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Stochastic Games on a Product State Space:
The Periodic Case

János Flesch, Gijs Schoenmakers, Koos Vrieze�

June 10, 2008

Abstract

We examine so-called product-games. These are n-player stochatic games
played on a product state space S1 � � � � � Sn; in which player i controls the
transitions on Si. For the general n-player case, we establish the existence of 0-
equilibria. In addition, for the case of two-player zero-sum games of this type, we
show that both players have stationary 0-optimal strategies.
In the analysis of product-games, interestingly, a central role is played by the

periodic features of the transition structure. Flesch et al. [2008] showed the exis-
tence of 0-equilibria under the assumption that, for every player i, the transition
structure on Si is aperiodic. In this article, we examine product-games with pe-
riodic transition structures. Even though a large part of the approach in Flesch
et al. [2008] remains applicable, we encounter a number of tricky problems that
we have to address. We provide illustrative examples to clarify the essence of the
di¤erence between the aperiodic and periodic cases.
Keywords: Noncooperative Games, Stochastic Games, Periodic Markov

Decision Problems, Equilibria.

1 Introduction

Stochastic games and product-games. An n-player stochastic game is given by
(1) a set of players N = f1; : : : ; ng; (2) a nonempty and �nite set of states S, (3) for
each state s 2 S; a nonempty and �nite set of actions Ais for each player i; (4) for each

�Addresses: János Flesch: Department of Quantitative Economics/ Gijs Schoenmakers & Koos
Vrieze: Department of Mathematics. University of Maastricht, P.O.Box 616, 6200 MD Maastricht,
The Netherlands.
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state s 2 S and each joint action as 2 �i2NAis, a payo¤ ris(as) 2 R to each player i;
(5) for each state s 2 S and each joint action as 2 �i2NAis, a transition probability
distribution psas = (psas(t))t2S :

The game is to be played at stages in N in the following way. Play starts at stage
1 in an initial state, say in state s1 2 S. In s1; each player i 2 N has to choose an
action ai1 from his action set Ais1 . These choices have to be made independently. The
chosen joint action a1 = (a11; : : : ; a

n
1 ) induces an immediate payo¤ r

i
s1(a1) to each player

i. Next, play moves to a new state according to the transition probability distribution
ps1a1 , say to state s2 2 S. At stage 2; a new action ai2 2 Ais2 has to be chosen by
each player i in state s2. Then, given action combination a2 = (a12; : : : ; a

n
2 ), player i

receives payo¤ ris2(a2) and the play moves to some state s3 according to the transition
probability distribution ps2a2 , and so on. We assume complete information (i.e. the
players know all the data of the stochastic game), full monitoring (i.e. the players
observe the present state and the actions chosen by all the players), and perfect recall
(i.e. the players remember all previous states and actions).

A Markov transition structure �i for player i 2 N is given by (1) a nonempty and
�nite state space Si; (2) a nonempty and �nite action set Ai

si
for each state si 2 Si;

(3) a transition probability distribution pi
siai

si
over the state space Si for each state

si 2 Si and for each action ai
si
2 Ai

si
: Note that, if we also assigned a payo¤ in every

state to every action, then we would obtain the well-known model of a Markov decision
problem for player i.

We will now consider a special type of n-player stochastic games, called product-
games, in which the transition structure is derived by taking the product of n Markov
transition structures. A product-game G; associated to the Markov transition structures
�1;�2; : : : ;�n, is an n-player stochastic game for which (1) the set of players is N =

f1; : : : ; ng ; (2) the state space is S = S1 � � � � � Sn; (3) the action set for each player
i 2 N in each state s = (s1; : : : ; sn) 2 S is Ais = Ai

si
; (4) the transition probability

distribution psas ; for each state s = (s1; : : : ; sn) 2 S and for each joint action as =
(a1s; : : : ; a

n
s ) 2 �i2NAis; is

psas (�s) =
Y
i2N

pisiais
(�si)

for state �s = (�s1; : : : ; �sn) 2 S: Note that there is no condition imposed on the payo¤
structure.

Observe that (1) the action space of player i only depends on the i-th coordinate of
the state, (2) the i-th coordinate of the transitions from any state s only depend on the
i-th coordinate si of the state and on the action ais chosen by player i: Therefore, as far
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as the actions and the transitions are concerned, player i can play on the i-th coordinate
of the game G without the interference of the other players. As a consequence, play
of the product game G can be viewed as simultaneous play of the n Markov transition
structures �1; : : : ;�n, which are linked by payo¤ functions r1; : : : ; rn that may depend
on all n current states as well as on all n actions chosen by the players.

Product-games have been introduced in Altman et al. [2005], although in a some-
what di¤erent fashion. They only examined two-player games in which the sum of
the payo¤s is always equal to zero (zero-sum games), and dropped the assumption of
full monitoring by letting each player only observe his own coordinate of the present
state and only the action chosen by himself. As a result, both players have to make
choices without noticing anything about the other player�s behavior. They showed
that a linear programming formulation is su¢ cient to solve these games, i.e. to �nd
the value and stationary optimal strategies (cf. the de�nitions below). Moreover, they
displayed possible applications of product-games in wireless networks (see also Altman
et al. [2007,a] and Altman et al. [2007,b]).

Note that the class of product-games, as de�ned in our paper, di¤ers essentially
from other known classes of n-player stochastic games. Stochastic games with a single
controller (cf. Parthasarathy & Raghavan [1981] or Filar & Vrieze [1996]), i.e. when one
player controls the transitions, however, fall into the class of product-games. Indeed,
a stochastic game which is controlled by player i can be seen as a product-game in
which Sj is a singleton for all players j 6= i. Finally, we wish to mention the class
of stochastic games with additive transitions (AT-games, cf. Flesch et al. [2007]), i.e.
when the transitions are additively decomposable into player-dependent components,
in contrast with a product decomposition. Not surprisingly, the structure of product-
games and AT-games di¤er essentially, and product-games require new ideas and an
entirely di¤erent approach.

From now on, we will consequently use the upper-index for the player and the lower-
index for the state. Whenever one of them is omitted, we will then mean a vector in
the case of quantities and a product in the case of sets, for all possible players or states
respectively. For example, Ai denotes �s2SAis: Finally, we denote the set of opponents
of any player i by �i := N � fig. Then, �i in the upper-index will mean a vector or
product for all players j 6= i. For example, S�i denotes �j2N�figSj :

Strategies. A mixed action xis for player i in state s 2 S is a probability distribu-
tion on Ais: The set of mixed actions for player i in state s is denoted by X

i
s: A mixed

action is called completely mixed, if it assigns a positive probability to each available
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action. A (history dependent) strategy �i for player i is a decision rule that prescribes
a mixed action �is(h) 2 Xi

s in the present state s depending on the past history h of
play (i.e. the sequence of all past states and all past actions chosen by all the players).
We use the notation �i for the set of strategies for player i: A strategy �i for player i is
called pure if �i prescribes, for every state and every possible history, one speci�c action
to be played with probability 1. Given a strategy �i for player i and a history h, the
strategy �i conditional on h; denoted by �i[h]; is the strategy which prescribes a mixed
action �is[h](h

0) in any present state s for any history h0 as if h had happened before
h0; i.e. �is[h](h

0) = �is(h� h0), where h� h0 is the history consisting of h concatenated
by h0: In fact, �i[h] is just the continuation strategy of �i after history h:

If the mixed actions prescribed by a strategy only depend on the present state then
the strategy is called stationary. Thus, the stationary strategy space for player i is
Xi = �s2S Xi

s. We use the notation x
i for stationary strategies for player i; while xis

refers to the corresponding mixed action for player i in state s. Note that the set of
pure stationary strategies for player i is simply Ai = �s2SAis:

A joint stationary strategy x = (xi)i2N induces a Markov-chain on the state space S
with transition matrix P (x), where entry (s; �s) of P (x) gives the transition probability
psxs(�s) for moving from state s to state �s when the joint mixed action xs is played in
state s. With respect to this Markov-chain, we can speak of transient and recurrent
states. A state is called recurrent if, when starting there, play will eventually return
with probability 1; otherwise the state is called transient. If play is in a recurrent state,
then this state will be visited in�nitely often with probability 1, while transient states
can only be visited �nitely many times, with probability 1. We can group the recurrent
states into minimal closed sets, into so-called ergodic sets. An ergodic set is a collection
W of recurrent states with the property that, when starting in any of the states in
W , all states in W will be visited in�nitely often and play will remain in W forever
with probability 1. The period of a state s 2 W is de�ned as the greatest common
divisor of all numbers m 2 N such that returning to state s in m steps has a positive
probability. It is known that every state in an ergodic set W has the same period,
which we denote by �(W ): When �(W ) = 1; the set W is called aperiodic. Moreover,
W can be uniquely divided into �(W ) pairwise-disjoint cyclic sets W 1; : : : ;W �(W ); i.e.
when starting in any s 2W l; the process will move through the cyclic sets in the order
W l;W l+1; : : : ;W �(W );W 1; : : : ;W l�1;W l; : : :. It is known that there exists a � > 0 and
a stage M such that at any stage m �M; the process can be, with probability at least
�, in any state of the cyclic set appropriate for the moment. We refer to Kemeny &
Snell [1960] for a more detailed discussion on Markov chains.
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Let

Q(x) := lim
M!1

1

M

MX
m=1

Pm(x); (1)

the limit is known to exist (cf. Doob [1953], theorem 2.1, page 175). Entry (s; �s) of
the stochastic matrix Q(x), denoted by qsx(�s), is the expected frequency of stages for
which the process is in state �s when starting in s. The matrix Q(x) has the well known
properties (cf. Doob [1953]) that

Q(x) = Q(x)P (x) = P (x)Q(x) = Q2(x): (2)

Rewards. For a joint strategy � = (�i)i2N and initial state s 2 S; the sequences
of payo¤s are evaluated by the expected average reward, simply reward, which is given
for player i by

is(�) := lim inf
M!1

Es�

 
1

M

MX
m=1

Rim

!
= lim inf

M!1

1

M

MX
m=1

Es�
�
Rim
�
;

where Rim is the random variable for the payo¤ for player i at stage m, and where Es�
stands for expectation with respect to the initial state s and the joint strategy �.

With regard to a joint stationary strategy x = (xi)i2N , we obtain more explicit
formulas for the induced reward. Let ris (xs) denote the expected immediate payo¤ for
player i in state s if the joint mixed action xs is played. By de�nition, for every player
i�s reward we have

i(x) = Q(x) ri(x); (3)

hence by (2) we also obtain
i(x) = P (x) i(x) (4)

i(x) = Q(x) ri(x) = Q2(x) ri(x) = Q(x) i(x): (5)

For any player i 2 N and initial state s 2 S; let

vis := inf
��i2��i

sup
�i2�i

is(�
i; ��i): (6)

Here vis is called the minmax-level for player i in state s. Intuitively, this is the highest
reward that player i can defend against any strategies of the other players if the initial
state is s: Note that, in order to defend his minmax-level, (1) against di¤erent joint
strategies of players �i; player i may have to use di¤erent strategies and (2) for the
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choice of the mixed action at stage m, player i does not need to know player �i�s joint
strategy for stages beyond m (cf. Neyman [2003]). It is known that the minmax-level
of any player i satis�es

vis = min
x�is 2X�i

s

max
xis2Xi

s

X
t2S

ps;(xis;x
�i
s )(t) v

i
t; (7)

which is an easy consequence of the de�nition of vis and equality (4). Furthermore,
by Thuijsman & Vrieze [1991] (their proof is given for only two players but directly
extends to the n-player case in combination with Neyman [2003], who showed that the
minmax-levels equal the limit of the discounted minmax-levels in n-player stochastic
games), there always exists an initial state s in the set ft 2 Sj vit = mint02S v

i
t0g for

which players �i have a joint stationary strategy x�i such that is(�i; x�i) � vis for all
strategies �i for player i. In other words, the in�mum in expression (6) is attained for
such a state s at stationary strategies.

