ВЕСЦІ НАЦЫЯНАЛЬНАЙ АКАДЭМІІ НАВУК БЕЛАРУСІ № 2 2014 СЕРЫЯ ХІМІЧНЫХ НАВУК

УДК 547.583+547.304.3

Н. В. КОВГАНКО, С. Н. СОКОЛОВ, С. К. АНАНИЧ, Ю. Г. ЧЕРНОВ, Ж. Н. КАШКАН

НОВЫЙ МЕТОД СИНТЕЗА ЭКДИСТЕРОИДНОГО АГОНИСТА МЕТОКСИФЕНОЗИДА

Институт биоорганической химии НАН Беларуси

(Поступила в редакцию 29.01.2013)

Метоксифенозид **1** в настоящее время является наиболее активным из действующих веществ инсектицидных препаратов группы 1,2-диацил-1-алкилгидразинов [1, 2]. По механизму биологического действия это соединение, как и другие представители данного ряда, представляет собой агониста гормонов линьки и метаморфоза насекомых экдистероидов [2]. В патентной и научной литературе описано несколько синтезов метоксифенозида (см., например, [2–4]).

В самое последнее время нами разработаны новые методы получения веществ, находящих широкое применение в синтезе инсектицидов группы 1,2-диацил-1-алкилгидразинов, в том числе и метоксифенозида. К ним относятся, в частности, *трет*-бутилгидразин [5], *трет*-бутилгидразон ацетона [6] и 3-амино-2-метилбензойная кислота [7]. В этой связи представлялось целесообразным разработать улучшенный по сравнению с известными ранее синтез инсектицида 1, в котором возможно использование данных методов. Результаты этой работы представлены в настоящем сообщении.

Основными исходными веществами в нашем синтезе являются *трет*-бутилгидразин гидрохлорид, 3,5-диметилбензойная и *о*-толуиловая кислоты, а ключевыми стадиями — реакции моноацилирования *трет*-бутилгидразина хлорангидридами 3,5-диметилбензойной и 3-метокси-2-метилбензойной кислот. Следует указать, что аминогруппы в молекуле *трет*-бутилгидразина значительно различаются по своей реакционной способности. При этом первичная аминогруппа в молекуле соединения 3 является более реакционноспособной. Однако прямое моноацилирование *трет*-бутилгидразина хлорангидридом 3-метокси-2-метилбензойной кислоты представляется экономически неэффективным из-за необходимости использования очень большого избытка первого реагента [3]. Гораздо эффективнее метод синтеза метоксифенозида, в котором используется предварительная защита первичной аминогруппы с образованием в конечном итоге моноацильного производного 2. Нами выбран метод защиты первичной аминогруппы в молекуле соединения 3 в результате реакции с ацетоном с образованием гидразона 4. В патентной литературе имеются указания, что *трет*-бутилгидразон ацетона 4 может быть использован в качестве промежуточного вещества в синтезе инсектицидов группы 1,2-диацил-1-алкилгидразинов [8, 9].

Нами разработан новый способ получения *тем*-бутилгидразона ацетона **4**, имеющий ряд технических преимуществ по сравнению с известным ранее [8, 9]. По этому способу [6] *тем*-бутилгидразон ацетона **4** получается в результате реакции *тем*-бутилгидразин гидрохлорида **3** с ацетоном в воде в присутствии карбоната натрия. Выход целевого гидразона **4** составляет до 80%.

Цель дальнейших исследований — разработка метода получения 1-*трет*-бутилгидразида 3,5-диметилбензойной кислоты **2** из *трет*-бутилгидразона ацетона **4**. Для этого взаимодействием 3,5-диметилбензойной кислоты **5** с тионилхлоридом при кипячении в толуоле синтезировали хлорангидрид **6**. В результате ацилирования соединения **4** хлорангидридом **6** и последующего кислого гидролиза защитной группировки с общим выходом около 50% удалось получить необходимый моноацилгидразин **2**. Кроме соединения **2**, из реакционной смеси также выделены побочные продукты: ангидрид 3,5-диметилбензойной кислоты **8** (выход 7.1%) и 1,2-диацилгидразин **7** (выход 23.4%).

