hence

$$\partial(Cv) = (TT_2^*C) \circ (T_1, Tv) \circ (T_1, T_1, C) (0, 1) =$$

$$= ((\partial T_2^*C) \circ T_{TM} + T_2T_2^*C_0) \circ (TV) \circ \partial C =$$

$$= (-s \circ \alpha(T_2\partial C) \circ T_{TM} + id_{TT}^*M) \circ (Tv) \circ u =$$

$$= -s \circ \alpha(Tu) \circ v + Tv \circ u$$

Let us remark that both tensors in (*) are on the same affine fiber on h $TT_{(r,s)}^{M}$.

5 Connection on a bundle.

Let $n \equiv (E,p,M)$ be a bundle.

1 DEFINITION.

A PSEUDO-CONNECTION on n is an affine bundle morphism on h T E

$$\Gamma : TE \rightarrow \overline{V} T E$$

whose fiber derivatives are 1.

A PSEUDO-HORIZONTAL SECTION is a section

Hence the following diagram is commutative

Let us remark that $\Gamma: T \to \overline{\nu} T \to is$ characterized by the map $\Gamma': TE \to \nu T E$ given by $TE \xrightarrow{\Gamma} \overline{\nu} TE \xrightarrow{\mathbb{R}^2} \nu T E$.

2 PROPOSITION.

The maps α and β between the set of pseudo connections and the set of pseudo-horizontal sections, given by

$$\alpha : \Gamma \rightarrow H$$
,

where H is the unique horizontal section such that Γ o H = 0, and

$$\beta: H \rightarrow \Gamma \equiv id_{TE} - H \circ h$$
,

are inverse bijection .

Henceforth we will consider I and H as mutually related. Hence giving a pseudo-connection is the choice of a point for each affine fiber of TE, getting in this way an identification of the affine fibers with their vector spaces.

3 PROPOSITION.

Let $c: R \rightarrow E$ be a map. The following condition are equivalect:

- a) $H \circ h \circ d \subset \Xi H \circ (c,d(p \circ c)) = d \subset C$
- b) $^{-}$ o d c = 0.

4 DEFINITION.

A curve $c: R \rightarrow E$ is HORIZONTAL if the previous conditions are satisfied.

5. PROPOSITION.

The set \mathcal{F} of all pseudo-connections is the affine space of the sections of the affine bundle $\tau_h E$, whose vector space is the space of the sections of the vector bundle $\overline{\tau}_h E$.

6. PROPOSITION.

The following conditions are equivalent

a) Γ : TE $\rightarrow \sqrt{1}$ T E is a linear morphism on E

b) $H: hTE \rightarrow TE$ is a linear morphism on E.

Moreover, if such conditions are verified, then we get

$$TE = hTE \oplus_{E} \forall TE$$
.

PROOF.

$$a) < --> b$$
 trivial.

For the splitting it suffices to take into account the two exact sequences on E

7 DEFINITION.

A CONNECTION (HORIZONTAL SECTION) is a pseudo connection(pseudo-horizontal section) satisfying the condition(a),(b).

Hence giving a connections allows us to make a comparison between "close" fibers of E.

8 PROPOSITION.

Let n be a vector bundle. Let T be a connection.

The following conditions are equivalent

- a) $r : TE \rightarrow \bar{v} TE$ is a vector bundle morphism on TM
- b) H : hTE \rightarrow TE is a vector bundle morphism on TM $\underline{\cdot}$

9 DEFINITION.

A connection (horizontal section) is LINEAR if the previous conditions hold. Hence giving a linear connection allows us to make a comparison between "close" fibers of E by means of isomorphisms.

10 The set J_{ℓ} of all linear connections is an affine subspace of J, whose vector space is the space of bilinear sections of $\bar{\tau}_h^E$ (this vector space is naturally isomorphic to the space of sections $M \to T^*M \otimes E^* \otimes E$).

11 PROPOSITION.

Let Γ' and Γ' be two linear connections on η' and η'' , respectively.

The map $H \equiv t \ o(H' \boxtimes H'') \ : \ hT(E' \boxtimes_M E'') \to t(E' \boxtimes E'')$ is a linear connections on $n' \boxtimes n''$.

Hence the following diagram is commutative:

12 DEFINITION.

The TENSOR PRODUCT of Γ' and Γ'' is the connection associated with the horizontal section H previously defined .

13 PROPOSITION.

Let Γ be a linear connection on η . There is a unique linear connection Γ^* on η^* such that the following diagram is commutative

T E
$$x_{TM}$$
 T E*

$$\uparrow (H,H^*)$$

$$(Ex_M E^*) x_M TM$$

$$0$$

where $b : E \times_M E^* - R$ is the inner product and $b = \pi^2$ o T b.

14 DEFINITION.

The DUAL connection of Γ is the connection associated with the horizontal section H^* previously defined .

