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Abstract. We consider the problem of minimizing the makespan on re-
stricted related parallel machines. In restricted machine scheduling each
job is only allowed to be scheduled on a subset of machines. We study the
worst-case behavior of local search algorithms. In particular, we analyze
the quality of local optima with respect to the jump, swap, push and
lexicographical jump neighborhood.

Key words: Local search, performance guarantee, restricted machines,
eligibility constraints.

1 Introduction

We consider the problem of minimizing the makespan in restricted related par-
allel machine scheduling. In this setting, each job is only allowed to be scheduled
on a subset of machines. The problem is also known as the related parallel
machine scheduling problem with eligibility constraints [19, 20, 27] or as the re-
stricted assignment model for related parallel links [1, 9, 10]. It has applications
in, among others, operating systems, communication networks [17], semiconduc-
tor manufacturing [4], and the throughput management of hospital operating
rooms [28].

The problem is defined as follows. Given is a set J = {1, ..., n} of n jobs and
a set M = {1, ...,m} of m machines. Each job j needs to be scheduled on one
of its eligible machines Mj ⊆ M . We will refer to the family {Mj} as eligibility
sets. We also say that job j is allowable on machine i if i ∈ Mj . A machine
i ∈ M can process at most one job at a time, and all jobs and machines are
available at time 0. Each machine i ∈ M is characterized by a processing speed
si > 0. Similarly, each job has a processing requirement pj > 0. If a job j is

? Partially supported by a grant of the Ecuadorian Organization for Science and Tech-
nology (SENACYT)
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allowable on a machine i, then the processing time of job j on machine i, pij ,
equals pj/si. If job j is not allowable on machine i, then pij is set to infinity. We
refer to the setting as stated above as restricted related parallel machines. The
term ”restricted” refers to jobs being restricted in the sense that they are only
allowed to be processed on a subset of machines. The objective is to schedule
the jobs in such a way that the makespan is minimized, i. e., we seek the last job
to be completed as early as possible. The latency of a machine is the ratio of
the processing requirements of all jobs assigned to the machine over its speed.
Then, the makespan equals the maximum latency over machines. In absence of
the eligibility constraints, that is Mj = M for all jobs j, the model is known
as the (uniform) related parallel machine scheduling model. In the special case
of restricted identical parallel machines the processing speed of each machine
equals one. Furthermore, we refer to the special case wherein the processing
requirements of all jobs equal one as the restricted related parallel machines
with identical (unit-length) jobs. Adapting the standard notation introduced by
[14], the problems of minimizing the makespan on restricted identical parallel
machines, restricted related parallel machines with identical jobs and restricted
related parallel machines are denoted by P |Mj |Cmax, Q|Mj , pj = 1|Cmax and
Q|Mj |Cmax, respectively, see e. g., [18, 25]. Standard scheduling problems which
minimize the makespan on identical or related parallel machines are both known
to be strongly NP-hard [12]. Hence, the problems with eligibility constraints
are strongly NP-hard as well. One way to deal with NP-hard problems is to
find approximative solutions. If an algorithm is guaranteed to deliver a solution
that has a value at most ρ times the optimal solution value, we call it a ρ-
approximation algorithm. ρ is called the performance guarantee.

A way to find approximate solutions is through local search. Local search
methods iteratively search through the set of feasible solutions. Starting from
an initial solution, a local search procedure moves from a feasible solution to
a neighboring solution until some stopping criteria are met. A neighborhood
function defines for each feasible solution a set of solutions which are in some
sense close to it. This set is called a neighborhood. The choice of a suitable
neighborhood function has an important influence on the performance of local
search. The simplest form of local search is iterative improvement, also called
local improvement algorithms. This method iteratively chooses a better solution
in the neighborhood of the current solution and it terminates when no better
solution is found; we say that the final solution is a local optimum.

Neighborhoods In this paper, we investigate the performance guarantees of four
different neighborhoods for various restricted related parallel machines settings,
namely the jump, swap, push and lexicographical jump (lexjump) neighborhood.

