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A COMPLETE DESCRIPTION OF SZEP'S (2,p)-SEMIFIELDS(*)
(u)by Domenico LENZI

SOMMARIO. - In questo lavoro noi dimostriamo cile in una struttura S(+,').
introdotta di J. SZEP, dove S(·) è un gruppo finito, 5(+) un semi gruppo e

sussistono certe proprietà distributive (vedi (1) e (2) con p = 2 oppure

q = 2), il gruppo 5(') è necessariamente prodotto diretto di gruppi di o~

dine 3. Inoltre proviamo che 5(+) è anch'esso necessariamente un gruppo per

il quale esiste beS tale che per ogni x,yeS risulta x+y = x·b·y.

SUMMARY. - J. Szép in a work to be published introduced an algebra S(+,')

such that:

i) S(·) is a group;

ii) S(+) is a semigroup;

iii) there exist p,q e N such that for all x,y,z e S

(l) x·(y+z) =xq.y + xq·z

(2) (y+z).x = y.xp + z·xp

hold.

We shall call such an algebra a "(q,p)-semifield" and we shall call "subse

mifield" of 5(+,·) every subset T of S closed (under + and .) such that

T(+,') is a(q,p)-semifield.

Szép proved, and this is easy to verify (for example by using sylow's first

theorem,(l) and (2)) that if Isl= n e N then G.C.D.(q,n) = l and G.C.D.

(p,n) =1. In particular if p = 2 or q = 2 then 151 = 2k+l (where keN).

In such a case SZép proved in a very simple manner that S(·) is a solvable

group; moreover A. Lenzi proved that 5(+) is abelianlsee [1J\ r

SZép hoped that every finite group 5(·) of odd order to become a

(2,p)-semifield by defining in S a suitable operation in order to obtain a

(*) Lavoro eseguito nell'ambito del gruppo di ricerca G.N.S.A.G.A. del C.N.R.
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simp1er proof of the theorem of Feit and Thompson on solvabi1ity of groups
be~o"e

of odd order. But this is not possib1e. In fact in this paper""We prove that

every finite (2,p)-semifie1d S(+,·) (with ISI>l) has a subsemifield M(+,·)

such that M(+) is a group and M(·) is a direct product of group of order

3. As a consequence of this fact we can prove that if S(·) is a finite

group and it is a direct product of groups of order 3 then only by fixing

beS and putting x+y = x·b·y does S(·) become a (2,p)-semifield. At

last we prove that the subsen,;field M( +,.) coincides with S( +,.) ;therefore

S(·) id a direct product of groups of order 3.

Here we shall use the following result due to Szép: for every finite

(2,p)-semifield S(+,·) a unique element aeS exists such that a+a=a

(cfr. [1]) .

N.l. ON THE EXISTENCE OF A SUBSEMIFIELD M(+,') SUCH THAT M(+) IS A

GROUP.

In the following we shall consider only finite (2,p)-semifields; then

Isi = 2k+l; moreovcr we shall exclude the trivial case n=l.

Now we observe that (k+l)·Z = 2k+Z = l (mod n); moreover, since

G.C.D.(p,n) = l, there exists p' e N such that p'.p = l (mod n). Then

we can easily verify that a2 = aP(l). In fact a2 = a·a = a.(a+a)=a3+a 3,
2p' 2p'? ' 2 .' 2 'and a·a =(a+a)'a = a·a- p p + a·a p P=a.a +a.a2=a3+a3,then a2=a.a 2p

and hence a=a
2p

'. From this it follows immediately that aP=a 2p 'P=aZ.

Now we can prove the following

THEOREM l. Let M be the set {beS a·b = a·b}. Then M is a subsemifield

of S(+,·).

. l -l -l
PROOF. C1early if b,bleM then a'(1Il'b1 ) = (b'bi )'a, moreover

Z Z Z Z p p
a'(b+b1) = a ·b + a .bl = b'a + bl·a = b'a + bl·a = (b+bl)·a. Then

M(+,') is a subsemifield of· S(+,·).

Q.LD.

