ВЕСЦІ НАЦЫЯНАЛЬНАЙ АКАДЭМІІ НАВУК БЕЛАРУСІ № 2 2014 СЕРЫЯ ХІМІЧНЫХ НАВУК

УДК 541.182

Ю. С. ГАЙДУК, М. С. КРЕМЕНЕВСКАЯ, А. А. САВИЦКИЙ, И. А. ТАРАТЫН

ВЛИЯНИЕ ДОБАВКИ Fe₂O₃ НА ГАЗОЧУВСТВИТЕЛЬНЫЕ СВОЙСТВА ОКСИДНОЙ КОМПОЗИЦИИ In₂O₃-Ga₂O₃

Минский НИИ радиоматериалов

(Поступила в редакцию 05.11.2013)

Введение. Металлоксидные полупроводники (SnO₂, ZnO, TiO₂, In₂O₃, WO₃) традиционно используются для изготовления газовых сенсоров, чувствительных к H₂, CO_x, NO_x, углеводородам, парам летучих органических соединений. Как правило, гетерофазные нанокомпозиты, в которых рецепторная и преобразовательная функции сенсора разделены между отдельными фазами, демонстрируют лучшие характеристики по сравнению с фазово-однородными структурами [1]. Газочувствительные свойства оксидных композиций Ga₂O₃:In₂O₃, полученных различными методами, изучаются длительное время [2]. Например, известно, что сенсоры на основе In₂O₃:Ga₂O₃ (96:4), полученного твердофазным синтезом, в температурном интервале 200–350 °C обладают высокой чувствительностью как к NO₂, так и к H₂, CO, CH₄, этанолу, летучим органическим соединениям [2].

В работе [1] сообщалось, что тонкопленочные сенсоры на основе нанокомпозитов Fe_2O_3 -In₂O₃ не чувствительны к CH₄, NH₃ и низким концентрациям CO, но демонстрируют высокий сенсорный отклик к NO₂ при низких (до 200 °C) температурах, причем величина отклика зависит от условий синтеза Fe_2O_3 и оказывается наиболее высокой при осаждении гидроксида железа из солей Fe(II) при 70 °C для композиции состава In₂O₃/Fe₂O₃ = 9:1.

Настоящая работа посвящена изучению газочувствительных свойств нанокомпозитов In₂O₃–Ga₂O₃–Fe₂O₃ в области 200–450 °C с целью создания промышленных резистивных газовых сенсоров с низким порогом детектирования NO₂.

Экспериментальная часть. Нанодисперсные золи оксида железа (II, III) получали осаждением из водных растворов $FeSO_4 \times 7H_2O$ и $FeCl_3$ при добавлении аммиака. Исследуемые композиции получали смешением совместно осажденных золей гидратированных оксидов индия и галлия (с содержанием галлия в пересчете на оксид 2, 5, 8 мас.%), с необходимым количеством золя гидратированного оксида железа (II, III) (2,5; 5; 10 мас.%, в пересчете на Fe_2O_3). Рентгенографические исследования проводили на дифрактометре «ДРОН-3М» (Си_{ка}-излучение, $\lambda = 0,15418$ нм).

Для исследования газочувствительных свойств использованы поверочные газовые смеси, содержащие 2 и 10 ppm NO₂ в азоте (производство РУП «Белорусский государственный институт метрологии»), и CO 5000 ppm, CH₄ 5000 ppm и H₂ 5 ppm в синтетическом воздухе (21 об.% O₂, 79 об.% N₂, производство ОАО «Минский НИИ радиоматериалов»). Детектирование целевых газов проводили при помощи газового сенсора типа «пеллистор», представляющего собой спиралевидную платиновую микропроволоку, встроенную в шаровидную керамическую капсулу [3]. Капсула образовывалась после нанесения на спираль коллоидного раствора исследуемой оксидной композиции, сушки и последующего окончательного отжига при 400–600 °C в течение 5 ч. Нижняя граница содержания Ga₂O₃ в композиции с In₂O₃ величиной 2 мас.% определяется особенностями изготовления сенсоров типа «пеллистор». Капсулы удовлетворительного качества ввиду реологических свойств коллоидного раствора оксидов индия и галлия образуются при содержании Ga₂O₃ не менее 2 мас.%, причем оптимальными являются коллоидные растворы с содержанием Ga₂O₃ 4–8 мас.%. Нагревание платиновой спирали со сформированным на ней керамическим слоем оксидной композиции осуществляли стабилизированным постоянным током при помощи источника питания БП-510. Напряжение на сенсоре определяли при помощи цифрового амперовольтметра B7-40 в режиме стабилизации источника питания по току (в интервале 90–200 мА). Температуру рабочего элемента сенсора *T* определяли при помощи ИК пирометра IMPAC IP-140 (Luma Sence Technologies), оснащенного оптическим видоискателем (точность 2 °C до 400 °C, 0,3 % измеряемой величины + 1 °C выше 400 °C). Сенсорный отклик ($\Delta U = U_{ra3} - U_{BO3dyx}$) определяли как разность между напряжением на сенсоре при воздействии активного газа (U_{ra3}) и напряжением на сенсоре в воздухе (U_{BO3dyx}) при неизменном значении тока нагревателя. Потребляемую мощность находили как $P = I \times U_0$, где U_0 – напряжение на токоподводах сенсора до подачи исследуемого газа.

