Chapter V Groups of Lie type

1 Lie Algebras

Our main references here will be [10] and the book of R. Carter[5].

(1.1) Definition A Lie algebra L is a vector space L, over a field \mathbb{F} , endowed with a bilinear map $L \times L \to L$:

 $(x, y) \mapsto [xy]$ (Lie product)

for which the following conditions hold. For all $x, y, z \in L$:

(1)
$$[xx] = 0;$$

(2) [x[yz]] + [y[zx]] + [z[xy]] = 0 (Jacobi identity).

By (1) any Lie product is anticommutative, namely [xy] = -[yx]. Indeed:

$$0 = [(x+y)(x+y)] = [xx] + [xy] + [yx] + [yy] = [xy] + [yx].$$

(1.2) Definition Let $\mathcal{B} = \{x_1, \ldots, x_n\}$ be a basis of L over \mathbb{F} . The structure constants of L (with respect to \mathcal{B}) are the elements $a_{ij}^k \in \mathbb{F}$ defined by:

$$[x_i x_j] = \sum_{k=1}^n a_{ij}^k x_k.$$

Every Lie product over L is determined by its structure constants by the bilinearity.

(1.3) Definition

(1) A subspace I of L is called an ideal if $[ix] \in I$ for all $i \in I$, $x \in L$;

(2) L is simple if $L \neq \{0\}$ and it has no proper ideal.

(1.4) **Definition** A linear map $\delta : L \to L$ is called a derivation if it satisfies

$$\delta([yz]) = [\delta(y)z] + [y\delta(z)], \ \forall \ y, z \in L.$$

(1.5) Example For each $x \in L$ the derivation ad $x : L \to L$ defined by:

ad
$$x(y) := [xy], \forall y \in L.$$

The linearity of $\operatorname{ad} x$ is an immediate consequence of the bilinearity of the Lie product. The map $\operatorname{ad} x$ is a derivation by axioms (1) and (2) of Definition 1.1 of Lie product.

(1.6) Definition Let L, L' be Lie algebras over \mathbb{F} . A map $\varphi : L \to L'$ is called a homomorphism if, for all $x, y \in L$:

$$\varphi([xy]) = [\varphi(x)\varphi(y)].$$

An isomorphism is a bijective homomorphism. An isomorphism $\varphi : L \to L$ is called an automorphism of L. The group of automorphisms of L is indicated by $\operatorname{Aut}(L)$.

2 Linear Lie Algebras

An associative algebra A, over a field \mathbb{F} , is a ring A, which is a vector space over \mathbb{F} , satisfying the following axiom. For all $\lambda \in \mathbb{F}$ and for all $x, y \in A$:

$$\lambda(xy) = (\lambda x)y = x(\lambda y).$$

(2.1) Lemma Let A be an associative algebra over \mathbb{F} . Then A is a Lie algebra with respect to the product defined by:

$$(2.2) [x,y] := xy - yx, \quad \forall \ x, y \in A.$$

Proof Routine calculation. \blacksquare

(2.3) Definition Let V be a vector space over \mathbb{F} .

(1) The associative algebra $End_{\mathbb{F}}(V)$, considered as a Lie algebra with respect to the product (2.2), is called the general linear Lie algebra and indicated by $\mathcal{GL}(V)$;

- (2) the matrix algebra $\operatorname{Mat}_n(\mathbb{F})$, considered as a Lie algebra with respect to (2.2), is indicated by $\mathcal{GL}_n(\mathbb{F})$;
- (3) $\mathcal{GL}_n(\mathbb{F})$ and its subalgebras are called the linear Lie algebras.

Let \mathcal{B} be a fixed basis of $V = \mathbb{F}^n$. The map $\Phi_{\mathcal{B}} : \mathcal{GL}(V) \simeq \mathcal{GL}_n(\mathbb{F})$ such that $\Phi_{\mathcal{B}}(\alpha)$ is the matrix of α with respect to \mathcal{B} is an isomorphism of Lie algebras. Thus:

$$\mathcal{GL}(\mathbb{F}^n) \simeq \mathcal{GL}_n(\mathbb{F}).$$

A basis of $\mathcal{GL}_n(\mathbb{F})$ consists of the matrices having 1 in one position and 0 elsewhere, namely the matrices:

$$\{e_{ij} \mid 1 \le i, j \le n\}$$

The structure constants, with respect to this basis, are all ± 1 or 0. More precisely:

(2.4)
$$[e_{ij}, e_{k\ell}] := e_{ij}e_{k\ell} - e_{k\ell}e_{ij} = \delta_{jk}e_{i\ell} - \delta_{\ell i}e_{kj}.$$

Conjugation by a fixed element of $\operatorname{GL}_n(\mathbb{F})$ is an automorphism of the associative algebra $\operatorname{Mat}_n(\mathbb{F})$ and also of the Lie algebra $\mathcal{GL}_n(\mathbb{F})$, as shown in the following:

(2.5) Lemma For a fixed $g \in \operatorname{GL}_n(\mathbb{F})$, let $\gamma_g : \mathcal{GL}_n(\mathbb{F}) \to \mathcal{GL}_n(\mathbb{F})$ be defined by:

$$\gamma_g(m) := g^{-1}mg, \quad \forall \ m \in \mathcal{GL}_n(\mathbb{F}).$$

Then γ_g is an automorphism of the Lie algebra $\mathcal{GL}_{\ell+1}(\mathbb{F})$.

Proof γ_g is linear since, for all $m_1, m_2, m \in \operatorname{GL}_n(\mathbb{F}), \lambda \in \mathbb{F}$:

$$g^{-1}(m_1 + m_2)g = g^{-1}m_1g + g^{-1}m_2g$$
$$g^{-1}(\lambda m)g = \lambda g^{-1}mg$$

 γ_g preserves the Lie product, i.e., $[g^{-1}m_1g,g^{-1}m_2g]=g^{-1}[m_1,m_2]g.$ In fact:

$$g^{-1}m_1gg^{-1}m_2g - g^{-1}m_2gg^{-1}m_1g = g^{-1}(m_1m_2 - m_2m_1)g.$$

 γ_g is bijective having $\gamma_{g^{-1}}$ as its inverse.

(2.6) Lemma The trace map $\operatorname{tr} : \mathcal{GL}_n(\mathbb{F}) \to \mathcal{GL}_1(\mathbb{F})$ is a Lie algebras homomorphism. In particular its kernel is a subalgebra, indicated by \mathbf{A}_{ℓ} .

Proof For all
$$a, b \in \mathcal{GL}_n(\mathbb{F}), \lambda \in \mathbb{F}$$
:
 $\operatorname{tr}(a+b) = \operatorname{tr}(a) + \operatorname{tr}(b),$
 $\operatorname{tr}(\lambda a) = \lambda \operatorname{tr}(a),$
 $\operatorname{tr}([a,b]) = \operatorname{tr}(ab-ba) = \operatorname{tr}(ab) - \operatorname{tr}(ba) = 0 = [\operatorname{tr}(a), \operatorname{tr}(b)].$

3 The classical Lie algebras

We give an explicit description of the *classical* Lie algebras over \mathbb{C} .