Equilibria. A joint strategy � = (�i)i2N is called a (Nash) "-equilibrium for initial
state s 2 S, for some " � 0; if

is
�
�i; ��i

�
� is (�) + " 8�i 2 �i; 8i 2 N;

which means that no player can gain more than " by a unilateral deviation. If � is an
"-equilibrium for all initial states, then we call � an "-equilibrium. It is clear from the
de�nition of the minmax-level v that if � is an "-equilibrium then is(�) � vis � " for
each player i and each initial state s 2 S:

Regarding general stochastic games, the famous game called the Big Match, which
was introduced by Gillette [1957] and solved by Blackwell & Ferguson [1968], and
the game in Sorin [1986] demonstrated that 0-equilibria do not necessarily exist with
respect to the average reward. They made it clear, moreover, that history dependent
strategies are indispensable for establishing "-equilibria, for " > 0.

For two-player stochastic games, Vieille [2000-a,b] managed to establish the ex-
istence of "-equilibria, for all " > 0. However, only little is known about n-player
stochastic games, and it is unresolved whether they always possess "-equilibria, for all
" > 0: This is probably the most challenging open problem in the �eld of stochastic
games these days.

For the class of n-player product-games, we will answer this question in the a¢ r-
mative by proving the existence of 0-equilibria (cf. Main Theorem 1). This extends
Flesch et al. [2008], where a certain type of aperiodicity was assumed on the tran-
sition structure of the product-game (cf. section 2 below, for a precise de�nition of
aperiodicity).
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Zero-sum games and optimality. In the development of stochastic games, a
special role has been played by the class of zero-sum stochastic games, which are two-
player stochastic games for which r2s(as) = �r1s(as) (meaning that the sum of the
payo¤s is zero), for each state s and for each joint action as. In these games the two
players have completely opposite interests. Mertens & Neyman [1981] showed that for
such games v2 = �v1: Here v := v1 is called the value of the game. They also showed
that, if instead of using liminf one uses limsup in the de�nition of the reward, one
would �nd precisely the same value v. Thus, in a zero-sum game, player 1 wants to
maximize his own reward, while at the same time player 2 tries to minimize player
1�s reward. For simplicity, let  = 1: A strategy �1 for player 1 is called "-optimal
for initial state s 2 S; for some " � 0; if s(�

1; �2) � vs � " for any strategy �2 of
player 2, while a strategy �2 for player 2 is called "-optimal for initial state s 2 S
if s(�

1; �2) � vs + " for any strategy �1 of player 1: If �1 or �2 is "-optimal for all
initial states, then we call �1 or �2 an "-optimal strategy. For simplicity, 0-optimal
strategies are brie�y called optimal. Mertens and Neyman [1981] proved (even in a
stronger form) that both players have " -optimal strategies for any " > 0; even though
history dependent strategies may be necessary for "-optimality.

For the class of zero-sum product-games, we will provide a proof that both players
have stationary 0-optimal strategies (cf. Main Theorem 2). In addition, we analyse
the structure of the value of these games.

The structure of the article. In section 2, we discuss preliminary concepts.
Then, in section 3, we present our main results, discuss the main di¢ culties which we
encounter when facing periodic product-games and provide a general idea of the proof.
The formal proofs are given in sections 4, 5, 6 and 7.

2 Preliminary concepts

Some of the contents of this section is very similar to the decomposition presented in
Ross and Varadarajan [1991] for Markov decision problems (i.e. stochastic games with
only one player). We also refer to Flesch et al. [2008].

Classi�cation of states. First, we analyse the Markov transition structure �i of
each player i separately. (Note that such a separate analysis of the transition structure
is only possible due to the fact that player i controls the transitions on his own coordi-
nate.) We distinguish between two basic types of states in the state space Si of �i: A
state si 2 Si belongs to type 1 if it is transient for each stationary strategy xi of player
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i. Otherwise, si belongs to type 2, in which case player i has a stationary strategy for
which si is recurrent.

Maximal communicating sets. Two states si1 and s
i
2 of type 2 are said to

communicate with each other, if there exists a stationary strategy xi of player i such
that si1 and s

i
2 belong to the same ergodic set. We note that communication between

states have been used extensively in the literature of stochastic games (cf. Vieille
[2000-a,b], Solan & Vieille [2002], Solan [2003]).

This relationship of communication is an equivalence relation on the set of states
of type 2. As such, it induces equivalence classes, which for obvious reasons are called
maximal communicating sets. Therefore, every maximal communicating set Ei has
the properties that (1) player i can go from any state in Ei to any other state in Ei;
with probability 1, possibly in a number of moves without leaving Ei, and (2) if player
i decides to leave Ei; the probability that he ever comes back to Ei is strictly less
than 1, regardless his strategy (and since the state and action spaces are �nite, these
probabilities have an upper-bound strictly smaller than 1). The latter observation
further implies that (3) the total number of times during the whole play that player i
switches from a maximal communicating set to another one is �nite with probability
1, regardless the initial state and player i�s strategy; (in fact, for every � > 0 there
exists an L� 2 N such that the number of times that play moves from one maximal
communicating set to another is at most L1� with probability at least 1��); (4) there is
always at least one amongst the maximal communicating sets which player i is unable
to leave, i.e. there are no transitions to states outside; (5) for any strategy of player
i; regardless the initial state, player i eventually settles, with probability 1, in one of
his maximal communicating sets Ei, i.e. after �nitely many stages, player i remains
forever in Ei (it is possible that player i would be able to leave Ei with a di¤erent
strategy).

Let Ei
ki
; where ki 2 Ki; denote the maximal communicating sets for player i: In

every state si of the communicating set Ei
ki
; for every ki 2 Ki; let �Ai

si
denote the set

of those actions ai
si
2 Ai

si
which keep play in Ei

ki
with probability 1. The sets �Ai

si
are

clearly nonempty. For every state s = (s1; : : : ; sn) 2 S; we also let �Ais := �Ai
si
:

Periodicity and Segments. The period of Ei
ki
; denoted by �iki ; is de�ned as the

period of the Markov chain on Ei
ki
associated to a stationary strategy xi of player i

that only uses completely mixed actions on �Ai
si
for all si 2 Ei

ki
: (Obviously, the period

is independent of the particular choice of xi.) The cyclic sets of Ei
ki
are denoted by

T i
ki
(1); : : : ; T i

ki
(�iki): For convenience, let T

i
ki
(u � �iki + w) := T i

ki
(w) for all u 2 N and
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w 2 f1; : : : ; �ikig.
Let K := �ni=1Ki: Consider the product Ek := �ni=1Eiki for some k = (k

1; : : : ; kn) 2
K: The period of Ek; denoted by �k; is de�ned as the period of the Markov chain on Ek
associated to a joint stationary strategy x that only uses joint completely mixed actions
on �As for all s 2 Ek: Clearly, �k equals the least common multiple of �1k1 ; : : : ; �

n
kn : Notice

that this Markov chain has no transient states and consists of a number of ergodic
sets, which we call segments. Each segment F has period �k and is determined by the
starting state. If s 2 Ek is the starting state with si 2 T iki(li) for some li 2 f1; : : : ; �

i
kig,

for all i 2 N; then the segment F containing state s has cyclic sets of the form

TF (m) := T
1
k1(l1 +m� 1)� � � � � T

n
kn(ln +m� 1); m = 1; : : : ; �k: (8)

We remark that the number of segments within Ek equals the greatest common divisor
of �1k1 ; : : : ; �

n
kn . For convenience, let TF (u � �F + w) := TF (w) for all u 2 N and

w 2 f1; : : : ; �F g.
Finally, the period of the whole product-game is de�ned as the least common mul-

tiple of the periods of all its segments. In aperiodic product-games (i.e. which have
period 1), each set Ek is just one segment.

Restricted games. Take an arbitrary segment F , within some Ek = �ni=1Eiki . By
restricting the state space to F � S; and the action set of every player i in any state
s 2 F to �Ais; we obtain a restricted game �GF : Note that �GF is a stochastic game, but
not necessarily a product-game (the state space F of �GF is only a product if F = Ek).

These restricted games play a key role in the analysis of product-games, which is due
to the following observation. As pointed out above, for any initial state and strategies
of the players, each player i eventually settles in one of his maximal communicating
sets Ei

ki
; with probability 1. Hence, with probability 1, play will eventually settle in

a segment F � Ek and in the corresponding restricted game �GF : The study of these
restricted games is therefore of great importance.

For a restricted game �GF ; let �viF;s denote the minmax-level of player i in �GF for
initial state s 2 F: If, for some player i; the inequality �viF;s � vis holds for all initial states
s 2 F; then we call �GF satisfactory to player i. Otherwise, �GF is called unsatisfactory
to player i: In words, if �GF is satisfactory to player i, then player i weakly prefers
�GF to G; as far as his minmax-level is concerned on F: Let F� denote the set of
segments F such that �GF is satisfactory to all players. Further, let F [i] denote the
set of segments F such that �GF is unsatisfactory to player i but �GF is satisfactory
to all players j 2 f1; : : : ; i � 1g: Obviously, F�;F [1]; : : : ;F [n] forms a partition of all
segments.
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1;�1 0; 0

! (1; 1) ! (1; 2)

0; 0 0; 0

! (2; 1) ! (2; 2)

state (1; 1)

3;�1
! (1; 3)

0; 0

! (2; 3)

state (1; 2)

�3; 1
! (1; 2)

0; 0

! (2; 2)

state (1; 3)

1;�2 0; 0

! (3; 1) ! (3; 2)

state (2; 1)

2;�1
! (3; 3)

state (2; 2)

0; 0

! (3; 2)

state (2; 3)

�1; 2 0; 0

! (2; 1) ! (2; 2)

state (3; 1)

0; 0

! (2; 3)

state (3; 2)

0;�1
! (2; 2)

state (3; 3)

Figure 1: Game of Example 1

? Example 1. As an illustration, consider the product-game with two players given
in �gure 1. This is a game with nine states. In each state, the actions of player 1
are represented by the rows, and the actions of player 2 by the columns. So each cell
of each state corresponds to a pair of actions. In each cell, the two payo¤s to the
respective players are given in the upper-left corner, while the next state is indicated in
the bottom-right corner. In this game all the transitions are pure, i.e. each transition
probability distribution assigns probability 1 to a certain state.

