Chapter II

The geometry of classical groups

We denote by V a vector space over the field \mathbb{F}. For simplicity we assume that its dimension is finite. Our main references here will be [11], [14], [15] and [21].

1 Sesquilinear forms

Let σ be an automorphism of \mathbb{F} with $\sigma^{2}=\mathrm{id}$. Set $\alpha^{\sigma}:=\sigma(\alpha)$ for all $\alpha \in \mathbb{F}$.
(1.1) Definition $A \sigma$-sesquilinear form on V is a map $():, V \times V \rightarrow \mathbb{F}$ such that, for every $\lambda, \mu \in \mathbb{F}$ and for every $u, v, w \in V$:
(1) $(u, v+w)=(u, v)+(u, w)$,
(2) $(u+v, w)=(u, w)+(v, w)$,
(3) $(\lambda u, \mu v)=\lambda \mu^{\sigma}(u, v)$.

The form is said to be:
i) bilinear symmetric if $\sigma=\operatorname{id}_{\mathbb{F}}$ and $(v, w)=(w, v), \forall v, w \in V$;
ii) bilinear antisymmetric if $\sigma=\mathrm{id}_{\mathbb{F}}$ and $(v, v)=0, \forall v \in V$;
iii) hermitian if $\sigma \neq \mathrm{id}_{\mathbb{F}}, \sigma^{2}=\operatorname{id}_{\mathbb{F}}$ and $(v, w)=(w, v)^{\sigma}, \forall v, w \in V$;
$i v)$ non singular $i f$, for every $v \in V \backslash\left\{0_{V}\right\}$, there exists $u \in V$ such that $(u, v) \neq 0_{\mathbb{F}}$.
(1.2) Definition V is non-singular (or non-degenerate) when the form is non-singular.
(1.3) Lemma If the form is bilinear antisymmetric, then:

$$
(v, w)=-(w, v), \quad \forall v, w \in V
$$

Proof
$0=(v+w, v+w)=(v, v)+(v, w)+(w, v)+(w, w)=(v, w)+(w, v) \Longrightarrow(v, w)=-(w, v)$.
(1.4) Definition Let V, V^{\prime} be vector spaces over \mathbb{F}, endowed with sesquilinear forms

$$
(,): V \times V \rightarrow \mathbb{F}, \quad(,)^{\prime}: V^{\prime} \times V^{\prime} \rightarrow \mathbb{F}
$$

(1) An isometry from V to V^{\prime} is an invertible element $f \in \operatorname{Hom}_{\mathbb{F}}\left(V, V^{\prime}\right)$ such that

$$
(f(v), f(w))^{\prime}=(v, w), \quad \forall v, w \in V
$$

(2) The spaces $(V, \mathbb{F},()$,$) and \left(V^{\prime}, \mathbb{F},(,)^{\prime}\right)$ are called isometric if there exists an isometry $f: V \rightarrow V^{\prime}$.
(1.5) Lemma When $V=V^{\prime}$, the set of isometries of V is a subgroup of $\operatorname{Aut}_{\mathbb{F}}(V)$, called the group of isometries of the form (,).

The proof is left as an exercise.
(1.6) Theorem (Witt's Extension Lemma) Let V be equipped with a non-degenerate form, either bilinear (symmetric or antisymmetric) or hermitian. Let U and W be subspaces and suppose that

$$
\tau: U \rightarrow W
$$

is an isometry with respect to the restriction of the form to U and W, Then there exists an isometry $\hat{\tau}: V \rightarrow V$ which extends τ, namely such that $\hat{\tau}_{U}=\tau$.

For the proof of this important result see [1, page 81] or [14, page 367].

2 The matrix approach

Given a σ-sesquilinear form (,) on V, let us fix a basis $\mathcal{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ of V over \mathbb{F}.
(2.1) Definition The the matrix J of the above form with respect to \mathcal{B} is defined by

$$
J:=\left(\left(v_{i}, v_{j}\right)\right), \quad 1 \leq i, j \leq n
$$

Given $v=\sum_{i=1}^{n} k_{i} v_{i}, w=\sum_{i=1}^{n} h_{i} v_{i}$ in V, it follows from the axioms that

$$
\begin{equation*}
(v, w)=\sum_{i, j=1}^{n} k_{i} h_{j}^{\sigma}\left(v_{i}, v_{j}\right)=v_{\mathcal{B}}^{T} J w_{\mathcal{B}}^{\sigma}, \quad \forall v, w \in V \tag{2.2}
\end{equation*}
$$

(2.3) Lemma J is the only matrix of $\operatorname{Mat}_{n}(\mathbb{F})$ which satisfies (2.2) for the given form. Proof Let $A=\left(a_{i j}\right) \in \operatorname{Mat}_{n}(\mathbb{F})$ satisfy $(v, w)=v_{\mathcal{B}}^{T} A w_{\mathcal{B}}^{\sigma}$ for all v, w in V. Letting v, w vary in \mathcal{B} and noting that $v_{i \mathcal{B}}=e_{i}, 1 \leq i \leq n$ we have:

$$
\left(v_{i}, v_{j}\right)=v_{i \mathcal{B}}{ }^{T} A v_{j_{\mathcal{B}}}{ }^{\sigma}=e_{i}^{T} A e_{j}=a_{i j}, \quad 1 \leq i, j \leq n .
$$

We conclude that $J=A$.
(2.4) Lemma Let J be the matrix of a σ-sesquilinear form (,) on V.
(1) If $\sigma=\operatorname{id}_{\mathbb{F}}$, then the form is symmetric if and only if $J^{T}=J$;
(2) if $\sigma=\mathrm{id}_{\mathbb{F}}$, then the form is antisymmetric if and only if $J^{T}=-J$;
(3) if σ has order 2, then the form is hermitian if and only if $J^{T}=J^{\sigma}$.

Moreover the form (,) is non-degenerate if and only if $\operatorname{det} J \neq 0$.
(2.5) Lemma Let $J \in \operatorname{Mat}_{n}(\mathbb{F})$ be the matrix of a sesquilinear form on V with respect to a basis \mathcal{B}. Then $J^{\prime} \in \operatorname{Mat}_{n}(\mathbb{F})$ is the matrix of the same form with respect to a basis \mathcal{B}^{\prime} if and only if J and J^{\prime} are cogradient, namely if there exists P non-singular such that:

$$
\begin{equation*}
J^{\prime}=P^{T} J P^{\sigma} . \tag{2.6}
\end{equation*}
$$

Proof Let J^{\prime} be the matrix of the form with respect to $\mathcal{B}^{\prime}=\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}$. Then:

$$
\begin{equation*}
v_{\mathcal{B}}^{T} J w_{\mathcal{B}}^{\sigma}=v_{\mathcal{B}^{\prime}}^{T} J^{\prime} w_{\mathcal{B}^{\prime}}^{\sigma}, \quad \forall v, w \in V . \tag{2.7}
\end{equation*}
$$

