УДК 553.601.1:536.224

ФИЗИЧЕСКОЕ И ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ АЭРОДИНАМИКИ ЦИКЛОННОГО НАГРЕВАТЕЛЬНОГО УСТРОЙСТВА С РАСПРЕДЕЛЕННЫМ ВВОДОМ ГАЗА

Засл. деятель науки и техн. России, докт. техн. наук, проф. САБУРОВ Э. Н., асп. МАЛЬЦЕВ А. Н.

Архангельский государственный технический университет

Циклонные нагревательные устройства, обладающие большими возможностями значительной интенсификации конвективного теплообмена, снижения тепловой инерционности и автоматизации процесса нагрева, получили широкое распространение в промышленности [1–3]. Поэтому представляет несомненный интерес дальнейшее исследование их аэродинамики, определяющей технологические особенности и высокую интенсивность рабочего процесса. В связи с развитием компьютерных технологий для исследований аэродинамики циклонных устройств наряду с физическим моделированием перспективным является использование численного.

Физический эксперимент, результат которого приведен в работе, выполнен на модели циклонного нагревательного устройства (циклонной камеры), имеющей внутренний диаметр $D_{\kappa} = 2R_{\kappa} = 310$ мм и длину $L_{\kappa} =$ = 580 мм. Внутренняя поверхность рабочего объема камеры являлась технически гладкой с шероховатостью обычного стального проката. Подвод воздуха в камеру осуществлялся тангенциально с диаметрально противоположных сторон входными каналами прямоугольного поперечного сечения – шлицами с внутренними размерами 20×44 мм, расположенными практически равномерно (в шахматном порядке) по ее высоте. Оси ближайших к торцам рабочего объема шлицев находились на расстоянии $z_{\rm sx}$ от его глухого торца, равном 48 и 554 мм (г определялось по координате, совпадающей с осью рабочего объема). Безразмерные координаты местоположения шлицев $z_{\text{вх}} = z_{\text{вх}} / D_{\kappa}$, $z_{\text{вх}}$ равнялись с одной стороны камеры 0,442; 0,884; 1,335; 1,72, а с другой – 0,151; 0,536; 0,987; 1,429. Такое расположение шлицев в целом создавало распределенную систему ввода воздуха. В опытах относительная площадь входа $f_{BX} = 4 f_{BX} / \pi D_{\kappa}^2 = 0.936$, а относительная высота шлицев $\overline{h}_{\text{вх}} = h_{\text{вх}} / D_{\text{к}} = 0,128$. Отвод газа из камеры производился через обычный плоский пережим с относительным диаметром выходного отверстия $d_{\text{вых}} = d_{\text{вых}}/D_{\kappa}$, равным 0,2–0,7. Воздух, выходящий из камеры, выбрасывался в атмосферу. Его расход измеряли нормальным соплом, температуру – ртутным термометром с ценой деления 1 °С.

Во всех опытах подробное исследование полей скоростей и давлений производили предварительно протарированными пятиканальными шаровыми зондами с диаметром шарика 5 мм, а в отдельных опытах – цилиндрическим трехканальным зондом с диметром насадка 2,6 мм. Сечения замеров имели относительные продольные координаты $\overline{z}_c = z_c/D_{\kappa}$, рав-

ные 0,226; 0,884 и 1,53, и находились в диаметральной плоскости, перпендикулярной тангенциальным шлицам. Вектор полной скорости, определяемой в каждой точке по радиусу камеры через 5 мм, раскладывался на три составляющие: тангенциальную w_{φ} , осевую w_z и радиальную w_r . Перемещение зонда производили координатниками с точностью определения угла вектора полной скорости по отношению к горизонтали, равной 1°, и перемещения зонда в радиальном направлении 0,5 мм.

Численный эксперимент выполнен при использовании комплекса Ansys[®] CFD соde CFX[®] 10.0. В качестве базовой модели турбулентности использовали модель $k-\omega$, которая представляет собой двухпараметрическую математическую модель, основанную на теории турбулентной вязкости [4]. Первоначально выполненные численные исследования с применением моделей Zero Equation (в основу модели положена теория пути смешения Прандтля) и $k-\varepsilon$ (двухпараметрическая модель, состоящая из системы уравнений турбулентной кинетической энергии в потоке и вихревой диссипации) показали предпочтительность использования модели $k-\omega$.

