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Abstract

In this paper we present a new auction, the bisection auction, that can be used for the sale of
a single indivisible object. We discuss the issue concerning the information revelation requirement
of this auction and the associated amount of data that needs to be transmitted. We show that
in the truthtelling equilibrium the bisection auction is economical in its demand for information
on the valuations of the players. It requires the players to transmit less information bits to the
auctioneer than the Vickrey and English auctions. In particular, we prove that for integer valuations
uniformly distributed on the interval [0, L) the bisection auction of n players requires in expectation
transmission of at most 2n+log L information bits by the players. Compared with the corresponding
number in the Vickrey auction which is n log L, and in the English auction which is on average at
least (1/3)nL, the bisection auction turns out to be the best performer.

JEL Codes. C72, D44.

Keywords. Single item auction; communication complexity; information revelation; data transmis-
sion.

1 Introduction

A classical challenge of auction design has been to develop mechanisms that have an implementation in
weakly-dominant strategies resulting in an efficient allocation. Due to the Revelation Principle, focus
has mainly been on direct revelation mechanisms (see e.g. [7]). In the private value environment the
challenge is considered to be solved since the Vickrey-Clarke-Groves direct mechanism implements the
efficient allocation and is incentive-compatible [1, 5, 12]. However, by construction, implementation of
a strategy in a direct mechanism requires elicitation of complete and exact preference information. It
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has been recognized that the full revelation of bidders’ preferences may require a prohibitive amount of
communication [8]. Indeed, for example in a combinatorial auction which allocates heterogeneous indi-
visible items among bidders whose preferences for combinations of items can exhibit complementarities
or synergies, every bidder has to report his valuation for each subset of the items, and the number of
such subsets is exponential in the number of objects. With 30 items, full revelation of such preferences
would require the communication of more than one billion numbers.

Recognition of the communication problem has prompted researchers to examine the trade-off between
communication and allocation efficiency. For example, the effect on allocative efficiency of a severe
restriction of the amount of communication allowed in a single object auction is studied in Nisan &
Blumrosen [9]. This paper considers the case where each bidder is only allowed to send a single t-bit
message to the auctioneer, who must then allocate the object and determine the price according to
the messages received. The authors determine the optimal auction and show that the loss of efficiency
incurred relative to unconstrained auctions is mild. In Rothkopf & Harstad [11] similar questions are
considered in cases of restricting bids to discrete levels in oral auctions. In particular it’s shown that for
private values independently drawn from the uniform distribution the expected economic inefficiency is
approximately proportional to the square of the increment1.

In this paper we are concerned with the issue of information (bidders’ valuation) revelation and corre-
sponding communication requirements of efficient incentive-compatible auctions for the case of selling a
single indivisible object under private values. The best known efficient incentive-compatible auctions are
the Vickrey and English auctions. Under the Vickrey auction bidders are allowed to submit one single
sealed bid. The bidder with the highest bid is declared to be the winner. He gets the object for a price
equal to the second-highest bid that is made. As Vickrey showed in [12], bidding your true valuation
for the object is a weakly dominant strategy, independent of the a priori distribution of the valuations
of the bidders. In the English auction the auctioneer calls successively higher prices (using an increment
equal to one). Initially all bidders are active and, as the auctioneer raises the price, they decide when
to drop out. No bidder who has dropped out can become active again. The number of active bidders as
well as their bids are not publicly known at any time. The last bidder to remain is the winner and he
pays the final ask price. To stay in the auction till the price reaches his valuation is a weakly dominant
strategy for each bidder. These two auctions, Vickrey and the above variant of the English auction,
are strategically equivalent to each other and the payoffs are identical in both auctions when equivalent
strategies are played.

Concerning the information about bidders’ valuations to be revealed (under the weakly-dominant truth-
telling implementation) we can point out that all valuations in the Vickrey auction and all but the
highest valuation in the English auction2 are revealed to the auctioneer with a precision up to the very
last digit. This is not necessarily a desirable feature of these auction formats. Bidders might be reluctant
to truthfully reveal their full private value if there will be subsequent auctions or negotiations in which

1The coefficient of proportion depends on the number of players. E.g. for 3 players this coefficient is equal to 1
4
.

2The reason is that in the English auction all bidders except a bidder with the highest valuation drop out when the
price reaches their valuations.
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the information revealed can be used against them. Such considerations lead to an interest in auctions
where bidders need not reveal their information entirely but only partially [2, 6, 10].