Для дальнейшего получения метоксифенозида мы нуждались в 3-метокси-2-метилбензойной кислоте 12. Для этого специально разработали новый метод синтеза соединения 12 из *о*-толу-иловой кислоты 9 через 3-нитро-2-метилбензойную и 3-амино-2-метилбензойную кислоты 10 и 11 соответственно. По этому методу вначале из коммерчески доступной *о*-толуиловой кислоты 9 в результате нитрования и последующего разделения смеси образовавшихся 3-нитро-2-метилбензойной и 5-нитро-2-метилбензойной кислот получена необходимая кислота 10. В результате дальнейшего восстановления 3-нитро-2-метилбензойной кислоты под действием сульфата железа (II) в соответствии с разработанным нами методом [7] с выходом 80% синтезирована аминокислота 11.

В литературе имеется несколько различных методов превращения 3-амино-2-метилбензойной кислоты 11 в 3-метокси-2-метилбензойную 12 (см., в частности, [4]). Обычно такой переход осуществляется в результате диазотирования соединения 11, последующего разложения соли диазония при нагревании в водном метаноле, метилирования образовавшейся смеси кислот 12 и 13 и их метиловых эфиров диметилсульфатом и, наконец, щелочного гидролиза полученного таким образом метилового эфира 3-метокси-2-метилбензойной кислоты. Нами разработан более простой путь синтеза кислоты 12. По нему реакции диазотирования 3-амино-2-метилбензойной кислоты 11 и последующего метанолиза соли диазония проводятся в максимально безводных условиях (безводный метанол, твердый нитрит натрия, 96%-ная серная кислота). Это дает возможность свести до минимума побочную реакцию образования 3-гидрокси-2-метилбензойной кислоты и тем самым избежать применения в дальнейшем токсичного диметилсульфата для ее метилирования. В результате 3-метокси-2-метилбензойная кислота 12 получена нами с выходом более 60%, что превышает выходы данного вещества в ранее известных методах.

На завершающих стадиях синтеза метоксифенозида из 3-метокси-2-метилбензойной кислоты 12 по реакции с тионилхлоридом был получен хлорангидрид 14, реакция ацилирования которым моноацилгидразина 2 по Шоттену—Бауману позволила получить целевое соединение 1. В качестве катализатора на стадии ацилирования вместо обычно используемого для этих целей гидроксида натрия нами был применен более практичный гидроксид кальция. Выход метоксифенозида 1 в последней реакции составляет около 70% в расчете на моноацилгидразин 2 и 64% в расчете на 3-метокси-2-метилбензойную кислоту 12.

Таким образом, в результате разработки усовершенствованных методов синтеза ряда промежуточных веществ и их дальнейшего использования осуществлен синтез метоксифенозида 1 — наиболее активного из известных в настоящее время инсектицидов группы 1,2-диацил-1-алкилгидразинов. Результаты изучения инсектицидной активности синтезированного нами соединения будут сообщены позже.

Экспериментальная часть

ИК-спектры записаны на FTIR-спектрометре Bomem-Michelson 100 в области 700–3600 см $^{-1}$. Спектры ЯМР записаны на приборе Bruker Avance 500 (рабочая частота 500.13 МГц для 1 Н и 125.75 МГц для 13 С) в растворах. Химические сдвиги приведены относительно ТМС как внутреннего стандарта. Масс-спектры регистрировались на комплексе ВЭЖХ Ассеlа с масс-детектором LCQ-Fleet (трехмерная ионная ловушка) в режиме химической ионизации при атмосферном давлении (APCI) (детектирование положительных ионов). Газ-реактант — азот. Значения m/z приведены для наиболее интенсивных пиков. Ход реакций и чистоту полученных соединений контролировали с помощью пластин Kieselgel 60 F_{254} фирмы Merck. Температуры плавления определены на блоке Кофлера.

трет-Бутилгидразон ацетона 4. К раствору 16.0 г (0.128 моль) *трет*-бутилгидразина гидрохлорида 3 (синтезирован по методу [5]) в 20 мл воды прибавляли в один прием 10.0 г (0.172 моль) ацетона, причем смесь разогревали до 35 °C. После охлаждения до комнатной температуры прибавляли небольшими порциями в течение 30 мин 7.2 г (0.068 моль) безводного карбоната натрия, поддерживая температуру в пределах 21-25 °C. По окончании прибавления смесь перемешивали в течение 1.5 ч. В результате обработки реакционной смеси получили 13.0 г *тет*-бутилгидразона ацетона 4. Выход 79%, т. кип. 70–71 °C/80 мм рт. ст., n_d^{20} 1.439 (лит. [8, 9] т. кип. 132–134 °C, n_d^{20} 1.439. Спектр n_d^{20} 1.439 (дит. [8, 9] т. кип. 132–134 °C, n_d^{20} 1.439.