На рис. 1 выполнено сопоставление опытных данных (точки) с расчетными распределениями (линии) безразмерной тангенциальной составляющей скорости потока $\overline{w}_{\phi}(\overline{r})$ ($\overline{w}_{\phi} = w_{\phi}/w_{\text{вх}}, w_{\text{вх}}$ – среднерасходная скорость потока в шлицах; $\overline{r} = r/R_{\text{к}}, r$ – текущий радиус). Представленные данные позволяют отметить, что результаты физического и численного экспериментов по уровню тангенциальных скоростей удовлетворительно соответствуют друг другу в периферийной части рабочего объема камеры (при $\overline{r} > 0,6$). Расчетные и соответствующие опытные распределения \overline{w}_{ϕ} в окрестности заготовки различаются более существенно. Вероятно, это обусловлено принятыми расчетной геометрической схемой циклонной камеры и моделью турбулентности циклонного потока.

Рис. 1. Распределения опытных и расчетных значений \overline{w}_{ϕ} при различных $\overline{d}_{\text{вых}}$ и \overline{z}_{c} :

 $\Box - 1 - \overline{z}_{c} = 1,53; \triangleright -2 - 0,884; \diamond - 3 - 0,226$

Воздух в камеру вводился равномерно распределенными по высоте восьмью тангенциальными струями, по четыре с диаметрально противоположных сторон. Струи взаимодействуют между собой и введенными в рабочий объем уже закрученными газами, образуют сложное поле скоростей, которое, вероятно, может быть рассчитано лишь при более сложной модели турбулентности (LES, DES и др.), что потребует в свою очередь применения многопроцессорных кластерных систем вычисления и значительного увеличения времени расчета. В то же время следует отметить, что полученные расчетные и опытные данные правильно описывают характерные особенности влияния параметра $\overline{d}_{вых}$ на распределения \overline{w}_{ϕ} в циклонной камере с загруженным рабочим объемом [1–3]. С увеличением диаметра выходного отверстия как опытные, так и расчетные безразмерные значения максимальной вращательной составляющей скорости потока снижаются, положение максимума \overline{w}_{ϕ} смещается в область больших значений \overline{r} .

Следует заметить, что в более простых общих расчетных схемах геометрии циклонной камеры, например с локальным двусторонним вводом [5–6], а также для циклонных сепараторов [7, 8] совпадение расчетных данных, полученных с использованием пакета гидродинамического моделирования CFX[®] 10.0 (при применении той же двухпараметрической модели турбулентности $k-\omega$), с результатами физического эксперимента по исследованию распределений \overline{w}_{ϕ} было значительно лучшим.

Более удачное совпадение расчетных и опытных данных наблюдалось для осевой составляющей скорости потока w_z . На рис. 2 приведены ее безразмерные величины $\overline{w}_z = w_z/w_{\text{вх}}$. Положительные значения \overline{w}_z соответствуют осевому направлению движения потока от глухого торца камеры к выходному.

Рис. 2. Распределения опытных и расчетных значений \overline{w}_z при различных $\overline{d}_{\text{вых}}$ и \overline{z}_c : □ - 1 - $\overline{z}_c = 1,53$; ▷ -2 - 0,884; ◊ - 3 - 0,226

На данном этапе компьютерного моделирования аэродинамики циклонно-вихревых камер одним из его важнейших достоинств является возможность исследования вторичных течений в циклонном потоке, его структуры. Численное моделирование позволяет получить трехмерное поле скоростей – объемную картину течения. Что дает возможность выполнить анализ циклонного потока, рассматривая поле скоростей или проекции вектора полной скорости в различных плоскостях и областях течения.

На рис. 3 приведены расчетные проекции вектора полной скорости потока на диаметральную плоскость, перпендикулярную входным шлицам, а на рис. 4 – расчетные проекции траекторий частиц потока, ограничивающие потоки и вихревые области в рабочем объеме циклонного нагревательного устройства, на ту же плоскость. На рис. 3 и 4 показаны также контуры заготовки и поперечного сечения входных шлицев.