So, the question that arises is: how to design an auction that elicits less information about bidders’
valuations than the Vickrey and English auctions but still enough to guarantee an efficient allocation.
We present an alternative auction format, called the bisection auction, that possesses these properties.
In [4] we analyzed equilibrium properties of the bisection auction. We proved that there exists an
equilibrium in weakly dominant strategies in which everyone truthfully reveals (part of) his valuation,
and the object is allocated in accordance with efficiency requirements to the buyer who has the highest
valuation. The primal contribution of this paper is to analyze the issue concerning the revelation of
bidders’ valuations and associated communication in the bisection auction. We show that the proposed
auction is economical in its demand for information. In this auction much less information than the
Vickrey and English auctions needs to be revealed to the auctioneer to decide on an allocation and
a payment. Only a bidder with the second highest valuation reveals his valuation, something that is
inevitable in a Vickrey implementation [3]. Furthermore, in the proposed auction a player can implement
the weakly dominant strategy from incomplete preference information, such as lower and upper bounds
on value, while implementation of the weakly dominant strategy in the Vickrey auction requires complete
knowledge of a player’s valuation.

Concerning associated communication we focus on the following issue: the number of information bits3

that bidders should transmit during the auctions in the truthtelling equilibrium. We find out that in
expectation the corresponding number in the bisection auction is far less than in the Vickrey and English
auctions. In order to show this we derive formulas for the expected number of information bits in these
auctions with n players whose valuations are integer numbers uniformly and independently drawn from
the interval [0, 2R) for some positive integer R. While we find that in the Vickrey auction Rn information
bits and in the English auction at least 1

3n2R information bits are to be transmitted, it turns out that
the bisection auction requires transmission of at most 2n + R information bits.

2 The bisection auction

Suppose a single indivisible object is auctioned. We assume that buyers are risk neutral. Their valuations
are supposed to be integer, randomly drawn from a bounded interval – by default of the form [0, 2R) for
some positive integer R. The bisection auction has R rounds. The price sequence starts at the middle
of the initial interval with a price equal to 2R−1. Bidders report their demand at the current price by
sealed bids. A yes-bid stands for the announcement to be willing to buy at the current price, a no-bid
for the contrary. As a function of these bids, the auctioneer announces the price of the next round.

In case there are at least two players submitting a yes-bid, the price goes up to the middle of the upper
half interval, i.e. to the interval [2R−1, 2R). The buyers that are allowed to participate actively in the

3By bit we mean the smallest unit of information used by a computer, that must be either a 0 or a 1.
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next round are the ones that said yes and they are competing for the object in the price range [2R−1, 2R).
The other players drop out of the auction, and do no longer have any influence on the proceedings of
the auction. In case there is at most one player saying yes, attention shifts to the lower half interval,
i.e. the interval [0, 2R−1) and the price goes down to the middle of this interval. Two different things
can happen now. First, the easy case, if no-one has submitted a yes-bid. In that case all active buyers
remain active in the next round. In the other case there is a single buyer that submitted a yes-bid. This
buyer now becomes the winner and he gets the object. Nevertheless the auction doesn’t end, but enters
a price-determination phase. The active players in the next round are the ones that were active in the
previous round minus the winner. They are competing on the lower half interval [0, 2R−1).4 The winner,
although he is no longer considered to be active, is considered to say yes to all prices that are proposed
beyond the moment he became the winner. After all, all these prices will be lower than the price he
agreed to when he became the winner. Apart from this, the way it is decided whether the price should
go up or down is not any different from the way this is decided in the winner-determination phase. In
each round depending on submitted bids we subsequently restrict attention to either the lower half of
the current interval, or to the upper half of the current interval.

Iterating this procedure will eventually yield a winner5 and a price. The price is uniquely determined
because in each round the length of the current interval goes down by a factor of two. Since the initial
interval is of length 2R, after R rounds the resulting interval is of length 1. And since it is a half-open
interval, it contains exactly one integer. This integer is declared to be the price the winner of the auction
has to pay for the object.

The following example illustrates how the bisection auction works.