1-трем-Бутилгидразид 3,5-диметилбензойной кислоты 2. Смесь 7.5 г (0.050 моль) 3,5-диметилбензойной кислоты **5**, 8.9 г (5.46 мл, 0.075 моль) тионилхлорида и 20 мл безводного толуола кипятили с обратным холодильником 2 ч. Затем толуол и избыток тионилхлорида отгоняли в вакууме, остаток упаривали с толуолом, сушили в вакууме и полученный хлорангидрид **6** без дальнейшей обработки использовали далее.

В трехгорлую колбу емкостью 150 мл, снабженную механической мешалкой, термометром и капельной воронкой, поместили раствор 6.41 г (0.05 моль) *трет*-бутилгидразона ацетона 4 в 30 мл метиленхлорида и раствор 5.04 г (0.06 моль) бикарбоната натрия в 66 мл воды. Смесь охлаждали до -6 °C и при интенсивном перемешивании прибавляли к ней в течение 1 ч 40 мин по каплям раствор хлорангидрида 3,5-диметилбензойной кислоты 6, полученного в предыдущей стадии, в 20 мл метиленхлорида, поддерживая температуру в пределах от -6 до -2 °C. По окончании прибавления смесь перемешивали 1 ч при той же температуре, далее нагревали до 20 °C и перемешивали при этой температуре 2 ч. Затем смесь переносили в делительную воронку, органический слой отделяли, водный экстрагировали метиленхлоридом. Объединенные органические экстракты промывали 10 мл 5%-ного раствора едкого натра, дважды водой, сушили безводным карбонатом калия, растворитель удаляли в вакууме. Остаток (12.74 г) растворяли в 90 мл метанола, через 2 ч выпавший осадок отфильтровывали, промывали на фильтре метанолом, сушили на воздухе. Получили 0.50 г ангидрида 3,5-диметилбензойной кислоты 8. Выход 7.1%, т. пл. 127–129 °C (петролейный эфир). ИК-спектр (v, см⁻¹, нуйол): 1783, 1714 (С=О). Спектр ¹Н ЯМР (δ, м. д., CD₂Cl₂): 2.42 (6H, с, 3,5-диметил), 7.21 (1H, с, H-4), 7.76 (2H, с, H-2, H-6). Масс-спектр (*m/z*): 281.93 (М-H)⁺,

280 (М-2H) $^+$, 149.67. Найдено, %: С 77.12, 77.03; Н 6.11, 6.58. Вычислено для $C_{18}H_{18}O_3$, %: С 76.57; Н 6.43; МВ 282.342.

Фильтраты разбавляли 100 мл 10%-ной соляной кислоты, выдерживали при комнатной температуре 18 ч, осадок отфильтровывали, промывали на фильтре водой, сушили на воздухе. Получили 2.06 г 1-трет-бутил-1,2-ди-(3,5-диметилбензоил)-гидразина 7. Выход 23.4%, т. пл. 208—210 °C (ацетонитрил). ИК-спектр (v, см $^{-1}$, CHCl $_3$): 3417, 3262 (NH), 1687, 1658 (C=O). Спектр 1 H ЯМР (δ , м. д., CD $_2$ Cl $_2$): 1.55 (9 H, c, C(CH $_3$) $_3$), 2.20 (6H, c, 3,5-диметил), 6.84 (2H, c, H-2, H-6), 6.94 (1H, c, H-4), 7.01 (2H, c, H-2, H-6), 7.05 (1H, c, H-4), 8.03 (1H, уш. c, NH). Масс-спектр (m/z): 352.76 (M^+), 296.94 (M-C $_4$ H $_8$) $^+$, 279.32, 133.26.

