338 Proceedings of the National academy of sciences of Belarus, Chemical series, 2019, vol. 55, no. 3, pp. 338–344

ISSN 1561-8331 (Print) ISSN 2524-2342 (Online) УДК 541.182 https://doi.org/10.29235/1561-8331-2019-55-3-338-344

Поступила в редакцию 11.06.2019 Received 11.06.2019

Т.Ф. Кузнецова, А.И. Иванец, В.С. Комаров

Институт общей и неорганической химии НАН Беларуси, Минск, Беларусь

НИЗКОТЕМПЕРАТУРНЫЙ СИНТЕЗ МЕЗОПОРИСТЫХ МЕТАЛЛОСИЛИКАТОВ ТИПА M41S И ИХ АДСОРБЦИОННЫЕ И КАПИЛЛЯРНО-КОНДЕНСАЦИОННЫЕ СВОЙСТВА

Аннотация. Проведен низкотемпературный синтез мезопористых силикатов, содержащих *d*-металлы. Измеренные изотермы низкотемпературной адсорбции–десорбции азота, полученные хромо-, ванадо- и цирконосиликатными адсорбентами, относятся к типу IV(b) изотерм сорбции по классификации IUPAC. Изотермические кривые такого рода присущи мезопористым системам с типом M41S упорядочения составляющих элементов. Увеличение pH осаждения и рост содержания металла приводят к аморфизации образцов и искажению надмолекулярной рещетки с единой регулярной геометрией и дальним порядком.

Ключевые слова: мезопористое молекулярное сито, M41S, капиллярно-конденсационный гистерезис

Для цитирования. Кузнецова, Т.Ф. Низкотемпературный синтез мезопористых металлосиликатов типа M41S и их адсорбционные и капиллярно-конденсационные свойства / Т.Ф. Кузнецова, А.И. Иванец, В.С. Комаров // Вес. Нац. акад. навук Беларусі. Сер. хім. навук. – 2019. – Т. 55, № 3. – С. 338–344. https://doi.org/10.29235/1561-8331-2019-55-3-338-344

T.F. Kouznetsova, A.I. Ivanets, V.S. Komarov

Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus, Minsk, Belarus

LOW-TEMPERATURE SYNTHESIS OF MESOPOROUS M41S METAL-SILICATES AND THEIR ADSORPTION AND CAPILLARY-CONDENSATION PROPERTIES

Abstract. Low-temperature synthesis of the mesoporous silicates containing d-metals is carried out. The measured isotherms of low-temperature nitrogen adsorption-desorption by chrome, vanadium and zirconium silicate adsorbents belong to Type IV (b) of sorption isotherms on IUPAC classification. Such isothermal curves are inherent in mesoporous systems with the M41S type of ordering of the making elements. Increasing pH of sedimentation and metal content lead to amorphization of samples and distortion of a supramolecular lattice with uniform regular geometry and a long-range ordering.

Keywords: mesoporous molecular sieve, M41S, capillary – condensation hysteresis

For citation. Kouznetsova T. F., Ivanets A. I., Komarov V.S. Low-temperature synthesis of mesoporous M41S metal-silicates and their adsorption and capillary-condensation properties. *Vestsi Natsyyanal'nai akademii navuk Belarusi*. *Seryya khimichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Chemical series*, 2019, vol. 55, no. 3, pp. 338–344 (in Russian). https://doi.org/10.29235/1561-8331-2019-55-3-338-344

Введение. Основу многих гетерогенных систем в современном катализе, а также в молекулярно-ситовом разделении газов, очистке, выделении и хранении компонентов жидких и газовых сред составляют упорядоченные микро- и мезопористые неорганические материалы [1–5]. Цеолиты, как кристаллические микропористые молекулярные сита, наряду с их общепризнанными молекулярно-ситовыми свойствами, долгое время были известны только в качестве кислотных катализаторов в газофазных реакциях. Лишь после реализации изоморфного замещения кремния и алюминия *d*-элементами у цеолитов были обнаружены окислительно-восстановительные свойства [3]. Авторы в работе [6], изучив структуру, термостабильность и адсорбционные свойства титаносодержащих каркасных цеолитов типа Y, L, эрионита и морденита в K⁺-, Na⁺-, NH⁺₄- и H⁺-формах, полученных путем их адсорбционного насыщения парами TiCl₄ с последующим восстановлением титана водородом, обнаружили, что образцы проявляют высокую каталитическую активность в реакциях окисления и полимеризации. Сложное модифицирование цеолитов приводило к их аморфизации, очень сильной для декатионированных образцов, но мало заметной для К⁺- и Na⁺- форм и особенно для высококремнеземного морденита. Локализа-

[©] Кузнецова Т.Ф., Иванец А.И., Комаров В.С., 2019

ция *d*-металлов и их комплексов в цеолитах, компенсирующая анионный заряд каркаса, происходила в больших полостях цеолита [7].