Example. Suppose there are four bidders with the following integer private valuations from the interval
[0, 16):

bidder A 11
bidder B 7
bidder C 15
bidder D 9

To determine the winner and the price in this setting the bisection auction takes four rounds and starts
with the initial ask price equal to 8. Suppose that each player chooses to respond truthfully and follows
a straightforward strategy under which he says yes if an ask price is less or equal to his valuation and
no otherwise. Then the responses of bidders in the first round are as follows:

Round 1:

price lower bound upper bound bidder A bidder B bidder C bidder D
8 0 16 yes no yes yes

4In order to keep active buyers motivated to participate in the auction they should not get to know that the object has
already been assigned. Therefore we assume that bidders aren’t able to observe bids of the others.

5Unless in no round there was precisely one player that said yes. In that case several players will still be active after R
rounds, and the object is assigned by a lottery.
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Since three bidders submitted yes-bids the price increases to the middle of the current price and the
current upper bound. So the ask price of the second round is 12. These three players remain active
while player B drops out. Active players are free to submit any bids they want while a drop-out is only
allowed to submit no-bids. In the second round players act as follows:

Round 2:

price lower bound upper bound bidder A bidder B bidder C bidder D
12 8 16 no no yes no

Since there is only one yes-bid we have a winner and we enter the price determination phase. The
winner, player C, becomes inactive and in the remaining rounds may submit only yes-bids. Players A
and D are still active. The ask price decreases to 10 and responses of players in the third rounds are:

Round 3:

price lower bound upper bound bidder A bidder B bidder C bidder D
10 8 12 yes no yes no

There are two yes-bids so the price increases. Player D drops out. To the ask price of 11 the responses
of players are as follows (notice that the only player who is free to submit any bid in this last round is
player A, who is still active; players B and D may submit only no-bids since they are drop-outs, player
C may submit only yes-bids since he is the winner):

Round 4:

price lower bound upper bound bidder A bidder B bidder C bidder D
11 10 12 yes no yes no

At this round the auction terminates. Taking into account bids made during the last round we compute
the final lower and upper bounds. Since there were 2 yes-bids the upper bound remains to be 12 while
the lower bound becomes 11. At the price of 11 we have demand from bidders A and C while at a price
of 12 we have demand only from bidder C. So, bidder C as the winner takes the object and pays price
11 which is the smallest Walrasian price for the demand announced by the bidders that participated in
this auction.

Observe that the outcome is efficient: the auction has put the object in the hands of the bidder who
values it the most. Also observe that the auction has exactly replicated the outcome of the Vickrey
auction since the price the winner pays for the object is equal to the second highest valuation.

In [4] we proved that truth-telling is a weakly-dominant strategy in the bisection auction and that the
corresponding equilibrium has an efficient outcome. Analyzing the strategic possibilities of the players in
the bisection auction we proved that every strategy that a player can choose has a realization-equivalent
threshold strategy. Such a strategy simply states that the bid is yes if the price mentioned by the
auctioneer is lower than the threshold in case, otherwise it is no. Thus we showed that, despite the large
strategy space, threshold strategies are sufficient from a strategic point of view. Using this result we
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subsequently showed that the buyer with the highest threshold gets the object and the price the winner
pays is equal to the second-highest threshold. Interpreting the thresholds as bids in the Vickrey auction
we consequently got the same outcome in the bisection auction as in the Vickrey auction. Thus, we
showed that the bisection auction is strategically equivalent to the Vickrey auction (and hence also to
the English auction). Strategic equivalence of these auctions implies that, as long as bidders behave
rationally, in all these auctions the same bidder will win. Actually bidders will even make the same
payments in all three auctions. Thus, like in the Vickrey auction, also in this auction truth-telling – that
is, choosing the threshold equal to your valuation – is a weakly dominant strategy and the equilibrium
results in an efficient allocation.

3 Information revelation and data transmission in the auctions

Now we know that telling the truth in the bisection auction is an equilibrium in weakly-dominant
strategies, just like it is in the Vickrey and English auctions. This allows us to compare the information
bidders are required to reveal about their valuations in equilibrium for all three auctions. We will show
that the proposed bisection auction is more economical in its demand for information on the valuations
of the players than the Vickrey and the English auctions. The Vickrey auction format requires all
participants to reveal all information they have. In the English auction all bidders except a bidder with
the highest valuation reveals full information, the reason being that the other players drop out when the
price reaches their valuations. In the bisection auction, only a bidder with the second highest valuation
reveals his full information. Other bidders do not have to reveal any information about their valuation
after they have dropped out or became the winner.

The tool we use to measure the revelation of information is the amount of data that gets transmitted
in equilibrium6. We calculate and compare the expected number of information bits that are to be
transmitted by players before the auctioneer can decide upon allocation and payment in the Vickrey,
English and bisection auctions.