3.1 The special linear algebra A_{ℓ}

 \mathbf{A}_{ℓ} is the subalgebra of $\mathcal{GL}_{\ell+1}(\mathbb{C})$ consisting of the matrices of trace 0, namely the kernel of the trace homomorphism $\operatorname{tr} : \mathcal{GL}_{\ell+1}(\mathbb{C}) \to \mathcal{GL}_1(\mathbb{C}).$

A basis of \mathbf{A}_{ℓ} is given by the matrices:

(3.1)
$$\{e_{i,i} - e_{i+1,i+1} \mid 1 \le i \le \ell\} \cup \{e_{ij} \mid 1 \le i \ne j \le \ell+1\}.$$

Thus, for the dimension of the special linear algebra, we get:

(3.2)
$$\dim_{\mathbb{C}} (\mathbf{A}_{\ell}) = (\ell+1)\ell + \ell = \ell^2 + 2\ell.$$

(3.3) Theorem $\operatorname{PGL}_{\ell+1}(\mathbb{C}) \leq \operatorname{Aut}(\mathbf{A}_{\ell}).$

Proof By Lemma 2.5, for all $g \in GL_{\ell+1}(\mathbb{C})$, the inner automorphism

$$\gamma_g: \mathcal{GL}_{\ell+1}(\mathbb{C}) \to \mathcal{GL}_{\ell+1}(\mathbb{C})$$

is an automorphism of the Lie algebra $\mathcal{GL}_{\ell+1}(\mathbb{C})$. For all $m \in \mathbf{A}_{\ell}$ we have $\operatorname{tr}(\gamma_g(m)) = \operatorname{tr}(m) = 0$, i.e., $\gamma_g(\mathbf{A}_{\ell}) \leq \mathbf{A}_{\ell}$. Since \mathbf{A}_{ℓ} has finite dimension and γ_g is injective, we get $\gamma_g(\mathbf{A}_{\ell}) = \mathbf{A}_{\ell}$. So the restriction of γ_g to \mathbf{A}_{ℓ} is an automorphism of \mathbf{A}_{ℓ} . Hence we may consider the homomorphism $\gamma : \operatorname{GL}_{\ell+1}(\mathbb{C}) \to \operatorname{Aut}(\mathbf{A}_{\ell})$ defined by: $g \mapsto \gamma_g$. The kernel of γ is the subgroup Z of scalar matrices. We conclude that:

$$\operatorname{PGL}_{\ell+1}(\mathbb{C}) := \frac{\operatorname{GL}_{\ell+1}(\mathbb{C})}{Z} \simeq \operatorname{Im} \gamma \leq \operatorname{Aut}(\mathbf{A}_{\ell}).$$

3.2 The symplectic algebra C_{ℓ}

Let us consider the antisymmetric, non-singular matrix:

(3.4)
$$s = \begin{pmatrix} 0 & I_{\ell} \\ -I_{\ell} & 0 \end{pmatrix}.$$

The symplectic algebra \mathbf{C}_{ℓ} is the subalgebra of $\mathcal{GL}_{2\ell}(\mathbb{C})$ defined by:

$$\mathbf{C}_{\ell} := \{ x \in \mathcal{GL}_{2\ell}(\mathbb{C}) \mid sx = -x^T \, s \}.$$

Partitioning x into $\ell \times \ell$ blocks, we have that $x \in \mathbf{C}_{\ell}$ if and only if it has shape:

$$x = \begin{pmatrix} m & n \\ p & -m^T \end{pmatrix}$$
 with $n = n^T$, $p = p^T$ symmetric.

Thus, a basis of \mathbf{C}_{ℓ} is given by the matrices:

(3.5)
$$\left\{ \begin{pmatrix} e_{ij} & 0\\ 0 & -e_{ji} \end{pmatrix} \mid 1 \le i, j \le \ell \right\} \cup$$

$$(3.6) \qquad \left\{ \left(\begin{array}{cc} 0 & e_{ii} \\ 0 & 0 \end{array}\right) \mid 1 \le i \le \ell \right\} \cup \left\{ \left(\begin{array}{cc} 0 & e_{ij} + e_{ji} \\ 0 & 0 \end{array}\right) \mid 1 \le i < j \le \ell \right\} \cup \right.$$

$$(3.7) {the transposes of (3.6)}.$$

So, for the dimension of the symplectic algebra, we obtain:

(3.8)
$$\dim_{\mathbb{C}} \mathbf{C}_{\ell} = \ell^2 + 2\left(\mathbf{l} + \frac{\ell(\ell-1)}{2}\right) = 2\ell^2 + \ell.$$

(3.9) Theorem $\operatorname{PSp}_{\ell+1}(\mathbb{C}) \leq \operatorname{Aut}(\mathbf{C}_{\ell}).$

Proof Let $\text{Sp}_{2\ell}(\mathbb{C})$ be the group of isometries of s in (3.4). Thus

$$sg = (g^{-1})^T s, \quad \forall \ g \in \operatorname{Sp}_{2\ell}(\mathbb{C}).$$

Take γ_g as in Lemma 2.5. Then $\gamma_g(x) = g^{-1}xg \in \mathbf{C}_{\ell}$, for all $x \in \mathbf{C}_{\ell}$. Indeed:

$$s(g^{-1}xg) = g^{T}sxg = g^{T}(-x^{T}s)g = -g^{T}x^{T}(g^{-1})^{T}s = -(g^{-1}xg)^{T}s.$$

So the restriction of γ_g to \mathbf{C}_ℓ is an automorphism of \mathbf{C}_ℓ . Hence we may consider the homomorphism $\gamma : \operatorname{Sp}_{2\ell}(\mathbb{C}) \to \operatorname{Aut}(\mathbf{C}_\ell)$ defined by: $g \mapsto \gamma_g$. The kernel of γ is the subgroup $\langle -I \rangle$ of symplectic scalar matrices. We conclude that:

$$\operatorname{PSp}_{\ell+1}(\mathbb{C}) := \frac{\operatorname{Sp}_{2\ell}(\mathbb{C})}{\langle -I \rangle} \quad \simeq \quad \operatorname{Im} \gamma \leq \operatorname{Aut}(\mathbf{C}_{\ell}).$$

3.3 The orthogonal algebra B_{ℓ}

Let us consider the symmetric, non-singular matrix:

(3.10)
$$s = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & I_{\ell} \\ 0 & I_{\ell} & 0 \end{pmatrix}.$$

The orthogonal algebra \mathbf{B}_ℓ is the subalgebra of $\mathcal{GL}_{2\ell+1}(\mathbb{C})$ defined by:

$$\mathbf{B}_{\ell} := \{ x \in \mathcal{GL}_{2\ell+1}(\mathbb{C}) \mid sx = -x^T s \}.$$

Partitioning x into blocks, one has that $x \in \mathbf{B}_{\ell}$ if and only if it has shape

$$x = \begin{pmatrix} 0 & -v_1^T & -v_2^T \\ v_2 & m & n \\ v_1 & p & -m^T \end{pmatrix} \text{ with } n = -n^T, \ p = -p^T \text{ antisymmetric.}$$

Thus the orthogonal algebra \mathbf{B}_ℓ has basis:

(3.11)
$$\left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & e_{ij} & 0 \\ 0 & 0 & -e_{ji} \end{pmatrix} | 1 \le i, j \le \ell \right\} \cup$$

$$(3.12) \quad \left\{ \begin{pmatrix} 0 & -e_i^T & 0\\ 0 & 0 & 0\\ e_i & 0 & 0 \end{pmatrix} | 1 \le i \le \ell \right\} \cup \left\{ \begin{pmatrix} 0 & 0 & 0\\ 0 & 0 & e_{ij} - e_{ji}\\ 0 & 0 & 0 \end{pmatrix} | 1 \le i < j \le \ell \right\}$$

 $\cup \ \left\{ \text{the transposes of } 3.12 \right\}.$

We conclude that the dimension of this orthogonal algebra is given by:

(3.13)
$$\dim_{\mathbb{C}} \mathbf{B}_{\ell} = \ell^2 + 2\left(l + \frac{\ell(\ell-1)}{2}\right) = 2\ell^2 + \ell.$$

(3.14) Theorem Let $G \leq \operatorname{GL}_{2\ell+1}(\mathbb{C})$ be the group of isometries of s in (3.10). Then

$$\frac{ZG}{Z} \le \operatorname{Aut}(\mathbf{B}_{\ell})$$

where Z denotes the group of scalar matrices.