Setting $P:=\left(\left(v_{1}^{\prime}\right)_{\mathcal{B}}|\ldots|\left(v_{n}^{\prime}\right)_{\mathcal{B}}\right)$, we have $v_{\mathcal{B}}=P v_{\mathcal{B}^{\prime}}$ for all $v \in V$. It follows:

$$
\begin{equation*}
v_{\mathcal{B}}^{T} J w_{\mathcal{B}}^{\sigma}=\left(v_{\mathcal{B}^{\prime}}^{T} P^{T}\right) J\left(P^{\sigma} w_{\mathcal{B}^{\prime}}^{\sigma}\right)=v_{\mathcal{B}^{\prime}}^{T}\left(P^{T} J P^{\sigma}\right) w_{\mathcal{B}^{\prime}}^{\sigma}, \quad \forall v, w \in V . \tag{2.8}
\end{equation*}
$$

Comparing (2.7) with (2.8) we get $J^{\prime}=P^{T} J P^{\sigma}$.
Vice versa, let $J^{\prime}=P^{T} J P^{\sigma}$, for some non-singular P. Set $\mathcal{B}^{\prime}=\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ where $\left(v_{i}^{\prime}\right)_{\mathcal{B}}=P e_{i}$. Then \mathcal{B}^{\prime} is a basis of V and $v_{\mathcal{B}}=P v_{\mathcal{B}^{\prime}}$ for all $v \in V$. From (2.8) it follows that J^{\prime} is the matrix of the form with respect to \mathcal{B}^{\prime}.

(2.9) Theorem

(1) Let J be the matrix of a sesquilinear form on $V=\mathbb{F}^{n}$ with respect to the canonical basis \mathcal{B}. Then its group of isometries is the subgroup:

$$
H:=\left\{h \in \mathrm{GL}_{n}(\mathbb{F}) \mid h^{T} J h^{\sigma}=J\right\} .
$$

(2) Let \mathcal{B}^{\prime} be another basis of \mathbb{F}^{n}. Then the group of isometries of the same form is:

$$
P^{-1} H P
$$

where P is the matrix of the change of basis from \mathcal{B} to \mathcal{B}^{\prime}.
Proof
(1) If $\mathcal{B}=\left\{e_{1}, \ldots, e_{n}\right\}$ is the canonical basis, we have $v=v_{\mathcal{B}}$ for all $v \in V$. Thus:

$$
(v, w)=v^{T} J w^{\sigma}, \quad \forall v, w \in V .
$$

It follows that an element $h \in \mathrm{GL}_{n}(\mathbb{K})$ is an isometry if and only if:

$$
v^{T} J w^{\sigma}=(h v)^{T} J(h w)^{\sigma}=v^{T}\left(h^{T} J h^{\sigma}\right) w^{\sigma}, \quad \forall v, w \in \mathbb{F}^{n} .
$$

Equivalently h is an isometry if and only if

$$
e_{i}^{T} J e_{j}=e_{i}^{T}\left(h^{T} J h^{\sigma}\right) e_{j}, \quad 1 \leq i, j \leq n \quad \Longleftrightarrow \quad J=h^{T} J h^{\sigma} .
$$

(2) $J^{\prime}=P^{T} J P^{\sigma}$ is the matrix of the form with respect to \mathcal{B}^{\prime}. For every $h \in H$ we have:

$$
\left(P^{-1} h P\right)^{T} J^{\prime}\left(P^{-1} h P\right)^{\sigma}=J^{\prime} \quad \Longleftrightarrow \quad h^{T} J h^{\sigma}=J .
$$

3 Orthogonality

Let (,) : V×V $\rightarrow \mathbb{F}$ be a bilinear (symmetric or antisymmetric) or an hermitian form.
(3.1) Definition Two vectors $u, w \in V$ are said to be orthogonal if $(u, w)=0_{\mathbb{F}}$.
(3.2) Lemma For every $W \subseteq V$ the subset

$$
W^{\perp}:=\{v \in V \mid(v, w)=0, \forall w \in W\}
$$

is a subspace, called the subspace orthogonal to W.
(3.3) Definition Let W be a subspace of V. Then W is said to be
(1) totally isotropic (or totally singular) if $W \leq W^{\perp}$;
(2) non-degenerate if $\operatorname{rad}(W):=W \cap W^{\perp}=\left\{0_{V}\right\}$.

Clearly V non singular $\Longleftrightarrow \operatorname{rad}(V)=\left\{0_{V}\right\}$.
(3.4) Lemma If V is non-degenerate then, for every subspace W of V :

$$
\operatorname{dim} W^{\perp}=\operatorname{dim} V-\operatorname{dim} W
$$

In particular:
(1) $\left(W^{\perp}\right)^{\perp}=W$;
(2) the dimension of a totally isotropic space is at most $\frac{\operatorname{dim} V}{2}$.

Proof Let $\mathcal{B}_{W}=\left\{w_{1}, \ldots, w_{m}\right\}$ be a basis of W. For every $v \in V$ we have:

$$
\begin{equation*}
v \in W^{\perp} \Longleftrightarrow\left(w_{i}, v\right)=0_{\mathbb{F}}, 1 \leq i \leq m \tag{3.5}
\end{equation*}
$$

Extend \mathcal{B}_{W} to a basis $\mathcal{B}=\left\{w_{1}, \ldots, w_{m}, w_{m+1}, \ldots, w_{n}\right\}$ of V and let J be the matrix of the form with respect to \mathcal{B}. From $\left(w_{i}\right)_{\mathcal{B}}=e_{i}, 1 \leq i \leq m$, it follows:

$$
\begin{equation*}
v \in W^{\perp} \Longleftrightarrow e_{i}^{T} J v_{\mathcal{B}}^{\sigma}=0_{\mathbb{F}}, 1 \leq i \leq m . \tag{3.6}
\end{equation*}
$$

Since J is non-degenerate, its rows are independent. Hence the m equations of the linear homogeneous system (3.6) are independent. This system has n indeterminates, so the space of solutions has dimension $n-m$. We conclude that W^{\perp} has dimension

$$
n-m=\operatorname{dim} V-\operatorname{dim} W .
$$

(1) $W \leq\left(W^{\perp}\right)^{\perp}$ and $\operatorname{dim}\left(W^{\perp}\right)^{\perp}=\operatorname{dim} V-\operatorname{dim} W^{\perp}=\operatorname{dim} W$.
(2) Let W be totally isotropic, i.e., $W \leq W^{\perp}$. Then:

$$
\operatorname{dim} W \leq \operatorname{dim} W^{\perp}=\operatorname{dim} V-\operatorname{dim} W \quad \Longrightarrow \quad 2 \operatorname{dim} W \leq \operatorname{dim} V .
$$

(3.7) Definition Let U, W be subspaces of V. We write $V=U \perp W$ and say that V is an orthogonal sum of U and W if $V=U \oplus W$ and U is orthogonal to W, namely if:
(1) $V=U+W$;
(2) $U \cap W=\left\{0_{V}\right\}$;
(3) $U \leq W^{\perp}$.
(3.8) Corollary If V and W are non-degenerate, then

$$
V=W \perp W^{\perp} .
$$

Moreover W^{\perp} is non-degenerate.
Proof Since V is non-degenerate, Lemma 3.4 gives $\operatorname{dim} V=\operatorname{dim} W+\operatorname{dim} W^{\perp}$. Since W is non-degenerate, we have $W \cap W^{\perp}=\{0\}$. It follows $V=W \oplus W^{\perp}$. Finally W^{\perp} is non-degenerate as $W^{\perp} \cap\left(W^{\perp}\right)^{\perp}=W^{\perp} \cap W=\{0\}$.

