ВЕСЦІ НАЦЫЯНАЛЬНАЙ АКАДЭМІІ НАВУК БЕЛАРУСІ № 4 2014 СЕРЫЯ ХІМІЧНЫХ НАВУК

УДК 541.183.12

О. Н. ДОРОШКЕВИЧ, Е. Г. КОСАНДРОВИЧ, А. В. КАШИНСКИЙ, Л. Н. ШАЧЕНКОВА, В. М. ЗЕЛЕНКОВСКИЙ

СОРБЦИЯ ЭТИЛАМИНОВ ИЗ ВОЗДУХА ВОЛОКНИСТЫМИ ИОНИТАМИ. 2. СЛАБОКИСЛОТНЫЙ КАРБОКСИЛЬНЫЙ КАТИОНИТ ФИБАН К-4

Институт физико-органической химии НАН Беларуси

Отходящие газы производств промышленного и сельскохозяйственного сектора являются одними из основных загрязнителей атмосферного воздуха. Выбрасываемые токсиканты широко распространяются, участвуя в трансграничном переносе, и в зависимости от химического состава могут создавать экологические проблемы на локальном, региональном и даже глобальном уровне. Таким образом, очистка воздуха является важной задачей как для охраны окружающей среды, так и для защиты жизни и здоровья человека. Одна из составных частей указанной проблемы - очистка от неприятных запахов [1], особенно остро актуализирующаяся в последнее время, составными компонентами которых в основном являются серо- и азотсодержащие соединения, кислоты, альдегиды и кетоны (аммиак, амины, жирные кислоты, индол, скатол и др.) [2]. В предыдущих наших работах [3] показано, что эффективным средством удаления загрязнителей из воздуха при их невысокой концентрации являются волокнистые иониты. В частности, волокнистый слабокислотный карбоксильный катионит ФИБАН К-4 может быть использован для извлечения примесей аммиака из воздуха [3-5]. В связи с этим цель работы – исследование сорбционных свойств волокнистого катионита ФИБАН К-4 в процессах очистки воздуха от первичных, вторичных и третичных этиламинов, которые во многих случаях являются основными компонентами неприятных запахов.

Экспериментальная часть. Сорбент. Волокнистый катионит ФИБАН К-4 разработан и получен в ИФОХ НАН Беларуси и представляет собой полипропиленовое (ПП) волокно с привитой полиакриловой кислотой (АК) [6]. Для получения волокон ФИБАН К-4 используется метод предварительного облучения ПП волокна γ -лучами 60 Со на воздухе с последующей жидкофазной прививочной полимеризацией АК на пероксидные группы ПП в присутствии восстановителей — солей железа Fe(II). Ионит использовали в H⁺-форме в виде иглопробивного полотна, которое характеризуется следующими показателями: обменная емкость — 4,2 м-экв/г; диаметр моноволокон — 30 ± 2 мкм; поверхностная плотность нетканого материала — 0,28 кг/м²; толщина нетканого материала — 3 мм.

Сорбция. Исследование поглощения этиламинов из воздуха проводилось на сорбционной установке, позволяющей проводить процесс в динамических условиях при различной толщине фильтрующего слоя, относительной влажности очищаемого воздуха и концентрации целевого соединения. Методическое описание процедуры измерений и схема экспериментальной установки представлены в работе [7].

Результаты и их обсуждение. Результаты сорбционных экспериментов представлены на рис. 1–3. Полученные результаты по сорбции аминов из воздуха в динамических условиях при переменной влажности воздушного потока позволяют сделать выводы, что при сорбции этиламинов, как и при сорбции аммиака [3], емкость до проскока $(A_{_{\rm J}})$ и полная динамическая емкость $(A_{_{\rm P}})$ волокнистого карбоксильного катионита ФИБАН К-4 зависят от относительной влажности воздуха (рис. 4): а) для аммиака и этиламина ход кривой практически идентичен и изменяется от 0,2 до 4,0 м-экв/г при изменении относительной влажности от 35 до 94%; б) при увеличении количества