The proof is the same as that of Theorem 3.9.

3.4 The orthogonal algebra D_{ℓ}

Let us consider the symmetric, non-singular matrix:

(3.15)
$$s = \begin{pmatrix} 0 & I_{\ell} \\ I_{\ell} & 0 \end{pmatrix}.$$

The orthogonal algebra \mathbf{D}_{ℓ} is the subalgebra of $\mathcal{GL}_{2\ell}(\mathbb{C})$ defined by:

$$\mathbf{D}_{\ell} := \{ x \in \mathcal{GL}_{2\ell}(\mathbb{C}) \mid sx = -x^T s \}.$$

Partitioning x into blocks, one has that $x \in \mathbf{D}_{\ell}$ if and only if it has shape:

$$x = \begin{pmatrix} m & n \\ p & -m^T \end{pmatrix}$$
 with $n = -n^T$, $p = -p^T$ antisymmetric.

Thus the orthogonal algebra \mathbf{D}_ℓ has basis:

(3.16)
$$\left\{ \begin{pmatrix} e_{ij} & 0\\ 0 & -e_{ji} \end{pmatrix} | 1 \le i, j \le \ell \right\} \cup$$

(3.17)
$$\left\{ \begin{pmatrix} 0 & e_{ij} - e_{ji} \\ 0 & 0 \end{pmatrix} | 1 \le i < j \le \ell \right\} \cup \{\text{their transposes}\}.$$

We conclude that the dimension of this orthogonal algebra is given by:

(3.18)
$$\dim_{\mathbb{C}} \mathbf{D}_{\ell} = \ell^2 + 2\frac{\ell(\ell-1)}{2} = 2\ell^2 - \ell.$$

(3.19) Theorem Let $G \leq \operatorname{GL}_{2\ell}(\mathbb{C})$ be the group of isometries of s in (3.15). Then

$$\frac{ZG}{Z} \le \operatorname{Aut}(\mathbf{D}_{\ell})$$

where Z denotes the group of scalar matrices.

The proof is the same as that of Theorem 3.9.

4 Root systems

Let L be a finite dimensional simple Lie algebras over \mathbb{C} . By the classification due to Killing and Cartan, L is one of the 9 algebras denoted respectively by:

$$(4.1) \mathbf{A}_{\ell}, \mathbf{B}_{\ell}, \mathbf{C}_{\ell}, \mathbf{D}_{\ell}, \mathbf{E}_{6}, \mathbf{E}_{7}, \mathbf{E}_{8}, \mathbf{F}_{4}, \mathbf{G}_{2}.$$

There exists a set $\Phi = \Phi(L)$ such that L admits a decomposition

(4.2)
$$L = \mathcal{H} \oplus \bigoplus_{r \in \Phi} L_r$$
 (Cartan decomposition)

where \mathcal{H} is an ℓ -dimensional abelian subalgebra (namely $[h_1h_2] = 0$ for all $h_1, h_2 \in \mathcal{H}$) and, for each $r \in \Phi$, the following conditions hold:

- (1) $L_r = \mathbb{C}v_r$ for some $v_r \in L$, i.e., L_r is a 1-dimensional space;
- (2) $[hv_r] = r(h)v_r$ with $r(h) \in \mathbb{C}$, for all $h \in \mathcal{H}$;
- (3) the map ad $v_r : L \to L$ is nilpotent;
- (4) there exists a unique $s \in \Phi$ (denoted by -r) such that $0 \neq [v_r v_s] \in \mathcal{H}$.

(4.3) **Remark** Fix $y \in L$. Recalling that $\operatorname{ad} y(x) := [yx]$, for all $x \in L$, we have:

- ad $h(\mathcal{H}) = \{0\}$ for all $h \in \mathcal{H}$ since \mathcal{H} is abelian.
- v_r is an eigenvector of ad h, with eigenvalue r(h), by point (2) above.

Every $r \in \Phi$ may be identified with the linear map $r : \mathcal{H} \to \mathbb{C}$ defined by $h \mapsto r(h)$. Clearly r is an element of the dual space \mathcal{H}^* of \mathcal{H} , by the bilinearity of the Lie product. Moreover different elements of Φ give rise to different maps. So:

$$\Phi \subseteq \mathcal{H}^*$$
.

Now, consider the bilinear, symmetric form: $L \times L \to \mathbb{C}$ defined by

 $(x, y) := \operatorname{tr}(\operatorname{ad} x \operatorname{ad} y)$ (Killing form).

Since this form is non-degenerate, its restriction to $\mathcal{H} \times \mathcal{H}$ induces the isomorphism of vector spaces $\varphi : \mathcal{H} \to \mathcal{H}^*$ where, for each $\overline{h} \in \mathcal{H}$:

$$\varphi(\overline{h})(h) := \operatorname{tr}(\operatorname{ad}\overline{h} \operatorname{ad} h), \quad \forall h \in \mathcal{H}.$$

Identifying each $r \in \Phi$ with its preimage in \mathcal{H} , we may assume:

$$\Phi\subseteq \mathcal{H}$$

It can be shown that Φ contains a \mathbb{C} -basis

 $\Pi = \{r_1, \ldots, r_\ell\} \quad \text{(fundamental system)}$

of \mathcal{H} such that every $r \in \Phi$:

- (1) is a linear combination of elements in Π with *rational* coefficients;
- (2) these coefficients are either all positive, or all negative.

Property (2) defines an obvious partition of Φ into positive and negative roots:

$$\Phi = \Phi^+ \dot{\cup} \Phi^-.$$

By property (1), Φ is a subset of the real vector space:

$$\mathcal{H}_{\mathbb{R}} := \mathbb{R}r_1 \oplus \cdots \oplus \mathbb{R}r_\ell \simeq \mathbb{R}^\ell.$$

 $\mathcal{H}_{\mathbb{R}}$ is an *euclidean space* with respect to the Killing form as scalar product:

$$(x, y) := \operatorname{tr}(\operatorname{ad} x \operatorname{ad} y), \quad \forall x, y \in \mathcal{H}_{\mathbb{R}}.$$

The *length* of a vector $x \in \mathcal{H}_{\mathbb{R}}$ and the *angle* \widehat{xy} for $x, y \in \mathcal{H}_{\mathbb{R}} \setminus \{0\}$ are defined by:

$$|x| := \sqrt{(x,x)}, \quad \cos \widehat{xy} := \frac{(x,y)}{|x| |y|}$$

(4.4) Definition The numbers A_{rs} are defined by:

$$A_{rs} := \frac{2(r,s)}{(r,r)}, \quad \forall \ r,s \in \Phi.$$

It turns out that all A_{rs} are in \mathbb{Z} . In particular, if $r, s \in \Phi$ are linearly independent and $r + s \in \Phi$, then $A_{rs} = p - q$ where $0 \le p, q \in \mathbb{N}$ and

$$(4.5) \qquad -pr+s,\ldots,s,\ldots,qr+s$$

is the longest chain of roots through s involving r.