Фильтраты упаривали до половины объема, нейтрализовали 10%-ным раствором гидроксида натрия до pH 9, экстрагировали дихлорэтаном. Объединенные органические экстракты промывали водой, сушили безводным карбонатом калия, растворитель удаляли в вакууме. Кристаллизацией остатка $(7.29\ r)$ из $20\ мл$ толуола получили $5.00\ r$ 1-*трет*-бутилгидразида 3,5-диметилбензойной кислоты 2. Обработкой маточных растворов получили дополнительно $0.50\ r$, суммарный вес $5.50\ r$. Выход $49.9\ \%$, т. пл. $132-134\ ^{\circ}$ С. ИК-спектр $(v, cm^{-1}, hyйол)$: $3364, 3233\ (NH_2), 1655\ (C=O)$. Спектр 1 H ЯМР $(\delta, м. д., CD_2Cl_2)$: $1.45\ (9H, c, C(CH_3)_3), 2.31\ (6H, c, 3,5$ -диметил), $3.70\ (2H, c, NH_2), 7.00\ (3H, c, CH-аром.)$. Спектр 1 H ЯМР $(\delta, м. д., (CD_3)_2SO)$: $1.41\ (9H, c, C(CH_3)_3), 2.53\ (6H, c, 3,5$ -диметил), $4.44\ (2H, c, NH_2), 6.93\ (1H, c, H-4), 7.00\ (2H, c, H-2, H-6)$. Спектр 13 С ЯМР $(\delta, м. д., (CD_3)_2SO)$: $20.7\ (3,5$ -диметил), $27.0\ (C(CH_3)_3), 58.4\ (C(CH_3)_3), 125.2\ (C-2, C-6), 129.4\ (C-4), 135.9\ (C-3, C-5), 139.9\ (C-1), 172.4\ (N-C=O)$. Масс-спектр (m/z): $221.02\ (M+H)^+, 165.20\ (M-C_4H_8+H)^+, 133.29$. Вычислено для $C_{13}H_{20}N_2O$: MB 220.319.

3-Амино-2-метилбензойная кислота 11. 138 г (0.50 моль) гептагидрата сульфата железа (II) поместили в трехгорлую колбу вместимостью 2 л, снабженную механической мешалкой, термометром и обратным холодильником, добавляли 500 мл воды, после чего при перемешивании добавляли одной порцией 100 мл (1.04 моль) 19%-ного водного раствора аммиака. Затем к полученной суспензии добавляли одной порцией раствор 12.64 г (0.07 моль) 3-нитро-2-метилбензойной кислоты 10 (получена нитрованием o-толуиловой кислоты 9 и последующим разделением смеси образовавшихся 3-нитро-2-метилбензойной и 5-нитро-2-метилбензойной кислот) в 250 мл воды и 25 мл 19%-ного водного раствора аммиака. Реакционную смесь нагревали до кипения и перемешивали при кипячении в течение 2 ч. Темно-коричневый осадок отфильтровывали, промывали несколькими порциями горячего 8%-ного водного раствора аммиака общим объемом 200 мл, затем 50 мл горячей воды. Фильтрат упаривали в вакууме до объема ~ 150 мл, после чего продукт реакции выделяли в результате добавления порциями 93%-ной серной кислоты, постоянно поддерживая рН раствора около 4, и фильтрованием выпавших кристаллов. В сумме получили 8.4 г (0.056 моль) 3-амино-2-метилбензойной кислоты 11. Выход 80%, т. пл. 183–186°С (разл.) (вода), лит.[1] т. пл. 178–181°С. Спектр ¹Н ЯМР (б, м. д., CD₃OD): 2.32 (3H, с, Me), 6.88 (1H, д, J 8 Гц, H-4), 7.00 (1H, т, J 8 Гц, H-5), 7.13 (1H, д, J 8 Гц, H-6); (б, м. д., DMSO-d₆): 2.19 (3H, с, Me), 4.49-5.80 (2H, уш. c, NH₂), 6.77 (1H, д, J 8 Гц, H-4), 6.89 (1H, д, J 8 Гц, H-6), 6.94 (1H, т, J 8 Гц, H-5).

3-Метокси-2-метилбензойная кислота 12. К суспензии 6.0 г 3-амино-2-метилбензойной кислоты 11 в 90 мл метанола добавляли при перемешивании 3.32 мл 96%-ной серной кислоты и нагревали реакционную смесь до 55 °C. При этой температуре в течение 2 ч к реакционной смеси прибавляли при перемешивании небольшими порциями 2.96 г твердого нитрита натрия, после чего перемешивание при 55 °C продолжали еще в течение 1 ч. После охлаждения реакционной смеси до комнатной температуры ее нейтрализовали до рН 5, добавив 25%-ный водный раствор гидроксида натрия, осадок солей отфильтровывали и промывали метанолом. Фильтрат упаривали в вакууме до окончания отгонки метанола, остаток обрабатывали 70 мл воды и затем 5 мл 25%-ного водного раствора гидроксида натрия и экстрагировали эфиром. Экстракт сушили сульфатом магния, после удаления осушителя растворитель упаривали в вакууме и получили 1.26 г метилового эфира 3-метокси-2-метилбензойной кислоты в виде масла. Выход 18%. ИКспектр (у, см⁻¹, КВг): 1725 (С=О), 1263 (С-О). Спектр ¹Н ЯМР (б, м. д., (СD₃)₂SO,): 2.31 (ЗН, с, Ме), 3.82 (ЗН, с, ОМе), 7.17 (1Н, д, Ј 7.5 Гц, Н-6), 7.27 (1Н, т, Ј 7.5 Гц, Н-5), 7.31 (1Н, д, Ј 7.5 Гц, Н-4).