As a consequence of Witt's Lemma, we have the following:
(3.9) Corollary Let V be endowed with a non-degenerate, either bilinear (symmetric or antisymmetric) or hermitian form. Then all the maximal totally isotropic subspaces have the same dimension, which is at most $\frac{\operatorname{dim} V}{2}$.

Proof Let M be a totally isotropic subspace of largest possible dimension m. Clearly M is a maximal totally isotropic subspace. Take any totally isotropic subspace U. Since $\operatorname{dim} U \leq m$, there exists an injective \mathbb{F}-linear map $\tau: U \rightarrow M$. Now $\tau: U \rightarrow \tau(U)$ is an isometry, as the restriction of the form to U and to $\tau(U)$ is the zero-form. By theorem 1.6, there exists an isometry $\hat{\tau}: V \rightarrow V$ which extends τ. Thus $U \leq \hat{\tau}^{-1}(M)$ with $\hat{\tau}^{-1}(M)$ totally isotropic as $\hat{\tau}^{-1}$ is an isometry of V. If U is a maximal totally isotropic subspace, then $U=\hat{\tau}^{-1}(M)$ has dimension m. By Lemma 3.4 we have $m \leq \frac{\operatorname{dim} V}{2}$.

4 Symplectic spaces

(4.1) Definition A vector space V over \mathbb{F}, endowed with a non-degenerate antisymmetric bilinear form is called symplectic.
(4.2) Theorem Let V be a symplectic space over \mathbb{F}, of dimension n. Then:
(1) $n=2 m$ is even;
(2) there exists a basis \mathcal{B} of V with respect to which the matrix of the form is:

$$
J=\left(\begin{array}{cc}
0 & I_{m} \tag{4.3}\\
-I_{m} & 0
\end{array}\right)
$$

Proof Induction on n.
Suppose $n=1, V=\mathbb{F} v, 0 \neq v \in V$. For every $\lambda, \mu \in \mathbb{F}:(\lambda v, \mu v)=\lambda \mu(v, v)=0_{\mathbb{F}}$, in contrast with the assumption that V is non degenerate. Hence $n \geq 2$.
Fix a non-zero vector $v_{1} \in V$. There exists $w \in V$ such that $\left(v_{1}, w\right) \neq 0_{\mathbb{F}}$. In particular v_{1} e w are linearly independent. Setting $w_{1}:=\lambda^{-1} w$, we have:

$$
\left(v_{1}, w_{1}\right)=\left(v_{1}, \lambda^{-1} w\right)=\lambda^{-1}\left(v_{1}, w\right)=1_{\mathbb{F}} .
$$

If $n=2$ our claim is proved since the matrix of the form w. r. to $\mathcal{B}=\left\{v_{1}, w_{1}\right\}$ is

$$
J=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

If $n\rangle 2$ we note that the subspace $W:=\left\langle v_{1}, w_{1}\right\rangle$ is non-singular. Thus:

$$
V=W \perp W^{\perp} .
$$

W^{\perp} is non-degenerate, hence it is a symplectic space of dimension $n-2$. By induction on n we have that $n-2=2(m-1)$ whence $n=2 m$, and moreover that W^{\perp} admits a basis $\left\{v_{2}, \ldots, v_{m}, w_{2}, \ldots, w_{m}\right\}$ with respect to which the matrix of the form is

$$
J_{W^{\perp}}=\left(\begin{array}{cc}
\mathbf{0} & I_{m-1} \\
-I_{m-1} & \mathbf{0}
\end{array}\right) .
$$

Choosing $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{m}, w_{1}, w_{2}, \ldots, w_{m}\right\}$ we obtain our claim.
(4.4) Definition The group of isometries of a symplectic space V over \mathbb{F} of dimension $2 m$ is called the symplectic group of dimension $2 m$ over \mathbb{F} and indicated by $\mathrm{Sp}_{2 m}(\mathbb{F})$.

By the previous considerations, up to conjugation we may assume:

$$
\mathrm{Sp}_{2 m}(\mathbb{F})=\left\{g \in \mathrm{GL}_{2 m}(\mathbb{F}) \mid g^{T} J g=J\right\} .
$$

where J is as in (4.3). The subspace $\left\langle e_{1}, \ldots, e_{m}\right\rangle$, is a maximal totally isotropic space.

5 Some properties of finite fields

In contrast with the symplectic case, the classification of the non-singular, bilinear symmetric or hermitian forms, depends on the field \mathbb{F} and may become very complicated. Thus our treatment will need further assumptions on \mathbb{F}. Since our interest is focused on finite fields, we will recall here a few specific facts, needed later, assuming the basic properties. As usual \mathbb{F}_{q} denotes the finite field of order q, a prime power.

Consider the homomorphism $f: \mathbb{F}_{q}^{*} \rightarrow \mathbb{F}_{q}^{*}$ defined by $f(\alpha):=\alpha^{2}$. Clearly $\operatorname{Ker} f=\langle-1\rangle$. If q is odd, $\operatorname{Ker} f$ has order 2 . In this case $\operatorname{Im} f$, the set of non-zero squares in \mathbb{F}_{q}, has order $\frac{q-1}{2}$. Moreover, for any $\epsilon \in \mathbb{F}_{q}^{*} \backslash \operatorname{Im} f$, the coset $(\operatorname{Im} f) \epsilon=\left\{\alpha^{2} \epsilon \mid \alpha \in \mathbb{F}_{q}^{*}\right\}$ is the set of non-squares.
If q is even, $\operatorname{Ker} f$ has order 1 . So f is surjective, i.e., every element of \mathbb{F}_{q} is a square.
(5.1) Lemma Every element of \mathbb{F}_{q} is the sum of two squares.