(4.6) Example Take the root system Φ with $\Phi^+ = \{r_1, r_2, r_1 + r_2, 2r_1 + r_2\}$. Set $s = r_1 + r_2$, $t = 2r_1 + r_2$.

r,s	Longest chain	p,q	A_{rs}
	$r_2, r_2 + r_1, r_2 + 2r_1$	0, 2	
$r_1, r_1 + r_2$	$-r_1 + (r_1 + r_2), (r_1 + r_2), (r_1 + r_2)r_1$	1, 1	0
$r_1, \ 2r_1 + r_2$	$-2r_1 + (2r_1 + r_2), -r_1 + (2r_1 + r_2), t$	2,0	2
r_2, r_1	$r_1, r_1 + r_2$	0,1	-1
$r_2, r_1 + r_2$	$-r_2 + (r_1 + r_2), (r_1 + r_2)$	1,0	1
$r_2, \ 2r_1 + r_2$	$2r_1 + r_2$	0,0	0.

The Cartan matrix of L, with respect to a basis $\{r_1, \ldots, r_\ell\}$ of $\mathcal{H}_{\mathbb{R}}$, is defined as:

(4.7)
$$A := \left(\frac{2(r_i, r_j)}{(r_i, r_i)}\right), \quad 1 \le i, j \le \ell.$$

A basis $\{r_1, \ldots, r_\ell\}$ of $\mathcal{H}_{\mathbb{R}}$ can be normalized into the basis $\{h_{r_1}, \ldots, h_{r_\ell}\}$, where:

$$h_i := \frac{2r_i}{(r_i, r_i)}, \ 1 \le i \le \ell.$$

4.1 Root system of type A_{ℓ}

Let $\{e_1, \ldots, e_{\ell+1}\}$ be an orthonormal basis of the euclidean space $\mathbb{R}^{\ell+1}$. The following vectors of $\mathbb{R}^{\ell+1}$ form a fundamental system of type \mathbf{A}_{ℓ} :

$$\Pi = \left\{ \underbrace{-e_1 + e_2}_{r_1}, \underbrace{-e_2 + e_3}_{r_2}, \ldots, \underbrace{-e_\ell + e_{\ell+1}}_{r_\ell} \right\}.$$

The full root system has order $\ell(\ell+1)$ and is as follows:

$$\Phi = \underbrace{\{-e_i + e_j, | 1 \le i < j \le \ell + 1\}}_{\Phi^+} \stackrel{{}_{\smile}}{\cup} \underbrace{\{e_i - e_j, | 1 \le i < j \le \ell + 1\}}_{\Phi^-}.$$

All roots $r \in \Phi$ have the same length $|r| = \sqrt{2}$ (for this root system). Cartan matrix:

(-1	2	-1	$0 \\ -1$	0 0	· · · ·	$\begin{array}{c} 0 \\ 0 \\ 0 \end{array}$	
	0	 0 0	0		-1	2	$\begin{pmatrix} \dots \\ -1 \\ 2 \end{pmatrix}$	

4.2 Root system of type B_{ℓ}

Let $\{e_1, \ldots, e_\ell\}$ be an orthonormal basis of the euclidean space \mathbb{R}^ℓ . The following vectors form a fundamental system of type \mathbf{B}_ℓ

$$\Pi = \left\{ \underbrace{e_1 - e_2}_{r_1}, \underbrace{e_2 - e_3}_{r_2}, \ldots, \underbrace{e_{\ell-1} - e_{\ell}}_{r_{\ell-1}}, \underbrace{e_{\ell}}_{r_{\ell}} \right\}.$$

The full root system has order $2\ell^2$ and is as follows:

$$\Phi = \underbrace{\{e_i \pm e_j, \ e_i \mid 1 \leq i < j \leq \ell\}}_{\Phi^+} \ \cup \underbrace{\{-e_i \mp e_j, \ -e_i \mid 1 \leq i < j \leq \ell\}}_{\Phi^-}.$$

For all $r \in \Phi$ we have $|r| \in \{\sqrt{2}, 1\}$. So there are *long* and *short* roots. E.g. the r_i -s, $i \leq \ell - 1$, are long, r_ℓ is short.

Cartan matrix:

4.3 Root system of type C_{ℓ}

Let $\{e_1, \ldots, e_\ell\}$ be an orthonormal basis of the euclidean space \mathbb{R}^ℓ . The following vectors form a fundamental system of type \mathbf{C}_ℓ

$$\Pi = \left\{ \underbrace{e_1 - e_2}_{r_1}, \quad \underbrace{e_2 - e_3}_{r_2}, \quad \dots, \quad \underbrace{e_{\ell-1} - e_\ell}_{r_{\ell-1}}, \quad \underbrace{2e_\ell}_{r_\ell} \right\}.$$

The full root system has order $2\ell^2$ and is as follows:

$$\Phi = \underbrace{\{e_i \pm e_j, \ 2e_i \mid 1 \le i < j \le \ell\}}_{\Phi^+} \ \dot{\cup} \ \underbrace{\{-e_i \mp e_j, \ -2e_i, \ \mid 1 \le i < j \le \ell\}}_{\Phi^-}.$$

For all $r \in \Phi$ we have $|r| \in \{\sqrt{2}, 2\}$. Here the r_i -s, $i \leq \ell - 1$, are short, r_ℓ is long. Cartan matrix:

(2	-1	0	0	0		0 \	
	-1	2	-1	0	0		0	
	0	-1	2	-1	0		$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	
								•
	0	0	0		-1	2	-2	
	0	0	0		0	-1	2 /	

4.4 Root system of type D_{ℓ}

Let $\{e_1, \ldots, e_\ell\}$ be an orthonormal basis of the euclidean space \mathbb{R}^ℓ . The following vectors form a fundamental system of type \mathbf{D}_ℓ

$$\Pi = \left\{ \underbrace{e_1 - e_2}_{r_1}, \underbrace{e_2 - e_3}_{r_2}, \ldots, \underbrace{e_{\ell-1} - e_{\ell}}_{r_{\ell-1}}, \underbrace{e_{\ell-1} + e_{\ell}}_{r_{\ell}} \right\}.$$

The full root system has order $2\ell(\ell-1)$ and is as follows:

$$\Phi = \underbrace{\{e_i \pm e_j \mid 1 \le i < j \le \ell\}}_{\Phi^+} \stackrel{\smile}{\cup} \underbrace{\{-e_i \mp e_j \mid 1 \le i < j \le \ell\}}_{\Phi^-}.$$

As in the case of \mathbf{A}_{ℓ} all roots have the same length. For this system $|r| = \sqrt{2}$. Cartan matrix:

/	2	-1	0	0	0	• • •	0 '	\
	-1	2	-1	0	0		0	
	• • •		• • •			• • •		
	0	0		-1	2	-1	-1	
	0	0	0		-1	2	0	
	0	0	0		-1	0	2 ,	/