Водную фазу обрабатывали 2 н. серной кислотой до pH 3–4, выпавший осадок отфильтровывали, промывали водой и сушили на воздухе. Получили 3.61 г 3-метокси-2-метилбензойной кислоты **12**. Выход 55%.

Объединенную порцию 1.26 г метилового эфира 3-метокси-2-метилбензойной кислоты и 3.61 г 3-метокси-2-метилбензойной кислоты 12 обрабатывали 10 мл 25%-ного водного раствора гидроксида натрия. Через 24 ч реакционную смесь разбавляли водой и затем нейтрализовали 18%-ной серной кислотой до рН 5. Выпавший осадок отфильтровывали, промывали водой и сушили на воздухе. Получили 4.13 г 3-метокси-2-метилбензойной кислоты 12. Выход 63%, т. пл. 146–151 °C (вода), лит. [8] т. пл.145–146 °C. ИК-спектр (ν , см⁻¹, КВг): 1704, 1698, 1694, 1683 (С=О), 1264 (С-О). Спектр ¹Н ЯМР (δ , м. д., (CD₃)₂SO,): 2.33 (3H, с, Me), 3.81 (3H, с, OMe), 7.13 (1H, д, J 8.0 Гц, H-6), 7.24 (1H, т, J 8.0 Гц, H-5), 7.31 (1H, д, J 8.0 Гц, H-4), 12.5–13.5 (1H, уш. с, СООН). Масс-спектр (m/z): 166 (M^+), 165 (M^+ -H).

Из реакционной смеси может быть также дополнительно выделено некоторое количество 3-гидрокси-2-метилбензойной кислоты 13. Для этого водный маточник после кристаллизации 3-метокси-2-метилбензойной кислоты 12 обрабатывали дополнительно 2 н. серной кислотой до рН 2 и экстрагировали эфиром. Экстракт сушили сульфатом магния, после удаления осушителя растворитель упаривали в вакууме и получили 1.40 г неочищенной 3-гидрокси-2-метилбензойной кислоты. После перекристаллизации из бензола получили 0.69 г 3-гидрокси-2-метилбензойной кислоты 13. Выход 11%, т. пл. 138–140 °С (бензол), лит. [8] т. пл. 141–142 °С. Спектр 1 Н ЯМР (δ , м. д., (CD₃)₂SO,): 2.30 (3H, c, Me), 6.96 (1H, д, J 8.0 Гц, H-6), 7.06 (1H, т, J 8.0 Гц, H-5), 7.18 (1H, д, J 8.0 Гц, H-4), 9.62 (1H, c, OH), 12.6–12.9 (1H, уш. c, COOH).

Метоксифенозид 1. К 0.91 г 3-метокси-2-метилбензойной кислоты **12** добавляли 6 мл тионилхлорида и реакционную смесь кипятили в течение 2 ч. Избыток реагента удаляли сначала упариванием в вакууме, затем совместным упариванием с толуолом. Полученный 3-метокси-2-метилбензоилхлорид **14** без дополнительной очистки растворяли в 2 мл метиленхлорида.

К суспензии 0.5 г гидроксида кальция в 5 мл воды добавляли раствор 1.00 г 1-*трет*-бутилгидразида 3,5-диметилбензойной кислоты 2 в 3 мл метиленхлорида и к смеси при перемешивании и охлаждении до 5°C добавляли в течение 30 мин полученный выше раствор 3-метокси-2-метилбензоилхлорида 14. Реакционную смесь перемешивали 2 ч при комнатной температуре, после чего осадок отфильтровывали, промывали водой и сушили. Получили 1.58 г неочищенного метоксифенозида 1, содержащего примесь гидроксида кальция. Фильтрат разбавляли 10 мл метиленхлорида, органический слой отделяли, водный экстрагировали метиленхлоридом. Объединенные экстракты сушили сульфатом магния.

