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Abstract

In the natural conditions early-spring period development of  Galanthus nivalis L., the
leaves germination from bulbs was carried out in the soil surface layer, mainly, covered
with snow, so the leaves were exposed to low soil temperatures. It was found, that at the
leaf germination stage, when exposed to minus soil temperature, the mitochondria were
predominantly  elongated,  that  is,  functionally  active.  Under the  influence  of  positive
temperature,  the  mitochondria  form  changed  to  a  round  one,  which  indicates  their
transition to low functional activity. A similar tendency was manifested even during the
budding stage, in particular, when the soil temperature was lowered to an average of –
3.47 °C, the mitochondria changed their form to an elongated one, that is, they passed
into an active functional state. Wherein, the temperature of the leaves was higher by
3.84 °C compared to the soil. At the stages of germination and budding of G. nivalis under
natural  conditions,  a  direct  correlation  was  found  between  the  soil  surface  layer
temperature and the leaves temperature, and at the flowering stage this relation was
reverse. During the flowering stage, despite the influence of predominantly positive soil
temperatures, leaves growth was significantly slowed, and their temperature was only
slightly  higher  by  0.38  °C compared to  the soil.  At  the same time,  the mitochondria
changed their shape to a round one. Thus, the increase in their long axis at different
stages in spring development, are aimed at adapting to influence low temperatures of the
soil surface layer.
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Introduction

The development of ephemeroid plants in the early
spring,  in  the  natural  conditions  of  a  temperate
continental  climate,  carried  out  in  influenced  by
significant  fluctuations  of  abiotic  factors.  Among
them, the soil temperature,  as compared with the

air  temperature,  changes  more  slowly  in  the
natural  environment,  since  in  early-spring
conditions,  frozen  and  snow-covered  soil  cannot
warm up with sunlight as quickly as atmospheric
air.  Numerous  studies  have  been  devoted  to
understanding  the  effects  of  low  positive
temperatures  on  the  development  of  plants (1–3).
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The results of the studies showed that this abiotic
factor  was  able  to  change  not  only  the
morphometric  indices  (4) but  also the functional
activity of mitochondria (5,6) and chloroplasts  (7).
At the same time, the impact of soil temperature
on  the  structural  components  of  the
supramolecular energetic complex of plant leaves
in the natural environment, in particular,  on the
form of the mitochondria in leaf mesophyll cells of
the  spring  ephemeroid  Galanthus  nivalis L.,
remains  undiscovered  under  the  natural
conditions.

Among  cellular  organelles,  which  are
components  of  the  energetic  complex  of  plant
leaves,  the  mitochondria  performs  an  important
function  of  energy  transformation.  The
mitochondrial  respiratory  chain  converts
metabolic  energy into an  electrochemical  proton
gradient  across  the  inner  mitochondrial
membrane; this potential gradient is then utilized
by the F1F0 ATP synthase, the molecular machine
that  generates  ATP from ADP and phosphate  by
rotary  catalysis  (8).  Plant  mitochondria  link  the
cellular  processes  of  carbon  and  nitrogen
metabolism  through  the  tricarboxylic  acid  cycle
and the photorespiratory cycle (9). In addition, the
mitochondria are involved in the active transport
of ions; they are capable of ions accumulation such
as  K+,  Ca2+,  Mg2+,  Mn2+,  HPO4

2- and  active
homeostatic regulation of the ionic composition in
the  hyaloplasm  (10).  It  is  probable  that  the
processes of energy conversion are accompanied
by characteristic changes in the forms and volume
of mitochondria under hypothermal conditions. If
such  changes  in  quantitative  indices  of  the
mitochondria  under  hypothermal  conditions
enable the survival of cells, we can consider it as
adaptive  adjustments  that  are  needed  for  cold
tolerance.