THEDREM 2. Then semigroup M(+) is a group.

PROOF. In fact if beM then 2b=b+b=b2k+2+b2k+2 = bk+l(l+l)=bk+l.ak+l;

(l) Here and in the sequel a is the unique e1ement of S such that a+a=a. It
i.s easy to verify that a=<.Lill 2 (cfr. [1J) .From this it follows that 1+1=
k+l.· f k+1(1 1) 2k+2 2k+2 2a , in act a + = a +a =a+a=a=(l+l).
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a·b=b.a, if heN it follows that zhb=b[(k+1)h].a t , where

idi depends on h but does not depends on b.

is invertible inNow we reca11 that the wset k+l +( Il)

iihence heN exists such that (k+l) ~ l (mod n). As a consequence

h i, fin ii fi i :;:
2 b = b·a therefore (2) b = (L:~~X;)b =b~= b;

n n
then since a is the unique element in S such that afa = a, in the

semigrolJp M(+) b generates a group ""hose zero-element is a. From

this it follows that ll(+} is a group since il is an arbitrary element

of ~1.

Q.LD.

N.2. A CHARACTERIZATION OF M(+,·) AND S(+,·).

We sha11 now prove tl1e fo 11 owi ng

THEOREM 3. For al1 x,yeM _l -1 (x+y = x·a .y. Moreover l+l=a and M,') ;s a direct

product of groups of order 3.

is a commutative group and

PROOF. In fact
-l

= a·x ·yeM.

-l - .. 1x = x·a and y = x·y, where x = x·a eM and y=x .y =
_ - k+1 - _k+l - k - k

Then x+y = x'a + X'y = ~ (a+y) = x .y = x'a .y.
k -kAnalogously y+x = y·a ·x and hence, since M(+) is commutative,

k -k k -k kx·a .y = y·a ·x. Then, by putting y = lJ one has x = x; hence

-1 -lx'a .y = x+y = y+x = y·a ·x. Therefore M(·)

-l -ll+l=l'a ·1 = a ; moreover k-1 is a multiple of the period of x. As a

consequence, since also n=2ktl is a multiple of the period of x,

3=2k+1-2(k-l) is a multiple of the period of x too. Then we can conclude

that M(') is a direct product of groups of order 3.

Q.LO.

Conversely it is easy to verify that if S(.) is a direct product of

groups of order 3 then the fo11owing theorem holds

THEOREM 4. If we define an operation on S by putting x+y=x·b.y, where
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b is a fixed e1ement of S, then 5(+,') is a (2,p)··semifie1d and
-l -l -lb+b =b.

And now we want to prove that if S(+,·) ;, a (2,p)-semifie1d and

151 > l then S(·) is a direct product cf groups of order 3. This is an

immediate consequence of the fo11owing two theorems

THEOREM 5. 5(+) is a group and a is its zero-elemento

k+1 k+1-1PROOF. In fact for all beS one has b+b=b ·(l+l)=b 'a ; then,

since a-1=a2=a P, 4b=(b+b)+(b+b) = bk+l.aP+bk+1 aP=(bk+1+bk+i).a =

=(bk+l )k+1. a-l. a = b[(k+l)2]. Now then, since the coset k+1+(n) is invertible

in (~)(.), the element m = (k+l)2 is such that the coset m+(n) is
hinvertible too. As a consequence an element heN exists such that m = 1

h (mh)(mod n), then 4 b = b = b. The conclusion now fol1ows in the same way

as in the proof of theorem 2.
Q.LO.

THEOREM 6. The subset M coincides with S.

PROOF. In fact for ali xeS one has:

222l+x=a 'a+a ·a·x=a(a+a·x) = a·a·x = a ·x,

1+x=a.a2+x.a.a2=a.aP+x.a.aP=(a+x.a).a=x.a.a=x.a2

Then a~ is a centrai e1ement in sto) and hence a = (a2)2 is centrai too.

Q,LO.

R E F E R E NC E

[1J A. LENZl Su. cU WUl. otJtuttu;f.Q. ,{nbwdottJt da. J. Szép
to be poblished.