The underlying Markov transition structure for player 1 is given by state space
S1 = f1; 2; 3g ; action sets A11 = f1; 2g ; A12 = A13 = f1g ; and transitions

p111 = (1; 0; 0); p
1
12 = (0; 1; 0); p

1
21 = (0; 0; 1); p

1
31 = (0; 1; 0):

So in state 1, player 1 can either stay or leave for state 2, while he moves between
state 2 and 3 back and forth. Regarding the classi�cation of the states in S1; both
E1I := f1g and E1II := f2; 3g are maximal communicating sets, with index-set K1 =

fI; IIg : Moreover, E1I is aperiodic (i.e. has periodicity 1) whereas E1II has periodicity
2. As for the actions which keep play in these maximal communicating sets, we obtain
�A11 =

�A12 =
�A13 = f1g:

The underlying Markov transition structure for player 2 is identical. So, the state
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space is S2 = f1; 2; 3g ; the action sets are A21 = f1; 2g ; A22 = A23 = f1g ; and the
transitions are

p211 = (1; 0; 0); p
2
12 = (0; 1; 0); p

2
21 = (0; 0; 1); p

2
31 = (0; 1; 0):

Further, E2I := f1g and E2II := f2; 3g are maximal communicating sets, with index-
set K2 = fI; IIg : The maximal commincating set E2I is aperiodic, whereas E2II has
periodicity 2, and �A21 =

�A22 =
�A23 = f1g:

Note that E(I;I) = EI � EI = f(1; 1)g, E(I;II) = f(1; 2); (1; 3)g and E(II;I) =
f(2; 1); (3; 1)g all consist of one segment, which we denote by F(I;I); F(I;II) and F(II;I) re-
spectively, while E(II;II) = f2; 3g2 falls apart into two segments, i.e. segment F(II;II);1 =
f(2; 2); (3; 3)g and segment F(II;II);2 = f(2; 3); (3; 2)g:

There are �ve restricted games corresponding to these �ve di¤erent segments. For
instance, the restricted game �GF(I;I) consists of the top-left cell in state (1; 1), while
�GF(II;I) consists of the left cells of states (2; 1) and (3; 1). Note that, in every restricted
game, the reward is unique to every player. ?

3 The main results

For the class of product-games, we present the following result concerning existence of
equilibria.

Main Theorem 1. There exists a 0-equilibrium in every n-player product-game.

In addition, for the special case of two-player zero-sum product-games, we show the
existence of stationary solutions.

Main Theorem 2. In two-player zero-sum product-games, both players have a sta-
tionary 0-optimal strategy.

Existence of stationary 0-equilibria. Our construction for Main Theorem 1 will
only provide 0-equilibria in history-dependent strategies. It remains unclear whether 0-
equilibria always exist within the class of stationary strategies. This question is already
challenging in the situation where each player i�s state space Si is just one aperiodic
maximal communicating set. In this case, the whole state space S is just one segment.
Even though, corollary 6 below (through corollary 10) will yield for such a game that
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all minmax-levels are constant on the whole state space S, it is still not evident how
one should get a grip on the problem.

The di¤erence between the periodic and aperiodic cases. Interestingly, it
turns out that the period of the product-game plays a central role in the analysis. In
Flesch et al. [2008], the special case of aperiodic product-games has been extensively
studied, and the validity of Main Theorem 1 has been shown for all aperiodic product-
games. The approach presented there is applicable for a large part to periodic product-
games as well, but the periodic case poses a number of additional problems that we
have to address. The main cause of these problems is that, in the periodic case, as we
discussed in section 2, if Ei

ki
denotes a maximal communicating set for every player

i, then the product Ek = �ni=1Eiki may fall apart into a number of segments, which
do not communicate with each other. The main problems that we encounter are the
following:

A. Several properties which Flesch et al. [2008] derived for the sets Ek in the
aperiodic case do not hold for the periodic case. Luckily, however, we are able to derive
similar properties for each segment of the sets Ek: (For example, the minmax-levels of
the players are no longer constants on the whole set Ek; just on each segement of Ek
separately, cf. corollary 6 together with corollary 10.)

B. The central lemma of the aperiodic case loses its validity for periodic product-
games and has to be modi�ed. We refer to lemma 3 and the remark after that.

C. In the aperiodic case, we often used that, moving to a set Ek can be achieved by
letting each player i move to Ei

ki
. This is insu¢ cient for the periodic case, as we need

to move to certain segments within Ek. Note that the segment which the players enter
in Ek will be determined by the collection (si;mi)ni=1, where s

i 2 Ei
ki
is the state and

mi is the stage at which player i enters Ei
ki
. Thus, it becomes a real precision work to

arrive at the right segment and not at another one within Ek. In particular, we refer
to the proof of lemma 3 and the example after that.

An attempt to transform periodic product-games into aperiodic ones. In
order to show Main Theorem 1, one could try to transform every periodic product-game
G into an aperiodic one G0 and hope that the 0-equilibrium in G0 reveals a 0-equilibrium
for the original product-game G. For example, in the context of Markov chains, it is
known that if P is the transition matrix of a Markov chain on �nitely many states,
then for any � 2 (0; 1]; the transition matrix � � P + (1� �) � I; where I is the identity
matrix, induces the same ergodic structure and the same set of invariant distributions.
This is particularly interesting when P is periodic, as � �P + (1��) � I is aperiodic for
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all � 2 (0; 1).
In periodic product-games, such transformations are bound to fail, for the following

reason. Consider a set Ek = �ni=1Eiki ; where E
i
ki
denotes a maximal communicating

set for every player i: As we discussed in section 2, if the product-game is aperiodic,
then Ek is one segment and all states in Ek communicate. On the other hand, if the
product-game is periodic, then Ek may fall apart into several segments, which do not
communicate with each other. Hence, any transformation which would unite these
segments into one segment, would change the structure of the game so radically that
the 0-equilibrium that one �nds in G0 will not generally correspond to a 0-equilibrium
in the original product-game G.

The general idea of the construction of a 0-equilibrium. The general idea
of the construction of an equilibrium �, for a product-game G; is as follows. The
equilibrium � will prescribe to follow a joint strategy �, unless some player i deviates
from �i by playing an action outside the support of �i (i.e. an action on which �i

puts probability zero). If player i deviates in such a way, then from the next state, say
state s, players �i switch to a joint stationary strategy y�i and push down player i�s
reward to his minmax-level vis: In fact, y

�i acts as a threat strategy, whose task is to
force player i to follow the prescriptions of �i: Punishment with y�i will be shown to
be severe enough. Finally, our construction will guarantee that no deviation inside the
support of �i (such deviations are hard to detect) is pro�table for any player i.

Now let us brie�y describe the construction of �, which shows a number of simi-
larities with the construction in Vieille [2000-a,b] and Flesch et al. [2008]. The joint
strategy � prescribes to play in the following way:

(1) When entering some segment F; with F 2 F� (i.e. the corresponding restricted
game �GF is satisfactory to all players): In this case, � will prescribe to stay on F and
play a certain equilibrium in �GF : Here, the players collect �high�payo¤s. (Cf. solvable
sets in Vieille [2000-a,b].)

(2) When entering some segment F; with F 2 F [i] (i.e. the corresponding restricted
game �GF is unsatisfactory to player i): In this case, � will prescribe player i to exit
Ei
ki
(and thereby to leave F ), while all other players wait for player i�s exit patiently.

It will be taken care of that no player�s minmax-level drops in expectation by this exit.
Payo¤s in F are disregarded. (Cf. controlled sets in Vieille [2000-a,b].)

(3) Outside all joint maximal communicating sets: In this case, � will let the players
play for their future perspectives. Payo¤s in these states are disregarded.

Note that, according to �, play will surely settle in a restricted game belonging to
case (1).
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4 The formal proofs of Main Theorems 1 and 2

In this section, we provide a proof for Main Theorems 1 and 2. We will focus on Main
Theorem 1, as Main Theorem 2 will follow (cf. the end of section 4.3) along the way
without major additional di¢ culties. In section 4.1, we examine restricted games. In
section 4.2 we analyze the minmax-levels of the players in so-called simple product-
games, and then in section 4.3 we extend this to the general case. By combining these
results, we prove Main Theorem 1 in section 4.4.

4.1 Analysis of the restricted games

We know that, for any strategies of the players and for any initial state, play will
eventually settle in some restricted game, with probability 1. Therefore, it is essential
to know what perspectives each restricted game can o¤er to the players in terms of
minmax-levels and equilibrium rewards. Consider an arbitrary restricted game �GF ;
corresponding to segment F . First, we analyse the minmax-levels of the players in �GF ,
and then we discuss possible equilibrium rewards within �GF :

First we will show that each player i�s minmax-level in �GF is constant. Moreover,
players �i can make sure in �GF that player i�s reward is at most his minmax-level (i.e.
the in�mum is attained in (6) for the game �GF ).

Lemma 1 Let G be a product-game. Consider the restricted game �GF ; corresponding
to some segment F; and an arbitrary player i: Then, the minmax-level �viF of player i
in �GF is constant, i.e. �viF;s = �viF;t(=: �v

i
F ) for all states s; t 2 F: Moreover, in �GF ;

players �i have a joint stationary strategy x�i which guarantees that player i�s reward
from any initial state s 2 F is at most his minmax-level �viF ; i.e. for all strategies �

i

for player i in �Gk we have
�is(�

i; x�i) � �viF ;

where � denotes the reward for the game �GF :

We will prove this lemma in section 5.
? As an illustration, we now revisit the game in example 1. We �nd in accordance

with lemma 1 that the minmax-levels of the players are constant in the restricted games.
Indeed, for player 1 we have that

�v1F(I;I) = 1; �v
1
F(I;II)

= 0; �v1F(II;I) = 0; �v
1
F(II;II);1

= 1; �v1F(II;II);2 = 0; (9)
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while for player 2 that
�v2F = ��v1F (10)

for any segment F . ?

Next, we present a possible equilibrium for the restricted game �GF . We show that
there exists a 0-equilibrium in �GF in which, if no player deviates, the players�future
expectations remain unchanged during the whole play. Note that Flesch et al. [1997]
(with 3 players) and Simon [2003] (with only 2 players) constructed examples proving
that such a result would not hold for all stochastic games in general.

Lemma 2 Let G be a product-game. Consider the restricted game �GF ; corresponding
to some segment F: Then, there exists a 0-equilibrium � in �GF such that the corre-
sponding rewards are independent of the initial state and all the continuation rewards
remain unchanged with probability 1 during the whole play. More precisely, the reward
�is(�[h]) is independent of the initial state s 2 F and the history h; given h occurs with
a positive probability with respect to �: Here � denotes the reward for the restricted
game �GF :

The proof is the same as for lemma 3.7 in Flesch et al. [2008]. Here, we only provide
a brief outline. Note:

(i) The minmax-levels of the players in �GF are constant, by lemma 1.

(ii) The set of feasible rewards in �GF (i.e. the rewards that can be obtained by some
joint strategy) is the same from any initial state in F: This is an immediate consequence
of the fact that the players can move from any state in F to any other one in F , in a
�nite number of steps.

(iii) The extreme points of the set of feasible rewards are induced by pure stationary
strategies. This is shown in Flesch et al. [2008], based on Dutta [1995].

Given these three observations, this game situation is almost identical to a repeated
game. The proof further is direct and uses ideas and arguments that are standard in
various kinds of Folk-theorems.

4.2 The minmax-levels in simple product-games

A product-game G is called simple if, within every restricted game �GF ; every player i
has a unique payo¤, i.e. ris(as) = r

i
t(bt) for all states s; t 2 F and for all joint actions
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1;�1 0; 0

! (1; 1) ! (1; 2)

0; 0 0; 0

! (2; 1) ! (2; 2)

state (1; 1)

0; 0

! (1; 3)

0; 0

! (2; 3)

state (1; 2)

0; 0

! (1; 2)

0; 0

! (2; 2)

state (1; 3)

0; 0 0; 0

! (3; 1) ! (3; 2)

state (2; 1)

1;�1
! (3; 3)

state (2; 2)

0; 0

! (3; 2)

state (2; 3)

0; 0 0; 0

! (2; 1) ! (2; 2)

state (3; 1)

0; 0

! (2; 3)

state (3; 2)

1;�1
! (2; 2)

state (3; 3)

Figure 2: Game of Example 2

as 2 �As, bt 2 �At: Let ziF denote this unique payo¤ for player i in the restricted game
�GF . Thus, in simple product-games, when play settles in one of the restricted games
�GF ; the rewards of the players will equal zF .

