где Ро = $\frac{HR^2}{\lambda(T_c - T_0)}$; H – теплота диссоциации; T_c и T_0 – соответственно

температура газов в зоне обжига и начальная температура $CaCO_3$, поступающего в зону обжига печи; r_x – текущая координата (рис. 6).

ЛИТЕРАТУРА

1. Ханней Н. // Химия твердого тела. – М.: Мир, 1971.

2. Стальной слиток: В 3 т. – Т. 3: Нагрев / В. И. Тимошпольский, Ю. А. Самойлович, И. А. Трусова и др.; Под общ. ред. В. И. Тимошпольского, Ю. А. Самойловича. – Мн.: Бел. навука, 2001.

3. Хват И. Б., Баранова Р. И., Табунщиков Н. П. Исследование шахтных известково-обжигательных печей. – М.: Химия, 1964.

4. Лыков А.В. Теория теплопроводности. – М.: Высш. шк., 1967.

Представлена кафедрой ПТЭ и ТТ

Поступила 19.01.2004

УДК 536.25

ИССЛЕДОВАНИЕ ВЛИЯНИЯ РАСПОЛОЖЕНИЯ В ВОЗДУШНОМ ПРОСТРАНСТВЕ ОРЕБРЕННЫХ ЦИЛИНДРОВ НА ИНТЕНСИВНОСТЬ ТЕПЛООТДАЧИ СВОБОДНОЙ КОНВЕКЦИЕЙ

Докт. техн. наук, проф. КУНТЫШ В. Б., канд. техн. наук, доц. САМОРОДОВ А. В., канд. техн. наук ПОЗДНЯКОВА А. В.

> Белорусский государственный технологический университет, Архангельский государственный технический университет

Трубы цилиндрической формы с накатными спиральными алюминиевыми ребрами являются основным сборочным элементом широко применяемых газожидкостных теплообменников в различных отраслях техники и промышленности. В ряде теплообменников из труб этого конструктивного типа встречается свободно-конвективное течение воздуха, например в одно- и двухрядных охлаждающих батареях холодильных камер [1], однорядных подогревателях воздуха аппаратов воздушного охлаждения энергоносителей и технологических сред, калориферах воздушного отопления промышленных цехов, общественных зданий и сооружений, воздухоохлаждаемых конденсаторах холодильных машин, различного рода теплоутилизаторах сбросной теплоты вентиляционных систем, сушильных установок, радиаторно-охладительных башен («сухих градирен»).

Одно из действенных направлений реализации энергосберегающих технологий как способа повышения энергоэффективности оборудования и

снижения энергозатрат на единицу производимой продукции - расширенное применение свободной конвекции с уменьшением или полным исключением процессов переноса теплоты вынужденной конвекцией. Это наглядно прослеживается в традиционных конвективных установках [2] термической сушки материалов, характеризующихся значительной энергоемкостью на испарение влаги. Здесь применяются основные и промежуточные калориферы в виде одиночного ряда труб с накатными алюминиеработа которых переводится в режим свободноребрами, выми конвективного теплообмена. Анализ расположения их в сушильных камерах в большинстве случаев является неблагоприятным для эффективного переноса теплоты, несмотря на имеющиеся конструктивные объемы для оптимальной компоновки труб по условиям теплоотдачи, что обусловлено отсутствием у проектировщиков обоснованных рекомендаций по взаимосвязи свободно-конвективной теплоотдачи с характером пространственного расположения греющих оребренных труб.

Опубликованные исследования [3, 4] посвящены теплоотдаче естественной конвекцией гладкотрубных цилиндров и пучков из них, а приведенные в [5] данные по оребренным цилиндрам не отличаются системным подходом, не охватывают условия эксплуатации рассматриваемых теплообменников и не позволяют ответить на поставленные выше вопросы.

Опыты проводили на промышленных биметаллических трубах с накатными спиральными алюминиевыми ребрами следующих натурных геометрических размеров (мм): наружный диаметр, высота, шаг и средняя толщина ребра d = 55,6; h = 14,5; s = 2,91; $\Delta = 0,75$; диаметр у основания ребра $d_0 = d - 2h = 26,5$. Коэффициент оребрения трубы $\phi = 16,8$. Наружный диаметр несущей латунной трубы $d_{\rm H} = 25$ мм, толщина ее стенки $\delta = 2$ мм. Теплоотдающая длина экспериментальных оребренных труб l = 300 мм.

