hence

$$
\begin{aligned}
\partial(C V) & =\left(T T_{2}^{*} C\right) \circ\left(T^{1}, T v\right) \circ\left(\pi^{1}, T_{1} C\right)(0,1)= \\
& =\left(\left(\partial T_{2}^{*} C\right) \circ \Pi_{T M}+T_{2} T_{2}^{*} C_{0}\right) \circ(T V) \circ a C= \\
& =\left(-s \circ \alpha\left(T_{2} \partial C\right) \circ \pi_{T M}+i d_{T T_{M}^{*}}\right) \circ\left(T_{V}\right) \circ u= \\
& =-s \circ \alpha(T u) \circ v+T v o u \quad-
\end{aligned}
$$

Let us remark that both tensors in (*) are on the same affine fiber on h ${ }^{T T}(r, s)^{M}$.

5 Connection on a bundle.
Let $n \equiv(E, p, M)$ be a bundle.
1 DEFINITION.
A PSEUDO-CONNECTION on n is an affine bundle morphism on $h T E$

$$
\Gamma: T E \rightarrow \bar{\nu} T E
$$

whose fiber derivatives are 1.

A PSEUDO-HORIZONTAL SECTION is a section

$$
H: h T E \rightarrow T E
$$

Hence the following diagram is commutative

Let us remark that $\Gamma: T E \rightarrow \bar{V} T E$ is characterized by the map $\Gamma^{\prime}: T E \rightarrow \nu T E$ given by $T E \quad \Gamma \bar{v} T E \xrightarrow{\eta^{2}} v T E$.

2 PROPOSITION.
The maps α and β between the set of pseudo connections and the set of pseudo-horizontal sections, given by

$$
\alpha: \Gamma \rightarrow H
$$

where H is the unique horizontal section such that $\Gamma 0 H=0$, and

$$
B: H \rightarrow \Gamma \equiv i d_{T E}-H O h,
$$

are inverse bijection
Henceforth we will consider Γ and H as mutually related. Hence giving a pseudo-connection is the choice of a point for each affine fiber of TE, getting in this way an identification of the affine fibers with their vector spaces.

3 PROPOSITION.
Let $c: R \rightarrow E$ be a map. The following condition are equivalect :
a) $H \circ h \circ d c \equiv H O(c, d(p \circ c))=d c$
b) $-0 d c=0$.

4 DEFINITION.
A curve $c: R \rightarrow E$ is HORIZONTAL if the previous conditions are satisfied.
5. PROPOSITION.

The set J of all pseudo-connections is the affine space of the sections of the affine bundle ${ }^{T}{ }_{h} E$, whose vector space is the space of the sections of the vector bundle $\bar{\tau}_{h}{ }^{E}$ -
6. PROPOSITION.

The following conditions are equivalent
a) $\Gamma: T E \rightarrow \bar{T} E$
is a linear morphism on E
b) $H: h T E \rightarrow T E \quad$ is a linear morphism on E.

Moreover, if such conditions are verified, then we get

$$
T E=h T E \oplus_{E} \quad \cup T E .
$$

PROOF .
$a)<b$ trivial.
For the splitting it suffices to take into account the two exact sequences on E

$$
\begin{aligned}
& 0 \rightarrow \text { VTE } \rightarrow \text { TE } \xrightarrow[\rightarrow]{h} \text { hTE } \rightarrow 0 \\
& 0 \rightarrow \text { hTE } \xrightarrow{H} T E-\Gamma^{\prime} \text { UTE } \rightarrow 0 \rightarrow
\end{aligned}
$$

7 DEFINITION.
A CONNECTION (HORIZONTAL SECTION) is a pseudo connection(pseudo-horizontal section) satisfyng the condition(a), $(b) \quad-$

Hence giving a connections allows us to make a comparison between "close" fibers of E.

8 PROPOSITION.
Let n be a vector bundle. Let Γ be a connection.
The following conditions are equivalent
a) $\Gamma: T E \rightarrow \bar{V} T E$ is a vector bundle morphism on $T M$
b) $H: h T E \rightarrow T E$ is a vector bundle morphism on $T M$.

9 DEFINITION.

A connection (horizontal section) is LINEAR if the previous conditions hold. Hence giving a linear connection allows us to make a comparison between "close" fibers of E by means of isomorphisms.

10 The set \mathcal{F}_{l} of all linear connections is an affine subspace of \widetilde{J}, whose vector space is the space of bilinear sections of $\bar{\tau}_{h} E$ (this vector space is naturally isomorphic to the space of sections $\left.M \rightarrow T^{*} M \otimes E^{*} \otimes E\right)$.

11 PROPOSITION.
Let Γ^{\prime} and Γ^{\prime} be two linear connections on η^{\prime} and $\eta^{\prime \prime}$, respectively.