? Example 2: Consider the simple product-game G with two players given in �gure
2. This game is obtained from the game in example 1 by replacing all payo¤s by 0 in
the restricted games corresponding to segments F(I;II) = f(1; 2); (1; 3)g and F(II;I) =
f(2; 1); (3; 1)g; and by replacing all payo¤s for player 1 by 1 in the restricted game
corresponding to segment F(II;II);1 = f(2; 2); (3; 3)g: This game is simple according to
the de�nition above.

Let us examine the players�minmax-levels in G. For player 1, we will argue that

v1s =

(
0 if s 2 F(II;I) [ F(II;II);2 = f(2; 1); (3; 1); (2; 3); (3; 2)g
1 if s 2 F(I;I) [ F(I;II) [ F(II;II);1 = f(1; 1); (1; 2); (1; 3); (2; 2); (3; 3)g:

(11)

Obviously, v1s = 0 for s 2 f(2; 3); (3; 2)g, while player 1�s minmax-level is also 0
for initial states (2; 1) and (3; 1) in view of player 2�s �rst action. Now consider an
arbitrary other initial state s 2 f(1; 1); (1; 2); (1; 3); (2; 2); (3; 3)g. Obviously, v1s � 1:

On the other hand, player 1 can guarantee reward 1 for state s by the pure stationary
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strategy x1 which plays action 1 in states (1; 1) and (1; 2); while action 2 in state (1; 3).
Hence, v1s = 1 indeed.

We similarly �nd that
v2s = �v1s (12)

for all s 2 S. ?

Consider a state s 2 S within a simple product-game. The following lemma con-
siders the situation where si is of type 2 for player i. Then, as we know, si belongs
to a cyclic set T i

ki
(mi) of some maximal communicating set Ei

ki
: Suppose player i can

choose between one of the following two options: (1) player i can choose any state ti in
the next cyclic set T i

ki
(mi +1); and the new state of the game becomes (ti; s�i); or (2)

player i can choose any action ais in state s
i, and the new state of the game becomes

(ti; s�i); ti 2 Si; with probability pi
siais
(ti): Note that players �i remain in state s�i in

either case. In the following lemma we show that option 1 is always at least as good
as option 2, as far as player i�s minmax-level is concerned. A similar statement is valid
for players �i.

Lemma 3 Let G be a simple product-game. Take an arbitrary player i and a state
s = (si; s�i) 2 S.

(1) Suppose that state si is of type 2 for player i; and belongs to cyclic set T i
ki
(mi)

of some maximal communicating set Ei
ki
. Consider any action ai

si
2 Ai

si
in state si for

player i: Then, for any state ti 2 T i
ki
(mi + 1); we haveX

ui2Si
pisiai

si
(ui) vi(ui;s�i) � v

i
(ti;s�i):

(2) Suppose that state sj is of type 2 for every player j 6= i, and belongs to cyclic set
T j
kj
(mj) of some maximal communicating set Ej

kj
. Thus, s�i 2 T�i

k�i(m
�i). Consider

any joint action a�is 2 A�is for players �i: Then, for any joint state t�i 2 T�i
k�i(m

�i+1),
we have X

u�i2S�i
p�i
s�ia�i

s�i
(u�i) vi(si;u�i) � v

i
(si;t�i):

We will prove this lemma in Section 6. The proof is far from straightforward.
Nevertheless, we will provide now an intuition behind the lemma. Consider part 1 of
the lemma, and the two options we described before the lemma. By taking option 1,
player i is certain to remain in the same maximal communicating set Ei

ki
. On the other
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hand, by playing an action ai
si
in option 2, player i possibly leaves Ei

ki
and strategically

restricts himself, as he will not be able to return to Ei
ki
with probability 1 (cf. property

2 of maximal communicating sets in section 2). In this sense, waiting in Ei
ki
provides

no worse future prospects. Hence the inequality for player i�s expected minmax-levels
after the transition. A similar reasoning supports part 2 of the lemma.

? As an illustration for part 1 of the lemma, we revisit the simple product-game in
example 2. Consider player i = 1; state s = (1; 1); and action 2 and state t1 = 1 for
player 1. Then, v1(2;1) = 0 � 1 = v

1
(1;1); in accordance with part 1 of the lemma. ?

Remark. A special case arises when the product-game is aperiodic. Consider part
1 of the lemma. Then, as T i

ki
(mi) = T i

ki
(mi + 1) = Ei

ki
, we obtain for every action ai

si

of player i that X
ui2Si

pisiai
si
(ui) vi(ui;s�i) � v

i
(si;s�i): (13)

This means that even if player i had a solitary move, i.e. he could play an arbitrary
action ai

si
in state (si; s�i), while every other player j remains in the same state sj , he

would not be able to improve on his minmax-level in expectation. This was in fact the
central result for the aperiodic case in Flesch et al. [2008] (cf. lemma 3.2).

This is, however, no longer valid for periodic product-games. In the game in example
2, for instance, a solitary move for player 1 in state (3; 2) would lead to state (2; 2);
improving player 1�s minmax-level. Hence, inequality (13) would not hold.

Suppose player i is in a state of type 2 within a maximal communicating set Ei
ki
:

We show that, irrespectively of the joint action chosen by players �i, the actions which
keep him in Ei

ki
with probability 1 provide the best expected minmax-level after the

transition.

Lemma 4 Let G be a simple product-game. Take an arbitrary player i:

(1) Let s 2 S be such that si is of type 2. Consider any actions ais 2 �Ais and b
i
s 2 Ais

for player i and any joint action a�is 2 A�is for players �i: Then,X
t2S

ps;(ais;a
�i
s )(t) v

i
t �

X
t2S

ps;(bis;a
�i
s )(t) v

i
t:

(2) Let s 2 S be such that sj is of type 2 for all players j 6= i. Consider any joint
actions a�is 2 �A�is and b�is 2 A�is for players �i and any action ais 2 Ais for player i:
Then, X

t2S
ps;(ais;a

�i
s )(t) v

i
t �

X
t2S

ps;(ais;b
�i
s )(t) v

i
t:
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Proof. We will prove part 1; the proof of part 2 is similar.
So, consider part 1. Since si is of type 2, si belongs to a cyclic set T i

ki
(mi) of some

maximal communicating set Ei
ki
. Then, by playing action ais, player i actually moves

to the next cyclic set T i
ki
(mi + 1): Hence, by part 1 of lemma 3, for any t�i 2 S�i we

have X
ti2Si

pisiais
(ti) vi(ti;t�i) �

X
ti2Si

pisibis
(ti) vi(ti;t�i):

Therefore,

X
t2S

ps;(ais;a
�i
s )(t) v

i
t =

X
t�i2S�i

p�i
s�ia�is

(t�i)

24X
ti2Si

pisiais
(ti) vi(ti;t�i)

35
�

X
t�i2S�i

p�i
s�ia�is

(t�i)

24X
ti2Si

pisibis
(ti) vi(ti;t�i)

35
=

X
t2S

ps;(bis;a
�i
s )(t) v

i
t;

completing the proof.

In view of (7), the lemma above has the following implication.

Corollary 5 Let G be a simple product-game. Take an arbitrary player i:

(1) Let s 2 S be such that si is of type 2. Consider any action ais 2 �Ais for player i
and any joint action a�is 2 A�is for players �i: Then,X

t2S
ps;(ais;a

�i
s )(t) v

i
t � vis:

(2) Let s 2 S be such that sj is of type 2 for all players j 6= i. Consider any joint
action a�is 2 �A�is for players �i and any action ais 2 Ais for player i: Then,X

t2S
ps;(ais;a

�i
s )(t) v

i
t � vis:

As we know, all states within a segment F communicate through joint actions
as 2 �As; s 2 F . Since, due to the above corollary, these actions do not change the
minmax-levels of the players in expectation, we may conlude the following result.

Corollary 6 Let G be a simple product-game, and F a segment. Then, the minmax-
level vi of every player i is constant on F; i.e. vis = v

i
t(=: v

i
F ) for all s; t 2 F:
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? As an illustration, consider the simple product-game in example 2. In view of (11)
and (12), we �nd, in accordance with the corollary above, that both players minmax-
levels are constant on each segment. ?

The next lemma is more speci�c on constant minmax-levels.

Lemma 7 Let G be a simple product-game. Take an arbitrary player i:

(1) Consider a cyclic set T i
ki
(m) of some maximal communicating set Ei

ki
for player

i. Then, for any two states si; ti 2 T i
ki
(m) and any joint state s�i 2 S�i of players �i;

the minmax-level of player i satis�es vi
(si;s�i) = v

i
(ti;s�i):

(2) Consider a cyclic set T j
kj
(mj) of some maximal communicating set Ej

kj
for all

players j 6= i. Then, for any two joint states s�i; t�i 2 �j 6=iT jkj (m
j) and any state

si 2 Si of player i; the minmax-level of player i satis�es vi
(si;s�i) = v

i
(si;t�i):

Proof. We will prove part 1; the proof of part 2 is similar.
Take any joint state s�i 2 S�i for players �i. Let si 2 T i

ki
(m) be such that

vi
(si;s�i) � vi

(wi;s�i) for all w
i 2 T i

ki
(m); and let ti 2 T i

ki
(m). It su¢ ces to show that

vi
(si;s�i) = v

i
(ti;s�i):

Take any state ui 2 T i
ki
(m�1); with T i

ki
(0) := T i

ki
(�iki), and an action a

i
ui
2 �Ai

ui
such

that ai
ui
in state ui induces transition to state ti with a positive probability (obviously,

such a state and action exist, due to the de�nitions of cyclic sets). Note that part 1 of
lemma 3 yields X

wi2Si
piuiai

ui
(wi) vi(wi;s�i) � v

i
(si;s�i):

As action ai
ui
in state ui only induces transition to states in T i

ki
(m), by the choice of

si, we have vi
(si;s�i) = v

i
(wi;s�i) for all w

i 2 Si for which pi
uiai

ui
(wi) > 0. In particular,

vi
(si;s�i) = v

i
(ti;s�i), which completes the proof.

Recall that, in simple product-games, ziF denotes the unique payo¤ for player i in
the restricted game �GF . When ziF � viF for every player i, i.e. when the restricted
game �GF is satisfactory to all players; then we can let the players stay in F and collect
the individually rational rewards zF . However, we still have to examine what happens
in the situation where ziF < viF for some player i, i.e. when the restricted game �GF
is unsatisfactory to player i. The next lemma proposes a way for player i to exit �GF ,
by playing a certain action ais in one of the cyclic sets of F . A similar result holds for
players �i.
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Lemma 8 Let G be a simple product-game, and F a segment within some Ek =
�ni=1Eiki for some k = (k1; : : : ; kn) 2 K. Suppose that F has cyclic sets of the form
(cf. (8))

TF (m) := T
1
k1(m)� � � � � T

n
kn(m); m = 1; : : : ; �k:

Consider player i. Let ziF denote player i�s unique payo¤ in the restricted game �GF ;
and viF be player i�s minmax-level on F in the game G (a constant, cf. corollary 6).

(1) Suppose ziF < viF : Then, for player i, there exists an m 2 f1; : : : ; �kg; a state
si 2 T i

ki
(m); and an action ai

si
2 Ai

si
� �Ai

si
in state si such that if player i plays action

ai
si
in any state s = (si; s�i) 2 TF (m), then player i�s minmax-level cannot decrease in

expectation from state s, regardless the actions played by players �i. More precisely,
for any a�is 2 A�is we have X

t2S
ps;(ai

si
;a�is )(t) v

i
t � viF :

(2) Suppose ziF > v
i
F : Then, for players �i, there exists an m 2 f1; : : : ; �kg; a joint

state s�i 2 T�i
k�i(m); and a joint action a

�i
s�i 2 A

�i
s�i � �A�i

s�i (i.e. at least one player
j 6= i plays outside �Aj

sj
) in joint state s�i such that if players �i play joint action a�i

s�i

in any state s = (si; s�i) 2 TF (m), then player i�s minmax-level cannot increase in
expectation from state s, regardless the action played by player i. More precisely, for
any ais 2 Ais we have X

t2S
ps;(ais;a

�i
s�i

)(t) v
i
t � viF :

We will prove this lemma in Section 7.