Варианты расположения в опытах одиночной оребренной трубы и однорядных пучков в неограниченном объеме воздуха показаны на рис. 1. Стрелки указывают направление течения внешнего потока, вызванного свободной тепловой конвекцией при охлаждении труб. Поворот на 90° одиночного ряда труб на рис. 1г из вертикальной плоскости в горизонтальную привел к расположению одиночного ряда, изображенного на рис. 1д. На рис. 1е изображен шеститрубный одиночный вертикальный ряд из горизонтально расположенных оребренных цилиндров друг над другом. В опытах по схеме рис. 1е исследовали двух-, трех-, четырех-, пяти- и шеститрубные одиночные, ряды. Абсолютный шаг расположения труб был принят равным S = 70 мм, а относительный шаг – $\sigma = S/d = 1,26$. Влияние шага труб на теплоотдачу в горизонтальных и наклонных пучках исследовано в [6].

Теплоотдачу изучали методом полного теплового моделирования с обогревом всех труб электрическим током при помощи нихромовых нагревателей. Необходимые для определения коэффициента теплоотдачи измерения проводили на одной трубе-калориметре, которую в одиночных рядах устанавливали в их середине на место центральной оребренной трубы, а при исследовании компоновок по схеме рис. 1е положение калориметра последовательно меняли по высоте для двух-, трех-, четырех-, пяти- и шеститрубных вертикальных одиночных рядов с горизонтальным расположением труб. Таким образом, по схеме рис. 1е необходимо было провести 20 серий опытов. Подробное описание экспериментальной установки, конструкции трубы-калориметра, ее оснащение измерительными датчиками, аппаратурное оформление и примененная многократно апробированная методика проведения опытов изложены в [7, 8].

Рис. 1. Схемы расположения в пространстве одиночных оребренных труб и однорядных пучков: 1 – труба-калориметр

Приведенный коэффициент теплоотдачи свободной конвекцией, Вт/(м² · К), определяли по формуле

$$\alpha_{\kappa} = \frac{Q_{\kappa}}{F(t_{c\tau} - t_0)},\tag{1}$$

где Q_{κ} – тепловой поток, отданный конвекцией, Вт; $F = \pi d_0 \varphi l$ – теплоотдающая площадь поверхности калориметра, м²; t_{cr} – средняя температура поверхности стенки калориметра у основания ребер, °C; t_0 – температура окружающего воздуха, °C.

Тепловой поток излучением Q_n , Вт, вычисляли по методике [8], а торцевые потери теплоты калориметром Q_n , Вт, принимали по рекомендациям [7] и вычитали их из подводимой к калориметру электрической мощности W, Вт. Доля лучистой теплоты составляла 30...40 % от суммарного теплового потока.

Опытные данные обрабатывали и представляли в числах подобия Нуссельта Nu = $\frac{\alpha_{\kappa}d_0}{\lambda}$ и Рэлея Ra = $\frac{g\beta d_0^3(t_{cr} - t_0)}{a\nu}$. Теплофизические свойства воздуха λ , ν , a и коэффициента объемного расширения β находили по температуре t_0 . В опытах измеряемые параметры находились в следующих интервалах: $t_{cr} = 35...215$ °C; $t_0 = 15...25$ °C; W = 10...200 Вт. Относительная среднеквадратичная погрешность не превышала 8 %.

Теория подобия не дает однозначного указания по выбору линейного размера в числах подобия. Различные способы его назначения основаны исключительно на общих представлениях о физической сущности протекающих процессов, развитие которых в большей мере определяется конкретным линейным размером. Для горизонтальных труб условия свободного течения потока вокруг них формируются диаметром трубы, однако в случае вертикального расположения труб процесс течения потока и развитие пограничного слоя определяются высотой трубы. Естественно, за линейный размер здесь принимают высоту трубы. Однако во всех вариантах расположения оребренных труб при обработке данных нами принят несущий диаметр d_0 трубы, что позволило сравнивать непосредственно между собой исследованные варианты с помощью значений безразмерной теплоотдачи Nu при Ra = idem.

На рис. 2 представлена теплоотдача одиночных вертикальной и горизонтальной труб, однорядных пучков с вертикальным и горизонтальным расположением труб, а также горизонтальной трубы с разным ее положением, считая снизу, в вертикальном двух-шеститрубном ряду. Полученные данные обобщены степенным уравнением вида

$$Nu = CRa^n, (2)$$

которому на этом рисунке соответствуют сплошные линии. Интервал отклонения опытных значений Nu от расчетных по (2) не превышает ± 10 %.