Результаты и их обсуждение. Методом рентгенофазного анализа установлено образование в процессе отжига в интервале температур 400–600 °C твердого раствора (Ga, In)₂O₃ на основе кристаллической структуры *C*-In₂O₃. Совместная термическая обработка композиций Ga₂O₃/In₂O₃ и золей Fe₂O₃ приводит к преимущественному сохранению обособленных фаз (Ga, In)₂O₃ и α -Fe₂O₃, растворение Fe₂O₃ в (Ga, In)₂O₃ крайне незначительно.

В ряде работ подробно изучались структурные превращения оксида железа, полученного аммонолизом водных растворов солей двух- и трехвалентного железа. С точки зрения газочувствительных свойств композиций, содержащих Fe_2O_3 , наиболее важным оказываются переход γ - Fe_2O_3 , преимущественно образующийся из солей двухвалентного железа, в α - Fe_2O_3 при термической обработке нанокомпозитов, а также растворение Fe_2O_3 в In_2O_3 . Сообщалось, что соответствующие железосодержащие твердые фазы обладают выраженными различиями в газовой чувствительности [1].

Из данных РФА следует, что после отжига 5 ч при 600 °C в системе $Fe_2O_3/Ga_2O_3/In_2O_3$ процесс перехода γ -Fe₂O₃ в α -Fe₂O₃ завершается практически полностью. Фазовый состав композиций, полученных с использованием Fe(SO₄)×7H₂O и FeCl₃, практически идентичен.

Введение Ga₂O₃ в состав In₂O₃ увеличивает выходной сигнал и понижает электрическое сопротивление чувствительного слоя. Снижение электрического сопротивления наблюдается, однако, при концентрации Ga₂O₃ не выше 4 мас.%. Если образцы с содержанием Ga₂O₃ 2 и 4 мас.% по величине сенсорного отклика на NO₂ отличаются незначительно, образец с содержанием Ga₂O₃ 8 мас.% демонстрирует существенно меньшую величину отклика в области небольших мощностей. На рис. 1–3 представлены результаты для образцов с Fe₂O₃, осажденных из FeSO₄×7H₂O и отожженных 5 ч при 600 °C.

Рис. 1. Зависимость выходного сигнала сенсора ΔU от содержания добавки Fe₂O₃ при детектировании CO (5000 ppm), CH₄ (5000 ppm), NO₂⁻ (10 ppm) при потребляемой мощности 200 мВт: $1 - \ln_2O_3/Ga_2O_3/Fe_2O_3 = (96-x):4:x$, 5000 ppm CO; $2 - \ln_2O_3/Ga_2O_3/Fe_2O_3 = (96-x):4:x$, 5000 ppm H₂; $3 - \ln_2O_3/Ga_2O_3/Fe_2O_3 = (96-x):4:x$, 10 ppm NO₂; $4 - \ln_2O_3/Ga_2O_3/Fe_2O_3 = (92-x):8:x$, 5000 ppm CO; $5 - \ln_2O_3/Ga_2O_3/Fe_2O_3 = (92-x):8:x$, 5000 ppm CH₄; $6 - \ln_2O_3/Ga_2O_3/Fe_2O_3 = (92-x):8:x$, 10 ppm NO₂

Рис. 2. Зависимость выходного сигнала сенсора ΔU от потребляемой мощности при детектировании NO₂ (10 ppm): $1 - \text{In}_2\text{O}_3/\text{Ga}_2\text{O}_3/\text{Fe}_2\text{O}_3 = 92:8:0; 2 - \text{In}_2\text{O}_3/\text{Ga}_2\text{O}_3/\text{Fe}_2\text{O}_3 = 93:2:5; 3 - \text{In}_2\text{O}_3/\text{Ga}_2\text{O}_3/\text{Fe}_2\text{O}_3 = 87:8:5; 4 - \text{In}_2\text{O}_3/\text{Ga}_2\text{O}_3/\text{Fe}_2\text{O}_3 = 89,5:8:2,5; 5 - \text{In}_2\text{O}_3/\text{Ga}_2\text{O}_3/\text{Fe}_2\text{O}_3 = 91:4:5; 6 - \text{In}_2\text{O}_3/\text{Ga}_2\text{O}_3/\text{Fe}_2\text{O}_3 = 82:8:10$

Рис. 3. Температурная зависимость сенсорного отклика $In_2O_3/Ga_2O_3/\alpha$ -Fe₂O₃= 87:8:5 в сенсорах на основе Ptмикронагревателя («пеллистор»): 1 - 2 ppm NO₂ в N₂; 2 - 10 ppm NO₂ в N₂; 3 - 5 ppm H₂ в воздухе; 4 - 5000 ppm CO в воздухе; 5 - 5000 ppm CH₄ в воздухе