Мезопористые молекулярные сита класса M41S, объединяющие силикаты с гексагональной, кубической или пластинчатой упаковкой цилиндрических пор, обнаруживают узкие распределения пор по размерам, аналогичные классическим цеолитам, но с преобладающим эффективным размером от 2 до 50 нм, высокими удельными значениями площади поверхности $\geq 1000 \text{ m}^2/\text{г}$ и объема пор $\approx 1,0 \text{ см}^3/\text{г}$, а также значительными гидро- и термостабильностью [1, 3, 8]. Начальный мезопористый материал МСМ-41 по химическому составу является аморфным оксидом кремния(IV) с терминальными ОН-группами, в котором однородные поры объединены в надмолекулярную решетку с единой регулярной геометрией и дальним порядком. Вещество МСМ-41 демонстрирует рентгеновскую дифракцию из трех наиболее заметных пиков в области малых брегговских углов при *d*-значениях ($d_{100} = 3,98$, $d_{110} = 2,29$, $d_{200} = 1,98$ нм), отражающих расстояния «от поры к поре» [3, 5], и в этом смысле его пористая структура является «кристалличной». Согласно IUPAC [1], его состав и строение после прокаливания схематически описываются «кристаллохимической формулой»:

$[Si_nO_{2n}]_h{3[amorphous]}_n{1[001] (3,7)}(H),$

где символ (H) относится к гексагональной кристаллической системе, а левые нижние индексы h и p – к аморфному оксиду кремния(IV) или поре соответственно (от английских «Hexagonal», «host» и «pore»). Одномерная пористая система выстроена гексагонально упакованными параллельными цилиндрическими капиллярами [001] с эффективным диаметром 3,7 нм.

Синтез мезопористых молекулярных сит осуществляют, как правило, гидротермальным методом на алкилтриметиламмониевых или алкилпиридиниевых шаблонах, используя различные прекурсоры оксида кремния(IV), от коллоидного кремнезема до тетраэтоксиортосиликата в присутствии разнообразных противоионов, глинозема и каталитически активных металлов, влияющих на свойства стенок пор [3–5, 8]. Последнее обстоятельство не только открывает серьезные перспективы для новых каталитических реакций, помимо селективного окисления и крекинга, но и фокусирует внимание исследователей на способности мезопористых молекулярных сит генерировать свободные радикалы в присутствии следовых количеств кислорода и влиять на каталитическую активность в реакциях, катализируемых кислотами.

Работа посвящена разработке низкотемпературного синтеза мезопористых силикатов, содержащих *d*-металлы и обладающих свойствами мезопористых молекулярных сит класса M41S. Цель – изучить адсорбционные характеристики и структуру полученных материалов для выявления новых областей их применения в сорбции и катализе. Исходя из задачи, адсорбционный метод исследования был выбран как наиболее информативный среди иных методов изучения текстуры, изменяющейся посредством заполнения пустот, выравнивания заряда поверхности, стабилизации структурных единиц и т.д.