Неочищенный метоксифенозид обрабатывали 30 мл смеси дихлорэтана с метанолом (60:1), полученную суспензию профильтровывали через слой оксида алюминия, после чего сорбент промывали той же смесью растворителей. Фильтрат объединяли с метиленхлоридным экстрактом, полученным ранее, растворитель упаривали в вакууме, остаток кристаллизовали из смеси петролейного эфира с этилацетатом (1:1). Получили 1.30 г метоксифенозида 1, выход 78% в расчете на 1-*трет*-бутилгидразид 3,5-диметилбензойной кислоты 2, 64% в расчете на 3-метокси-2-метилбензойную кислоту, т. пл. 203–205 °C (петролейный эфир—этилацетат), лит. т. пл. 204–204.5 °C [3], 206–208 °C [4]. ИК-спектр (v, см⁻¹, КВг): 3437, 3237 (NH), 1680, 1640 (С=О). Спектр ¹Н ЯМР (б, м. д., DMSO-d₆): 1.49 (9H, с, C(CH₃)₃), 1.69 (3H, с, CH₃), 2.25 (6H, с, CH₃), 3.74 (3H, с, O CH₃), 6.23 (1H, д, J 8.0 Гц, H-6'), 6.97 (1H, д, J 8.0 Гц, H-4'), 7.04 (3H, уш. с, H-2, C4-H, C6-H), 7.11 (1H, т, J 8.0 Гц, H-5'), 10.47 (1H, уш. с, NH). Спектр ¹³С ЯМР (б, м. д., DMSO-d₆): 11.40 (CH₃), 20.64 (C3-CH₃, C5-CH₃), 27.42 ((CH₃)₃), 55.46 (ОСН₃), 59.92 (С), 111.63 (С5'), 118.18 (С6'-H), 123.54 (С2'), 124.39 (С2-H, C6-H), 126.31 (С4'), 130.31 (С4-H), 135.62 (С1'), 136.45 (С3-H, C5-H), 137.73 (С1), 157.20 (С3'), 167.36 (С=О), 172.15 (С=О). Масс-спектр (*m/z*): 368 (М⁺), 367 (М⁺-1).

Литература

- 1. Грапов А. Ф. Химические средства защиты растений XXI века. Справочник. М.: ВНИИХСЗР, 2006.
- 2. Ковганко Н. В., Ананич С. К. // Биоорган. химия. 2004. Т. 30. № 6. С. 563–581.
- 3. Патент США № 5344958. Insecticidal N'-substituted-N,N'-diacylhydrazines. Lidert Z., Le D. P.

- 4. Nakagawa Y., Hattori K., Minakuchi C., Kugimiya S., Ueno T. // Steroids. 2000. Vol. 65. N 1. P. 117-123.
- 5. Патент РБ № 8011. Способ получения трет-бутилгидразина. Ковганко Н. В., Цветкова Т. М.
- 6. Патент РБ № 15230. Способ получения трет-бутилгидразона ацетона. Ковганко Н. В., Чернов Ю. Г., Соколов С. Н.
- 7. Патент РБ № 16451. Способ получения 3-амино-2-метилбензойной кислоты. Ковганко Н. В., Соколов С. Н., Чернов Ю. Г., Кашкан Ж. Н.
- 8. Патент США № 4814349. Insecticidal substituted and unsubstituted benzoic acid 1-alkyl, 2 alkyl and 2-cycloalkylhydrazides. Addor R. W., Kuhn D. G., Wright D. P., Jr.
- 9. Патент CIIIA № 5237099. Insecticidal substituted and unsubstituted benzoic acid 1-alkyl, 2-alkyl and 2-cycloalkylhydrazides. Addor R. W., Kuhn D. G., Wright D. P., Jr.

M. U. KAUHANKA, S. N. SOKOLOV, S. K. ANANICH, Yu. G. CHARNOU, Zh. N. KASHKAN

NEW METHOD FOR SYNTHESIS OF METHOXYFENOZIDE, AN ECDYSTEROID AGONIST

Summary

New preparation method of the methoxyfenozide, the most active insecticide compound of 1,2-diacyl-1-alkylhydrazine group, has been developed, using the improved procedures for synthesis of intermediate compounds.