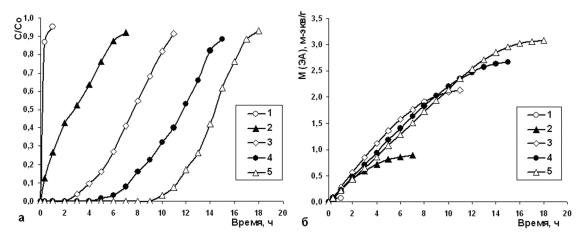


Рис. 1. Кривые проскока (a) и сорбции (δ) этиламина на волокнистом катионите ФИБАН К-4 при различной относительной влажности, %: 1-30; 2-40; 3-50; 4-60; 5-70. Условия эксперимента: температура -24-25 °C; скорость фильтрации -0.08 м/с; исходная концентрация этиламина -27-29 мг/м³; толщина фильтрационного слоя -6 мм

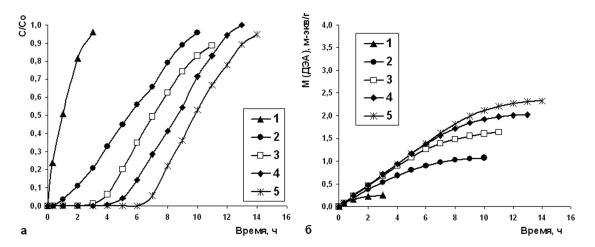


Рис. 2. Кривые проскока (a) и сорбции (δ) диэтиламина на волокнистом катионите ФИБАН К-4 при различной относительной влажности, %: I-40; 2-50; 3-60; 4-70; 5-80. Условия эксперимента: температура -18-20 °C; скорость фильтрации -0.08 м/с; исходная концентрация диэтиламина -33-35 мг/м³; толщина фильтрационного слоя -6 мм

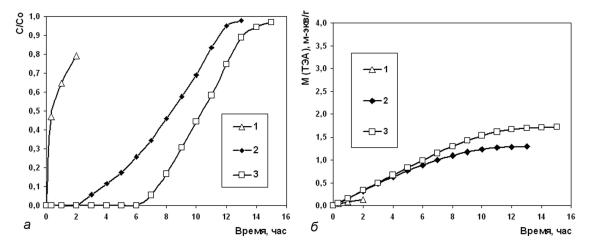


Рис. 3. Кривые проскока (a) и сорбции (б) триэтиламина на волокнистом катионите ФИБАН К-4 при различной относительной влажности, %: I-60; 2-70; 3-80. Условия эксперимента: температура -19-21 °C; скорость фильтрации -0.08 м/с; исходная концентрация триэтиламина -33-35 мг/м³; толщина фильтрационного слоя -6 мм

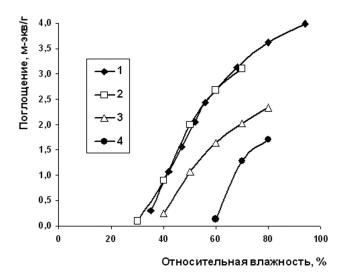


Рис. 4. Полная динамическая емкость катионита ФИБАН K-4 при поглощении аммиака и этиламинов из воздуха: I – аммиак; 2 – этиламин; 3 – диэтиламин; 4 – триэтиламин

углеводородных радикалов у атома азота амина реализованная сорбционная емкость уменьшается: например, при относительной влажности 70% $A_{\rm p}$ (диэтиламин) = 2,0 м-экв/г ($A_{\rm p}$ для диэтиламина изменяется от 0,2 до 2,3 м-экв/г при изменении относительной влажности от 40 до 80%), а $A_{\rm p}$ (триэтиламин) = 1,3 м-экв/г ($A_{\rm p}$ для триэтиламина изменяется от 0,1 до 1,7 м-экв/г при изменении относительной влажности от 60 до 80%).

Известно [8], что амины более сильные основания, чем аммиак: pK_b (NH_3) = 4,75; pK_b (этиламин) = 3,30; pK_b (диэтиламин) = 3,07; pK_b (триэтиламин) = 3,00. Поэтому полученные результаты несколько неожиданные, так как из них следует, что при сорбции аммиака и этиламинов из воздуха ключевым фактором, определяющим эффективность сорбции, является не кислотно-основная сила извлекаемого соединения. Причиной

уменьшения сорбционной емкости по аминам при снижении относительной влажности воздуха могут быть диффузионные или стерические затруднения, обусловленные достаточно большими размерами молекул ди- и триэтиламина. Для выяснения этого фактора проведены эксперименты по сорбции ди- и триэтиламина из их водных растворов (т. е. ионитом в предельно набухшем состоянии). Результаты представлены на рис. 5.