Proof By what observed above we may suppose q odd. Consider the set

$$
X:=\left\{\alpha^{2}+\beta^{2} \mid \alpha, \beta \in \mathbb{F}_{q}\right\} .
$$

Note that $|X|$ does not divide $q=\left|\mathbb{F}_{q}\right|$, since:

$$
|X| \geq \frac{q-1}{2}+1=\frac{q+1}{2}>\frac{q}{2} .
$$

If every element of X were a square, X would be an additive subgroup of \mathbb{F}_{q}, in contrast with Lagrange's Theorem. So there exists a non-square $\epsilon \in X$. Write $\epsilon=\gamma^{2}+\delta^{2}$. It follows that every non-square is in X. Indeed a non-square has shape $\alpha^{2} \epsilon=(\alpha \gamma)^{2}+(\alpha \delta)^{2}$.
$\operatorname{Aut}\left(\mathbb{F}_{p^{a}}\right)=\operatorname{Gal}_{\mathbb{F}_{p}}\left(\mathbb{F}_{p^{a}}\right)$ has order a. So Aut $\left(\mathbb{F}_{p^{a}}\right)$ is generated by the Frobenius automorphism $\alpha \mapsto \alpha^{p}$, which has has order a. It follows that $\mathbb{F}_{p^{a}}$ has an automorphism σ of order 2 if and only if $a=2 b$ is even. In this case, we set $q=p^{b}$, so that $\mathbb{F}_{p^{a}}=\mathbb{F}_{q^{2}}$. The automorphism $\sigma: \mathbb{F}_{q^{2}} \rightarrow \mathbb{F}_{q^{2}}$ of order 2 is the map: $\alpha \mapsto \alpha^{q}$. Moreover $\alpha \alpha^{q} \in \mathbb{F}_{q}$ for all $\alpha \in \mathbb{F}_{q^{2}}$, since $\left(\alpha \alpha^{q}\right)^{q}=\alpha \alpha^{q}$.
(5.2) Theorem The Norm map $N: \mathbb{F}_{q^{2}} \rightarrow \mathbb{F}_{q}$ defined by $N(\alpha):=\alpha \alpha^{q}$, is surjective.

Proof The restriction of N to $\mathbb{F}_{q^{2}}^{*}$ is a group homomorphism into \mathbb{F}_{q}^{*}. Its kernel consists of the roots of $x^{q+1}-1$, hence has order $\leq q+1$. Thus its image has order $q-1$.

6 Unitary and orthogonal spaces

We recall that σ denotes an automorphism of the field \mathbb{F} such that $\sigma^{2}=$ id. More precisely, $\sigma=\mathrm{id}$ in the orthogonal case, $\sigma \neq \mathrm{id}$ in the hermitian case.
(6.1) Lemma Consider a non-degenerate, bilinear symmetric or hermitian form (,): $V \times V \rightarrow \mathbb{F}$. If char $\mathbb{F}=2$ assume that the form is hermitian. Then V admits an orthogonal basis, i.e., a basis with respect to which the matrix of the form is diagonal.

Proof We first show that there exists v such that $(v, v) \neq 0$. This is clear when $\operatorname{dim} V=1$, since the form is non-degenerate. So suppose $\operatorname{dim} V>1$.
For a fixed non-zero $u \in V$, there exists $w \in V$ such that $(u, w) \neq 0_{\mathbb{F}}$. Clearly we may assume $(u, u)=(w, w)=0$. If char $\mathbb{F} \neq 2$, setting $\lambda=(u, w), \quad v=\lambda^{-1} u+w$ we have:

$$
(v, v)=\lambda^{-1}(u, w)+\left(\lambda^{-1}\right)^{\sigma}(w, u)=\lambda^{-1} \lambda+\left(\lambda^{\sigma}\right)^{-1} \lambda^{\sigma}=2 \cdot 1_{\mathbb{F}} \neq 0_{\mathbb{F}} .
$$

If char $\mathbb{F}=2$, the form is hermitian by assumption. So there exists $\alpha \in \mathbb{F}$ such that $\alpha^{\sigma} \neq \alpha$. In this case, setting $v=\lambda^{-1} \alpha u+w$ we have $(v, v)=\alpha+\alpha^{\sigma}=\alpha-\alpha^{\sigma} \neq 0_{\mathbb{F}}$. Induction on $\operatorname{dim} V$, applied to $\langle v\rangle^{\perp}$, gives the existence of an orthogonal basis of V.
(6.2) Remark The hypothesis char $\mathbb{F} \neq 2$ when the form is bilinear symmetric, is necessary. Indeed the matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ defines a non-degenerate symmetric form on $V=$ \mathbb{F}_{2}^{2}. Since $(v, v)=0$ for all v, no orthogonal basis can exist.

Even the existence of an orthogonal basis is far from a complete classification as shown, for example, by a Theorem of Sylvester ([14, Theorem 6.7 page 359]).
(6.3) Example By the previous theorem, the symmetric matrices

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

are pairwise not cogradient in $\operatorname{Mat}_{3}(\mathbb{R})$.

6.1 Unitary spaces

(6.4) Definition A space V, with a non-degenerate hermitian form, is called unitary.
(6.5) Theorem Let V be a unitary space. Suppose that, for all $v \in V$, there exists $\mu \in \mathbb{F}$ such that $N(\mu):=\mu \mu^{\sigma}=(v, v)$. Then there exists an orthonormal basis of V, i.e., a basis with respect to which the matrix of the hermitian form is the identity.

In particular such basis exists for $\mathbb{F}=\mathbb{C}$, σ the complex conjugation, and for $\mathbb{F}=\mathbb{F}_{q^{2}}$.
Proof By Lemma 6.1 there exists $v \in V$ with $(v, v) \neq 0$. Under our assumptions there exists $\mu \in \mathbb{F}$ such that $\mu \mu^{\sigma}=(v, v)$. Substituting v with $\mu^{-1} v$ we get $(v, v)=1$. For $n=1$ the claim is proved. So suppose $n>1$. The subspace $\langle v\rangle$ is non-degenerate. It follows that $V=\langle v\rangle \perp\langle v\rangle^{\perp}$. As $\langle v\rangle^{\perp}$ is non-degenerate of dimension $n-1$, our claim follows by induction.
(6.6) Definition The group of isometries of a unitary space V over \mathbb{F} of dimension n, called the unitary group of dimension n over \mathbb{F}, is indicated by $\mathrm{GU}_{n}(\mathbb{F})$.

By Theorem 6.5 , if $\mathbb{F}=\mathbb{C}$ and σ is the complex conjugation or $\mathbb{F}=\mathbb{F}_{q^{2}}$, we may assume:

$$
\mathrm{GU}_{n}(\mathbb{F})=\left\{g \in \mathrm{GL}_{n}(\mathbb{F}) \mid g^{T} g^{\sigma}=I_{n}\right\}
$$

(6.7) Remark There are fields which do not admit any automorphism of order 2: so there are no unitary groups over such fields. To the already mentioned examples of \mathbb{R} and $\mathbb{F}_{p^{2 b+1}}$, we add the algebraic closure \bar{F}_{p} of \mathbb{F}_{p}, as shown below.

By contradiction suppose there exists an automorphism σ of order 2 of $\mathbb{F}:=\bar{F}_{p}$.
Let $\alpha \in \mathbb{F}$ be such that $\sigma(\alpha) \neq \alpha$. Since α is algebraic over \mathbb{F}_{p}, we have that $\mathbb{K}=\mathbb{F}_{p}(\alpha)$ is finite of order p^{n} for some n. Thus \mathbb{K} is the splitting field of $x^{p^{n}}-x$. It follows that \mathbb{K} is fixed by σ and $\sigma_{\mid \mathbb{K}}$ has order 2 . Thus $n=2 m,|\mathbb{K}|=q^{2}$ with $q=p^{m}$ and $\sigma(\alpha)=\alpha^{q}$. Now consider the subfield \mathbb{L} of \mathbb{F} of order q^{4}. Again \mathbb{L} is fixed by σ and $\sigma(\beta)=\beta^{q^{2}}$ for all β in \mathbb{L}. From $\mathbb{K} \leq \mathbb{L}$ we get the contradiction $\alpha \neq \sigma(\alpha)=\alpha^{q^{2}}=\alpha$.