5 Chevalley basis of a simple Lie algebra

Let $L = \mathcal{H} \oplus \bigoplus_{r \in \Phi} L_r$ be a simple Lie algebra over \mathbb{C} , with fundamental system Π . Chevalley has proved the existence of a basis of L

(5.1)
$$\{h_r \mid r \in \Pi\} \cup \{e_r \mid r \in \Phi\}$$
 (Chevalley basis)

where $\mathcal{H} = \bigoplus_{r \in \Pi} \mathbb{C}h_r$ and $L_r = \mathbb{C}e_r$ for each r, satisfying the following conditions:

- $[h_r h_s] = 0$, for all $r, s \in \Pi$;
- $[h_r e_s] = A_{rs} e_s$, for all $r \in \Pi$, $s \in \Phi$, with A_{rs} as in Definition 4.4;
- $[e_r e_{-r}] = h_r$, for all $r \in \Phi$;
- $[e_r e_s] = 0$, for all $r, s \in \Phi$, $r + s \neq 0$ and $r + s \notin \Phi$;
- $[e_r e_s] = \pm (p+1)e_{r+s}$, if $r+s \in \Phi$, with p as in (4.5).

In particular, with respect to a Chevalley basis, the multiplication constants of L are all in \mathbb{Z} , a crucial property for the definition of the groups of Lie type over any field \mathbb{F} .

(5.2) Lemma Suppose that L is linear and that \mathcal{H} consists of diagonal matrices. Then, for each $r \in \Phi$, we have $e_{-r} = e_r^T$.

Proof For all $h \in \mathcal{H}$, ad $h(e_r) = he_r - e_r h = r(h)e_r$. The condition $h = h^T$ gives:

ad
$$h(e_r^T) = he_r^T - e_r^T h = (e_r h - he_r)^T = -r(h)e_r^T$$
.

(5.3) Example Chevalley basis of A_1 .

$$\mathbf{A}_1 \ = \ \mathbb{C}\underbrace{\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}}_{h_{r_1}} \oplus \ \mathbb{C}\underbrace{\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}}_{e_{r_1}} \oplus \ \mathbb{C}\underbrace{\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}}_{e_{-r_1}}.$$

Let $h = \begin{pmatrix} a & 0 \\ 0 & -a \end{pmatrix} \in \mathcal{H}$. With respect to the above basis:

$$(\operatorname{ad} h)_{|\langle e_{r_1}, e_{-r_1} \rangle} = \begin{pmatrix} 2a & 0\\ 0 & -2a \end{pmatrix} \implies \begin{cases} r_1(h) = 2a\\ -r_1(h) = -2a \end{cases}$$

Since $2a = \operatorname{tr}\left(\operatorname{ad}\begin{pmatrix} 1/4 & 0\\ 0 & -1/4 \end{pmatrix} \operatorname{ad} h\right)$, the Killing form allows the identification:

$$r_1 = \begin{pmatrix} 1/4 & 0\\ 0 & -1/4 \end{pmatrix}.$$

Normalized basis of \mathcal{H} :

$$h_1 := \frac{2r_1}{(r_1, r_1)} = \frac{2r_1}{\operatorname{tr}(\operatorname{ad} r_1)^2} = \frac{2}{1/2}r_1 = 4r_1 = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$$

Root system: $\Phi = \{r_1, -r_1\}.$

(5.4) Example Chevalley basis of A_2 .

$$\mathbf{A}_{2} = \underbrace{\mathbb{C}h_{r_{1}} \oplus \mathbb{C}h_{r_{2}}}_{\mathcal{H}} \oplus \mathbb{C}e_{r_{1}} \oplus \mathbb{C}e_{r_{2}} \oplus \mathbb{C}e_{s} \oplus \mathbb{C}e_{-r_{1}} \oplus \mathbb{C}e_{-r_{2}} \oplus \mathbb{C}e_{-s}$$

where:

$$h_{r_1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad h_{r_2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad e_{r_1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad e_{r_2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
$$e_s = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad e_{-r_1} = e_{r_1}^T, \quad e_{-r_2} = e_{r_2}^T, \quad e_{-s} = e_s^T.$$

We justify and complete the notation. Let $h = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & -a - b \end{pmatrix} \in \mathcal{H}.$ With respect to the above ordered basis:

ad
$$h_{|\langle e_{r_1}, e_{r_2}, e_s \rangle} = \begin{pmatrix} a-b & 0 & 0 \\ 0 & a+2b & 0 \\ 0 & 0 & 2a+b++ \end{pmatrix}$$

$$\implies \begin{cases} r_1(h) = a-b \\ r_2(h = a+2b \\ s(h) = 2a+b \end{cases} \text{ giving } s = r_1+r_2.$$

Since

$$a-b = \operatorname{tr} \left(\operatorname{ad} \begin{pmatrix} 1/6 & 0 & 0\\ 0 & -1/6 & 0\\ 0 & 0 & 0 \end{pmatrix} \operatorname{ad} h \right), \quad a+2b = \operatorname{tr} \left(\operatorname{ad} \begin{pmatrix} 0 & 0 & 0\\ 0 & 1/6 & 0\\ 0 & 0 & -1/6 \end{pmatrix} \operatorname{ad} h \right)$$

the Killing form allows the identifications:

$$r_1 = \begin{pmatrix} 1/6 & 0 & 0 \\ 0 & -1/6 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad r_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1/6 & 0 \\ 0 & 0 & -1/6 \end{pmatrix}.$$

Normalized basis of \mathcal{H} : $\left\{\frac{2r_1}{(r_1,r_1)} = h_{r_1}, \frac{2r_2}{(r_2,r_2)} = h_{r_1}\right\}$ with h_{r_1}, h_{r_2} as above. Root system $\Phi = \Phi^+ \cup \Phi^-$, with

$$\Phi^+ = \{r_1, r_2, r_1 + r_2\}, \quad \Phi^- = \{-r_1, -r_2, -r_1 - r_2\}.$$

(5.5) Example As fundamental system of \mathbf{A}_{ℓ} one may take the $\ell + 1 \times \ell + 1$ matrices

$$e_{r_1} = e_{1,2}, \quad e_{r_2} = e_{2,3}, \quad \dots, \quad e_{r_\ell} = e_{\ell,\ell+1}.$$

(5.6) Example Chevalley basis of C₂.

$$\mathbf{C}_{2} = \underbrace{\mathbb{C}h_{r_{1}} \oplus \mathbb{C}h_{r_{2}}}_{\mathcal{H}} \oplus \mathbb{C}e_{r_{1}} \oplus \mathbb{C}e_{r_{2}} \oplus \mathbb{C}e_{s} \oplus \mathbb{C}e_{t} \oplus \mathbb{C}e_{-r_{1}} \oplus \mathbb{C}e_{-r_{2}} \oplus \mathbb{C}e_{-s} \oplus \mathbb{C}e_{-t}$$

where:

,

We justify and complete the notation. Let $h = \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & -a & 0 \\ 0 & 0 & 0 & -b \end{pmatrix}$. With respect to the above end of the i