It has been shown that the mitochondria of
cold-tolerant plants are able to change their shape
and  avoid  damages  in  their  cristae  under  the
influence  of  low  atmospheric  air  temperatures
(11,12). However, effects at low soil temperatures
are not well documented. We assume that under
the  hypothermal  natural  conditions,  soil
temperature can significantly affect the structural
parameters of the mitochondria in the leaves of G.
nivalis,  since  the  leaves  are  located  at  a  small
distance from the surface of the soil.

Taking into account the above, we focus on
the  adaptive  changes  in  the  mesophyll
mitochondria of G. nivalis leaves grown in natural
environment  where  in  the  early  spring  the
influence  of  the  temperature  of  the  surface  soil
layer  during  the  stages  of  germination,  budding
and flowering of the plants occurs.

Materials and methods

The leaves of G. nivalis plants that grew in natural
conditions  in  the  open ground of  the  Mokvinski

forestry  (Kostopil  district,  Rivne  region,  Ukraine)
were used in this study. Climatic conditions within
the forestry are characterized by a predominance
of average air temperatures -4.8 ºС in January and
18.1 ºС in May (for the period from 2012 to 2018).
The  relief  of  the  area  is  mostly  flat,  without
significant hills and depressions. The surface layer
is  formed  with  the  predominance  of  gray-forest
and dark-gray soils. 

The study of temperature dynamics  of  G.
nivalis leaves  was  carried  out  under  natural
conditions, without the removal of plants from the
soil  during  germination,  budding  and flowering.
The temperature of the surface of the leaves and
the  surface  layer  of  soil  was  measured  by  the
Thermograph  Fluke  105  Thermography  (USA)
equipped with  an  infrared  camera.  The  thermal
(within the spectrum of 7.5-13 μm) radiation of the
investigated  objects  was  detected  using  this
camera. On the received photographs, measuring
points  with  digital  values  of  their  temperatures
were displayed. The features of the distribution of
temperature  values  of  the  objects  under
investigation were determined by the color of the
points (and the corresponding pixels). The range of
temperatures that the camera can fix is from –10
to 250 ºС. Possible influence of the temperature of
the surface soil layer on the temperature of leaves
of  G.  nivalis was  estimated  by  comparing  the
values of these indices by means of mathematical
methods of variation statistics.

For  ultrastructural  analysis  of
mitochondria,  fragments  were  removed  from
the middle part of the leaves in the size of 2 × 2
mm.  The  preliminary  fixation  of  the  material
was carried out at room temperature (18-22 °C) by
vacuum  infiltration  of  specimens  in  2.5%
glutaraldehyde in 0.1 M phosphate buffer (pH 7.2)
and then for 8 hours at 4 °C. The specimens were
then  washed  with  buffer  (2  ×  20  min)  and
transferred to 1% OsO4 in 0.1 M cacodylate buffer,
pH 7.2, at 4 °C overnight.  The preparations were
dehydrated in ethanol and propylene oxide series.
The samples were then infiltrated with a mixture
of epone-araldite epoxy resin and propylene oxide
and a clean resin, after which the specimens were
transferred to the thermostat for polymerization at
37  and 60  °C.  Ultra-thin  sections  were  made  on
ultramicrotome LKB-V (LKB, Sweden) and stained
with lead citrate. The sections were examined in a
transmission  electronic  microscope  JEM-1300
(JEOL, Japan) (13).

The study of morphometric  indices of the
mesophyll  mitochondria  of  G.  nivalis  leaves  was
performed  on  its  photographic  images,  which
were  obtained  by  methods  of  transmission
electron microscopy.  On  photographic  images  of
mitochondria,  measurements  of  the  size,  length
and short axis of mitochondria on its sections were
carried  out  using  ImageJ  program  (NIH,  USA).
Microphotos of 30 mitochondria were analyzed for
each stage of leaf development.
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The  sizes  of  mitochondria  were  processed  using
the methods of variation statistics. The difference
between  the  average  values  of  the  indices  was
calculated using Student's  t-test. Differences were
considered statistically significant at P ≤0.05.

