exists $\begin{pmatrix} \lambda \\ \mu \end{pmatrix} \in \mathbb{F}^2$ such that $\lambda^2 + \zeta \mu^2 + \lambda \mu = Q(v_1)^{-1}$. Substituting v_1 with $\lambda v_1 + \mu v_{-1}$ in point (1), we may suppose $Q(v_1) = 1$. Then (6.22) gives $Q(x_1v_1 + x_{-1}v_{-1}) = x_1^2 + \zeta x_{-1}^2 + x_1x_{-1}$. We conclude that the map $f = W \to \frac{\mathbb{F}[t]}{\langle t^2 - t + \zeta \rangle}$ defined by:

$$(6.23) x_1v_1 + x_{-1}v_{-1} \mapsto x_1 + x_{-1}t$$

is an isometry in virtue of (6.19).

Finally, suppose $\mathbb{F} = \mathbb{F}_q$ and let $\left(V, N_{\mathbb{F}_q}^V\right) \left(V', N_{\mathbb{F}_q}^{V'}\right)$ be 2-dimensional anisotropic orthogonal spaces. Since V and V' are finite fields of the same order, there exists a field automorphism $f: V \to V'$ such that $f_{|\mathbb{F}_q} = \text{id}$. From

$$f(v)f(v^q) = f(vv^q) = vv^q, \quad \forall \ v \in V$$

we conclude that f is an isometry.

(6.24) Corollary Let (V, Q) be an orthogonal space, with $V = \mathbb{F}_q^{2m}$.

- (1) There exists a basis $\mathcal{B} = \{v_1, \dots, v_m, v_{-1}, \dots, v_{-m}, \}$ of V such that either $Q = Q^+$ or $Q = Q^-$ where, for all $v = \sum_{i=1}^m x_i v_i + x_{-i} v_{-i} \in V$:
 - $Q^+(v) = \sum_{i=1}^m x_i x_{-i};$
 - $Q^{-}(v) = \sum_{i=1}^{m} x_i x_{-i} + x_m^2 + \zeta x_{-m}^2$, with $t^2 t + \zeta$ a fixed, separable irreducible polynomial in $\mathbb{F}_q[t]$ (arbitrarily chosen with these properties).
- (2) Q^+ has polar form $\sum_{i=1}^{m} (x_i y_{-i} + x_{-i} y_i)$, with matrix $J_1 = \begin{pmatrix} 0 & I_m \\ I_m & 0 \end{pmatrix}$; Q^- has polar form $\sum_{i=1}^{m} (x_i y_{-i} + x_{-i} y_i) + 2 (x_m y_m + \zeta x_{-m} y_{-m})$, with matrix

$$J_2 = \begin{pmatrix} \mathbf{0} & I_{m-1} & 0 & 0 \\ I_{m-1} & \mathbf{0} & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2\zeta \end{pmatrix}.$$

(3) (V,Q^+) is not isometric to (V,Q^-) .

The corresponding groups of isometries are indicated by $O_{2m}^+(q)$ and $O_{2m}^-(q)$.

Proof

(1) Let m = 1. If V is non-anisotropic, Lemma 6.14 gives $Q = Q^+$. If V is anisotropic, Theorem 6.21 gives $Q = Q^-$. So assume m > 1.

Step 1. We claim that there exists a non-zero vector $v_1 \in V$ such that $Q(v_1) = 0$. By the same argument used in the proof of point (1) of Theorem 6.21, there exists a nonsingular 2-dimensional subspace $W = \langle v_m, v_{-m} \rangle$. We may assume that W is anisotropic. Hence (W, Q) is isometric to $\left(\mathbb{F}_{q^2}, N_{\mathbb{F}_q}^{\mathbb{F}_{q^2}}\right)$ and

$$Q(x_{m}v_{m} + x_{-m}v_{-m}) = x_{m}x_{-m} + x_{m}^{2} + \zeta x_{-m}^{2}, \quad \forall x_{m}, x_{-m} \in \mathbb{F}_{q}$$

for some irreducible polynomial $t^2 - t + \zeta \in \mathbb{F}[t]$.

Take a non-zero vector w in W^{\perp} . By the surjectivity of the norm for finite fields, there exist $u \in W$ such that Q(u) = -Q(w). Then $v_1 = u + w \neq 0$, since $W \cap W^{\perp} = \{0\}$. Moreover, from (u, w) = 0, we get: $Q(v_1) = Q(u + w) = Q(u) + Q(w) = 0$.