? As an illustration for part 1 of the lemma, we revisit the simple product-game
in example 2. Consider the segment F(I;II) = f(1; 2); (1; 3)g; where v1F(I;II) = 1 > 0 =
z1F(I;II) , by (11): Segment F(I;II) has period 2 and two cyclic sets, i.e. TF(I;II)(1) = f(1; 2)g
and TF(I;II)(2) = f(1; 3)g: Notice that player 1 can exit F(I;II) through action 2 in state
(1; 3); and by doing so, play moves to state (2; 2); where his minmax-level is v1(2;2) = 1:
Note that v1(2;2) � v

1
(1;3); in accordance with part 1 of the lemma. Thus, one can choose

m = 2; s1 = 1 and a1s1 = 2: ?

4.3 The minmax-levels in general product-games

Take an arbitrary product-game G. The next lemma presents a natural way of trans-
forming G into a simple product-game eG; by replacing payo¤s by minmax-levels, and
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claims that the minmax-levels of the players remain unchanged under this transforma-
tion. The idea to replace payo¤s by minmax-levels, in the context of stochastic games,
also appeared in Solan [1999] and in a more sophisticated way in Solan & Vohra [2002].

Lemma 9 Take an arbitrary product-game G, with vis denoting the minmax-level for
every player i and for every state s 2 S. Let �viF denote player i�s minmax-level in
every restricted game �GF (which is constant, cf. lemma 1). Let eG denote the simple
product-game which is derived from G by replacing every player i�s payo¤s in every
restricted game �GF by his minmax-level �viF : Further, let w

i
s denote every player i�s

minmax-level in eG in state s.
Then, the minmax-levels of the product-games G and eG are equal, i.e. vis = w

i
s for

all players i and for all states s 2 S:

The proof is almost the same as for lemma 3.6 in Flesch et al. [2008]. Here, we only
provide a brief outline. We will argue that vis � wis for all states s 2 S: Since vis � wis
for all s 2 S follows in a similar fashion, the proof will then be complete.

In order to show that vis � wis for all s 2 S; we will prove for the game G that
players �i have a joint stationary strategy x�i which guarantees that player i�s reward
from any initial state s 2 S is at most wis; i.e. for all strategies �i for player i we have

is(�
i; x�i) � wis: (14)

Note �rst that the minmax-level wis equals some constant w
i
F on every segment F;

by applying corollary 6 to the game eG: We construct the joint stationary strategy x�i
by distinguishing the following three mutually exclusive cases.

Case 1: States s 2 S which do not belong to any segment: In this case, let x�is 2 X�i
s

be a joint mixed action for players �i such that for any mixed action xis 2 Xi
s of player

i we have X
t2S

ps;(x�is ;xis)
(t)wit � wis:

By expression (7) for player i�s minmax-level wi in eG, such a joint mixed action exists.
Case 2: In a segment F with �viF � wiF : In this case, players �i play a joint

stationary strategy in the corresponding restricted game �GF (which is a part of the
original game G) as in lemma 1.

Case 3: In a segment F with �viF > wiF : In this case, part 2 of lemma 8 (for the
game eG with minmax-level wi for player i) provides a joint �exit� state and a joint
�exit�action for players �i. So, in this state players �i play this �exit�action, while
in all other states s 2 F they play an arbitrary joint completely mixed on �A�is .
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Take an arbitrary strategy �i for player i; and consider (�i; x�i) with an arbitrary
initial state s 2 S. As we know, play will eventually settle in a restricted game �GF .
Observe that (1) the minmax-level wi cannot increase in expectation until settling in
�GF (in case 1 by the de�nition of x�i; while in cases 2 and 3 by part 2 of corollary
5 and part 2 of lemma 8); and (2) the segment F can only belong to case 2 (due to
the exits in case 3), o¤ering player i a reward of at most �viF � wiF : Combining these
two observations, it follows easily that player i�s reward is at most wis in expectation,
proving (14).

? For an illustration of the above lemma, we refer to the games in examples 1 and
2. Indeed, the product-game in example 1 (which is now game G with minmax-levels
v) leads to the simple product-game in example 2 (which is now game eG with minmax-
levels w): Just as in the proof of the above lemma, we can construct a stationary
strategy y1 for player 1 (y1 being x�2 for players �i with i = 2) which guarantees in
G that player 2�s reward is not more than w2s for all initial states s 2 S: Recall from
(12) and (11) that

�w2F(I;I) = �1; �w
2
F(I;II)

= �1; �w2F(II;I) = 0; �w
2
F(II;II);1

= �1; �w2F(II;II);2 = 0:

and from (10) and (9) that player 2�s minmax-levels within the restricted games are

�v2F(I;I) = �1; �v
2
F(I;II)

= 0; �v2F(II;I) = 0; �v
2
F(II;II);1

= �1; �v2F(II;II);2 = 0:

Following the proof, as the segments F(I;I), F(II;I) and F(II;II);1 and F(II;II);2 all belong
to case 2 (i.e. �v2F � w2F when F equals any of these four segments F ), the strategy y1
has to guarantee in the corresponding restricted games that player 2�s reward in G is not
more than �v2F : Also, y

1 has to leave F(I;II), belonging to case 3 (i.e. �v2F(I;II) > w
2
F(I;II)

).

It is easy to see that the pure stationary strategy y1 which plays action 1 in states
(1; 1) and (1; 2); while action 2 in state (1; 3) satis�es all these requirements. ?

The previous lemma (and its proof) has useful consequences.

Corollary 10 The results of lemmas 3 and 4, corollaries 5 and 6, and lemma 7 are
also valid for any general product-game G. Lemma 8 extends as well if one interprets
ziF as the minmax-level �v

i
F of player i in the restricted game �GF .

Also, the in�mum in expression (6) of the minmax-levels is attained at stationary
strategies, for all product-games. This is stated next.
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Corollary 11 (of the proof of lemma 9) Take a product-game G and an arbitrary
player i. Then, players �i have a joint stationary strategy x�i which guarantees that
player i�s reward from any initial state s 2 S is at most his minmax-level vis; i.e. for
all strategies �i for player i we have

is(�
i; x�i) � vis:

With the help of this corollary, we are now ready to prove Main Theorem 2, which
claimed that, in every two-player zero-sum product-game, both players have a station-
ary 0-optimal strategy.

Proof of Main Theorem 2. Take an arbitrary two-player zero-sum product-
game, and take player i = 1: By corollary 11, there exists a stationary strategy x�1 for
player 2 (as players �1 is simply player 2) which guarantees that player 1�s reward is
not more than v1s for any initial state s 2 S: Hence, x�1 is 0-optimal for player 2. One
�nds similarly a stationary 0-optimal strategy for player 1, which completes the proof.

? Thus, in our illustrative game in example 1, the pure stationary strategy y1 for
player 1 which plays action 1 in states (1; 1) and (1; 2); while action 2 in state (1; 3) is
0-optimal. ?

4.4 The construction of 0-equilibria in product-games

In this section, we will prove Main Theorem 1, which claimed that, in any product-
game G, there exists a 0-equilibrium. Given the results above, the proof resembles the
proof given in Flesch et al. [2008] for the aperiodic case. In our case, the proof is more
complicated, as the sets Ek may split up into several segments, in contrast with the
aperiodic case.

Proof of Main Theorem 1. For the general idea of the construction, we refer to
section 3.

By corollary 6 and lemma 1, we know that, on each segment F; the minmax-values
in G and in �GF are both a constant vF and �vF ; respectively. Recall, from section 2,
that F� denotes the set of segments F such that �GF is satisfactory to all players (i.e.
�viF � viF for all players i), while F [i] denotes the set of segments F such that �GF is
unsatisfactory to player i but �GF is satisfactory to all players j 2 f1; : : : ; i � 1g (i.e.
�viF < v

i
F and �v

j
F � v

j
F for all j 2 f1; : : : ; i� 1g).
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In every restricted game �GF with F 2 F�, take a 0-equilibrium �F as in lemma 2.
Let ziF denote the corresponding reward for any player i, which is independent of the
initial state on F . Then, as F 2 F�, we have for all players i that

ziF � �viF � viF : (15)

In every restricted game �GF with F 2 F [i], take a state siF and an �exit� action
aiF for player i in state s

i
F as in part 1 of lemma 8 (with corollary 10).

The proof of Main Theorem 1 consists of the following steps. In step 1, we construct
a joint stationary strategy x� which will be used to reach segments F 2 F� (this step
is only needed if there are states outside the segments). Then, in step 2 we focus on
states within the segments, and �extend�x� to the joint strategy � according to which
the players also receive rewards zF in every segment F 2 F�. Finally, in step 3, we will
complete the proof by showing that � supplemented with appropriately chosen joint
stationary strategies y�i; for all i, forms a 0-equilibrium.

Step 1: The construction of the joint stationary strategy x� satisfying a number of
properties: First, for every player i and state s 2 S for which si is of type 2, �x an
action �dis 2 �Ais: The only requirement we have is that in each segment F 2 F [i]; player
i will eventually reach his �exit�state siF through these actions (given the other players
do not leave F ).

Further, consider a player i and a state si of type 1, and some cyclic set T j
kj
(mj)

of a maximal communicating set Ej
kj
, for every player j 6= i. We will argue that there

exists an action ai
si
[k�i;m�i], or ai

si
for short, for player i in state si with the following

property: in every state s = (si; s�i); with s�i 2 �j 6=iT jkj (m
j); action ai

si
is providing

the best transitions with respect to player i�s minmax-level, against the joint action
�d�is ; i.e. for all b

i
s 2 Ais we haveX

t2S
ps;(ai

si
; �d�is )(t) v

i
t �

X
t2S

ps;(bis; �d
�i
s )(t) v

i
t: (16)

One can verify this claim as follows. Since every player j 6= i plays �djs 2 �Ajs, player j
moves next to cyclic set T j

kj
(mj + 1). Thus, players �i move to �j 6=iT jkj (m

j + 1): In
view of part 2 of lemma 7, player i�s minmax-level is some constant vi[ti] on the set of
states t = (ti; t�i) with t�i 2 �j 6=iT jkj (m

j +1): Hence, the left-hand-side of (16) can be
written as X

t2S
ps;(ai

si
; �d�is )(t) v

i
t =

X
ti2Si

pisiai
si
(ti) vi[ti]: (17)
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Consequently, any action ai
si
for player i maximizing the right-hand-side of (17) will

prove our claim in (16).
Now, we de�ne a subset X�i

s � Xi
s of mixed actions for every player i in every state

s = (s1; : : : ; sn) 2 S as follows:
Case (1): s lies in segment F with F 2 F�: In this case, we let X�i

s = f �disg for all
players i.

Case (2): s lies in segment F with F 2 F�[i]: In this case, for players j 6= i we let
X�j
s = f �djsg: As for player i, we let X�i

s = f �disg if si 6= siF while X�i
s = faiF g if si = siF

(recall that aiF is player i�s �exit�action in state s
i
F ; cf. the beginning of the proof).