3.1 Data transmission in the bisection auction

In this subsection we present an implementation of the bisection auction that requires from players
transmission of at most 2n + R information bits.

The initial ask price is known to all players before the auction starts. During a round with an ask price
pr each active player7 submits a bid 0 or 1 where 0 stands for the statement ”My valuation is less than
pr” and 1 stands for the contrary. So, during a round each active player sends a single bit of information
to the auctioneer. After receiving bids from all active players the auctioneer counts the number of 1’s

6Notice that the fact that we have truth telling in equilibrium allows us to identify revelation of information with data
transmission.

7We don’t require inactive players to submit bids since the outcome of the auction does not depend on the actions of
inactive players.
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and determines who remains active. To each player that participated in this round the auctioneer sends
a message 0 or 1 where 0 stands for the announcement that the bidder is not active anymore and 1
stands for the contrary. A player that remains active uses the information about his own previous action
to compute the price of the next round8 and submits his next bid.

Let’s calculate the expected number of information bits which are to be transmitted during the auction
from players to the auctioneer. We consider the setting where valuations of players are integer numbers
drawn uniformly and independently from the interval [0, 2R), for some integer R. We assume that each
player follows his truth-telling strategy, i.e. he submits 1 to an ask price that is less than or equal to his
true valuation and 0 otherwise. From this assumption it follows that in a round an active player submits
1 or 0 with equal probability. Indeed, any active player in a current round r has a valuation that is
uniformly distributed in the interval between the current lower and the current upper bound. Together
with the fact that a current ask price lies in the middle of this interval it gives us the desired probability
of 1/2.

Let EBA(n,R) denote the expected number of information bits transmitted from players in the auction of
n (remaining) active players and R (remaining) rounds in the case the winner is not found yet. Similarly,
by E∗

BA(n,R) we denote the expected number of information bits transmitted from players in the auction
of n (remaining) active players and R (remaining) rounds in the case the winner has already been found.

First, we find a recursive formula for EBA(n,R). During the first out of R remaining rounds all active
players submit bids, so that n information bits are transmitted. Obviously, if only one round remained,
then only n bits are transmitted. So EBA(n, 1) = n. For R > 1 several situations can occur. If during
this round the winner happens to be found, then n− 1 active players (all except the winner) and R− 1
rounds remain. The probability of this event is equal to n

(
1
2

)n. If during this round the winner is not
found then k active players (2 ≤ k ≤ n) and R − 1 rounds remain.9 For 2 ≤ k ≤ n − 1 the probability
of this to occur is P (k, n) =

(
n
k

)(
1
2

)n (i.e. the probability that k out of n active players say yes). For
k = n the probability of the situation to occur is P (n, n) = 2

(
1
2

)n (i.e the probability that all n players
say yes plus the probability that all n players say no). Thus, for n > 1 and R > 1 we find that

EBA(n,R) = n + n

(
1
2

)n

E∗
BA(n− 1, R− 1) +

n∑

k=2

P (k, n)EBA(k,R− 1).

Now we derive a recursive formula for E∗
BA(n,R). To do that we consider a situation where n active

players and R rounds remain in the auction and during a previous round the winner was already found.
During the first out of R remaining rounds all active players submit bids, so that n information bits are
transmitted during this round. Again, if only one round remained, then only n bits are transmitted, so
E∗

BA(n, 1) = n. If only one player happens to be active he remains active till the end of the auction
and during the remaining R rounds exactly R bits will be submitted, so E∗

BA(1, R) = R. For n > 1 and

8Recall that if he said yes in the previous round the price goes up, otherwise the price goes down.
9Notice that if the winner is not found the situation with only one active player in the next round can’t occur.
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R > 1 several situations can occur. Depending on the bids in this round k active players (1 ≤ k ≤ n) and
R−1 rounds remain. For 1 ≤ k ≤ n−1 the probability that k active players remain is P (k, n) =

(
n
k

)(
1
2

)n.
For k = n this probability is P (n, n) = 2

(
1
2

)n. Thus, for n > 1 and R > 1 we find that

E∗
BA(n,R) = n +

n∑

k=1

P (k, n)E∗
BA(k,R− 1).