6.2 Quadratic Forms

(6.8) Definition A quadratic form on V is a map $Q: V \rightarrow \mathbb{F}$ such that:
(1) $Q(\lambda v)=\lambda^{2} Q(v)$ for all $\lambda \in \mathbb{F}, v \in V$;
(2) the polar form $(v, w):=Q(v+w)-Q(v)-Q(w), \forall v, w \in V$, is bilinear.
Q is non-degenerate if its polar form is non-degenerate.
Note that:

$$
\begin{equation*}
Q\left(0_{V}\right)=Q\left(0_{\mathbb{F}} 0_{V}\right)=\left(0_{\mathbb{F}}\right)^{2} Q\left(0_{V}\right)=0_{\mathbb{F}} \tag{6.9}
\end{equation*}
$$

Q uniquely determines its polar form (,) which is clearly symmetric. Moreover

$$
\begin{equation*}
2 Q(v)=(v, v), \quad \forall v \in V . \tag{6.10}
\end{equation*}
$$

Indeed: $Q(2 v)=Q(v+v)=Q(v)+Q(v)+(v, v)$ gives $4 Q(v)=2 Q(v)+(v, v)$.
It follows from (6.10) that, if char $(\mathbb{F})=2$, the polar form $($,$) is antisymmetric.$
On the other hand, if car $\mathbb{F} \neq 2$, every symmetric bilinear form (,) is the polar form of the quadratic form Q defined by:

$$
Q(v):=\frac{1}{2}(v, v), \quad \forall v \in V .
$$

Direct calculation shows that Q is quadratic and that

$$
Q(v+w, v+w)-Q(v)-Q(w)=(v, w)
$$

By the above considerations, in characteristic $\neq 2$, the study of quadratic forms is equivalent to the study of symmetric bilinear forms. But, for a unified treatment, we study the orthogonal spaces via quadratic forms.

6.3 Orthogonal spaces

(6.11) Definition Let (V, Q) and $\left(V^{\prime}, Q^{\prime}\right)$ be vector spaces over \mathbb{F}, endowed with quadratic forms Q and Q^{\prime} respectively. An isometry from V to V^{\prime} is an invertible element $f \in \operatorname{Hom}_{\mathbb{F}}\left(V, V^{\prime}\right)$ such that

$$
Q^{\prime}(f(v))=Q(v), \quad \forall v \in V .
$$

The spaces (V, Q) and $\left(V^{\prime}, Q^{\prime}\right)$ are isometric if there exists an isometry $f: V \rightarrow V^{\prime}$.
Clearly, when $V=V^{\prime}, Q=Q^{\prime}$, the isometries of V form a subgroup of $\operatorname{Aut}_{\mathbb{F}}(V)$.
(6.12) Definition Let Q be a non degenerate quadratic form on V.
(1) (V, Q) is called an orthogonal space;
(2) the group of isometries of (V, Q), called the orthogonal group relative to Q, is denoted by $O_{n}(\mathbb{F}, Q)$, where $n=\operatorname{dim} V$.

Note that, in an orthogonal space, we may consider orthogonality with respect to the polar form, which is non-singular by definition of orthogonal space.
(6.13) Lemma Suppose char $\mathbb{F}=2$.
(1) any orthogonal space (V, Q) over \mathbb{F} has even dimension;
(2) the orthogonal group $O_{2 m}(\mathbb{F}, Q)$ is a subgroup of the symplectic group $\mathrm{Sp}_{2 m}(\mathbb{F})$.

Proof
(1) The polar form of any quadratic form is antisymmetric by (6.10), hence degenerate in odd dimension.
(2) The polar form associated to Q is non-degenerate, antisymmetric and it is preserved by every $f \in O_{2 m}(\mathbb{F}, Q)$. Indeed:

$$
\begin{gathered}
(v, w):=Q(v+w)-Q(v)-Q(w)=Q(f(v+w))-Q(f(v))-Q(f(w))= \\
Q(f(v)+f(w))-Q(f(v))-Q(f(w))=(f(v), f(w)), \quad \forall v, w \in V
\end{gathered}
$$

(6.14) Lemma Let (V, Q) be an orthogonal space of dimension ≥ 2. If $Q\left(v_{1}\right)=0$ for some non-zero vector $v_{1} \in V$, then there exists $v_{-1} \in V \backslash\left\langle v_{1}\right\rangle$ such that:

$$
\begin{equation*}
Q\left(x_{1} v_{1}+x_{-1} v_{-1}\right)=x_{1} x_{-1}, \quad \forall x_{1}, x_{-1} \in \mathbb{F} \tag{6.15}
\end{equation*}
$$

The subspace $\left\langle v_{1}, v_{-1}\right\rangle$ is non-singular.
Proof $Q\left(v_{1}\right)=0$ gives $\left(v_{1}, v_{1}\right)=2 Q\left(v_{1}\right)=0$. As the polar form of Q is non-degenerate, there exists $u \in V$ with $\left(v_{1}, u\right) \neq 0$. In particular v_{1} and u are linearly independent. Set

$$
v_{-1}:=\left(v_{1}, u\right)^{-1} u-\left(v_{1}, u\right)^{-2} Q(u) v_{1}
$$

Then $v_{-1} \notin\left\langle v_{1}\right\rangle$ and:

$$
\left(v_{1}, v_{-1}\right)=1, \quad Q\left(v_{-1}\right)=\left(v_{1}, u\right)^{-2} Q(u)-\left(v_{1}, u\right)^{-2} Q(u)=0
$$

Using the assumption $Q\left(v_{1}\right)=0$ we get (6.15). The subspace is non-singular as the matrix of the polar form with respect to $\left\{v_{1}, v_{-1}\right\}$ is $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
(6.16) Definition An orthogonal space (V, Q) is called anisotropic if $Q(v) \neq 0$ for all non-zero vectors $v \in V$.