Case (3): si is of type 1, but sj is of type 2 for every player j 6= i: In this
case, for every player j, state sj belongs to some cyclic set T j

kj
(mj) of a maximal

communicating set Ej
kj
. For every player j 6= i, we let X�j

s = f �djsg: As for player i; we
let X�i

s = faisi [k
�i;m�i]g (as discussed in (16)).

Case (4): si is of type 1 for at least two players i: In this case, for every player i
for whom si is of type 1, we let X�i

s = X
i
s: For every player j for whom sj is of type 2,

we let X�j
s = f �djsg:

Note that X�i
s = Xi

s or X
�i
s is a singleton consisting of one action, for any player

i in any state s 2 S: In fact player i is unrestricted exactly when he and at least one
more player are in a state of type 1. Moreover, the ergodic sets for all x 2 X� are all
within the segments F 2 F� (cf. case 1), due to player i�s �exit� action aiF in each
segment F 2 F�[i] (cf. case 2). Observe also that the ergodic sets are the same for all
x 2 X�.

LetG� denote the stochastic game (not necessarily a product-game) which is derived
from G by replacing every player i�s payo¤s by ziF in every restricted game �GF with
F 2 F�; and subsequently by restricting each player i in each state s 2 S to the space
X�i
s of mixed actions. Recall that ziF denotes player i�s reward in restricted game �GF

with respect to the 0-equilibrium �F (cf. beginning of the proof).
As the ergodic sets are the same for all x 2 X�, there exists a stationary 0-

equilibrium x� 2 X� for the game G� (cf. Flesch et al. [2008] for a detailed proof).
Obviously, x� is also a joint stationary strategy in the original game G; but not neces-
sarily a 0-equilibrium.

We wish to point out three properties of x�.
Property (1): If player i is unrestricted in state s in the game G�, i.e. X�i

s = Xi
s,

then player i cannot go to better states regarding his reward in G� by unilaterally
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deviating from x�is ; i.e. for every action b
i
s 2 Ais we haveX

t2S
ps;(bis;x

��i
s )(t) 

�i
t (x

�) �
X
t2S

psx�s (t) 
�i
t (x

�);

where �i denotes the reward to player i in the game G�. This property follows from
the fact that x� is a 0-equilibrium in G�:

Property (2): If player i is restricted in state s in the game G�, i.e. when X�i
s

is a singleton, then player i cannot improve on his expected minmax-level in G by
unilaterally deviating from x�is ; i.e. for every action b

i
s 2 Ais we haveX

t2S
ps;(bis;x

��i
s )(t) v

i
t �

X
t2S

psx�s (t) v
i
t: (18)

We remark that this property, in view of (7), implies

vis �
X
t2S

psx�s (t) v
i
t: (19)

To show (18), we distinguish three possibilities: (i) Whenever player i is restricted to
action �dis; then (18) follows from part 1 of lemma 4 (with corollary 10). (ii) Whenever
player i is restricted to action ai

si
[k�i;m�i] in case 3, then (18) follows from (16). (iii)

Whenever player i is restricted to his �exit� action aiF in case 2, then by part 2 of
corollary 5 and part 1 of lemma 8 (with corollary 10) we have respectivelyX

t2S
ps;(bis;x

��i
s )(t) v

i
t � viF ; viF �

X
t2S

psx�s (t) v
i
t;

implying (18).
Property (3): x� yields rewards in G� that are at least the minmax-levels in G, i.e.

�is (x
�) � vis for all players i and for all initial states s 2 S. For a proof, we refer to

Flesch et al. [2008].

Step 2 . The construction of the joint strategy � for the original game G: Given x�

from step 1, the de�nition of � is easy. Let � be the joint strategy which prescribes to
play as follows:

Case (1): when play enters a segment F with F 2 F�. In this case, the players
switch to the joint strategy �F (cf. begin of the proof).

Case (2): when play enters a segment F with F 2 F�[i]. In this case, players �i
switch to a joint stationary strategy as in lemma 1, while player i follows x�, i.e. plays
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the mixed action x�is in state s 2 F . This means that player i exits F through moving
to state siF and then playing action a

i
F (repeatedly until exit ocurs).

Case (3): in any state s 2 S outside the segments. In this case, each player i follows
x�, i.e. plays the mixed action x�is :

We remark the following properties:
(A) Play according to � keeps play in every segment F 2 F� (cf. case 1) and leaves

every segment F 2 F�[i] (cf. case 2) with the guidance of x�i. Consequently, � will
eventually settle in a segment F 2 F�; with probability 1. Moreover, in a segment
F 2 F�, by switching to �F ; each player i receives reward ziF : So in some sense, x�
is used to reach a segment F 2 F�, and then �F is used to induce rewards zF to the
players.

(B) Whenever a player was unrestricted in some state s in the game G�; which only
happened outside the segments, then � prescribes x�s (cf. case 3). Whenever a player i
was restricted in state s to action �dis in the game G

�, then �i prescribes a mixed action
in �Xi

s:Whenever a player i was restricted in state s to action a
i
si
[k�i;m�i] in the game

G�, then ��i prescribes for players �i the joint action �d�is : Finally, whenever a player
i was restricted in state s to an �exit�action (cf. action aiF in case 2) in the game G

�,
then ��i prescribes for players �i a joint mixed action in �X�i

s :

(C) Whenever player i leaves segment F 2 F�[i] from some state s = (siF ; s
�i) 2 F

(cf. case 2), then the probability that the next segment play visits is some F 0, is
independent of s�i. This is due to the following reasons. Suppose F lies within some
Ek = �nj=1E

j
kj
, and that s belongs to a joint cyclic set TF (m) (cf. part 1 of lemma 8).

Suppose also that player i exits F and moves to a state ti outside Ei
ki
: At the same

time, independently of the particular choice of s�i in T�iF (m); players �i move to the
next joint cyclic set T�iF (m+1): Consequently, if t

i is of type 2, then play entered a new
segment, and this segment is independent of s�i. On the other hand, if ti is of type 1,
then case 3 of step 1 takes care that player i�s behavior is independent of players �i�s
state within T�iF (m+ 1), and this remains so until a new segment is entered.

(D) By the construction of �, the joint strategies � and x� induce the same proba-
bility that play eventually settles in any segment F; from any initial state s 2 S. Thus,
by property 3 in step 1, we obtain

is(�) = 
�i
s (x

�) � vis (20)

for all initial states s 2 S and for all players i; which means that � induces individually
rational rewards in G:
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Step 3 . Proving that � supplemented with the joint stationary strategies y�i; for
all players i, is a 0-equilibrium. For any player i; in view of corollary 11, we may take
a joint stationary strategy y�i for players �i such that for all initial states s 2 S and
for all strategies � i for player i we have

is(�
i; y�i) � vis:

Let the joint strategy � be de�ned as in section 3. Note that the expected rewards
are equal with respect to � and with respect to �, hence by (20)

is(�) = 
i
s(�) = 

�i
s (x

�) � vis

for all initial states s 2 S and for all players i. Notice also that if h denotes a history
and s 2 S a state such that, with a positive probability, h can occur and s can be the
present state after h with respect to � (or equivalently with respect to �), then

is(�[h]) = 
i
s(�[h]) = 

i
s(�) = 

�i
s (x

�) � vis; (21)

where for the second equality we used property C from step 2 and that for �k the
�continuation rewards�remain the same due to lemma 2. We may thus conclude that
� yields individually rational rewards in G, for all players i, and for such histories h
and states s 2 S.

It remains to show that � is a 0-equilibrium in G.
Deviations inside the support of � : Here, we only consider deviations by playing

actions with a positive probability according to �: We show that such deviations by a
player cannot improve his expected reward. Indeed: (i) within a segment F 2 F� (cf.
case 1 in step 2), the players play the 0-equilibrium �F in �GF ; (ii) within a segment
F 2 F�[i] (cf. case 2 in step 2), such a deviation by players �i would not change the
probability of eventually moving to another segment F 0 (cf. property C in step 2); (iii)
within a segment F 2 F�[i] (cf. case 2 in step 2), player i has an incentive to �exit�,
since within �GF he can get at most �viF ; while �v

i
F < viF ; (iv) in states s 2 S outside

the segments (cf. case 3 in step 2), whenever for some player i, the strategy �i (or
equivalently, x�i) uses at least two actions, then player i was not restricted in the game
G� (i.e. X�i

s = X
i
s) and hence, property 1 in step 1 together with the equalities in (21)

guarantee that player i cannot go to better states regarding his reward.
Deviations outside the support of �: Consider now a deviation when, for the �rst

time, say after history h in state s, while the players should play a joint mixed action
x0s according to �; some player i deviates and plays an action b

i
s which has probability
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zero according to �i, i.e. x0is (b
i
s) = 0: This deviation is immediately noticed by players

�i and, according to �, they switch to the joint stationary strategy y�i from the next
state, say state t. Consequently, player i�s reward will be at most vit in expectation.
Obviously, without deviation player i would receive reward is(�[h]) = 

�i
s (x

�); in view
of (21). Now, observe the following.

(A) Suppose player i is unrestricted in state s in the game G�, i.e. X�i
s = X

i
s. Then,

x0s = x
�
s (cf. property B in step 2), and player i�s expected reward after this deviation

is at mostX
t2S

ps;(bis;x
��i
s )(t) v

i
t �

X
t2S

ps;(bis;x
��i
s )(t) 

�i
t (x

�) �
X
t2S

psx�s (t) 
�i
t (x

�) = �is (x
�) = is(�[h]);

where the inequalities follow from properties 3 and 1 in step 1, respectively, while the
equalities from (4) and (21). Hence, the deviation is not pro�table.

(B) Suppose player i is restricted in state s in the game G�. First we showX
t2S

ps;(bis;x
0�i
s )(t) v

i
t �

X
t2S

psx0s(t) v
i
t: (22)

We distinguish three possibilities: (i) Whenever player i is restricted to action �dis; then
x0is 2 �Xi

s by property B in step 2, hence (22) follows from part 1 of lemma 4 (with
corollary 10). (ii) Whenever player i is restricted to action ai

si
[k�i;m�i] in case 3 of

step 1, then x0�is = �d�is by property B in step 2, hence (22) follows from inequality (16).
(iii) Whenever player i plays his �exit�action aiF in case 2 of step 1, then x

0�i
s 2 �X�i

s

by property B in step 2, hence by part 2 of corollary 5 and part 1 of lemma 8 (with
corollary 10) we have respectivelyX

t2S
ps;(bis;x

0�i
s )(t) v

i
t � viF ; viF �

X
t2S

psx0s(t) v
i
t;

implying (22).
Hence, by (21), we obtain that player i�s expected reward after this deviation is at

most X
t2S

ps;(bis;x
0�i
s )(t) v

i
t �

X
t2S

psx0s(t) v
i
t � is(�[h]);

which means that the deviation is not pro�table again.
In conclusion, no deviation is pro�table, and � is a 0-equilibrium in G. This com-

pletes the proof of Main Theorem 1. �
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? Finally, let us revisit the game in example 1. As we know, the minmax-levels of
this game coincide with the minmax-levels of the game in example 2, hence by (11)
and (12), we have that

v1F(I;I) = 1; v
1
F(I;II)

= 1; v1F(II;I) = 0; v
1
F(II;II);1

= 1; v1F(II;II);2 = 0

and v2F = �v1F for all segments F . Recall from (9) and (10) that the players minmax-
levels within the restricted games are

�v1F(I;I) = 1; �v
1
F(I;II)

= 0; �v1F(II;I) = 0; �v
1
F(II;II);1

= 1; �v1F(II;II);2 = 0

and �v2F = ��v1F for all segments F . Hence, regarding which segments are satisfactory,
we obtain that F(I;I), F(II;I) and F(II;II);1 and F(II;II);2 all belong to F� (i.e. �vF � vF
when F equals any of these four segments), whereas F(I;II) belongs to F�[1]:

Consider the stationary strategy x1 for player 1 which plays action 1 in states (1; 1)
and (1; 2); while action 2 in state (1; 3); and the stationary strategy x2 for player 2
which plays action 1 in all states. This pair (x1; x2) actually could play the role of � in
this example. Indeed, in each restricted game �GF corresponding to segments F 2 F�;
the pair (x1; x2) lets the players play a 0-equilibrium, while x1 leaves segment F(I;II):
Notice that no threat strategies are needed here, so (x1; x2) is a 0-equilibrium. ?