Before discussing the neighborhoods, we first describe our representation of a
schedule. Since the order in which the jobs are processed on a machine does not
influence the latency of the corresponding machine, we will represent a schedule
by an assignment. An assignment A is uniquely determined by a partition of the
set of jobs J into m disjoint subsets JA

1 , JA
2 , . . . , JA

m where JA
i denotes the set

of jobs assigned to machine i ∈ M in assignment A. Let A(j) ∈ Mj denote the
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machine to which job j is assigned in assignment A, that is, A(j) = i implies
j ∈ JA

i and vice versa. The load of a machine is the total processing requirement
assigned to the machine for some assignment A, i. e., LA

i =
∑

j∈JA
i

pj , for all
i ∈ M . The latency of a machine is the total processing time needed by a machine
to process all jobs which are assigned to it, i. e.,ΛA

i =
∑

j∈JA
i

pij = LA
i /si.

Obviously, for identical parallel machines, ΛA
i = LA

i for all machines i ∈ M . A
critical machine is a machine with maximum latency. The makespan of some
given assignment A, CA

max , i. e., the latest completion time of a job, equals the
latency of the critical machine(s). Thus, CA

max = maxi∈M ΛA
i .

The first neighborhood we consider is the jump neighborhood, also known as
the move neighborhood. A jump is defined as jumping or moving a job from the
machine to which it is currently assigned to another machine (on which it is
allowed). In the jump neighborhood, jobs are iteratively jumped from a critical
machine to a non-critical machine. We say that an assignment is a jump optimal
assignment if no jump decreases the makespan or the number of critical machines
without increasing the makespan.

The second neighborhood we consider is the swap neighborhood. Select two
jobs, j and k, assigned to different machines, i. e., j ∈ JA

i , k ∈ JA
h and i 6= h, such

that h ∈ Mj and i ∈ Mk. A swap is performed by interchanging the machine
allocations of the jobs. If all jobs are assigned on the same machine, then no swap
neighbor exists. Therefore, we define the swap neighborhood as one that consists
of all possible jumps which jump a job from a critical machine to a non-critical
machine and all possible swaps which swap a job from a critical machine with
another job from a non-critical machine. We say that an assignment is a swap
optimal assignment if no jump or swap decreases the makespan or the number
of critical machines without increasing the makespan.

Next, we consider the push neighborhood introduced by Schuurman and Vre-
develd [26]. A push consists of a sequence of jumps. Starting with an assignment
A with makespan CA

max , a push is initiated by selecting a job k on a criti-
cal machine and a machine i ∈ Mk to move it. We say that k fits on i if
pik +

∑
j∈JA

i :pij≥pik
pij < CA

max . If a job k fits on some machine i, then we move
j to i and iteratively remove the smallest job from i until the latency of i is less
than CA

max . The removed jobs are gathered in a queue. We now have a queue of
pending jobs and a partial assignment that has lower makespan or fewer critical
machines. If the queue is non-empty, then the largest job in the queue is removed
and moved to one of its eligible machine on which it fits, in the same way as
the first job was pushed. Thus, if necessary, we allow some smaller jobs to be
removed. If the largest job in the queue does not fit on any eligible machine,
then we say that the push is unsuccessful. We repeat the procedure of moving
the largest job in the queue to a machine until the queue is empty or until we
have determined that the push is unsuccessful. If none of the jobs on any of
the critical machines can succesfully be pushed, then we are in a push optimal
assignment. The push neighborhood is explained in more detail in [26].

The last neighborhood we consider is the lexicographical jump (lexjump)
neighborhood. Define the experienced latency of a job as the latency of the ma-
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chine to which the job is currently assigned. An assignment A is lexjump optimal
if no jump exists which decreases the latency of a machine i without increasing
the latency of another machine h 6= i to a value exceeding the original latency
of machine i. In other words, no job can decrease its experienced latency by
jumping to another machine. That is, A is lexjump optimal if phj + ΛA

h ≥ ΛA
i

for all i ∈ M, j ∈ JA
i , h ∈ Mj . Notice that the notion of a lexjump optimal

assignment corresponds to the notion of pure Nash equilibrium in the context
of load balancing games, see e. g., [29].

Related work Worst case analysis of local search has become increasingly pop-
ular in the last decade. A summary of the best known upperbounds on the per-
formance guarantees for the jump, swap, push and the lexjump neighborhood
for (unrestricted) identical parallel machines and (unrestricted) related parallel
machines is provided in Table 1. Schuurman and Vredeveld [26] provided exam-
ples showing that the bounds of the jump and the swap neighborhood are tight
for identical and related parallel machines. In addition to the bounds provided in
Table 1, Brueggemann, Hurink, Vredeveld, and Woeginger [3] introduced the so-
called split neighborhood and considered the corresponding performance guaran-
tees. They showed that this exponentially sized neighborhood has a performance
guarantee of at most 2−2/(m+1). Moreover, combining this neighborhood with
the jump neighborhood improves the guarantee only to 2− 4/(m+3). However,
if the split neighborhood is combined with the lexjump neighborhood, the per-
formance guarantee drops to 3/2.