15 DEFINITION.

Let Γ be a linear connection on $\eta \equiv \tau M$.

The TORSION of r is the bilinear map

$$\Theta = \coprod_{TM} o(H-s \circ Ho ex) : T Mx_M T M \rightarrow T M.$$

The connection Γ is SYMMETRICAL if $\Theta = 0$.

16 DEFINITION.

A QUADRATIC SPRAY is a second order differential equation

$$X : TM \rightarrow TTM$$

which is factorizable by a symmetrical linear horizontal section as follows

17 PROPOSITION.

The previous diagram determines a bijection between quadratic sprays and symmetrical linear connections .

The quadratic sprays are homogeneous with degree two .

18 DEFINITION.

Let Γ be a linear connection on $\eta = (E, p, M)$.

Let $v : M \rightarrow E$ be a section and let $u : M \rightarrow TM$ be a vector field.

The COVARIANT DERIVATIVE of v with respect u is the section

$$\nabla_{u}v \equiv \coprod_{E} \circ \Gamma \circ T v \circ u : M \rightarrow E$$
.

Hence the following diagram is commutative

Let us remark that we have

$$\nabla_{\mathbf{u}}\mathbf{v} = \prod_{\mathbf{E}} \mathbf{o} \mathbf{r} \mathbf{o} \mathbf{a}(\mathbf{voc}),$$

where $C: R \times M \rightarrow M$ is the group of local diffeomorphisms generated by u.

19 PROPOSITION.

Let be a linear connection on $\eta = (E,p,M)$.

We have

$$\nabla_{fu} = f \nabla_{u} v$$

$$\nabla_{u+u} v = \nabla_{u} v + \nabla_{u} v$$

$$\nabla_{u}(v+v') = \nabla_{u} v + \nabla_{u} v'$$

$$\nabla_{u}(fv) = f \nabla_{u} v + (u,f) v$$

If U c M is open , then

$$\nabla_{\mathbf{u}/\mathbf{v}} \mathbf{v}_{/\mathbf{v}} = (\nabla_{\mathbf{u}} \mathbf{v})_{/\mathbf{U}}.$$

If * is the dual connection of Γ , we have

$$u = \langle \nabla_{u} \omega, v \rangle + \langle \omega, \nabla_{u} v \rangle$$

If is the tensor product of the linear connection Γ' and Γ'' , we have $\nabla_{u}(v' \boxtimes v'') = \nabla_{u} v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' = \frac{1}{2} \left(v' \boxtimes v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v' \otimes v'' + v' \boxtimes \nabla_{u} v'' \right) = \frac{1}{2} \left(v' \boxtimes v' \otimes v'' \right) = \frac{1}{2} \left(v' \boxtimes v' \otimes v'' \right) = \frac{1}{2} \left(v' \boxtimes v' \otimes v' \otimes v'' \right) = \frac{1}{2} \left(v' \boxtimes v' \otimes v' \otimes v'' \right) = \frac{1}{2} \left(v' \boxtimes v' \otimes v' \otimes v'' \right) = \frac{1}{2} \left(v' \boxtimes v' \otimes v' \otimes v' \otimes v'' \right) = \frac{1}{2} \left(v' \boxtimes v' \otimes v' \otimes v' \otimes v' \otimes v'' \right)$

20 PROPOSITION.

Let $\nabla u = \nabla u + L_u + \Theta o(u,v)$. We have $\nabla u = \nabla u + L_u + \Theta o(u,v)$.

PROOF.

$$\nabla_{\mathbf{u}}\mathbf{v} - \nabla_{\mathbf{v}}\mathbf{u} = \prod_{\mathsf{TM}} \mathbf{o} \cdot \mathbf{o} \cdot (\mathsf{T}\mathbf{v} \cdot \mathbf{o} \cdot \mathbf{u} - \mathsf{s} \cdot \mathbf{o} \cdot \mathsf{T}\mathbf{v} \cdot \mathbf{o} \cdot \mathbf{u}) + \Theta \cdot \mathbf{o} \cdot (\mathsf{u},\mathsf{v}) = \mathsf{L}_{\mathsf{u}}\mathsf{v} + \Theta \cdot \mathsf{o}(\mathsf{u},\mathsf{v})$$

PROPOSITION.

Let $g: TM \times_M TM \to R$ be a non degenerate symmetrical linear map. Let us denote by the same notation the associated maps

$$g: TM \rightarrow R$$
, $g: M \rightarrow T_{(0,2)}^{M}$ and $g: TM \rightarrow T^{*}M$.

Each one of the following conditions characterize the same symmetrical linear connection Γ on τM .

a) The following diagram is commutative

b) The following diagram is commutative

T T M
$$\times_{T M}$$
 TTM \dot{g} R

$$(H,H)$$

$$(T M \times_{M} TM) \times_{M} T M \qquad 0$$

- d) The following diagram is commutative