Step 2. By Lemma 6.14 there exists a non-singular 2-dimensional subspace $\langle v_1, v_{-1} \rangle$ such that $Q(x_1v_1 + x_{-1}v_{-1}) = x_1x_{-1}$. We get:

$$V = \langle v_1, v_{-1} \rangle \oplus \langle v_1, v_{-1} \rangle^{\perp}$$

By induction, $\langle v_1, v_{-1} \rangle^{\perp}$ has a basis $\mathcal{B}' = \{v_2, \ldots, v_m, v_{-2}, \ldots, v_{-m}, \}$ such that the restriction of Q to $\langle v_1, v_{-1} \rangle^{\perp}$ is either Q^+ or Q^- . This gives (1).

- (2) Routine calculation using (1).
- (3) V is a direct sum of mutually orthogonal 2-dimensional spaces:

$$V = \langle v_1, v_{-1} \rangle \perp \cdots \perp \langle v_m, v_{-m} \rangle$$

with the further property $(v_i, v_i) = 0, 1 \le i \le m-1$. For Q^+ we have also $(v_m, v_m) = 0$, so that $\langle v_1, \ldots, v_m \rangle$ is a totally isotropic space of largest possible dimension $m = \frac{n}{2}$ (see Lemma 3.9). For Q^- the space $W = \langle v_1, \ldots, v_{m-1} \rangle$ is totally isotropic. It follows:

$$W \oplus \langle v_m, v_{-m} \rangle = W^{\perp}.$$

Let \widehat{W} be a totally isotropic space which contains W. Then

$$W = W + \left(\widehat{W} \cap \langle v_m, v_{-m} \rangle\right) = W + \{0\} = W$$

since $\langle v_m, v_{-m} \rangle$ is anisotropic. We conclude that $W = \widehat{W}$, i.e., W is a maximal isotropic space of dimension m - 1. So Q^+ and Q^- cannot be isometric.

(6.25) Theorem Let (V,Q) be an orthogonal space, with $V = \mathbb{F}_q^{2m+1}$, q odd. There exists a basis of V such that the matrix of the polar form is one of the following:

(6.26)
$$I_{2m+1} = \begin{pmatrix} 1 & & \\ & \dots & \\ & & 1 \end{pmatrix}, \quad J = \begin{pmatrix} I_{2m} & \\ & \epsilon \end{pmatrix},$$

where ϵ is a fixed non-square in \mathbb{F}_q^* (arbitrarily chosen with this property). The two polar forms I_{2m+1} and J give rise to non-isometric orthogonal spaces, but their groups of isometries are conjugate, hence isomorphic. Both groups are indicated by $O_{2m+1}(q)$. Proof We first show that, if an orthogonal space V over \mathbb{F}_q , has dimension > 1, then there exists $v_1 \in V$ with $(v_1, v_1) = 1$. By Lemma 6.1, there exists v_1 such that $(v_1, v_1) \neq 0$. Thus $(v_1, v_1) = \rho^2$ or $(v_1, v_1) = \rho^2 \epsilon$ for some $\rho \in \mathbb{F}_q^*$. Substituting v_1 with $\rho^{-1}v_1$, if necessary, we have $(v_1, v_1) \in \{1, \epsilon\}$. If $(v_1, v_1) = \epsilon$, set $\lambda^2 + \mu^2 = \epsilon^{-1}$. Again by Lemma 6.1, applied to $\langle v_1 \rangle^{\perp}$, there exists $v_2 \in \langle v_1 \rangle^{\perp}$ such that $(v_2, v_2) \neq 0$. If $(v_2, v_2) = 1$, we substitute v_1 by v_2 . If $(v_2, v_2) = \epsilon$, we substitute v_1 by $\lambda v_1 + \mu v_2$.

Now we prove our claim. If m = 1 we can take $\mathcal{B} = \{v_1\}$ with $(v_1, v_1) \in \{1, \epsilon\}$. If m > 1 we take v_1 with $(v_1, v_1) = 1$. Then $V = \langle v_1 \rangle \perp \langle v_1 \rangle^{\perp}$ and our claim follows by induction on dim V applied to $\langle v_1, v_2 \rangle^{\perp}$.