With respect to the above ordered basis:

$$(\mathrm{ad}\,h)_{\left\langle e_{r_{1}}, e_{r_{2}}, e_{s}, e_{t} \right\rangle} = \begin{pmatrix} a-b & 0 & 0 & 0\\ 0 & 2b & 0 & 0\\ 0 & 0 & a+b & 0\\ 0 & 0 & 0 & 2a \end{pmatrix}$$

$$\implies \begin{cases} r_1(h) = a - b \\ r_2(h) = 2b \\ s(h) = a + b \\ t(h) = 2a \end{cases} \quad \text{giving} \quad \begin{cases} s = r_1 + r_2 \\ t = 2r_1 + r_2. \end{cases}$$

Since

$$-a+b = \operatorname{tr} \left(\operatorname{ad} \begin{pmatrix} -1/12 & 0 & 0 & 0\\ 0 & 1/12 & 0 & 0\\ 0 & 0 & 1/12 & 0\\ 0 & 0 & 0 & -1/12 \end{pmatrix} \operatorname{ad} h \right),$$

$$2a = \operatorname{tr} \left(\operatorname{ad} \begin{pmatrix} 1/6 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & -1/6 & 0\\ 0 & 0 & 0 & 0 \end{pmatrix} \operatorname{ad} h \right)$$

the Killing form allows the identifications:

$$r_1 = \begin{pmatrix} -1/12 & 0 & 0 & 0 \\ 0 & 1/12 & 0 & 0 \\ 0 & 0 & 1/12 & 0 \\ 0 & 0 & 0 & -1/12 \end{pmatrix}, \quad r_2 = \begin{pmatrix} 1/6 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1/6 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

 $(r_1, r_1) = \frac{1}{6}, (r_2, r_2) = \frac{1}{3}, (r_1, r_2) = -\frac{1}{6}. \text{ Cartan matrix } \begin{pmatrix} 2 & -2 \\ -1 & 2 \end{pmatrix}.$ Normalized basis of $\mathcal{H}: \left\{ h_{r_1} = \frac{2r_1}{(r_1, r_1)}, h_{r_2} = \frac{2r_2}{(r_2, r_2)} \right\}$ with h_{r_1}, h_{r_2} as above. Root system: $\Phi = \{r_1, r_2, r_1 + r_2, 2r_1 + r_2, -r_1, -r_2, -r_1 - r_2, -2r_1 - r_2\}$

The non-trivial products of basis elements are written below. They agree with the conditions for a Chevalley basis given at the beginning of this Section, and also with the values of A_{rs} given in Example 4.6.

[]	e_{r_1} e_{r_2}	$e_{r_1+r_2}$	$e_{2r_1+r_2}$	e_{-r_1}	e_{-r_2}	$e_{-r_1-r_2}$	$e_{-2r_1-r_2}$	
h_{r_1}	$2e_{r_1}$ $-2e_r$	- ₂ 0	$2e_{2r_1+r}$	$-2e_{-r}$	$_{1}$ $2e_{-r_{2}}$	0	$-2e_{-2r_1-r_2}$	2
h_{r_2}	$-e_{r_1} 2e_{r_2}$	$e_{r_1+r_2}$	2 0	e_{-r_1}	$-2e_{-r_2}$	$-e_{-r_1-r_2}$	0	
[]	e_{r_1}	e_{r_2}	$e_{r_1+r_2}$	$e_{2r_1+r_2}$	e_{-r_1}	e_{-r_2}	$e_{-r_1-r_2}$	$e_{-2r_1-r_2}$
e_{r_1}	0	$e_{r_1+r_2}$	$2e_{2r_1+r_2}$	0	h_{r_1}	0	$-2e_{-r_2}$	$-e_{-r_1-r_2}$
e_{r_2}	$-e_{r_1+r_2}$	0	0	0	0	h_{r_2}	e_{-r_1}	0
$e_{r_1+r_2}$	$-2e_{2r_1+r_2}$	0	0	0	$-2e_{r_2}$	e_{r_1}	$h_{r_1+r_2}$	e_{-r_1}
$e_{2r_1+r_2}$	0	0	0	0	$-e_{r_1+r_2}$	0	e_{r_1}	$h_{2r_1+r_2}$
e_{-r_1}	$-h_{r_1}$	0	$2e_{r_2}$	$e_{r_1+r_2}$	0	$-e_{-r_1-r_2}$	$-2e_{-2r_1-r_2}$	0
e_{-r_2}	0	$-h_{r_2}$	$-e_{r_{1}}$	0	$e_{-r_1-r_2}$	0	0	0
$e_{-r_1-r_2}$	$2e_{-r_2}$	$-e_{-r_{1}}$	$-h_{r_1+r_2}$	$-e_{r_{1}}$	$2e_{-2r_1-r_2}$	0	0	0
$e_{-2r_1-r_2}$	$e_{-r_1-r_2}$	0	$-e_{-r_{1}}$	$-h_{2r_1+r_2}$	0	0	0	0

6 The action of exp ad e, with e nilpotent

Let L be a linear Lie algebra over \mathbb{C} and $e \in L$. Consider the map ad $e : L \to L$, defined as $x \mapsto [ex]$. The following identity, which can be verified by induction, holds:

(6.1)
$$\frac{(\mathrm{ad}\,e)^k}{k!}(x) = \sum_{i=0}^k \frac{e^i}{i!} x \, \frac{(-e)^{k-i}}{(k-i)!}, \quad \forall \ k \in \mathbb{N}.$$

In particular, if e is a nilpotent matrix, then ad e is nilpotent and we may consider the linear map:

$$\operatorname{exp} \operatorname{ad} e := \sum_{k=0}^{\infty} \frac{(\operatorname{ad} e)^k}{k!}.$$

(6.2) Lemma Let L be a subalgebra of the general linear Lie algebra $\mathcal{G}L_n(\mathbb{C})$ and let $e \in L$ be a nilpotent matrix. Then, for all $x \in L$:

(6.3)
$$\exp \operatorname{ad} e(x) = (\exp e) x (\exp e)^{-1}.$$

In particular the map $\exp \operatorname{ad} e : L \to L$ is an automorphism of L.

For the proof, based on (6.1), see [5, Lemma 4.5.1, page 66]. The conclusion follows from Lemma 2.5 of this chapter.

In the next two examples we give a proof of (6.3) in the most frequent cases.

(6.4) Example Let $e^2 = 0$. Then $\exp e = I + e$. Moreover:

ad $e: x \mapsto [e, x] = ex - xe$ $(ad e)^2: x \mapsto [e, ex - xe] = -2(exe)$ $(ad e)^3: x \mapsto [e, -2exe] = 0.$

Thus $\exp \operatorname{ad} e = I + \operatorname{ad} e + \frac{1}{2} (\operatorname{ad} e)^2$ and:

$$\exp \operatorname{ad} e(x) = x + (ex - xe) - exe = (I + e) x (I - e) = (\exp e) x (\exp e)^{-1}.$$

(6.5) Example Let $e^3 = 0$. Then $\exp e = I + e + \frac{1}{2}e^2$. Moreover:

ad $e : x \mapsto ex - xe$ $(ad e)^2 : x \mapsto [e, ex - xe] = e^2 x - 2exe + xe^2$ $(ad e)^3 : x \mapsto [e, e^2 x - 2exe + xe^2] = -3e^2 xe + 3exe^2$ $(ad e)^4 : x \mapsto [e, -3e^2 xe + 3exe^2] = 6e^2 xe^2$ $(ad e)^5 : x \mapsto [e, 6e^2 xe^2] = 0.$