Non-singular anisotropic spaces exist.
(6.17) Example Let V be a separable, quadratic field extension of \mathbb{F}. Then

$$
\left|\operatorname{Gal}_{\mathbb{F}}(V)\right|=\operatorname{dim}_{\mathbb{F}} V=2 \quad \Longrightarrow \quad \operatorname{Gal}_{\mathbb{F}}(V)=\langle\sigma\rangle, \quad \mathbb{F}=V_{\langle\sigma\rangle}
$$

The Norm map $\quad N_{\mathbb{F}}^{V}: V \rightarrow \mathbb{F} \quad$ defined by:

$$
N_{\mathbb{F}}^{V}(v):=v v^{\sigma}, \quad \forall v \in V
$$

is a non-degenerate anisotropic quadratic form on V.
More details are given in the next Lemma.
(6.18) Lemma Let $f(t)=t^{2}+a t+b \in \mathbb{F}[t]$ be separable, irreducible and consider

$$
V=\frac{\mathbb{F}[t]}{\left\langle t^{2}+a t+b\right\rangle}=\left\{x_{1}+x_{-1} t \mid x_{1}, x_{-1} \in \mathbb{F}\right\}
$$

with respect to the usual sum of polynomials and product modulo $f(t)$. Then :

$$
\begin{equation*}
N_{\mathbb{F}}^{V}\left(x_{1}+x_{-1} t\right)=x_{1}^{2}-a x_{1} x_{-1}+b x_{-1}^{2}, \quad \forall x_{1}, x_{-1} \in \mathbb{F} \tag{6.19}
\end{equation*}
$$

With respect to the basis $\{1, t\}$, the polar form of $N_{\mathbb{F}}^{V}$ is the non-singular matrix

$$
J=\left(\begin{array}{cc}
2 & -a \\
-a & 2 b
\end{array}\right)
$$

Proof Let $\operatorname{Gal}_{\mathbb{F}}(V)=\langle\sigma\rangle$. Then t and t^{σ} are the roots of $f(t)$ in V. Thus

$$
t+t^{\sigma}=-a, \quad t t^{\sigma}=b, \quad x^{\sigma}=x, \forall x \in \mathbb{F}
$$

It follows:

$$
N_{\mathbb{F}}^{V}\left(x_{1}+x_{-1} t\right)=\left(x_{1}+x_{-1} t\right)\left(x_{1}+x_{-1} t^{\sigma}\right)=-a x_{1} x_{-1}+x_{1}^{2}+b x_{-1}^{2} .
$$

J is non-degenerate since $\operatorname{Det}(J)=4 b-a^{2} \neq 0$ by the irreducibility of $t^{2}+a t+b$ (and its separability when char $\mathbb{F}=2$).
(6.20) Remark If $\mathbb{F}=\mathbb{F}_{q}$ then $V=\mathbb{F}_{q^{2}}$ and the map $N_{\mathbb{F}}^{V}: \mathbb{F}_{q^{2}} \rightarrow \mathbb{F}_{q}$ coincides with $v \mapsto v v^{q}=v^{q+1}$. As shown in Section 5 it is surjective. It follows that the map $\binom{x_{1}}{x_{-1}} \mapsto x_{1}^{2}-a x_{1} x_{-1}+b x_{-1}^{2}$ from \mathbb{F}_{q}^{2} to \mathbb{F}_{q} is surjective.

The anisotropic orthogonal spaces are only those of Example 6.17. We first show:
(6.21) Theorem Let (W, Q) be an anisotropic orthogonal space of dimension 2 .
(1) For each non-zero vector $v_{1} \in W$ there exists $v_{-1} \in W \backslash\left\{v_{1}\right\}$ such that

$$
\begin{equation*}
Q\left(x_{1} v_{1}+x_{-1} v_{-1}\right)=Q\left(v_{1}\right)\left(x_{1}^{2}+\zeta x_{-1}^{2}+x_{1} x_{-1}\right) \quad \forall x_{1}, x_{-1} \in \mathbb{F} \tag{6.22}
\end{equation*}
$$

where $t^{2}-t+\zeta$ is irreducible in $\mathbb{F}[t]$.
(2) If the map $\mathbb{F}^{2} \rightarrow \mathbb{F}$ defined by $\binom{x_{1}}{x_{-1}} \mapsto x_{1}^{2}+\zeta x_{-1}^{2}+x_{1} x_{-1}$ is onto, the space (W, Q) is isometric to $\left(V, N_{\mathbb{F}}^{V}\right)$, where $V=\frac{\mathbb{F}[t]}{\left\langle t^{2}-t+\zeta\right\rangle}$.

In particular:

- if \mathbb{F} is algebraically closed, no such W exists;
- if $\mathbb{F}=\mathbb{F}_{q}$, all orthogonal anisotropic 2-dimensional spaces are isometric.

Proof

(1) We first show that there exists $w \in W \backslash\left\langle v_{1}\right\rangle$ such that $\left(v_{1}, w\right) \neq 0$. Indeed, if $\left(v_{1}, v_{1}\right) \neq 0$, then $W=\left\langle v_{1}\right\rangle \oplus\left\langle v_{1}\right\rangle^{\perp}$ and we take $w=v_{1}+u$ with $u \in\left\langle v_{1}\right\rangle^{\perp}$. If $\left(v_{1}, v_{1}\right)=0$, then $\left\langle v_{1}\right\rangle \leq\left\langle v_{1}\right\rangle^{\perp} \neq W$ and we take $w \in W \backslash\left\langle v_{1}\right\rangle^{\perp}$.

Now set:

$$
v_{-1}:=Q\left(v_{1}\right)\left(v_{1}, w\right)^{-1} w, \quad \zeta=\frac{Q\left(v_{-1}\right)}{Q\left(v_{1}\right)}
$$

It follows $\left(v_{1}, v_{-1}\right)=Q\left(v_{1}\right)$ and, for all $x_{1}, x_{-1} \in \mathbb{F}$:
$Q\left(x_{1} v_{1}+x_{-1} v_{-1}\right)=x_{1}^{2} Q\left(v_{1}\right)+x_{-1}^{2} Q\left(v_{-1}\right)+x_{1} x_{-1} Q\left(v_{1}\right)=Q\left(v_{1}\right)\left(x_{1}^{2}+\zeta x_{-1}^{2}+x_{1} x_{-1}\right)$.
In particular, for $x_{-1}=1$, we get $x_{1} v_{1}+v_{-1} \neq 0$, whence:

$$
0 \neq Q\left(x_{1} v_{1}+v_{-1}\right)=Q\left(v_{1}\right)\left(x_{1}^{2}+x_{1}+\zeta\right), \quad \forall x_{1} \in \mathbb{F}
$$

Thus $t^{2}+t+\zeta$ is irreducible in $\mathbb{F}[t]$, since it has no roots in \mathbb{F}. It follows that $t^{2}-t+\zeta$ is also irreducible.
(2) There exists $\binom{\lambda}{\mu} \in \mathbb{F}^{2}$ such that $\lambda^{2}+\zeta \mu^{2}+\lambda \mu=Q\left(v_{1}\right)^{-1}$. Substituting v_{1} with $\lambda v_{1}+$ μv_{-1} in point (1), we may suppose $Q\left(v_{1}\right)=1$. Then (6.22) gives $Q\left(x_{1} v_{1}+x_{-1} v_{-1}\right)=$ $x_{1}^{2}+\zeta x_{-1}^{2}+x_{1} x_{-1}$. We conclude that the map $f=W \rightarrow \frac{\mathbb{F}[t]}{\left\langle t^{2}-t+\zeta\right\rangle}$ defined by:

$$
\begin{equation*}
x_{1} v_{1}+x_{-1} v_{-1} \mapsto x_{1}+x_{-1} t \tag{6.23}
\end{equation*}
$$

is an isometry in virtue of (6.19).