Полученные результаты свидетельствуют, что стерических затруднений при сорбции молекул ди- и триэтиламина карбоксильным ионитом нет: ионит полностью реализует свою обменную емкость при предельной сорбции указанных аминов из их водных растворов (100%-ная нейтрализация функциональных групп подтверждена в независимом эксперименте путем вытеснения сорбированного амина и анализа элюата). Это говорит о том, что наблюдаемые эффекты при сорбции аминов из воздуха обусловлены кинетическими (диффузионными) затруднениями взаимодействия неполностью набухшего катионита с аминами.

Из кривых, представленных на рис. 5, видно, что набухание ионита при повышении степени нейтрализации карбоксильных групп ди- и триэтиламином существенно увеличивается (в 2–3 раза по сравнению с исходной H^+ -формой), проходя через минимум при невысоких степенях ней-

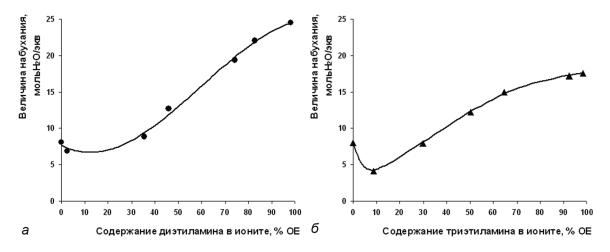


Рис. 5. Влагопоглощение карбоксильного катионита ФИБАН К-4 в зависимости от степени нейтрализации его функциональных групп диэтиламином (a) и триэтиламином (δ)

трализации. Для объяснения возрастания набухания выполнены неэмпирические квантово-химические расчеты супрамолекулярных систем с использованием приближения молекулярных фрагментов, включающих фрагмент карбоксильного ионита, содержащий 6 функциональных групп, 6 молекул триэтиламина и 48 молекул воды. Для расчетов использовали программные пакеты GAMESS и FIREFLY [9–11]. Расчеты выполнены с использованием уровня теории RHF/MINI. Применимость данного уровня теории для

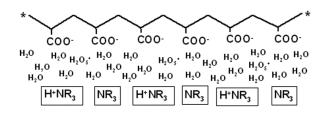


Рис. 6. Плоское схематическое изображение структуры гидратированного фрагмента карбоксильного катионита с сорбированными молекулами триэтиламина (объемная структура имеет форму спирали)

квантово-химического моделирования карбоксильных катионитов рассмотрена в работе [12]. Проводилась полная оптимизация всех геометрических параметров до достижения минимума на поверхности потенциальной энергии. В результате расчетов было получено несколько локальных минимумов, далее рассматривается только минимум с наименьшим значением величины полной энергии системы.

В результате расчетов получаются сложные объемные структуры, которые в плоской проекции трудны для восприятия и малоинформативны. Поэтому на рис. 6 представлено схематическое изображение структуры, образующейся при взаимодействии аминов с карбоксильной функциональной группой, которая отражает результаты выполненных расчетов.

Ранее было показано [12], что в линейных фрагментах H⁺-формы карбоксильных катионитов соседние карбоксильные группы располагаются в *цис*-положении друг к другу относительно виртуальной плоскости, образованной атомами углерода основной цепи (диэдрические углы между плоскостями –СОО⁻-фрагментов соседних групп составляли 80–90°). Взаимодействие с большими молекулами амина приводит к изменению конформации цепи с увеличением расстояния между соседними функциональными группами: карбоксильные группы располагаются в *транс*- положении относительно друг друга (диэдрические углы между плоскостями –СОО⁻-фрагментов соседних групп находятся в интервале 120–150°). Таким образом, геометрия расположения карбоксильных групп относительно углеводородной цепи в присутствии молекул воды и амина (триэтиламина) представляет собой спираль.

Из расчетов следует, что при полной нейтрализации карбоксильных функциональных групп все —СООН-группы ионита диссоциируют, однако только три из шести молекул амина протонируются с образованием ионов триэтиламмония. По-видимому, протонирование амина зависит от локального окружения конкретной молекулы амина и ее степени гидратации, что согласуется с результатами точных неэмпирических расчетов [13]. Три оставшихся протона образуют соединения $H_5 O_2^+$ (протон Цунделя). Молекулы воды, находящиеся в системе, располагаются между молекулами (ионами) амина и функциональными группами, образуя прослойку между ними, что и обуславливает повышенное набухание карбоксильного ионита в аминных ионных формах.