Установлено, что введение α-Fe₂O₃ в состав газочувствительных слоев In₂O₃/Ga₂O₃ с содержанием Ga₂O₃ от 2 до 8 мас.% приводит к монотонному снижению чувствительности к СО, СН₄ и Н₂, причем в наибольшей степени к СО (рис. 1). При этом состав $In_2O_3:Ga_2O_3 = 98:2$ без добавки оксида железа не обладает заметной селективностью при определении NO_2 в присутствии H_2 , CO и CH₄. Увеличение содержания α -Fe₂O₃ во всех композициях In₂O₃ / Ga₂O₃ до 5 мас.% приводит к росту выходного сигнала сенсоров на NO₂, дальнейшее же увеличение содержания добавки снижает величину выходного сигнала и приводит к повышению потребляемой мощности сенсора (рис. 2). В этой связи можно предположить, что распределение α-Fe₂O₃ в объеме твердого раствора $(Ga, In)_2O_3$ в виде преимущественно нанодисперсных высокодеффектных включений, сравнимых по величине с удвоенным значением дебаевского расстояния, повышает количество активных адсорбционных центров, способных к специфической хемосорбции NO₂ и NH₃, и в свою очередь увеличивает сенсорный отклик к указанным газам [4]. Ухудшение электрофизических характеристик слоев с дальнейшим ростом концентрации добавки α-Fe₂O₃ можно объяснить преимущественно снижением удельной электропроводности чувствительного слоя, связанной с накоплением оксида железа как в плохопроводящей фазе α-Fe₂O₃, так и в фазе твердого раствора (Fe,Ga) In_2O_3 .

На рис. 3 представлены температурные зависимости выходного сигнала сенсора на основе газочувствительного слоя $In_2O_3:Ga_2O_3:\alpha$ -Fe₂O₃ = 87:8:5 к исследованным газовым смесям. Во всем исследованном температурном интеравале наблюдается высокая (до 100 мВ) разница между выходными сигналами к 2 и к 11 ppm NO₂ в N₂.

Во всем исследованном температурном интервале 350–470 °C, соответствующем рабочему току нагревателя 90–200 мА, газовые сенсоры на основе $In_2O_3 - Ga_2O_3$ (содержание Ga_2O_3 2–8 мас.%) с добавкой 5–10 мас.% Fe₂O₃ не показали чувстви-

тельности к парам этанола и изопропанола. Время достижения максимального сигнала и время восстановления сенсора при детектировании NO₂ (2 и 10 ppm) чувствительными слоями всех исследованных составов составляло 25–30 и 5–8 с соответственно, а при детектировании CO (5000 ppm) и CH₄ (5000 ppm) – 8–10 и 3–7 с.

Заключение. Введение в состав оксидной композиции In_2O_3/Ga_2O_3 оксида железа α -Fe₂O₃ приводит к существенному повышению селективности детектирования NO₂ в газовых смесях. Небольшая мощность (около 200 мВт) изготовленных на базе слоев составов $In_2O_3:Ga_2O_3:\alpha$ -Fe₂O₃ = (100 - x - y) : x : y при $x = 2 \div 4$ и $y = 5 \div 10$ мас.% рабочих моделей газовых сенсоров позволяет предположить возможность создания технологии промышленных высокотемпературных (рабочая температура до 450 °C) селективных сенсоров NO₂ с низким порогом чувствительности (2 ppm и менее) и удовлетворительным временем срабатывания и восстановления.

Литература

1. Ивановская М. И., Котиков Д. А. // Химические проблемы создания новых материалов и технологий. Минск, 2003. 2. Алексанян М. С., Аракелян В. М., Арутюнян В. М., Адамян А. З., Шахназарян Г. Э. // Изв. НАН Армении. Физика. 2010. Т. 45. С. 477–455.

3. Гринчук А. П., Таратын И. А., Хатько В. В. // Приборы и методы измерений. 2010. № 1. С. 51–55.

4. Yamazoe N. // Sensors and Actuators B: Chemical. 1991. Vol. 5. P. 7-19.

Yu. S. HAIDUK, M. S. KREMENEVSKAYA, A. A. SAVITSKY, I. A. TARATYN

THE EFFECT OF Fe₂O₃ DOPING ON THE GAS SENSITIVE PROPERTIES OF In₂O₃-Ga₂O₃ COMPOSITION

Summary

The sensitivity of nanocomposites In_2O_3 : Ga_2O_3 (98:2, 96:4, 92:8 wt.%), both pure and doped with Fe_2O_3 (0,5–10 wt.%), has been investigated. Nanocomposites In_2O_3 : Ga_2O_3 have been obtained by the sol-gel method, Fe_2O_3 has been obtained by various methods of Fe (II) and Fe (III) salts deposition. Standart gas mixtures contained 5000 ppm CH₄ in air, 5000 ppm CO in air, as well as 2 and 10 ppm NO₂ in nitrogen. The possibility of selective detection of NO₂ over CH₄, CO, ethanol vapor and other volatile organic compounds at low sensor power consumption (200 mW) has been established.