Using these formulas we can compute the expected number of information bits transmitted from the
players to the auctioneer in the bisection auction for different combinations of n and R. Table 1 presents
the computational results for R up to 10 and n up to 20 (within an accuracy of 0.001).

n \R 2 3 4 5 6 7 8 9 10
2 3.500 4.750 5.875 6.938 7.969 8.984 9.992 10.996 11.998
3 5.250 6.938 8.297 9.480 10.573 11.619 12.643 13.655 14.661
4 6.750 8.688 10.172 11.418 12.542 13.604 14.635 15.651 16.659
5 8.125 10.273 11.873 13.179 14.333 15.411 16.450 17.469 18.479
6 9.468 11.818 13.530 14.895 16.080 17.173 18.220 19.243 20.255
7 10.828 13.373 15.194 16.618 17.833 18.942 19.996 21.023 22.037
8 12.218 14.954 16.882 18.364 19.610 20.734 21.796 22.827 23.843
9 13.641 16.562 18.597 20.136 21.411 22.551 23.620 24.656 25.673
10 15.088 18.195 20.333 21.929 23.234 24.389 25.466 26.505 27.525
11 16.554 19.847 22.086 23.739 25.073 26.243 27.328 28.371 29.393
12 18.032 21.513 23.853 25.561 26.925 28.109 29.203 30.249 31.273
13 19.519 23.190 25.629 27.392 28.785 29.985 31.086 32.137 33.162
14 21.011 24.877 27.413 29.230 30.653 31.868 32.976 34.031 35.058
15 22.506 26.571 29.204 31.075 32.527 33.757 34.873 35.932 36.961
16 24.007 28.273 31.001 32.926 34.406 35.652 36.775 37.837 38.869
17 25.502 29.980 32.804 34.781 36.291 37.551 38.682 39.748 40.781
18 27.001 31.693 34.612 36.642 38.179 39.455 40.594 41.664 42.699
19 28.501 33.412 36.424 38.506 40.073 41.363 42.509 43.583 44.620
20 30.000 35.134 38.242 40.375 41.970 43.275 44.429 45.506 46.545

Table 1: The expected number of information bits transmitted from the players to the auctioneer in the
bisection auction of n players and R rounds, EBA(n,R).

In general we can show that both E∗
BA(n,R) and EBA(n,R) have upper bounds that are linear in n and

R, namely that E∗
BA(n,R) ≤ 2n + R− 2 and EBA(n,R) ≤ 2n + R.

Lemma 3.1 For any n ∈ N and R ∈ N, E∗
BA(n,R) ≤ 2n + R− 2.

Proof. The proof is by induction on R. Our induction proposition is
P (R) : for every n ∈ N E∗

BA(n,R) ≤ 2n + R− 2.

The basis of induction, P (1), is trivial since E∗
BA(n, 1) = n ≤ 2n + 1− 2 = 2n− 1 is true for any n ∈ N.

Now suppose that the proposition P (R− 1) is true. Let us show that P (R) is also true.
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So, take n ∈ N.
If n = 1 then we have E∗

BA(1, R) = R ≤ 2 + R− 2 = R is true;
If n > 1 then, using the induction hypothesis,

E∗
BA(n, R) = n +

n∑

k=1

P (k, n)E∗
BA(k, R− 1)

= n +
n−1∑

k=1

(
n

k

)(
1
2

)n

E∗
BA(k,R− 1) + 2

(
1
2

)n

E∗
BA(n,R− 1)

≤ n +
n−1∑

k=1

(
n

k

)(
1
2

)n

(2k + R− 3) + 2
(

1
2

)n

(2n + R− 3)

= n +
n−1∑

k=1

(
n

k

)(
1
2

)n

2k + 4n

(
1
2

)n

+
n−1∑

k=1

(
n

k

)(
1
2

)n

(R− 3) + 2
(

1
2

)n

(R− 3)

= n + 2
n∑

k=0

(
n

k

)(
1
2

)n

k + 2n

(
1
2

)n

+
n∑

k=0

(
n

k

)(
1
2

)n

(R− 3)

= 2n + 2n

(
1
2

)n

+ R− 3.

Since for any n it holds that 2n
(

1
2

)n ≤ 1 we have the desired inequality E∗
BA(n, R) ≤ 2n + R− 2.

Theorem 3.2 For any integer n ≥ 2 and R ∈ N, EBA(n, R) ≤ 2n + R.

Proof. The proof is by induction on R. Our induction proposition is
P (R) : for every integer n ≥ 2 EBA(n,R) ≤ 2n + R.