Рис. 3. Схемы осевых иррадиальных движений потока при различных значениях $\overline{d}_{\text{вых}}$: $a - \overline{d}_{\text{вых}} = 0.3; 6 - 0.4; B - 0.5; \Gamma - 0.7$

Рис. 4. Траектории движения циклонного потока при различных значениях $\overline{d}_{\text{вых}}$: a – $\overline{d}_{\text{вых}} = 0,3; 6 - 0,4; в - 0,5; \Gamma - 0,7$

Представленные данные позволяют отметить, что поле скоростей в рабочем объеме циклонного устройства отличается сложностью и пространственностью, обилием циркуляционных и вихревых зон, предопределяющих интенсивное перемешивание газов. В связи с общим смещением шлицев одной стороны рабочего объема по сравнению с другой (диаметрально противоположной) к выходному торцу рабочего объема наблюдается некоторое нарушение осевой симметрии вторичных течений как в периферийной зоне (у боковой поверхности рабочего объема), так и в центральной (околозаготовочной). Общая картина вторичных течений при $\overline{d}_{вых} =$ = 0,3-0,5 практически сохраняется. При $\overline{d}_{вых} = 0,7$ наблюдается нарушение устойчивости и проточности течения в окрестности заготовки, появляются вытянутые в продольном направлении циркуляционные зоны, оттесняющие выходной вихрь от ее поверхности. Истечение газов из камеры в этом случае происходит по кольцу, имеющему внутренний диаметр, несколько больший, чем при меньших $\overline{d}_{\text{вых}}$. Схема течения потока в нижней части рабочего объема, примыкающей к глухому торцу, в меньшей степени зависит от диаметра выходного отверстия камеры.

выводы

1. Программный комплекс CFX[®] 10.0 может быть использован для определения аэродинамических характеристик циклонно-вихревых нагревательных устройств и дальнейшего совершенствования методики их аэродинамического расчета. Однако необходимая точность расчетов при применяемых в настоящее время моделях турбулентности $k-\omega$, $k-\varepsilon$ и RSM, вероятно, может быть достигнута лишь в определенных диапазонах геометрических и режимных характеристик нагревательных устройств. Интервал диапазонов зависит от их технологического назначения и может быть определен сопоставлением результатов численного и физического экспериментов.

2. Численный эксперимент с использованием CFX[®] 10.0 позволяет исследовать структуру вторичных течений циклонного потока, что часто сложно осуществить применяемыми в настоящее время методами физического эксперимента.

ЛИТЕРАТУРА

1. С а б у р о в, Э. Н. Циклонные нагревательные устройства с интенсифицированным конвективным теплообменом / Э. Н. Сабуров. – Архангельск: Арханг. гос. техн. ун-т; Сев.-Зап. кн. из-во, 1995. – 341 с.

2. Сабуров, Э. Н. Теория и практика циклонных сепараторов, топок и печей / Э. Н. Сабуров, С. В. Карпов; под ред. Э. Н. Сабурова. – Архангельск: Изд-во Арханг. гос. техн. ун-та, 2000. – 568 с.

3. С а б у р о в, Э. Н. Аэродинамика и конвективный теплообмен в циклонных нагревательных устройствах / Э. Н. Сабуров. – Л.: Изд-во ЛГУ, 1982. – 240 с.

4. ANSYS[®] CFX[®]- 10.0TM Users Guide.

5. Сабуров, Э. Н. Численное исследование аэродинамики и вихревой структуры потока циклонно-вихревой камеры с разносторонним вводом-выводом газов / Э. Н. Сабуров, А. Н. Мальцев // Наука – Северному региону: сб. – Вып. 76. – Архангельск, 2008. – С. 142–157.

6. О с т а ш е в, С. И. Результаты численного моделирования аэродинамики циклонных секционных нагревательных устройств с поперечной подачей заготовок / С. И. Осташев,
Э. Н. Сабуров, А. Н. Мальцев // Вестник Арханг. гос. техн. ун-та. – Сер. Энергетика. – Вып. 63. – Архангельск: Изд-во Арханг. гос. техн. ун-та, 2006. – 142 с.

7. H o e k s t r a, A. J. An experimental and numerical study of turbulent swirling flow in gas cyclones [Tekct] / A. J. Hoekstra, J. J. Derksen, Van Den Akker // Chem. Eng. Sci.– 1999. – N_{2} 54. – P. 2055–2065.

8. G r i f f i t h s, W. D. Computational Fluid Dynamics (CFD) and Empirical Modeling of the Performance of a Number of Cyclone Samplers / W. D. Griffiths, F. Boysan // Journal of Aerosol Science. – 1996. – № 2. – P. 281–304.

Представлена кафедрой теплотехники № 6

Поступила 20.04.2010