Экспериментальная часть. В качестве исходных веществ использовали химически чистые (оксо)соли хрома, циркония, ванадия и олигомерные формы оксида кремния (IV) в виде жидкого стекла с концентрацией SiO, 5,5 мас.%. Считали, что вид аниона в соли металла не влияет на текстуру получаемого продукта. Металлосиликаты с различным массовым соотношением Me/Si (%) получали осаждением в периодическом режиме, взяв за основу синтез алюмосиликатного катализатора нейтрализацией смеси растворов соли металла и силиката натрия [8]. В качестве темплата использовали хлорид цетилпиридиния в мицеллярной форме. Для нейтрализации щелочи применяли 35%-ную серную кислоту. Добавленную к реакционной смеси соль металла гидролизовали, доводя раствором NH, ×H, O до фиксированных значений pH (от 3 до 10). Осадок отделяли и высушивали на воздухе, суспендировали в растворе сульфата аммония и дважды в растворе NH, ×H,O, после чего двукратно промывали дистиллированной водой. Полученный ксерогель прокаливали в муфельной печи при 923 К в течение 2 ч. Текстуру образцов оценивали удельными характеристиками объема пор и площади поверхности, вычисленными из изотерм низкотемпературной адсорбции-десорбции азота. Изотермы измеряли объемным методом на анализаторе площади поверхности и пористости ASAP 2020MP. Удельную поверхность определяли методами БЭТ (A_{вет}) и Ленгмюра (A₁), площадь внешней поверхности (A_{ext}) – сравнительным методом *t*-графика. Среднюю статистическую толщину *t* адсорбционной пленки определяли по уравнению Гаркинса–Юры:

$$t = (n/n_{\rm m}) \times \sigma$$
,

где *n/n_m* – число статистических монослоев в пленке; *n_m* – емкость монослоя в молях адсорбата; σ – толщина одного слоя, равная для азота при 77 К 0,354 нм в предположении плотнейшей гексагональной упаковки молекул в адсорбционной пленке.

Анализируемую изотерму перестраивали в *t*-график в виде функции n = f(t). Замена p/p_0 на *t* позволяла проводить сравнение изотермы и стандартной *t*-кривой. Внешнюю площадь поверхности A_{ext} в расчете на единицу массы твердого тела получали как разность удельной поверхности (по БЭТ) и площади поверхности A_{micro} микропор, вычисленной *t*-методом:

$$A_{\text{ext}} = A_{\text{BET}} - A_{\text{micro}}.$$

Методом одной точки (по Гурвичу) рассчитывали объем ($V_{\rm sp}$) пор. Десорбционный кумулятивный объем ($V_{\rm BIH\,des}$) группы пор диаметром в диапазоне от 1,7 до 300 нм определяли методом ВЈН (Барретта–Джойнер–Халенды). Для описания реальной текстуры образцов использовали модель NLDFT (*NonlocalDensityFunctionalTheory*). Образцы перед анализом вакуумировали при температуре 523 К и остаточном давлении 133,3 × 10⁻³ Па в течение 2 ч.

Результаты и их обсуждение. На рис. 1–3 приведены линейные изотермы низкотемпературной сорбции азота и кривые NLFDT-распределения пор образцов SiO₂ по размеру. Изотермы низкотемпературной адсорбции–десорбции азота имеют черты изотерм типа IV(b) (по IUPAC [9]), с характерным резким увеличением количества адсорбированного азота при относительном давлении $p/p_0 \approx 0,20-0,30$, присущим упорядоченным мезопористым материалам класса M41S. Всем изотермам свойственен обратимый участок при низких значениях относительного давления и петля капиллярно-конденсационного гистерезиса при более высоких $p/p_0 > 0,42$, что позволяет отнести изученные кремнеземы к мезопористым адсорбентам.

Форма петель капиллярно-конденсационного гистерезиса в области средних значений относительных давлений, $0,42 < p/p_0 < 0,8-0,9$, идентифицируется как *H*4 и при очень высоких значениях $p/p_0 > 0,8-0,9$ – как *H*3 (рис. 1–3). Оба типа петель связаны с упаковкой частиц, образованных силикатными слоями [9]. Согласно NLFDT-распределениям пор образцов и формальным расчетам по ВЈН, средний (гидравлический) диаметр пор может находиться в узком диапазоне 2–3 нм (рис. 1–3).

Рис. 1. Изотермы низкотемпературной адсорбции-десорбции азота и NLDFT-распределение пор по размеру для хромосиликатов, полученных при массовом соотношении Cr/Si (%), равном 5/95, и различном значении pH: 803 – 3; 804 – 5; 807 – 8; 808 – 10

Fig. 1. Low-temperature nitrogen adsorption-desorption isotherms and NLDFT-pore size distribution for chromosilicates obtained with a Cr / Si weight ratio (%) equal to 5/95 and different pH values: 803 – 3; 804 – 5; 807 – 8; 808 – 10