5 Proof of Lemma 1

In this section, we prove lemma 1. Consider a restricted game �GF and a player i: Let
�i := mint2F �v

i
F;t: The idea of the proof is to �nd a set W � ft 2 F j�viF;t = �ig and

a joint stationary strategy x�i such that, irrespective of the strategy of player i; the
following hold: (1) once play reaches W; it remains in W forever, and player i�s reward
withinW is at most �i; (2) play reachesW with probability 1. Clearly, these properties
will then imply that the minmax-level �viF of player i in �GF equals the constant �

i; and
that x�i satis�es the second part of the lemma.

Step 1: �nding the set W and the joint stationary strategy x�i.
As is mentioned in the introduction, by applying Thuijsman & Vrieze [1991] together

with Neyman [2003] for the game �GF , there exists a state s0 2 ft 2 F j�viF;t = �ig for
which players �i have a joint stationary strategy y�i such that for all strategies �i for
player i in �GF we have

�is0(�
i; y�i) � �viF;s0 = �i:
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Let Z denote the set of all those states s 2 ft 2 F j�viF;t = �ig for which this y�i satis�es
for all strategies �i for player i in �GF that

�is(�
i; y�i) � �i: (23)

In particular, s0 2 Z:
Let yi be a completely mixed stationary strategy in �GF for player i. By the de�ni-

tions of Z and y�i, the set Z is closed for the joint stationary strategy (yi; y�i) (i.e. play
does not leave Z). Hence, there must exist an ergodic set W � Z for (yi; y�i): De�ne
a joint stationary strategy x�i for players �i in �GF as follows: let x

�i
t = y�it for all

t 2W and let x�it be an arbitrary completely mixed action on �A�it for all t 2 (F �W ):
Step 2: proving properties (1) and (2) for W and x�i.
Regarding property (1): Consider (�i; x�i) with an arbitrary strategy �i for player

i in �GF . As W is closed with respect to (yi; y�i) and x�i equals y�i on W , once play
with respect to (�i; x�i) reaches W , it will never leave it. Moreover, in view of (23),
player i�s reward will be at most �i within W . Hence property (1).

Regarding property (2): We make the following observations.
(a) For any joint completely mixed stationary strategy z�i of player �i, there exists

a � > 0 and a stage M satisfying the following property: if players �i use z�i and play
starts in any cyclic set TF (l) of segment F; then at all stages m � M , players �i will
be in any state u�i 2 T�iF (l+m� 1) with probability at least �. This follows from the
discussion in section 1 on Markov chains.

(b) For any ui belonging to a cyclic set T iF (l); there exists a joint state u
�i 2 T�iF (l)

such that (ui; u�i) 2 W: We argue as follows. Consider (yi; y�i). Due to the choice of
yi, if play starts in any cyclic set TF (l0); then at su¢ ciently large stages m, player i
will be in every state in T iF (l

0 +m � 1) with a positive probability. Since W is closed
for (yi; y�i), property (b) follows.

It is clear, based on the choice of x�i outside W; that properties (a) and (b) imply
property (2). Hence, the proof of lemma 1 is complete.

6 Proof of Lemma 3

In this section, we prove lemma 3. To this end, however, we �rst need to show an
auxiliary result.

Consider an arbitrary an arbitrary (non-empty) collection of players N 0 � N:

Then, by a history for players N 0 we mean the sequence of past joint states of play-
ers N 0 and the past joint actions played by players N 0: Formally, if the history is
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h = (u1; a1; : : : ; um; am), where ul and al denote the state and joint action for any stage
l = 1; : : : ;m; then the history of players N 0 is simply hN

0
= (uN

0
1 ; a

N 0
1 ; : : : ; u

N 0
m ; a

N 0
m ).

Take a joint strategy � with some initial state s 2 S: Then, � from state s generates
a probability distribution on all possible histories for players N 0. The following lemma
claims that, given players N 0 start in state sN

0
, they can generate this probability

distribution on their histories, even against other strategies of players outside N 0. It is
hardly surprising as, in a product-game, each player controls play on his own coordinate.

Lemma 12 Let � be an arbitrary joint strategy, and s 2 S be some initial state.
Consider an arbitrary (non-empty) collection of players N 0 � N: Then, there exists a
joint strategy �N

0
= (�i)i2N 0 for players in N 0 such that for any state tN�N

0 2 SN�N 0

and any joint strategy �N�N
0
= (�i)i2N�N 0 for players outside N 0; we have

P(sN0 ;tN�N0 );�(h
N 0
m ) = Ps�(hN

0
m ) (24)

for any joint history hN
0

m of players in N 0; up to any stage m 2 N. Moreover, the joint
mixed actions prescribed by �N

0
in any state u 2 S at any stage m only depend on uN

0
;

on the history of players N 0; and on the joint mixed actions prescribed by � at stages
1; : : : ;m� 1 and by �N 0

at stage m:

Proof. The construction of �i for each player i 2 N 0 is simple. Consider some
present state um 2 S at stage m and some history hm = (s1; a1; : : : ; sm�1; am�1). If
the probability that hN

0
m occurs and uN

0
m becomes the present state for players N 0 is

zero, with respect to � and initial state s; then the mixed action �ium(hm) is arbitrary.
Otherwise, let

�ium(hm)(a
i
m) :=

X
ehm;eum

Ps�(ehm; eumjhN 0
m ; u

N 0
)��ieum(ehm)(aim) = Ps�(aimjhN 0

m ; u
N 0
m ); (25)

that is, player i should play action aim with the same probability as according to the
joint strategy � conditionally on joint history hN

0
m and present state uN

0
m for players N 0.

Given �N
0
= (�i)i2N 0 ; one can show (24) by using induction on m:

Proof of Lemma 3. We only show part 1 of the lemma; part 2 can be proven
similarly. Recall that �iki denotes the period of the maximal communicating set E

i
ki
.

Let T i
ki
(1); : : : ; T i

ki
(�iki) denote the cyclic sets of E

i
ki
, and suppose for simplicity that

si 2 T i
ki
(1). Take an action ai

si
2 Ai

si
and a state ti 2 T i

ki
(2). We need to prove thatX

ui2Si
pisiai

si
(ui) vi(ui;s�i) � v

i
(ti;s�i): (26)
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The idea of the proof: Let " > 0: We will compare two speci�c games 
 and e
.
The game 
 is the original game G starting in state (ti; s�i), whereas e
 is the game
G which starts in initial state (ui; s�i) with probability pi

siai
si
(ui). We will de�ne two

joint strategies � for 
 and e� for e
 in such a way that the following properties hold:
Property (A) for � in 
: i

(ti;s�i)(�) � v
i
(ti;s�i) + ":

Property (B) for e� in e
: i
(ui;s�i)(e�) � vi(ui;s�i) � "; for every ui 2 Si.

Property (C) for the rewards: � and e� yield the same expected rewards in respec-
tively 
 and e
; i.e.

i(ti;s�i)(�) =
X
ui2Si

pisiai
si
(ui) i(ui;s�i)(e�):

It will then follow from properties (A), (B) and (C) thatX
ui2Si

pisiai
si
(ui) vi(ui;s�i) �

X
ui2Si

pisiai
si
(ui) (i(ui;s�i)(e�) + ")

=
X
ui2Si

pisiai
si
(ui) i(ui;s�i)(e�) + "

= i(ti;s�i)(�) + "

� vi(ti;s�i) + 2":

As " > 0 was arbitrary, the proof will then be complete.

Construction of ��i in 
: Let ��i be a joint strategy for players �i in 
 such
that i

(ti;s�i)(�
�i; �i) � vi

(ti;s�i)+" for any strategy �
i for player i. Such a joint strategy

��i exists by the de�nition of the minmax-level vi
(ti;s�i). Thus, irrespectively of the

choice of �i, property A will be satis�ed.

Construction of �i for 
, and e��i and e�i for e
: These strategies are de�ned
step by step. Roughly speaking:

(i) e��i for e
 is obtained by copying ��i in the sense of lemma 12 (players �i start
in s�i in both games 
 and e
).

(ii) e�i for e
 is then obtained by taking a strategy which defends player i�s minmax-
level v, up to ", against e��i (cf. the discussion below (6)). Note that e� will satisfy
property B.

34



(iii) �i for 
 is obtained by copying e�i in the sense of lemma 12. Before starting
copying, though, �i is in an initial phase in which player i moves from state ti to si and
subsequently plays action ai

si
, so that player i is in state ui with probability pi

siai
si
(ui);

just as in game e
. We describe now this initial phase more precisely. The strategy �i
prescribes to �rst move from player i�s initial state ti to state si; within the maximal
communicating set Ei

ki
. This can be done by always choosing, according to the uniform

distribution, an action from the set �Ai
wi
in every state wi 2 Ei

ki
. Note that, as the

game 
 starts in ti 2 T i
ki
(2); player i is then in cyclic set T i

ki
(1) at stages of the form

l ��iki ; for all l 2 N. So, si can be reached at stages l ��
i
ki ; for large l 2 N. Recall that �

denotes the period of the whole game G (so � is also the period of 
 and e
). Thus, �
is a multiple of �iki . Hence, s

i can also be reached at stages l � �; for large l 2 N. Now,
let �i prescribe to move to si this way, and when player i is in si at a stage l � �; then
to play action ai

si
. (It will be important for property C that player i uses a stage of

the form l � �, and not only l � �iki . See the example after the proof.)
Now, we de�ne these strategies more precisely. Note that, as soon as e��i is de�ned

up to some stage m, so is e�i.
At stage 1: The history is thus empty. Let for all ui 2 S

e��i
(ui;s�i)(;) := �

�i
(ti;s�i)(;);

which means that, in any initial state (ui; s�i) of e
; the joint strategy e��i prescribes
the same joint mixed action as ��i in the initial state (ti; s�i) of 
. Note that in both
cases, players �i are in joint state s�i. Moreover, lemma 12 would prescribe the same
mixed action for e��i; when copying ��i:

Given e��i at stage 1, we know e�i at stage 1 as well.
At stage 1, �i is still in the initial phase described in (iii). Hence, �i is de�ned at

stage 1.

At an arbitrary stage m: Given (�i; ��i) for stages up to m� 1, and ��i for stage
m, the joint strategy e��i copies ��i at stage m in the sense of lemma 12.

Given e��i up to stage m, we know e�i up to stage m as well.
As for �i, there are three cases. (1) If player i has not reached si at a stage l � �;

then he continues trying to get to si as prescribed in (iii) above. (2) If he has just
arrived at si at stage m = l ��, then he plays action ai

si
, in accordance with (iii) above.

(3) Suppose that player i has reached si at a stage l � � and played action ai
si
: Then,

player i was in state ui at stage l � �+1 with probability pi
siai

si
(ui); just as in the game
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e
. By regarding this as the initial state and stage, �i copies e�i in the sense of lemma
12, based on (e�i; e��i) up to stage m. (So, �i for stage m = l � �+m0 is a copy of e�i at
stage m0:)

The joint strategies satisfy properties A, B and C: Now we will verify
properties A, B and C, which will complete the proof of the lemma. As we mentioned
above, properties A and B are satis�ed due to the de�nitions of ��i and e�i, respectively.