Results and discussion

In early spring, germination of leaves occurs from
the bulbs of the ephemeroid  G. nivalis, which are
in the surface  layer  of  soil,  so  they  are under a
significant  influence  of  soil  temperature.  During
the stages of germination and flowering, the mean
value of the temperature of the soil surface in the
immediate vicinity of the plants varied from 4.03
to 11.73 ºС, whereas the temperature of the leaves
of plants changed from 5.51 to 11.34 (Table 1).

The  stage  of  germination  occurred  at  a
minimum average soil surface layer temperature
of  4.03  ºС,  the  temperature  of  the  leaves  was
higher by 1.4 times (Figs. 1A, 1B). In the absence of
stress  conditions  and  under  the  influence  of
positive soil temperatures, the mitochondria in the
sections had a rounded form. The length of their
short axis was 1.2 times smaller compared with a
long axis. The rounded form of mitochondria and
non-contrast  cristae  (Fig.  1C)  can  indicate  a  low
functional  activity  of  mitochondria  during  the
germination  stage.  Therefore,  their  division  (see
Fig.  1C)  for  increasing  the  overall  population  of
mitochondria  is  probably  related  to  the
preparation  for  further  synthesis  of  substances
that  are  necessary  for  the  growth  and
development of plants.

In  publications,  devoted  to  the  study
adaptation mechanisms of plants to the influence
low temperatures of atmospheric air, the authors
attention is mainly drawn to the ability of flower
nectaries  (14) and  leaf  plastids  to  adapts  to  the
influence  of  hypothermic  environmental
conditions (15). It was reported, that Symplocarpus
foetidus (16) at the stage of pollination maintains a
flower at constant temperature, regardless of the

ambient  air  temperature.  The  flowers  of
Helicodieros  muscivorus (17),  provide  the
necessary temperature for pollination by releasing
thermal  energy.  Wherein,  remain  insufficiently
disclosed  the  peculiar  properties  of  the  early-
spring  ephemeroids  adaptive  mechanisms,  that
develop in the vicinity of the frozen soil top layer.

The  results  of  our  studies  on  leaves  of
early-spring  ephemerides  of  G.  nivalis showed,
that at the stage budding of  G. nivalis plants, the
average  value  temperatures  of  the  soil  surface
layer,  was 1.3  times higher than in the previous
stage  (see  Table  1),  and  the  leaves  temperature
exceeded the  soil  temperature  by  1.7  times  (Fig.
1D,  1E).  Wherein,  the  mitochondria  heaved  an
elongated  shape  with  membranes  contrasting
contours (Fig. 1F), which indicates their functional
activity. Such an increase in the functional activity
of  mitochondria  at  stages  prior  to  flowering  is
consistent with the results of our previous studies
(18) and  points  to  the  activation  of  energy
processes  associated  with  leaves  adaptation  to  a
low (-3.47 °C) soil surface temperature, that have
been registered at the budding stage.

The appearance of morphometric changes,
due  to  the  low  temperatures  influence,  is  also
characteristic  for  Antarctic  plants.  In  particular,
the appearance of outgrowths and depressions in
leaves plastids is also considered as adaptation to
extreme conditions (14,19,20).

During  the  flowering  stage,  the  mean
values of the soil surface layer temperature were
2.2  times  higher  than  at  the  previous  stage  (see
Table  1),  while  the  temperature  of  the  leaves
practically  did  not  differ  from  the  soil
temperature, in particular, it was only 1.03 times
lower  (Fig.  1G,  1H).  Under  these  conditions,  the
functional  activity  of  the  mitochondria  was  low,
which is confirmed by their round shape and non-
contrasting cristae (Fig. 1I). Therefore, the average
soil  temperature  of 11.73 ºC  can be considered
unstable,  but  optimal  for  G.  nivalis leaves,  since
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Table 1. Influence of soil surface layer temperature on G. nivalis leaf temperature and mean sizes of cell mesophyll 
mitochondria in the natural environment during early-spring period