Рис. 2. Изотермы низкотемпературной адсорбции–десорбции азота и NLDFT-распределение пор по размеру для цирконосиликатов, полученных при массовом соотношении Zr/Si (%), равном 15/85, и различном значении pH: 687 – 3; 688 – 5; 689 – 8; 690 – 10

Fig. 2. Low-temperature nitrogen adsorption-desorption isotherms and NLDFT pore size distribution for zirconosilicates obtained with a Zr/Si weight ratio (%) equal to 15/85 and different pH values: 687 – 3; 688 – 5; 689 – 8; 690 – 10

Рис. 3. Изотермы низкотемпературной адсорбции–десорбции азота и NLDFT-распределение пор по размеру для ванадосиликатов, полученных при массовом соотношении V/Si (%), равном 15/85, и различном значении pH: 722 – 3; 723 – 5; 724 – 8; 725 – 10

Fig. 3. Low-temperature nitrogen adsorption-desorption isotherms and NLDFT pore size distribution for vanadosilicates obtained with a V / Si weight ratio (%) equal to 15/85 and different pH values: 722 - 3; 723 - 5; 724 - 8; 725 - 10

Из табл. 1 видно, что у хромосиликатов наблюдается падение удельной поверхности с ростом значения pH от 3 до 8 и некоторое увеличение этого параметра при pH 10. Удельный объем пор при этом в основном либо падает с ростом pH, либо стабилизируется. Значения среднего диаметра пор возрастают от 3 до 4 нм. В отсутствие *d*-металла площадь поверхности оксида кремния(IV) по БЭТ составляет 1065 м²/г, внешняя площадь по *t*-методу – 1361 м²/г, объем пор по Гурвичу – 0,705 см³/г, кумулятивный объем мезопор – 0,406 см³/г (табл. 1). Те же параметры при введении катиона хрома(III) в молярном соотношении 4/96 составляют 1134 и 1932 м²/г и 0,836 и 0, 622 см³/г (табл. 1). Гидравлические диаметры отличаются мало, и уникальное однородное

ASAP 001-	Cr/Si	pH	$A_{\rm БЭТ,}{\rm M}^2/{\rm G}$	$A_{\rm ext}$, м ² /г	$V_{\rm sp},{\rm cm^3/r}$	$V_{\rm BJH\ des},{ m cm^3/r}$	<i>D</i> , нм	$D_{\rm в JH}$, нм
782	1\99	3	1129	1625	0,815	0,598	2,9	3,8
783		5	1100	1748	0,773	0,592	2,8	3,2
786		8	976	1391	0,769	0,640	3,2	3,9
787		10	1026	1611	0,789	0,629	3,1	3,8
792	3\97	3	1180	1913	0,791	0,539	2,7	3,7
793		5	1124	1840	0,760	0,520	2,7	3,6
794		8	1004	1536	0,795	0,671	3,2	3,8
795		10	1024	1619	0,806	0,617	3,1	4,1
797	4\96	3	1134	1932	0,836	0,622	2,9	3,5
798		5	1128	1710	0,839	0,671	3,0	3,2
801		8	962	1257	0,806	0,711	3,4	3,8
802		10	993	1327	0,836	0,762	3,7	3,8
803	5/95	3	1161	1774	0,713	0,435	2,5	3.5
804		5	1137	1843	0,696	0,389	2,4	3,0
807		8	924	1424	0,746	0,544	3,0	4,0
808		10	972	1264	0,809	0.655	3,3	4.3
821	7/93	3	1104	1845	0,796	0,644	2,9	3,3
822		5	1143	1600	0,851	0,667	3,0	3,4
823		8	995	1393	0,734	0,534	2,9	3,8
824		10	970	1471	0,849	0,722	3,5	4,4
825	8/92	3	1218	2040	0,840	0,577	2,8	3,9
826		5	1202	2080	0,796	0,512	2,6	3,3
837		8	965	1201	0,727	0,548	3,0	4,2
838		10	894	1272	0,704	0,513	3,1	4,5
857	10/90	3	1223	1802	0,797	0,462	2,6	4,4
858		5	1138	1677	0,751	0,483	2.6	3,5
861		8	896	1247	0,660	0,491	2,9	3,9
862		10	941	1297	0,702	0,498	3,0	4,1
863	25/75	3	1143	1702	0,742	0,445	2,6	4,2
864		5	1148	1719	0,836	0,616	2,9	3,8
865		8	653	773	0,554	0,465	3,4	4,3
869		10	707	904	6510,	0,575	3,7	4,3
874	Si100	3	1065	1361	0,705	0,406	2,6	4,7