Заключение. Исследованы сорбционные свойства волокнистого карбоксильного катионита ФИБАН К-4 при сорбции из воздуха этиламина, диэтиламина и триэтиламина в динамических условиях при различной относительной влажности. Установлено, что относительная влажность (а следовательно, влагосодержание ионита) является ключевой составляющей, определяющей эффективность сорбции. Установлено, что при сорбции аммиака и этиламинов из воздуха дополнительным фактором, определяющим эффективность сорбции, является не кислотно-основная сила извлекаемого соединения, а кинетические факторы, связанные с медленностью диффузии молекул аминов в неполностью набухшем ионите.

Установлено, что набухание карбоксильного катионита существенно увеличивается (в 2–3 раза по сравнению с исходной Н⁺-формой) при повышении степени нейтрализации карбоксильных групп ди- и триэтиламином, проходя через минимум при невысоких степенях нейтрализации.

Повышенное набухание объяснено с помощью неэмпирических квантово-химических расчетов супрамолекулярных систем: молекулы воды в рассмотренной структуре находятся между молекулами (ионами) амина и функциональными группами, образуя прослойку между ними.

Работа выполнена при частичной финансовой поддержке Белорусского фонда фундаментальных исследований (проект БРФФИ № X13–086).

Литература

- 1. Schlegelmilch M., Streese J., Stegmann R. // Waste Management. 2005. N 25. P. 928-939.
- 2. Gostelov P., Parsons S. A., Stuetz R. M. // Water Research. 2001. Vol. 35, N 3. P. 579-597.
- 3. Soldatov V. S., Kosandrovich E. G. // Ion exchange and solvent extraction. A series of advances. 2011. Vol. 20. P. 45–117.
- 4. Soldatov V. S., Kosandrovich E. G. // Recent advances in Ion Exchange Theory and Practice (Proceedings of IEX2008, Fitxwilliam College, Cambridge 9–11 July 2008). 2008. P. 103–110.
- 5. Поликарпов А. П., Шункевич А. А., Медяк Г. В., Косандрович Е. Г., Солдатов В. С. // Тез. докл. II Междунар. конф.: Успехи коллоидной химии и физико-химической механики («Коллоид 2003»). Минск, 2003. С. 223.
 - 6. Медяк Г. В., Шункевич А. А., Поликарпов А. П., Солдатов В. С. // ЖПХ. 2001. Т. 74, №. 10. С. 1608–1613.
 - 7. Косандрович Е. Г., Солдатов В. С. // Весці НАН Беларусі. Сер. хім. навук. 2004. № 3. С. 95–98.
 - 8. Рабинович В. А., Хавин З. Я. Краткий химический справочник Л.: Химия, 1991.
 - 9. Schmidt M. W. et al. // J. Comput. Chem. 1993. Vol. 14. P. 1347–1363.
 - 10. Немухин А. В., Григоренко Б. Л., Грановский А. А. // Вестн. МГУ. Химия. 2004. Т. 45, № 2. С. 75–102.
 - 11. http://classic.chem.msu.su/gran/firefly/index.html
 - 12. Soldatov V. S., Zelenkovskii V. M. // Solvent Extraction and Ion Exchange. 2011. Vol. 29, N 3. P. 458-487.
 - 13. Mayri J., Hadzi D. // Proton Transfer in Hydrogen-Bonded Systems, NATO ASI Series. 1992. Vol. 291. P. 217-227.

O. N. DOROSHKEVICH, E. G. KOSANDROVICH, A. V. KASHINSKII, L. N. SHACHENKOVA, V. M. ZELENKOVSKII

SORPTION OF ETHYLAMINES FROM AIR BY FIBROUS ION EXCHANGERS. 2. FIBAN K-4, A WEAK ACID CATION EXCHANGER

Summary

Sorption properties of fibrous weak acid cation exchanger FIBAN K-4 have been investigated for sorption of mono-, diand triethylamine from air. It has been found that main factors governing sorption effectiveness are: a) relative humidity; b) kinetic factors (amines' low diffusion speed into the ion exchanger phase). Increased swelling for the ion exchanger in the amine ionic form has been observed. By *ab initio* quantum chemical calculations it has been shown that water molecules in the ion exchanger are located between amine molecules (ions) and functional groups, forming an intermediate layer.