Parameters
Development Stage

Germination Budding Flowering

Temperature of surface soil layer, ºС 4.03±0.257 5.40±0.616 11.73±0.671

Leaves temperature, ºС 5.51±0.604 9.24±0.845 11.34±0.469

Mitochondria length, µ 0.980 ±0.005 1.663±0.003 0.718 ±0.008

Mitochondria width, µ 0.785 ±0.006 0.466±0.002 0.573±0.003

Mitochondria perimeter, µ 2.789±0.003 3.736±0.006 2.036±0.012

Mitochondria area, µ2 0.586±0.012 0.593±0.027 0.311±0.025

Values represent the mean of four to six replicate plants (± SE).
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the  adaptive  mechanism  for  leaf  temperature
increase was not activated in the absence of stress.

The relationship of probability between the
temperature  of  the  soil  surface  layer  and  the
temperature of leaves of  G. nivalis under natural
conditions  is  quite  high.  In  particular,  in  the
general  data  sampling,  such  a  relationship  was
direct with corresponding correlation coefficients
(r) of 0.88 and 0.73 at P <0.05 at the germination

and budding stages,  respectively,  while this ratio
turned out to be the inverse of the coefficient of
-0.86 (P <0.05) at the flowering stage.

Thus, in the spring period of development
G.  nivalis,  under  the  influence  of  minus  soil
temperatures,  the  mitochondria  morphometric
changes  are  carried  out,  in  particular,  the
elongation  of  their  forms  and,  accordingly,  the
transition  to  functional  activity.  Under  the
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Fig. 1. Photographic (A, D, G), thermographic (B, E, H) leaf images and electron microscopic Scale bar = 200 nm (C, F, I)
images of G. nivalis mitochondria at stages of germination (A, B, C), budding (D, E, F) and flowering (G, H, I).

Abbreviations: Ch – chloroplast, CW – cell wall, M – mitochondria, N – nucleus and arrow – divided mitochondria.
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influence of  plus  temperatures,  more  favourable
for  the  leaves  development,  the  mitochondria
shape changed to a rounded one and their number
increased due to active division. Since these leaves
are morphologically successfully developed under
the influence of  minuses and plus  temperatures,
such morphometric changes are adaptive.

Conclusion

Thus,  the  study  showed  that  under  natural
conditions of early-spring development  G. nivalis,
at  the  stage  germination  leaf,  the  influence  of
negative soil temperatures led to an increase in the
size  of  long  axis  of  mitochondria  and  the
formation of an elongated shape corresponding to
the  active  functional  state.  The  influence  of
positive  soil  temperatures,  more  favourable  for
development, was manifested in a change to long
form of mitochondria on to a rounded one, that is,
a  decrease  in  the  functional  activity  of  each  of
them. But at the same time, through active division
of mitochondria, and correspondingly an increase
in  their  number,  the  level  of  functional  activity
necessary for development was provided.

At the budding stage, a short-time decrease
in soil temperature on average to -3.47 °C caused
the  elongation  of  the  mitochondrial  form  and,
correspondingly,  an  increase  in  their  functional
activity,  adaptive  mechanisms  stimulation  for
increasing the leaves temperature. At this, leaves
temperature by 3.84 ºC higher than that of the soil.
At the flowering stage, in the absence of influence
of  low soil  temperatures,  the  intensity  of  leaves
growth decreased and the difference between the
average temperature of leaves and the soil surface
layer  was  minimal  (0.38  ºC).  The  changes  in  the
early-spring  values  temperature  soil  led  to  the
formation of rounded and elongated mitochondria
forms  and  corresponding  changes  in  their
functional activity, aimed at adapting to the effects
of hypothermal conditions.
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