Таблица 1. Адсорбционные и текстурные параметры хромосиликатов Table 1. Adsorption and textural parameters of chromosilicates

Таблица 2. Адсорбционные и текстурные параметры цирконосиликатов Table 2. Adsorption and textural parameters of zirconosilicates

ASAP 001-	Zr/Si	pН	$A_{\rm БЭТ,} {\rm M}^2/{\rm G}$	$A_{\rm ext}$, ${\rm M}^2/{\rm G}$	$V_{\rm sp}$, см ³ /г	$V_{\rm BJH\ des},{ m cm}^3/\Gamma$	<i>D</i> , нм	$D_{\rm BJH}$, нм
679	5/95	3	837	1051	0,583	0,406	2,8	4,7
680	5/95	5	888	1079	0,618	0,413	2,8	3,9
681	5/95	8	895	1019	0,702	0,600	3,1	3,6
686	5/95	10	853	1017	0,649	0,511	3,0	3,7
687	15/85	3	776	926	0,467	0,223	2,4	3,8
688	15/85	5	656	798	0,460	0,290	2,8	5,6
689	15/85	8	661	773	0,530	0,377	3,2	6,1
690	15/85	10	646	733	0,509	0,361	3,1	6,1
691	25/75	3	653	740	0,388	0,174	2,4	4,7
692	25/75	5	531	566	0,358	0,212	2,7	6,1
693	25/75	8	508	475	0,515	0,412	4,1	8,5
703	25/75	10	523	492	0,548	0,429	4,2	8,5

ASAP 001-	V/Si	pH	$A_{\rm E ext{-} T_{\rm s}} {\rm m}^2/{\rm f}$	$A_{\rm ext}$, м ² /г	$V_{\rm sp},{\rm cm^3/r}$	$V_{\rm BJH\ des},{ m cm^3/r}$	<i>D</i> , нм	$D_{\rm в J H}$, нм
714	10/90	3	950	1094	0,794	0,763	3,3	3,5
715	10/90	5	849	946	0,685	0,636	3,2	3,5
716	10/90	8	857	923	0,790	0,814	3,7	3,9
717	10/90	10	842	857	0,718	0,706	3,4	3,5
722	15/85	3	1142	1657	0,761	0,474	2,7	3,9
723	15/85	5	857	841	0,527	0,261	2,5	6,4
724	15/85	8	744	907	0,493	0,329	2,7	5,4
725	15/85	10	761	963	0,496	0,279	2,6	5,0
730	25/75	3	1039	1250	0,895	0,910	3,4	3,5
731	25/75	5	579	596	0,432	0,296	3,0	4,9
732	25/75	8	21	24	0,0258	0,0319	4,9	6,8
733	25/75	10	59	56	0,131	0,134	8,9	11,8

блица	3. <i>I</i>	Адсорбционные и текстурные параметры ванадосиликатов
Table	3.	Adsorption and textural parameters of vanadosilicates

распределение объема мезопор по диаметру сохраняется. Объем пор при всех концентрациях *d*-металла, как правило, выше, чем объем пор исходного мезопористого молекулярного сита.

Итак, экспериментальные результаты и расчетные данные на рис. 1-3 и в табл. 1-3 показывают, что при увеличении pH удельные значения площади поверхности и объема пор металлосодержащих материалов обычно снижаются, а средний размер пор возрастает. При фиксированных значениях pH с ростом содержания ванадия и циркония обнаруживается преимущественно та же направленность и повторяемость значений A, V и D, хотя закономерности изменения этих величин в зависимости от вида катиона переходного металла гораздо сложнее, что, на наш взгляд, обусловлено особенностями введения различных гетероатомов в кремнеземный каркас, а также образованием их внекаркасных разновидностей.

Известно, что в случае цеолитов изоморфное замещение, связанное с катионным обменом в анионном каркасе, осуществляется только в процессе синтеза, и что способность иона металла Ме^{*n*+} к внедрению зависит от ионного радиуса и способности элемента находиться в соответствующем оксиде в стабильной тетраэдрической координации с критерием Полинга ρ в интервале 0,225–0,414 [7, 10]:

$\rho = r^+/r^-,$

где r^+ и r^- – радиусы катиона и аниона соответственно.