Finally, suppose $\mathbb{F}=\mathbb{F}_{q}$ and let $\left(V, N_{\mathbb{F}_{q}}^{V}\right)\left(V^{\prime}, N_{\mathbb{F}_{q}}^{V^{\prime}}\right)$ be 2-dimensional anisotropic orthogonal spaces. Since V and V^{\prime} are finite fields of the same order, there exists a field automorphism $f: V \rightarrow V^{\prime}$ such that $f_{\mid \mathbb{F}_{q}}=$ id. From

$$
f(v) f\left(v^{q}\right)=f\left(v v^{q}\right)=v v^{q}, \quad \forall v \in V
$$

we conclude that f is an isometry.
(6.24) Corollary $\operatorname{Let}(V, Q)$ be an orthogonal space, with $V=\mathbb{F}_{q}^{2 m}$.
(1) There exists a basis $\mathcal{B}=\left\{v_{1} \ldots, v_{m}, v_{-1} \ldots, v_{-m},\right\}$ of V such that either $Q=Q^{+}$ or $Q=Q^{-}$where, for all $v=\sum_{i=1}^{m} x_{i} v_{i}+x_{-i} v_{-i} \in V$:

- $Q^{+}(v)=\sum_{i=1}^{m} x_{i} x_{-i}$;
- $Q^{-}(v)=\sum_{i=1}^{m} x_{i} x_{-i}+x_{m}^{2}+\zeta x_{-m}^{2}$, with $t^{2}-t+\zeta$ a fixed, separable irreducible polynomial in $\mathbb{F}_{q}[t]$ (arbitrarily chosen with these properties).
(2) Q^{+}has polar form $\sum_{i=1}^{m}\left(x_{i} y_{-i}+x_{-i} y_{i}\right)$, with matrix $J_{1}=\left(\begin{array}{cc}\boldsymbol{0} & I_{m} \\ I_{m} & \boldsymbol{0}\end{array}\right)$; Q^{-}has polar form $\sum_{i=1}^{m}\left(x_{i} y_{-i}+x_{-i} y_{i}\right)+2\left(x_{m} y_{m}+\zeta x_{-m} y_{-m}\right)$, with matrix

$$
J_{2}=\left(\begin{array}{cccc}
\boldsymbol{0} & I_{m-1} & 0 & 0 \\
I_{m-1} & \boldsymbol{0} & 0 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 1 & 2 \zeta
\end{array}\right)
$$

(3) $\left(V, Q^{+}\right)$is not isometric to $\left(V, Q^{-}\right)$.

The corresponding groups of isometries are indicated by $O_{2 m}^{+}(q)$ and $O_{2 m}^{-}(q)$.
Proof
(1) Let $m=1$. If V is non-anisotropic, Lemma 6.14 gives $Q=Q^{+}$. If V is anisotropic, Theorem 6.21 gives $Q=Q^{-}$. So assume $m>1$.

Step 1. We claim that there exists a non-zero vector $v_{1} \in V$ such that $Q\left(v_{1}\right)=0$.
By the same argument used in the proof of point (1) of Theorem 6.21, there exists a nonsingular 2-dimensional subspace $W=\left\langle v_{m}, v_{-m}\right\rangle$. We may assume that W is anisotropic. Hence (W, Q) is isometric to $\left(\mathbb{F}_{q^{2}}, N_{\mathbb{F}_{q}}^{\mathbb{F}_{q^{2}}}\right)$ and

$$
Q\left(x_{m} v_{m}+x_{-m} v_{-m}\right)=x_{m} x_{-m}+x_{m}^{2}+\zeta x_{-m}^{2}, \quad \forall x_{m}, x_{-m} \in \mathbb{F}_{q}
$$

for some irreducible polynomial $t^{2}-t+\zeta \in \mathbb{F}[t]$.

Take a non-zero vector w in W^{\perp}. By the surjectivity of the norm for finite fields, there exist $u \in W$ such that $Q(u)=-Q(w)$. Then $v_{1}=u+w \neq 0$, since $W \cap W^{\perp}=\{0\}$. Moreover, from $(u, w)=0$, we get: $Q\left(v_{1}\right)=Q(u+w)=Q(u)+Q(w)=0$.

Step 2. By Lemma 6.14 there exists a non-singular 2-dimensional subspace $\left\langle v_{1}, v_{-1}\right\rangle$ such that $Q\left(x_{1} v_{1}+x_{-1} v_{-1}\right)=x_{1} x_{-1}$. We get:

$$
V=\left\langle v_{1}, v_{-1}\right\rangle \oplus\left\langle v_{1}, v_{-1}\right\rangle^{\perp}
$$

By induction, $\left\langle v_{1}, v_{-1}\right\rangle^{\perp}$ has a basis $\mathcal{B}^{\prime}=\left\{v_{2} \ldots, v_{m}, v_{-2} \ldots, v_{-m},\right\}$ such that the restriction of Q to $\left\langle v_{1}, v_{-1}\right\rangle^{\perp}$ is either Q^{+}or Q^{-}. This gives (1).
(2) Routine calculation using (1).
(3) V is a direct sum of mutually orthogonal 2-dimensional spaces:

$$
V=\left\langle v_{1}, v_{-1}\right\rangle \perp \cdots \perp\left\langle v_{m}, v_{-m}\right\rangle
$$

with the further property $\left(v_{i}, v_{i}\right)=0,1 \leq i \leq m-1$. For Q^{+}we have also $\left(v_{m}, v_{m}\right)=0$, so that $\left\langle v_{1}, \ldots, v_{m}\right\rangle$ is a totally isotropic space of largest possible dimension $m=\frac{n}{2}$ (see Lemma 3.9). For Q^{-}the space $W=\left\langle v_{1}, \ldots, v_{m-1}\right\rangle$ is totally isotropic. It follows:

$$
W \oplus\left\langle v_{m}, v_{-m}\right\rangle=W^{\perp}
$$

Let \widehat{W} be a totally isotropic space which contains W. Then

$$
W=W+\left(\widehat{W} \cap\left\langle v_{m}, v_{-m}\right\rangle\right)=W+\{0\}=W
$$

since $\left\langle v_{m}, v_{-m}\right\rangle$ is anisotropic. We conclude that $W=\widehat{W}$, i.e., W is a maximal isotropic space of dimension $m-1$. So Q^{+}and Q^{-}cannot be isometric.
(6.25) Theorem $\operatorname{Let}(V, Q)$ be an orthogonal space, with $V=\mathbb{F}_{q}^{2 m+1}$, q odd. There exists a basis of V such that the matrix of the polar form is one of the following:

$$
I_{2 m+1}=\left(\begin{array}{ccc}
1 & & \tag{6.26}\\
& \ldots & \\
& & 1
\end{array}\right), \quad J=\left(\begin{array}{cc}
I_{2 m} & \\
& \epsilon
\end{array}\right)
$$

where ϵ is a fixed non-square in \mathbb{F}_{q}^{*} (arbitrarily chosen with this property). The two polar forms $I_{2 m+1}$ and J give rise to non-isometric orthogonal spaces, but their groups of isometries are conjugate, hence isomorphic. Both groups are indicated by $O_{2 m+1}(q)$.