Теплоотдача вертикальных одиночной трубы и однорядного пучка (рис. 1а, г) одинакова, для них C = 0,0231; n = 0,3. Теплоотдача горизонтальной одиночной трубы ниже на 30...40 % теплоотдачи однорядного горизонтального пучка (рис. 16, д); для одиночной трубы C = 0,0248; n = 0,34, для пучка C = 0,0216; n = 0,38.

Теплоотдача вертикальных труб примерно вполовину меньше ^{нып} дачи труб с горизонтальным расположением. При вертикальном расположении трубы ($\gamma = 90^{\circ}$) воздух, находящийся в узких длинных межреберных каналах, оказывается запертым внешним пограничным слоем, сформировавшимся вокруг трубы в приторцевой зоне ребер и каналов. В межреберных каналах, особенно у их основания, воздух прогревается до температуры, близкой к температуре стенки, что уменьшает отводимый тепловой поток. Отсутствие выталкивающей горизонтальной силы затрудняет обмен сильно нагретой части воздуха с более холодной во внешнем пограничном слое. Слабый обмен количеством движения воздуха узких межреберных горизонтальных полостей является первопричиной ухудшения интенсивности теплообмена.

Теплоотдача одиночных наклонных труб (рис. 1в) занимает промежуточное положение [7] между теплоотдачей горизонтальной ($\gamma = 0^{\circ}$) и вертикальной труб. Расчет ее выполняется по формуле

Рис. 2. Конвективная теплоотдача одиночных оребренных труб и однорядных пучков: 1 – вертикальная одиночная труба; 2 – вертикальный ряд труб; 3 – горизонтальный; 4 – горизонтальная одиночная труба; № 1...№ 6 – номер трубы-калориметра по высоте для вертикальных рядов по схеме рис. 1е: 5 – двух-, 6 – трех-, 7 – четырех-, 8 – пяти-, 9 – шеститрубный ряд; 10 – по (2)

 $Nu_{\gamma} =$

где C_{γ} – поправочный коэффициент на угол наклона оребренной трубы, графическая зависимость которого $C_{\gamma} = f(\gamma)$ изображена на рис. 3 по опытным данным [7].

Рис. 3. Зависимость поправочного коэффициента от угла наклона оребренной трубы: 1 – опытные значения Увеличение угла наклона трубы сопровождается монотонным снижением теплоотдачи, но для углов $\gamma \leq 30^{\circ}$ – не выше чем на 6 %. Затем наблюдается более интенсивный темп снижения теплоотдачи. Зависимость (3) с удовлетворительной точностью может быть распространена и на наклонные однорядные пучки.

Для расчета теплоотдачи трубы-калориметра в зависимости от ее положения по высоте в *m*-трубном одиночном вертикальном ряду (рис. 1е) и средней теплоотдачи таких рядов используется (2), а значения коэффициентов C и n (табл. 1) получены на основании обобщения первичных данных [8], которые нанесены на рис. 2. Зависимости по средней теплоотдаче рядов были получены расчетным способом.

Таблица І

Номер трубы в ряду	Теплоотдача трубы-калориметра					
	1	2	3	4	5	6
Количество труб в ряду						
т, шт.	2		3, 4, 5, 6	4, 5, 6	5,6	6
$C \cdot 10^2$	2,48	1,71	1,29	0,89	0,72	0,552
<i>n</i> · 10	3,4	3,4	3,5	3,8	4,0	4,3
Количество труб в ряду	Средняя теплоотдача ряда					
<i>m</i> , шт.	2		3	4	5	6
$C \cdot 10^2$	2,1		1,88	1,57	1,35	1,19
<i>n</i> · 10	3,4		3,4	3,5	3,6	3,7

Анализ полученных результатов указывает на следующие характерные особенности поведения теплоотдачи горизонтальных труб вертикальных рядов. Теплоотдача нижней трубы № 1 во всех *m*-трубных вертикальных рядах одинакова и соответствует теплоотдаче одиночной горизонтальной трубы в пределах погрешности опытов. Это возможно при неизменности гидродинамики потока у нижней трубы. Теплоотдача трубы № 2 снизу также одинакова для всех *m*-трубных рядов. Подобная картина характерна для третьей, четвертой и пятой труб в соответствующих трубных рядах. Следовательно, расположенные выше по вертикали в ряду трубы не влияют на теплоотдачу труб, расположенных ниже.