The basis of induction, P (1), is trivial since EBA(n, 1) = n ≤ 2n + 1 is true for any integer n ≥ 2. Now
suppose that the proposition P (R− 1) is true. Let us show that P (R) is also true.
So, take an integer n ≥ 2. Using the induction hypothesis and the result of Lemma 3.1 we have

EBA(n,R) = n + n

(
1
2

)n

E∗
BA(n− 1, R− 1) +

n∑

k=2

P (k, n)EBA(k, R− 1)

= n + n

(
1
2

)n

E∗
BA(n− 1, R− 1) +

n−1∑

k=2

(
n

k

)(
1
2

)n

EBA(k, R− 1) + 2
(

1
2

)n

EBA(n, R− 1)

≤ n + n

(
1
2

)n

(2n + R− 5) +
n−1∑

k=2

(
n

k

)(
1
2

)n

(2k + R− 1) + 2
(

1
2

)n

(2n + R− 1)

= n + 2n2

(
1
2

)n

+ n

(
1
2

)n

(R− 5) + 2
n−1∑

k=2

(
n

k

)(
1
2

)n

k + 4n

(
1
2

)n

+

n−1∑

k=2

(
n

k

) (
1
2

)n

(R− 1) + 2
(

1
2

)n

(R− 1)
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= n + 2n2

(
1
2

)n

+ n

(
1
2

)n

(R− 5) + 2
n∑

k=0

(
n

k

) (
1
2

)n

k +

n∑

k=0

(
n

k

)(
1
2

)n

(R− 1)− n

(
1
2

)n

(R− 1)

= n + 2n2

(
1
2

)n

+ n

(
1
2

)n

(R− 5) + n + R− 1− n

(
1
2

)n

(R− 1)

= 2n + R + 2n2

(
1
2

)n

− 4n

(
1
2

)n

− 1

= 2n + R +
(

1
2

)n

(2n2 − 4n)− 1.

It is straightforward to check that f(n) =
(

1
2

)n (2n2 − 4n) ≤ 1 for any integer n ≥ 1. Thus the desired
inequality EBA(n,R) ≤ 2n + R holds.

So we can conclude that during the bisection auction on average not more than 2n+R bits are transmitted
from players to the auctioneer.

Concerning a lower bound, it is easy to see that during the bisection auction at least n+R−1 information
bits are to be transmitted from players to the auctioneer. Indeed, during the first round all n active
players send a bit and there is at least one active player during the remaining R− 1 rounds.

3.2 Comparison with the English auction

The English auction starts with an ask price equal to 1. From round to round the price increases by a
unit increment as long as at least two players announce their willingness to pay. So, after each round
the auctioneer communicates the new price and active players announce whether they are willing to buy
or not. For the equilibrium in weakly dominant strategies in which players reply truthfully, the number
of rounds is equal to the second highest valuation. Let us assume that only a synchronization signal is
submitted: the auctioneer communicates price increments to all active players by sending 1, while he
communicates the end of the auction by sending 0. Players update their price based on this signal and
send 1 to the auctioneer if they stay active and 0 otherwise.

As in the bisection auction, we calculate the expected number of information bits which are to be
transmitted during the auction from players to the auctioneer. Suppose that valuations of players are
integer numbers uniformly and independently drawn from the interval [0, L) for some integer L. We
assume that all players follow their truth-telling strategies. In the first round with an ask price equal
to 1 the probability that a player says yes is equal to the probability that his valuation is not equal to
0 which is L−1

L . For any player i who remains active in the next round it holds that vi ∈ [1, L). So,
the probability of saying yes in the second round (i.e the probability of having valuation not equal to 1)
given that the player is active is equal to L−2

L−1 . And so on.

With n active players in a round there will be 2 ≤ k ≤ n active players in the next round. By P (k, n, L)
we denote the probability that exactly k out of n active players, whose valuations are random integer
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numbers from a half open interval of length L, say yes.

P (k, n, L) =
(

n

k

)(
L− 1

L

)k (
1
L

)n−k

Let’s denote by EEN (n,L) the expected number of information bits transmitted from players in the
auction of n active players whose valuations are random integer numbers from a half open interval of
length L. Notice that for L = 2, EEN (n, 2) = n. For L ≥ 3 and n ≥ 2 we find that

EEN (n,L) = n +
n∑

k=2

P (k, n, L)EEN (k, L− 1) = n +
n∑

k=2

(
n

k

)(
L− 1

L

)k (
1
L

)n−k

EEN (k, L− 1)

We can show that EEN (n,L) has a lower bound that is bilinear in n and L.