It remains to verify property C. Consider the joint strategies � = (�i; ��i) in 
 ande� = (e�i; e��i) in e
. As we know, with respect to any joint strategy and initial state, play
eventually settles in a segment (or equivalently, in a restricted game), with probability
1. Since the game G (and therefore 
 and e
 too) is simple, by de�nition, the payo¤s
are constant in each restricted game �GF . Hence, in order to show C, it su¢ ces to show
that the probability that play settles in a segment F (or in the corresponding restricted
game �GF ) is the same with respect to � = (�i; ��i) in 
 and e� = (e�i; e��i) in e
:

Take an arbitrary segment F within some Ek = �nj=1E
j
kj
, where, as usual, Ej

kj

denotes a maximal communicating set for player j. For any player j, state uj 2 Ej
kj

and stage mj , let !j(uj ;mj) denote the event that player j settles in Ej
kj
in state uj at

stage mj . Since e��i is a copy of ��i, event !j(uj ;mj), for any j 6= i and any uj 2 Ej
kj

and stage mj , has the same probability with respect to � = (�i; ��i) in 
 and with
respect to e� = (e�i; e��i) in e
. By construction, �i is also a copy of e�i; with a �delay�
of l �� stages. Therefore, event !i(ui;mi), for any ui 2 Ei

ki
and stage mi, has the same

probability with respect to e� = (e�i; e��i) in e
 as event !i(ui;mi+ l � �) with respect to
� = (�i; ��i) in 
. Since �, the period of the whole game, is a multiple of the period
�iki , so is the �delay� l � �. Hence, the probability that play settles in F is the same
with respect to � = (�i; ��i) in 
 and e� = (e�i; e��i) in e
. This completes the proof of
lemma 3. �

? As an illustration of the proof of lemma 3, consider the game with two players
given in Figure 3.The underlying Markov transition structure for player 1 is as follows.
Player 1 has 5 states, corresponding to the rows. He can move along the cycles on
states f1; 2g or on states f3; 4; 5g. Additionally, he can move from state 1 to state 3.
As for player 2, he has 6 states, corresponding to the columns. Player 2 can move from
state 1 to states 2 and 3, from state 2 to state 1, and from state 3 to states 1 and 4.
Further, player 2 has a cycle on states f4; 5; 6g. As there are cycles of lengths 2 and
3, the game has period � = 6. We want to focus on the transitions, so the payo¤s are
omitted.

Consider part 1 of lemma 3, and take player i = 2 and state s = (1; 1): Note that
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Figure 1: Figure 3: Illustration for lemma 3

f1; 2; 3g is a maximal communicating set of player 2, with cyclic sets f1g and f2; 3g.
Consider the action for player 2 in state 1, say action a21, which moves him to state 3.
Then, according to part 1 of lemma 3, we should have v2(1;3) � v

2
(1;2).

Suppose, as in the proof of the lemma, that the game 
 starts in state (1; 2); while
the game e
 starts in state (1; 3). In the picture, the x-path will show how play develops
in e
, while the y-path will show how play develops in the beginning before joining the
x-path. Suppose that �1 = ��i in 
 prescribes for player 1 in state (1; 2) to move to
state 3. As, afterwards, player 1 can only move along the cycle f3; 4; 5g, the strategy
�1 is unique for the rest of play. As e�1 = e��i is a copy of �1, the strategy e�1 prescribes
in e
 for player 1 in state (1; 3) to also move to state 3, and subsequently to move along
the cycle f3; 4; 5g. Assume that e�2 = e�i in e
 prescribes for player 2 in state (1; 3) to
move to state 4. Afterwards, player 2 can only move along the cycle f4; 5; 6g for the
rest of play. Now, as described in the proof, the strategy �2 = �i in 
 will copy e�2
after an initial phase. In this initial phase, player 2 has to reach state 3 at a stage
of the form l � � + 1, where e
 started. Recall that � = 6. In �gure 3, in the y-path,
player 2 arrives at state 3 at stage 7 = 6 + 1. After this, player 2 will copy strategye�2, and accordingly, he moves to state 4 and then follows the cycle f4; 5; 6g. As we can
see, play in 
 (the y-path moving onto the x-path) and play in e
 (the x-path) come
together in the same segment, i.e. segment f(3; 4); (4; 5); (5; 6)g:
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It is essential that player 2 waits for a stage l � �+1 before closing the initial phase
of �2. In our case, player 2�s �rst visit to state 3 is at stage 3, when play in 
 is
in state (4; 3). If player 2 decided to start copying e�2, then, after state (4; 3), the y-
path would continue (5; 4); (3; 5), and so on, yielding a di¤erent segment, i.e. segment
f(3; 5); (4; 6); (5; 4)g. ?

7 Proof of Lemma 8

In this section, we prove lemma 8. We will only prove part 1; the proof of part 2 is
similar.

Due to ziF < v
i
F ; when starting in segment F; player i can only defend his minmax-

level viF if he leaves F: Therefore, there must be at least one state s
� 2 F; joint action

a�is� 2 �A�is� for players �i and action ais� 2 Ais� � �Ais� for player i such thatX
t2S

ps�;(ai
s� ;a

�i
s� )
(t) vit � viF : (27)

Take the unique m 2 f1; : : : ; �F g for which s� 2 TF (m).
Now we will show that this m, state s�i and action ais� satisfy part 1 of the lemma.

To this end, consider any state (s�i; s�i) 2 TF (m) and a joint action a�is�i for players
�i in joint state s�i. We need to showX

t2S
p(s�i;s�i);(ai

s� ;a
�i
s�i

)(t) v
i
t � viF : (28)

Take a joint action b�i
s�i 2 �A�i

s�i in state s
�i for players �i. As b�i

s�i 2 �A�i
s�i and

a�is� 2 �A�is� ; and both joint states s
�i and s��i belong to T�i

k�i(m); we conclude that
when players �i either use joint action b�i

s�i in state s
�i or joint action a�is� in state

s��i, they are certain to move to states in T�i
k�i(m + 1): Hence, by part 1 of lemma 7,

we have for any ti 2 Si thatX
t�i2S�i

p�i
s�ib�i

s�i
(t�i) vi(ti;t�i) =

X
t�i2S�i

p�i
s��ia�i

s�
(t�i) vi(ti;t�i);
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which yields

X
t2S

p(s�i;s�i);(ai
s� ;b

�i
s�i

)(t) v
i
t =

X
ti2Si

pis�iai
s�
(ti)

24 X
t�i2S�i

p�i
s�ib�i

s�i
(t�i) vi(ti;t�i)

35
=

X
ti2Si

pis�iai
s�
(ti)

24 X
t�i2S�i

p�i
s��ia�i

s�
(t�i) vi(ti;t�i)

35
=

X
t2S

ps�;(ai
s� ;a

�i
s� )
(t) vit:

Therefore, X
t2S

p(s�i;s�i);(ai
s� ;a

�i
s�i

)(t) v
i
t �

X
t2S

p(s�i;s�i);(ai
s� ;b

�i
s�i

)(t) v
i
t

=
X
t2S

ps�;(ai
s� ;a

�i
s� )
(t) vit

� viF ;

where the �rst inequality follows from part 2 of corollary 4 (as b�i
s�i 2 �A�i

s�i), whereas
the last one from (27). This completes the proof of (28) and part 1 of lemma 8. �

8 References

Altman E, Avrachenkov K, Bonneau N, Debbah M, El-Azouzi R & Sadoc Menasche D
[2007,a]: Constrained Cost-Coupled Stochastic Games with Independent State Processes.
Preprint.

Altman E, Avrachenkov K & Garnaev A [2007,b]: A Jamming Game in Wireless
Networks with Transmission Cost. Lecture Notes in Computer Science 4465, 1-12.

Altman E, Avrachenkov K, Marquez R & Miller G [2005]: Zero-sum constrained sto-
chastic games with independent state processes. Mathematical Methods of Operations
Research 62, 375-386.

Blackwell D & Ferguson TS [1968]: The big match. Annals of Mathematical Statistics
39, 159-163.

Doob JL [1953]: Stochastic processes. Wiley, New York.

Dutta PK [1995]: A Folk theorem for stochastic games. Journal of Economic Theory
66, 1-32.

39



Filar JA & Vrieze OJ [1996]: Competitive Markov Decision Processes - Theory, Algo-
rithms, and Applications. Springer-Verlag, New York.

Fink AM [1964]: Equilibrium in a stochastic n-person game. Journal of Science of
Hiroshima University, Series A-I 28, 89-93.

Flesch J, Thuijsman F & Vrieze OJ [1997]: Cyclic Markov equilibria in a cubic game.
International Journal of Game Theory 26, 303-314.

Flesch J, Thuijsman F & Vrieze OJ [2007]: Stochastic games with additive transitions.
European Journal of Operational Research 179, 483-497.

Flesch J, Schoenmakers G & Vrieze OJ [2008]: Stochastic games on a product state
space. Mathematics of Operations Research 33, 403-420.

Gillette D [1957]: Stochastic games with zero stop probabilities. In: Dresher M, Tucker
AW &Wolfe P (eds.), Contributions to the theory of games III, Annals of Mathematical
Studies 39, Princeton University Press, 179-187.

Mertens JF & Neyman A [1981]: Stochastic games. International Journal of Game
Theory 10, 53-66.

Neyman A [2003]: Existence of the minmax. In: Neyman A & Sorin S (eds.), Stochastic
Games and Applications, NATO Science series, Vol. 570, Kluwer Academic Press, 173-
193.

Parthasarathy T & Raghavan TES [1981]: An order�eld property for stochastic games
when one player controls transition probabilities. Journal of Optimization Theory and
Applications 33, 375-392.

Ross KW & Varadarajan R [1991]: Multichain Markov decision processes with a sample
path constraint: A decomposition approach. Mathematics of Operations Research 16,
195-207.

Simon R [2003]: Value and perfection in stochastic games. Working paper, Goettingen
University, Germany. To appear in Israel Journal of Mathematics:

Solan E [1999]: Three-Player Absorbing Games. Mathematics of Operations Research
24, 669-698.

Solan E [2003]: Perturbations of Markov chains with applications to stochastic games.
In: Neyman A & Sorin S (eds.), Stochastic Games and Applications, NATO Science
series, Vol. 570, Kluwer Academic Press, 265-280.

Solan E & Vieille N [2002]: Correlated Equilibrium in Stochastic Games. Games and

40



Economic Behavior 38, 362-399.

Solan E & Vohra R [2002]: Correlated Equilibrium and Public Signalling in Absorbing
Games. International Journal of Game Theory 31, 91-121.

Sorin S [1986]: Asymptotic properties of a non-zerosum game. International Journal
of Game Theory, 15, 101-107.

Takahashi M [1964]: Equilibrium points of stochastic noncooperative n-person games.
Journal of Science of Hiroshima University, Series A-I 28, 95-99.

Thuijsman F & Vrieze OJ [1991]: Easy initial states in stochastic games. In: Raghavan
TES, Ferguson TS, Vrieze OJ & Parthasarathy T (eds.), Stochastic Games and Related
Topics, Kluwer Academic Press, 85-100.

Vieille N [2000-a]: Equilibrium in 2-person stochastic games I: A reduction. Israel
Journal of Mathematics, 119, 55-91.

Vieille N [2000-b]: Equilibrium in 2-person stochastic games II: The case of recursive
games. Israel Journal of Mathematics, 119, 93-126.

41