Proof We first show that, if an orthogonal space V over \mathbb{F}_{q}, has dimension >1, then there exists $v_{1} \in V$ with $\left(v_{1}, v_{1}\right)=1$. By Lemma 6.1, there exists v_{1} such that $\left(v_{1}, v_{1}\right) \neq 0$. Thus $\left(v_{1}, v_{1}\right)=\rho^{2}$ or $\left(v_{1}, v_{1}\right)=\rho^{2} \epsilon$ for some $\rho \in \mathbb{F}_{q}^{*}$. Substituting v_{1} with $\rho^{-1} v_{1}$, if necessary, we have $\left(v_{1}, v_{1}\right) \in\{1, \epsilon\}$. If $\left(v_{1}, v_{1}\right)=\epsilon$, set $\lambda^{2}+\mu^{2}=\epsilon^{-1}$. Again by Lemma 6.1, applied to $\left\langle v_{1}\right\rangle^{\perp}$, there exists $v_{2} \in\left\langle v_{1}\right\rangle^{\perp}$ such that $\left(v_{2}, v_{2}\right) \neq 0$. If $\left(v_{2}, v_{2}\right)=1$, we substitute v_{1} by v_{2}. If $\left(v_{2}, v_{2}\right)=\epsilon$, we substitute v_{1} by $\lambda v_{1}+\mu v_{2}$.
Now we prove our claim. If $m=1$ we can take $\mathcal{B}=\left\{v_{1}\right\}$ with $\left(v_{1}, v_{1}\right) \in\{1, \epsilon\}$. If $m>1$ we take v_{1} with $\left(v_{1}, v_{1}\right)=1$. Then $V=\left\langle v_{1}\right\rangle \perp\left\langle v_{1}\right\rangle^{\perp}$ and our claim follows by induction on $\operatorname{dim} V$ applied to $\left\langle v_{1}, v_{2}\right\rangle^{\perp}$.
$I_{2 m+1}$ and J define non isometric spaces because the dimension of a maximal isotropic space are, respectively, m and $m-1$. So J is not cogradient to $I_{2 m+1}$. Also $\epsilon I_{2 m+1}$ is not cogredient to $I_{2 m+1}$, otherwise we would have $\epsilon I_{2 m+1}=P^{T} I_{2 m+1} P$, a contradiction as $\epsilon^{2 m+1}=\operatorname{det}\left(\epsilon I_{2 m+1}\right)$ is not a square. Since, over \mathbb{F}_{q}, there are only 2 non-isometric orthogonal spaces, J is cogredient to $\epsilon I_{2 m+1}$. Now $I_{2 m+1}$ and $\epsilon I_{2 m+1}$ have the same group of isometries, since:

$$
h^{T}\left(\epsilon I_{2 m+1}\right) h=\epsilon I_{2 m+1} \Longleftrightarrow h^{T} I_{2 m+1} h=I_{2 m+1} .
$$

We conclude that the groups of isometries of $I_{2 m+1}$ and J are conjugate.

$7 \quad$ Exercises

(7.1) Exercise Show that $\mathrm{SL}_{2}(\mathbb{F})=\mathrm{Sp}_{2}(\mathbb{F})$ over any field \mathbb{F}.
(7.2) Exercise Let (V, Q, \mathbb{F}) be an orthogonal space. Suppose $V=V_{1} \perp V_{2}$.

Show that, for each $v=v_{1}+v_{2}$ with $v_{1} \in V_{1}, v_{2} \in V_{2}$:

$$
Q(v)=Q\left(v_{1}\right)+Q\left(v_{2}\right) .
$$

(7.3) Exercise Let V be a quadratic extension of \mathbb{F} and $\langle\sigma\rangle=\operatorname{Gal}_{\mathbb{F}}(V)$.

Show that the map $N_{\mathbb{F}}: V \rightarrow \mathbb{F}$, defined by $N_{\mathbb{F}}^{V}(v):=v v^{\sigma}$ is a quadratic form on V.
(7.4) Exercise In Lemma 6.18 show that the quadratic form

$$
N_{\mathbb{F}}^{V}\left(x_{1}+x_{-1} t\right)=x_{1}^{2}-a x_{1} x_{-1}+b
$$

has matrix $J=\left(\begin{array}{cc}2 & -a \\ -a & 2 b\end{array}\right)$ with respect to the basis $\{1, t\}$.
(7.5) Exercise Say whether the matrices

$$
J=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right), \quad J^{\prime}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right)
$$

are cogredient. In case they are, indicate a non-singular matrix P such that $P^{T} J P=J^{\prime}$.
(7.6) Exercise Let V be an anisotropic 2-dimensional orthogonal space over \mathbb{F}_{q}, q odd. Show that there exists a basis for which the polar form has matrix: $\left(\begin{array}{cc}1 & 0 \\ 0 & -\epsilon\end{array}\right)$, where ϵ is a non square in \mathbb{F}_{q}.
(7.7) Exercise Let q be odd. Show that -1 is a square in \mathbb{F}_{q} if and only if

$$
q \equiv 1 \quad(\bmod 4)
$$

(7.8) Exercise $L e t q$ be odd and $\epsilon \in \mathbb{F}_{q}$ be a non-square. Show that the matrices

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{ll}
1 & 0 \\
0 & \epsilon
\end{array}\right)
$$

are not cogredient (equivalently define non-isometric orthogonal spaces).
(7.9) Exercise Let q be odd and $\epsilon \in \mathbb{F}_{q}$ be a non-square. Show that the matrix $J=$ $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ is respectively cogredient to

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { if } q \equiv 1 \quad(\bmod 4), \quad\left(\begin{array}{ll}
1 & 0 \\
0 & \epsilon
\end{array}\right) \text { if } q \equiv 3 \quad(\bmod 4)
$$

(7.10) Exercise Let W be a totally isotropic subspace of an orthogonal space V. Suppose

$$
V=W \oplus U
$$

with U anisotropic. Show that W is a maximal isotropic subspace of V.
(7.11) Exercise Let q be odd, $V=\mathbb{F}_{q}^{n}$ be a quadratic space, with $n=2 m$. Using the classification of quadratic spaces given in this Chapter, show that there exists a basis of V with respect to which the polar form has matrix J_{1} or J_{2} where

$$
J_{1}=\left(\begin{array}{cc}
\boldsymbol{0} & I_{m} \\
I_{m} & \boldsymbol{O}
\end{array}\right), \quad J_{2}=\left(\begin{array}{cccc}
\boldsymbol{0} & I_{m-1} & & \\
I_{m-1} & \boldsymbol{O} & & \\
& & 1 & \\
& & & -\epsilon
\end{array}\right)
$$