Иначе изменяется теплоотдача трубы по высоте ряда. Интенсивность теплоотдачи второй трубы снизу составляет около 70 % от первой. Лобовая часть трубы вплоть до миделева сечения оказалась в тепловом следе от первой трубы, причем толщина его, видимо, больше расстояния *S* между цилиндрами. В этом случае восходящий поток воздуха в следе имеет более высокую температуру ввиду слабого подсоса холодного потока воздуха из среды вне пределов следа, что привело к снижению отводимого теплового потока у второй трубы. Дальнейшее снижение теплоотдачи по высоте ряда замедляется, и она слабо меняется от третьей к пятой трубе, что является следствием установившегося свободного течения потока. Теплоотдача этих труб в среднем составляет 55...60 % по сравнению с теплоотдачей первой трубы. Теплоотдача шестой трубы в 1,05...1,12 раза превышает теплоотдачу пятой трубы, что может быть объяснено условиями ее взаимодействия с окружающим потоком, как последней трубы в ряду.

Рис. 4. Изменение среднего числа Nu в зависимости от количества труб в ряду по вертикали: $1 - Ra = 100 \cdot 10^3$; $2 - 300 \cdot 10^3$

Средняя теплоотдача т-трубного вертикального ряда непрерывно снижается (рис. 4) при увеличении количества труб в ряду до четырех штук. При большем количестве труб m > 4 шт. средняя теплоотдача стабилизируется, достигнув некоторого численного значения для каждого числа Ra. Средняя теплоотдача ряда с m = 2 шт. меньше теплоотдачи одиночной трубы (*m* = 1 шт.) в 1,18 раза, а теплоотдача с m = 3 шт. ниже этой характеристики для m = 2 шт. в 1,12 раза. Полученный результат позволяет сделать важный практи-

ческий вывод: при моделировании средней теплоотдачи вертикального ряда с горизонтальным расположением оребренных труб их количество должно быть не меньше пяти.

ЛИТЕРАТУРА

1. Теплообменные аппараты холодильных установок / Г. Н. Данилова, С. Н. Богданов, О. П. Иванов и др.; Под общ. ред. Г. Н. Даниловой. – Л.: Машиностроение, 1986. – 303 с.

2. Р а с ч е т, проектирование и реконструкция лесосушильных камер / Е. С. Богданов, В. И. Мелехов, В. Б. Кунтыш и др.; Под ред. Е. С. Богданова. – М.: Экология, 1993. – 352 с.

3. Д ж а л у р и я Й. Естественная конвекция: Тепло- и массообмен / Пер. с англ. – М.: Мир, 1983. – 400 с.

4. Г у с е в С. Е. Теплообмен и гидродинамика при свободно-конвективном обтекании горизонтальных цилиндрических тел теплоносителем с переменными физическими свойствами: Автореф. дис. ... докт. техн. наук. – М.: 2000. – 40 с.

5. Мартыненко О. Г., Соковишин Ю. А. Свободно-конвективный теплообмен: Справ. – Мн.: Навука и тэхніка, 1982. – 400 с.

6. С а м о р о д о в А. В. Влияние компоновочных параметров труб со спиральными ребрами в шахматном пучке на свободно-конвективный теплообмен // Труды 2-й Рос. нац. конф. по теплообмену: В 8 т. – Т. 3: Свободная конвекция. Тепломассообмен при химических превращениях. – М.: Изд-во МЭИ, 1998. – С. 143–146.

7. Самородов А. В., Кунтыш В. Б. Влияние наклона однорядного пучка труб со спиральными ребрами на свободно-конвективный теплообмен // Охрана окружающей среды и рациональное использование природных ресурсов: Сб. науч. тр. АГТУ. – Архангельск, 1996. – Вып. 1. – С. 63–69.

8. Самородов А.В., Кунтыш В.Б. Исследование свободно-конвективного теплообмена ребристых труб одиночного вертикального ряда // Охрана окружающей среды и рациональное использование природных ресурсов: Сб. науч. тр. АГТУ. – Архангельск, 1997. – Вып. 2. – С. 113–121.

Представлена кафедрой промышленной теплоэнергетики АГТУ

Поступила 30.10.2003