Та

Однако систематические исследования показывают, что, помимо Ті, существует целый ряд элементов, таких как В, Ga, Fe, Co, Mo, Zr, Zn, не подчиняющихся этому правилу [7]. Число отражений на дифрактограммах полученных образцов оксида кремния(IV), доказывающих наличие мезопористого молекулярного сита МСМ-48, невелико. Анализ дифрактограмм, измеренных в области малых брэгговских углов, дает возможность по наиболее интенсивному рефлексу $d_{211} = 3,31$ нм (50–511 в картотеке ASTM) идентифицировать мезопористое молекулярное сито МСМ-48 с кубической пористой структурой в образцах с низким и средним (до 25 %) содержанием металла. При таких концентрациях металла геометрические параметры, по-видимому, менее важны, чем факторы, относящиеся к условиям кристаллизации гидроксидов металлов. По этим причинам непросто сформулировать критерии, предсказывающие способность элемента внедряться в анионный каркас оксида кремния(IV).

Выводы. Наши результаты доказывают, что при низких температурах из водных смесей в кислой среде можно синтезировать хромо-, ванадо – и цирконосиликаты, в большей или меньшей степени близкие по адсорбционным и структурным свойствам к мезопористым молекулярным ситам. Увеличение pH равносильно росту содержания металла и сопровождается аморфизацией и разупорядочением надмолекулярной рещетки MCM-48 с единой геометрией и дальним порядком.

Список использованных источников

1. McCusker, L. B. Nomenclature of Structural and Compositional Characteristics of Ordered Microporopus and Mesoporous Materials with Inorganic Hosts (IUPAC Recommendations 2001) / L. B. McCusker, F. Liebau, G. // Engelhardt Microporous and Mesoporous Materials. – 2003. – Vol. 58. – P. 3–13. https://doi.org/10.1016/s1387-1811(02)00545-0

2. Координационная химия / В.В. Скопенко [и др.]. – М.: Академкнига, 2007. – 487 с.

3. The Synthesis and Properties of M41S and Related Mesoporous Materials / J. C. Vartuli [et al.] // Synthesis. – New-York: Springer, 1998. – P. 97–119. https://doi.org/10.1007/3-540-69615-6_4

 Kuznetsova, T. F. Formation of Titanosilicate Precursors of an Active Adsorption Phase / T. F. Kuznetsova, A. I. Ivanets, L. L. Katsoshvili // Russian J. Phys. Chem. A. – 2017. – Vol. 91, N 4. – P. 744–748. https://doi.org/10.1134/s0036024417040136
 Synthesis and Characterization of Homogeneously Mesoporous Magnesium Silicates with Prospects of Application

in Catalysis and Adsorption / T.F. Kuznetsova [et al.] // Protection of Metals and Physical Chemistry of Surfaces. – 2017. – Vol. 53, N 4. – P. 658–663. https://doi.org/10.1134/s2070205117040116

6. Комаров, В.С. Титаносодержащие цеолиты и их свойства / В.С. Комаров, Л.П. Ширинская, Н.П. Бохан // Журн. физ. химии. – 1976. – Т. 50, № 10. – С. 2464–2468.

7. Ione, K. G. Synthesis of crystalline metal silicates having zeolite structure and study of their catalytic properties / K. G. Ione, L. A. Vostrikova, V. M. Mastikhin // J. Mol. Catal. – 1985. – Vol. 31. – P. 355–370. https://doi.org/10.1016/0304-5102(85)85118-x

8. Kuznetsova, T.F. Effect of a Template in the Synthesis of Multi-Dimensional Nanoporous Aluminosilicate with the Composition 25% Al₂O₃-75% SiO₂ / T.F. Kuznetsova, S.I. Eremenko // Russian Journal of Physical Chemistry A. – 2015 – Vol. 89, N 7. – P. 1269–1274. https://doi.org/10.1134/s0036024415070201

9. IUPAC. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report) // Pure Appl.Chem. – 2015. – Vol. 87, N 9–10. – P. 1051–1069. https://doi.org/10.1515/pac-2014-1117