The map

$$
H \equiv t o\left(H^{\prime} \otimes H^{\prime \prime}\right): h T\left(E^{\prime} \otimes E^{\prime \prime}\right) \rightarrow t\left(E^{\prime} \otimes E^{\prime \prime}\right)
$$

is a linear connections on $\eta^{\prime} \otimes \eta^{\prime \prime}$.
Hence the following diagram is commutative:

12 DEFINITION.

The TENSOR PRODUCT of $r^{\prime \prime}$ and is the connection associated with the horizontal section H previously defined.

13 PROPOSITION.

Let r be a linear connection on There is a unique linear connection Γ^{*} on n^{*} such that the following diagram is commutative

where $b: E X_{M} E^{*}-R$ is the inner product and $D=\pi^{2} 0 T b_{\text {. }}$
14 DEFINITION.
The DUAL connection of r is the connection associated with the horizonta? section H^{*} previously defined -

15 DEFINITION.
Let r be a linear connection on $n \equiv \tau M$.
The TORSION of Γ is the bilinear map

$$
\theta \equiv \|_{T M} O(H-s \text { O Ho ex }): T M x_{M} T M \rightarrow T M .
$$

The connection Γ is SYMMETRICAL if $0=0$

16 DEFINITION.
A QUADRATIC SPRAY is a second order differential equation

$$
X: T M \rightarrow T T M
$$

which is factorizable by a symmetrical linear horizontal section as follows

17 PROPOSITION.
The previous diagram determines a bijection between quadratic sprays and symmetrical linear connections

The quadratic sprays are homogeneous with degree two
18 DEFINITION.
Let Γ be a linear connection on $n \equiv(E, p, M)$.
Let $v: M \rightarrow$ bbe a section and let $u: M \rightarrow T M$ be a vector field.
The COVARIANT DERIVAT:VE of v with respect u is the section

$$
u^{v} \equiv \Pi_{E} \text { oroTvou: M } \rightarrow E \quad \text {. }
$$

Hence the following diagram is commutative

Let us remark that we have

$$
\nabla_{u} v=\Pi_{E} 0 \text { r o a (voc), }
$$

where $\quad C: R \times M \rightarrow M$ is the group of local diffeomorphisms generated by u.

19 PROPOSITION.
Let - be a linear connection on $n \equiv(E, p, M)$.

We have

$$
\begin{aligned}
& \nabla_{f u}=f \nabla_{u} v \\
& \nabla_{u+u^{\prime}} v=\nabla_{u} v+\nabla_{u}{ }^{v} \\
& \nabla_{u}\left(v+v^{\prime}\right)=\nabla_{u} v+\nabla_{u} v^{\prime} \\
& \nabla_{u}(f v)=f \nabla_{u} v+(u, f) v
\end{aligned}
$$

If $U C M$ is open, then

$$
\nabla_{u / v} v / v=\left(\nabla_{u} v\right)_{/ U} .
$$

If * is the dual connection of Γ, we have

$$
\left.u u^{\omega} \omega\right\rangle=\left\langle\nabla_{u} \omega, v\right\rangle+\left\langle\omega, \nabla_{u} v\right\rangle .
$$

If is the tensor product of the linear connection Γ^{\prime} and $\Gamma^{\prime \prime}$,
we nave

$$
\nabla_{u}\left(v^{\prime} \otimes v^{\prime \prime}\right)=\nabla_{u} v^{\prime} \otimes v^{\prime \prime}+v^{\prime} \otimes \nabla_{u} v^{\prime \prime}-
$$

20 PROPOSITION.
Let : be a linear connection on $n \equiv$ т .
We have $\nabla_{u} v=\nabla_{v} u+L_{u} v+\theta o(u, v)$.
PROOF .
$\nabla_{u} v-\nabla_{v} u=\Pi_{T M} 0-0(T v o u-s o T v o u)+\theta 0(u, v)=L_{u} v+\theta o(u, v)$
PROPOSITION.
Let $g: T M x_{M} T M \rightarrow R$ be a non degenerate symmetrical linear map. Let us denote by the same notation the associated maps
$g: T M \rightarrow R$,
S:M $\rightarrow T_{(0,2)^{M}}$ and
$g: T M \rightarrow T^{*} M$.

Each one of the following conditions characterize the same symmetrical linear connection Γ on τ.
a) The following diagram is commutative

- 22 -

b) The following diagram is commutative

$$
\begin{array}{cc}
T T M X_{T M} T T M & R \\
(H, H) & \\
\left(T M X_{M} T M\right) X_{M} T M & 0
\end{array}
$$

c) We have

$$
u g=0
$$

$$
\forall u: M \rightarrow T M .
$$

d) The following diagram is commutative

$$
\begin{array}{ccc}
T M X_{M}^{\top} M & H & T T M \\
i d_{T M} \times g^{-1} & & \\
T M \times_{M} T^{*} M & H^{*} & \\
& & T T^{*} M
\end{array}
$$