 I_{2m+1} and J define non isometric spaces because the dimension of a maximal isotropic space are, respectively, m and m-1. So J is not cogradient to I_{2m+1} . Also ϵI_{2m+1} is not cogredient to I_{2m+1} , otherwise we would have $\epsilon I_{2m+1} = P^T I_{2m+1}P$, a contradiction as $\epsilon^{2m+1} = \det(\epsilon I_{2m+1})$ is not a square. Since, over \mathbb{F}_q , there are only 2 non-isometric orthogonal spaces, J is cogredient to ϵI_{2m+1} . Now I_{2m+1} and ϵI_{2m+1} have the same group of isometries, since:

$$h^T(\epsilon I_{2m+1})h = \epsilon I_{2m+1} \iff h^T I_{2m+1}h = I_{2m+1}.$$

We conclude that the groups of isometries of I_{2m+1} and J are conjugate.

7 Exercises

(7.1) Exercise Show that $SL_2(\mathbb{F}) = Sp_2(\mathbb{F})$ over any field \mathbb{F} .

(7.2) Exercise Let (V, Q, \mathbb{F}) be an orthogonal space. Suppose $V = V_1 \perp V_2$. Show that, for each $v = v_1 + v_2$ with $v_1 \in V_1$, $v_2 \in V_2$:

$$Q(v) = Q(v_1) + Q(v_2).$$

(7.3) Exercise Let V be a quadratic extension of \mathbb{F} and $\langle \sigma \rangle = \operatorname{Gal}_{\mathbb{F}}(V)$. Show that the map $N_{\mathbb{F}}: V \to \mathbb{F}$, defined by $N_{\mathbb{F}}^V(v) := vv^{\sigma}$ is a quadratic form on V.

(7.4) Exercise In Lemma 6.18 show that the quadratic form

$$N_{\mathbb{F}}^{V}\left(x_{1}+x_{-1}t\right) = x_{1}^{2} - ax_{1}x_{-1} + b$$

has matrix $J = \begin{pmatrix} 2 & -a \\ -a & 2b \end{pmatrix}$ with respect to the basis $\{1, t\}$.

(7.5) Exercise Say whether the matrices

$$J = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}, \quad J' = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}$$

are cogredient. In case they are, indicate a non-singular matrix P such that $P^T J P = J'$.

(7.6) Exercise Let V be an anisotropic 2-dimensional orthogonal space over \mathbb{F}_q , q odd. Show that there exists a basis for which the polar form has matrix: $\begin{pmatrix} 1 & 0 \\ 0 & -\epsilon \end{pmatrix}$, where ϵ is a non square in \mathbb{F}_q .

(7.7) Exercise Let q be odd. Show that -1 is a square in \mathbb{F}_q if and only if

$$q \equiv 1 \pmod{4}$$
.

(7.8) Exercise Let q be odd and $\epsilon \in \mathbb{F}_q$ be a non-square. Show that the matrices

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ 0 & \epsilon \end{pmatrix}$$

are not cogredient (equivalently define non-isometric orthogonal spaces).

(7.9) Exercise Let q be odd and $\epsilon \in \mathbb{F}_q$ be a non-square. Show that the matrix $J = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ is respectively cogredient to

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ if } q \equiv 1 \pmod{4}, \quad \begin{pmatrix} 1 & 0 \\ 0 & \epsilon \end{pmatrix} \text{ if } q \equiv 3 \pmod{4}$$

(7.10) Exercise Let W be a totally isotropic subspace of an orthogonal space V. Suppose

$$V = W \oplus U$$

with U anisotropic. Show that W is a maximal isotropic subspace of V.

(7.11) Exercise Let q be odd, $V = \mathbb{F}_q^n$ be a quadratic space, with n = 2m. Using the classification of quadratic spaces given in this Chapter, show that there exists a basis of V with respect to which the polar form has matrix J_1 or J_2 where

$$J_1 = \begin{pmatrix} \boldsymbol{0} & I_m \\ I_m & \boldsymbol{0} \end{pmatrix}, \quad J_2 = \begin{pmatrix} \boldsymbol{0} & I_{m-1} & & \\ I_{m-1} & \boldsymbol{0} & & \\ & & & 1 & \\ & & & & -\epsilon \end{pmatrix}$$