10. Pauling, L. The Nature of Chemical Bond / L. Pauling; 3rd edn. Cornell University Press, Ithaca, 1960.

References

1. McCusker L. B., Liebau F., Engelhardt G. Nomenclature of Structural and Compositional Characteristics of Ordered Microporopus and Mesoporous Materials with Inorganic Hosts (IUPAC Recommendations 2001). *Microporous and Mesoporous Materials*, 2003, vol. 58, pp. 3–13. https://doi.org/10.1016/s1387-1811(02)00545-0

2. Skopenko V. V., Tsivadze A. Yu. Savranskii L. I., Garnovskii A. D. *Coordination Chemistry*. Moscow, Akademkniga, 2007. 487 p. (in Russian).

3. Vartuli J. C., Roth W. J., Beck J. S., McCullen S. B., Kresge C. T. The Synthesis and Properties of M41S and Related Mesoporous Materials. *Synthesis*. New-York: Springer, 1998, pp. 97–119. https://doi.org/10.1007/3-540-69615-6_4

4. Kuznetsova T. F., Ivanets A. I., Katsoshvili L. L. Formation of Titanosilicate Precursors of an Active Adsorption Phase. *Russian Journal of Physical Chemistry A*, 2017, vol. 91, no. 4, pp. 744–748. https://doi.org/10.1134/s0036024417040136

5. Kuznetsova T. F., Ivanets A. I., Kulbitskaya L. V., Budeiko N. L., Savka Yu. D. Synthesis and Characterization of Homogeneously Mesoporous Magnesium Silicates with Prospects of Application in Catalysis and Adsorption. *Protection of Metals and Physical Chemistry of Surfaces*, 2017, vol. 53, no. 4, pp. 658–663. https://doi.org/10.1134/s2070205117040116

6. Komarov V. S., Shirinskaya L. P., Bokhan N. P. Titanium zeolites and their properties. *Zhurnal fizicheskoi khimii* = *Russian Journal of Physical Chemistry A*, 1976, vol. 50, no. 10, pp. 2464–2468 (in Russian).

7. Ione, K. G., Vostrikova L. A., Mastikhin V. M. Synthesis of crystalline metal silicates having zeolite structure and study of their catalytic properties. *Journal of Molecular Catalysis*, 1985, vol. 31, pp. 355–370. https://doi.org/10.1016/0304-5102(85)85118-x

8. Kuznetsova T. F., Eremenko S. I. Effect of a Template in the Synthesis of Multi-Dimensional Nanoporous Aluminosilicate with the Composition 25% Al₂O₃-75% SiO₂. *Russian Journal of Physical Chemistry A*, 2015, vol. 89, no. 7, pp. 1269–1274. https://doi.org/10.1134/s0036024415070201

9. IUPAC. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015, vol. 87, no. 9–10, pp. 1051–1069. https://doi.org/10.1515/pac-2014-1117

10. Pauling L. The Nature of Chemical Bond. 3rd edn. Cornell University Press, Ithaca, 1960.

Информация об авторах

x Information about the authors

Кузнецова Татьяна Федоровна – канд. хим. наук, доцент, зав. лаб. адсорбентов и адсорбционных процессов, Институт общей и неорганической химии, Национальная академия наук Беларуси (ул. Сурганова, 9/1, 220072, Минск, Республика Беларусь). E-mail: tatyana.fk@gmail. com

Иванец Андрей Иванович – д-р хим. наук, доцент, вед. науч. сотрудник, Институт общей и неорганической химии, Национальная академия наук Беларуси (ул. Сурганова, 9/1, 220072, Минск, Республика Беларусь). E-mail: andreiivanets@ya.ru

Комаров Владимир Семенович – академик Национальной академии наук Беларуси, д-р хим. наук, профессор. Tatyana F. Kouznetsova – Ph. D. (Chemistry), Associate Professor, Head of the Laboratory, Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus (9/1, Surganov Str., 220072, Minsk, Republic of Belarus). E-mail: tatyana.fk@gmail.com

Andrei I. Ivanets – D. Sc. (Chemistry), Associate Professor, Leading Researcher, Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus (9/1, Surganov Str., 220072, Minsk, Republic of Belarus). E-mail: andreiivanets@ya.ru

Vladimir S. Komarov – Academician of the National Academy of Sciences of Belarus, D. Sc. (Chemistry), Professor.