Thus exp ad $e = I + ad e + \frac{1}{2} (ad e)^2 + \frac{1}{6} (ad e)^3 + \frac{1}{24} (ad e)^4$ and

$$\exp \operatorname{ad} e(x) = x + (ex - xe) + \left(\frac{1}{2}e^{2}x - exe + \frac{1}{2}xe^{2}\right) - \frac{1}{2}\left(e^{2}xe - exe^{2}\right) + \frac{1}{4}e^{2}xe^{2} = \left(I + e + \frac{1}{2}e^{2}\right)x\left(I - e + \frac{1}{2}e^{2}\right) = (\exp e)x(\exp e)^{-1}.$$

7 Groups of Lie type

Let L be a simple Lie algebra over \mathbb{C} , with Chevalley basis as in (5.1):

$$\{h_r \mid r \in \Pi\} \cup \{e_r \mid r \in \Phi\}$$

For all $r \in \Phi$ and for all $t \in \mathbb{C}$, we set

(7.1)
$$x_r(t) := \exp(t \, ad) \, e_r$$

(7.2) Definition The Lie group $L(\mathbb{C})$ is the subgroup of Aut(L) generated by the automorphisms (7.1), namely the group:

$$L(\mathbb{C}) := \langle x_r(t) \mid t \in \mathbb{C}, r \in \Phi \rangle.$$

Since the structure constants are integers, it is possible to define a Lie algebra $\mathbb{F} \otimes_{\mathbb{Z}} L = L_{\mathbb{F}}$ over any field \mathbb{F} . The matrix representing $x_r(t)$ with respect to a Chevalley basis has entries of the form at^i where $a \in \mathbb{Z}$ and $i \in \mathbb{N}$. Interpreting a as an element of \mathbb{F} , one can identify $x_r(t)$ with an element of Aut $(L_{\mathbb{F}})$ and define the group $L(\mathbb{F})$ as

$$L(\mathbb{F}) := \langle x_r(t) \mid t \in \mathbb{F}, r \in \Phi \rangle$$
 (the group of type L over \mathbb{F}).

The identifications are as follows (see Section 3):

- $\mathbf{A}_{\ell}(\mathbb{F}) \cong \mathrm{PSL}_{\ell+1}(\mathbb{F});$
- $\mathbf{B}_{\ell}(\mathbb{F}) \cong \mathbf{P}\Omega_{2\ell+1}(\mathbb{F}, f)$ where f is the quadratic form: $x_0^2 + \sum_{i=1}^{\ell} x_i x_{-i}$;
- $\mathbf{C}_{\ell}(\mathbb{F})(\mathbb{F}) \cong \mathrm{PSp}_{2\ell}(\mathbb{F});$
- $\mathbf{D}_{\ell}(\mathbb{F}) \cong \mathrm{P}\Omega_{2\ell}(\mathbb{F}, f)$ where f is the quadratic form: $\sum_{i=1}^{\ell} x_i x_{-i}$.
- ${}^{\mathbf{2}}\mathbf{A}_{\ell}(\mathbb{F}) \cong \mathrm{PSU}_{\ell+1}(\mathbb{F});$
- ${}^{2}\mathbf{D}_{\ell}(\mathbb{F}) \cong P\Omega_{2\ell}(\mathbb{F}_{0}, f)$ where \mathbb{F} has an automorphism σ of order 2, with fixed field \mathbb{F}_{0} , and f is the form $\sum_{i=1}^{\ell-1} x_{i}x_{-i} + (x_{\ell} \alpha x_{-\ell}) (x_{\ell} \alpha^{\sigma} x_{-\ell}), \alpha \in \mathbb{F} \setminus \mathbb{F}_{0}.$

The consideration of groups of Lie type allows a unified treatment of important classes of groups, like finite simple groups. According to the Classification Theorem, every finite simple group S is isomorphic to one of the following:

• a cyclic group C_p , of prime order p;

- an alternating group $Alt(n), n \ge 5;$
- a group of Lie type $L(\mathbb{F}_q)$, where L is one of the algebras in (4.1);
- a twisted group of Lie type ${}^{i}L(\mathbb{F}_{q})$, namely the subgroup of $L(\mathbb{F}_{q^{i}})$ consisting of the elements fixed by an automorphism of order i of $L(\mathbb{F}_{q^{i}})$;
- one of the 26 sporadic simple groups.

8 Uniform definition of certain subgroups

Let L be a simple Lie algebra over \mathbb{C} , with Cartan decomposition

$$L = \mathcal{H} \oplus \bigoplus_{r \in \Phi \subseteq \mathcal{H}} \mathbb{C}e_r.$$

We describe some kinds of important subgroups, which may be defined in a uniform way.

8.1 Unipotent subgroups

For each $r \in \Phi$, the map

(8.1)
$$t \mapsto x_r(t) :== \exp\left(t \operatorname{ad} e_r\right)$$

is a monomorphism from the additive group $(\mathbb{F}, +)$ into the multiplicative group $L(\mathbb{F})$.

(8.2) Definition

- The image of the monomorphism (8.1) is denoted by X_r and called the radical subgroup corresponding to the root r;
- the subgroup generated by all radical subgroups corresponding to positive roots is denoted by U^+ ;
- the subgroup generated by all radical subgroups corresponding to negative roots is denoted by U⁻.

Thus:

$$X_r = \{x_r(t) \mid t \in \mathbb{F}\} \simeq (\mathbb{F}, +)$$
$$U^+ = \langle x_r(t) \mid t \in \mathbb{F}, r \in \Phi^+ \rangle$$
$$U^- = \langle x_r(t) \mid t \in \mathbb{F}, r \in \Phi^- \rangle.$$

 U^+, U^- (and their conjugates in $L(\mathbb{F})$) are called *unipotent* subgroups. By definition

$$L(\mathbb{F}) = \left\langle U^+, \ U^- \right\rangle.$$

(8.3) Example In $A_{\ell}(\mathbb{F})$ identified with $PSL_{\ell+1}(\mathbb{F})$:

- X_r is the projective image of the group $\{I + te_{i,j} \mid t \in \mathbb{F}\}$ for some $i \neq j$,
- U^+ is the projective image of the subgroup of upper unitriangular matrices,
- U^- is the projective image of the subgroup of lower unitriangular matrices.

8.2 The subgroup $\langle X_r, X_{-r} \rangle$

For each $r \in \Phi$, the group $\langle X_r, X_{-r} \rangle$ fixes every vector of the Chevalley basis (5.1) except e_r, h_r, e_{-r} . Multiplying e_r by an appropriate scalar, if necessary, we may assume:

- $x_r(t)(e_r) = e_r;$
- $x_r(t)(h_r) = h_r 2t e_r;$
- $x_r(t)(e_{-r}) = -t^2 e_r + t h_r + e_{-r};$
- $x_{-r}(t)(e_r) = e_r th_r t^2 e_{-r};$
- $x_{-r}(t)(h_r) = h_r + 2t e_r;$
- $x_{-r}(t)(e_{-r}) = e_{-r}$.