Theorem 3.3 For any integer n ≥ 2 and L ≥ 2, EEN (n,L) ≥ 1
3Ln.

Proof. The proof is by induction on L.
Our induction proposition is P (L) : for every integer n ≥ 2 EEN (n,L) ≥ 1

3Ln.

The basis of induction, P (2), is trivial since EEN (n, 2) = n ≥ 1
3n is true for any integer n ≥ 2. Now

suppose that the proposition P (L− 1) is true. Let us show that P (L) is also true.
So, take an integer n ≥ 2. To prove: EEN (n,L) ≥ 1

3Ln. Using the induction hypothesis we have

EEN (n,L) = n +
n∑

k=2

(
n

k

)(
L− 1

L

)k (
1
L

)n−k

EEN (k, L− 1)

≥ n +
n∑

k=2

(
n

k

)(
L− 1

L

)k (
1
L

)n−k 1
3
(L− 1)k

= n +
1
3
(L− 1)

[
n∑

k=0

(
n

k

)(
L− 1

L

)k (
1
L

)n−k

k − n

(
L− 1

L

)(
1
L

)n−1
]

= n +
1
3
(L− 1)

[(
L− 1

L

)
n− n

(
L− 1

L

)(
1
L

)n−1
]

=
1
3
nL + n

(
2
3
− 1

3

(
L− 1

L
+

(L− 1)2

Ln

))
.

Since for any L and any n ≥ 2 it holds that L−1
L ≤ 1 and (L−1)2

Ln ≤ 1 we have the desired inequality
EEN (n,L) ≥ 1

3Ln.

So we can conclude that during the English auction on average at least 1
3Ln bits are to be transmitted

from players to the auctioneer.

To compare the considered communication performance of the bisection and English auctions we look at
the same range of valuations for both auctions. So we take interval [0, 2R) and compare EBA(n,R) with
EEN (n, 2R). For valuations uniformly and independently drawn from the interval [0, 2R) the bisection
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auction requires from players in expectation transmission of at most 2n + R information bits while the
English auction requires transmission of at least 1

32Rn bits.

It can easily be checked that for any R ≥ 4 and any n the upper bound of the expected number of
bits transmitted by players in the bisection auction is less than the corresponding lower bound in the
English auction. Moreover it can be shown that for all n and R it holds that EBA(n,R) ≤ EEN (n, 2R).
Concerning the limit behaviour of both auctions, from the above bounds, it can easily be seen that
for all n the ratio EEN (n, 2R)/EBA(n,R) tends to infinity as R → ∞. In particular, the expected
number of information bits required by the English auction is exponential in the total expected number
of information bits required by the bisection auction. Thus we can conclude that the bisection auction
requires from players in expectation communication of far less information bits than the English auction.

3.3 Comparison with the Vickrey auction

To compare the considered communication performance of the bisection and Vickrey auctions we look
again at valuations uniformly and independently drawn from the interval [0, 2R). Any valuation from
this interval can be represented using a binary encoding of length R. Submission of a valuation expressed
in this way consists of R information bits. Since during the Vickrey auction all players submit their exact
valuation, this auction of n players requires communication of Rn bits.

It can be shown by induction (in the same way as it was done in Subsection 3.1) that for any n and R

the expected number of bits transmitted from players in the bisection auction, EBA(n,R), is less than
the number of corresponding bits in the Vickrey auction, Rn. Thus, we can conclude that the bisection
auction requires from players in expectation far less communication than the Vickrey auction.

4 Conclusions

We proposed a new efficient incentive-compatible auction, the bisection auction, and analyzed its infor-
mation revelation and corresponding communication requirements. We have shown that participation
in the proposed auction is less demanding than in the Vickrey and English auctions. In the bisection
auction less information needs to be revealed to the auctioneer to decide on an allocation and a payment.
While in the Vickrey auction all players and in the English auction all except a bidder with the highest
valuation need to reveal their valuation, in the bisection auction only the bidder with the second highest
valuation has to reveal this.

Furthermore, we have shown that in the truthtelling equilibrium bidders transmit in expectation far less
information bits in the bisection auction than in the Vickrey and English auctions. In particular, when
the value range increases, the expected number of bits in the English auction grows exponentially w.r.t.
the expected number of bits in the bisection auction.
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