(8.4) Theorem There exists an epimorphism $\varphi_r : \operatorname{SL}_2(\mathbb{F}) \to \langle X_r, X_{-r} \rangle$ under which:

(8.5)
$$\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \mapsto x_r(t), \quad \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix} \mapsto x_{-r}(t).$$

Proof The group $SL_2(\mathbb{F})$ has a matrix representation of degree 3, deriving from its action on the space of homogeneous polynomials of degree 2 over \mathbb{F} in the indeterminates x, y. With respect to the basis $-x^2, 2xy, y^2$, we have:

$$\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & -2t & -t^2 \\ 0 & 1 & t \\ 0 & 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 0 \\ -t & 1 & 0 \\ -t^2 & 2t & 1 \end{pmatrix}.$$

These are the matrices of the action of $x_r(t)$ and $x_{-r}(t)$ restricted to $\langle e_r, r, e_{-r} \rangle$ by the formulas before the statement.

8.3 Diagonal and monomial subgroups

In $SL_2(\mathbb{F})$, for all $\lambda \in \mathbb{F}$ we have:

$$\left(\begin{array}{cc}\lambda & 0\\ 0 & \lambda^{-1}\end{array}\right) = \left(\begin{array}{cc}1 & 0\\ \lambda^{-1} - 1 & 1\end{array}\right) \left(\begin{array}{cc}1 & 1\\ 0 & 1\end{array}\right) \left(\begin{array}{cc}1 & 0\\ \lambda - 1 & 1\end{array}\right) \left(\begin{array}{cc}1 & -\lambda^{-1}\\ 0 & 1\end{array}\right).$$

Hence, for all $r \in \Phi$ and all $\lambda \in \mathbb{F}$ we set:

$$h_r(\lambda) := \varphi_r\left(\left(\begin{array}{cc} \lambda & 0\\ 0 & \lambda^{-1} \end{array} \right) \right) = x_{-r}(\lambda^{-1} - 1) \ x_r(1) \ x_{-r}(\lambda - 1) \ x_r(-\lambda^{-1}).$$

(8.6) **Definition** The diagonal subgroup H of $L(\mathbb{F})$ is defined by

(8.7)
$$H := \langle h_r(\lambda) \mid 0 \neq \lambda \in \mathbb{F}, \ r \in \Phi \rangle.$$

The group H normalizes both U^+ and U^- .

(8.8) **Definition** The product U^+H is called a Borel subgroup and is denoted by B^+ . Similarly the product U^-H is denoted by B^- .

(8.9) Example Identifying $\mathbf{A}_{\ell}(\mathbb{F})$ with the projective image of $\mathrm{SL}_{\ell+1}(\mathbb{F})$:

- B^+ is the image of the group of upper triangular matrices of determinant 1,
- B^- is the image of the group of lower triangular matrices of determinant 1.

In $SL_2(\mathbb{F})$ we have:

$$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ -1 & 1 \end{array}\right) \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ -1 & 1 \end{array}\right).$$

Hence, for all $r \in \Phi$ we set:

$$n_r = \varphi_r \left(\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) \right) = x_{-r}(-1) x_r(1) x_{-r}(-1).$$

(8.10) Definition The (standard) monomial subgroup N of $L(\mathbb{F})$ is defined by:

(8.11)
$$N := \langle h_r(\lambda), n_r \mid r \in \Phi, \lambda \in \mathbb{F} \rangle.$$

H is a normal subgroup of N.

(8.12) Definition The factor group $W(L) := \frac{N}{H}$ is called the Weyl group of L.

$$\begin{split} W(\mathbf{A}_{\ell}) &\simeq \operatorname{Sym}\left(\ell+1\right), \\ W(\mathbf{C}_{\ell}) &\simeq W(\mathbf{B}_{\ell}) \simeq C_{2}^{\ell} \operatorname{Sym}\left(\ell\right), \\ W(\mathbf{D}_{\ell}) &\simeq C_{2}^{\ell-1} \operatorname{Sym}\left(\ell\right). \end{split}$$

(8.13) Example In the orthogonal algebra B_1 over \mathbb{C} , with $\Phi = \{r, -r\}$ and basis

$$h_r = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \quad e_r = \begin{pmatrix} 0 & \sqrt{2} & 0 \\ 0 & 0 & 0 \\ -\sqrt{2} & 0 & 0 \end{pmatrix}, \quad e_{-r} = \begin{pmatrix} 0 & 0 & -\sqrt{2} \\ \sqrt{2} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

we have:

$$\begin{split} x_r(t) &= I + te_r + \frac{t^2}{2}e_r^2 = \begin{pmatrix} 1 & \sqrt{2}t & 0\\ 0 & 1 & 0\\ -\sqrt{2}t & -t^2 & 1 \end{pmatrix}; \quad x_{-r}(t) = x_r(t)^T; \\ h_r(\lambda) &= x_{-r}(\lambda^{-1} - 1) x_r(1) x_{-r}(\lambda - 1) x_r(-\lambda^{-1}) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \lambda^{-2} & 0\\ 0 & 0 & \lambda^2 \end{pmatrix}; \\ n_r &= x_r(1)x_{-r}(-1)x_r(1) = \begin{pmatrix} -1 & 0 & 0\\ 0 & 0 & -1\\ 0 & -1 & 0 \end{pmatrix}; \\ h_{-r}(\lambda) &= h_r(\lambda)^{-1}, \quad n_r = n_r^{-1}; \\ H &= \langle h_r(\lambda) \mid r \in \Phi, \ \lambda \in \mathbb{C}^* \rangle = \left\{ \begin{pmatrix} 1 & 0 & 0\\ 0 & \mu & 0\\ 0 & 0 & \mu^{-1} \end{pmatrix} \mid \mu \in \mathbb{C}^* \right\}; \\ N &= \langle h_r(\lambda), n_r \mid r \in \Phi \ \lambda \in \mathbb{C}^* \rangle = \left\{ \begin{pmatrix} -1 & 0 & 0\\ 0 & 0 & \mu^{-1}\\ 0 & \mu & 0 \end{pmatrix} \mid \mu \in \mathbb{C}^* \right\}; \\ W &= \frac{N}{H} \cong \left\langle \begin{pmatrix} -1 & 0 & 0\\ 0 & 0 & 1\\ 0 & 1 & 0 \end{pmatrix} \right\rangle \cong \mathrm{Sym}(2). \end{split}$$

(8.14) Example Identifying $\mathbf{A}_{\ell}(\mathbb{F})$ with the projective image of $\mathrm{SL}_{\ell+1}(\mathbb{F})$:

- *H* is the image of the subgroup of diagonal matrices of determinant 1;
- N is the image of the subgroup of monomial matrices of determinant 1;
- the factor group $\frac{N}{H}$ is isomorphic to the symmetric group $\operatorname{Sym}(\ell+1)$.

9 Exercises

(9.1) Exercise Let $\varphi : L \to L'$ be a homomorphism of Lie algebras. Show that its kernel is an ideal.

(9.2) Exercise Let L be a Lie algebra and $x \in L$. Show that the map $\operatorname{ad} x$ is a derivation.

- (9.3) **Exercise** Write a basis of C_2 and a basis of C_3 .
- (9.4) Exercise Show that $\mathbf{C}_{\ell}(\mathbb{F})$ is a Lie subalgebra of $\mathcal{GL}_{2\ell}(\mathbb{F})$.
- (9.5) Exercise Write a basis of \mathbf{B}_1 and a basis of \mathbf{B}_2 .
- (9.6) Exercise Write a basis of D_2 .
- (9.7) Exercise Verify formula (6.3) assuming $e^4 = 0$.