A lexjump optimal assignment corresponds to a pure Nash equilibrium for
the appropriate defined game. Therefore, the results on the price of anarchy carry
over to performance guarantees for lexjump optimal assignments. Czumaj and
Vöcking [6] showed the performance guarantee of a lexjump optimal assignment
on related parallel machines is in O(min {log m/ log log m), log(s+/s−)}, where
s+ := maxi si and s− := mini si, and that this bound is aymptotically tight.
For unrelated parallel machines, Awerbuch, Azar, Richter and Tsur [1] showed

Table 1. Local search performance guarantees for unrestricted parallel machines which
are shown to be tight. ”LB” and ”UB” denote a lowerbound and an upperbound on
the performance guarantee respectively if the performance guarantee is not shown to
be tight.

Setting Jump Swap Push Lexjump

2 identical machines 4
3

[8] 4
3

[8] 8
7

[26] 4
3

[29]

Identical machines 2− 2
m+1

[8]
2− 2

m+1

[8]
UB = 4

3
− 1

3m

[26]
2− 2

m+1

[29]

(m > 2) LB = 4m
3m+1

[26]

Related machines 1+
√

4m−3
2

[5] 1+
√

4m−3
2

[5]
UB = 2− 2

m+1

[26] O
(

log m
log log m

)[29]

LB = 3
2
− ε[26]
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that the performance guarantee is in Θ(p+ +(log m/ log(2+(log m)/p+))) where
p+ := maxj,i,h:pij<∞ pij/phj .

Recently, results for lexjump optimal assignments on restricted parallel ma-
chines have been developed. Awerbuch et al. [1] proved that the performance
guarantee for identical machines is bounded by Θ(log m/(r · log(2+(log m)/r))),
where r denotes the ratio between the makespan of the optimal schedule and the
largest task (note r ≥ 1). Note that the general bound for identical machines of
Θ(log m/ log log m) are obtained by setting r = 1, i. e., when making no assump-
tions on the largest job in the system. Hoefer and Souza [15] provided an alter-
native upper bound for the performance guarantee: 1 + m2/

∑
j∈J pj . Gairing,

Lücking, Mavronicolas and Monien [9] showed that the performance guarantee
for restricted related parallel machines and identical jobs is in Ω(log n/ log log n).
For restricted related parallel machines, they show that the performance guar-
antee is bounded from below by m − 1 and bounded from above by m. Since
the counterexample of Gairing et al. [9], which shows that the performance
guarantee for restricted related machines can be as bad as m − 1, is somewhat
artificial, Lu and Yu [22] introduced the concept of λ-goodness instances to de-
velop an alternative performance guarantee. An instance is λ-good if and only
if every job can use at least one machine which has a speed of no less than
s+/λ. Lu and Yu show that for λ-good instances, the performance guarantee is
in Θ

(
min

{
log λm

log log λm ,m
})

.

For a more elaborate overview of worst case analysis and other theoretical
aspects of local search, we refer to the book of Michiels, Aarts, and Korst [23].

In [25, 21, 19] polynomial time algorithms to solve several special cases for
scheduling unit-length jobs on restricted related parallel machines to optimality
are given. Glass and Kellerer [13] gave several polynomial time approximation
algorithms for special cases of the problem of restricted parallel machines with
performance guarantees of 2− 1/m or better. A PTAS for the identical parallel
machines cases with a special type of eligibility sets is given by Ou, Leung, and
Li [24]. We refer to Leung and Li [18] for a survey on results on polynomial time
algorithms, complexity issues and approximation schemes concerning scheduling
problems with restricted machines.

Table 2. Local search performance guarantees for restricted parallel machines. Let
s− := mini si, s+ := maxi si, esi := si/s− and es := s+/s−.

Setting Jump/Swap/Push Lexjump

Identical Machines 1/2 +
p

m− 3/4 O
“

log m
log log m

”[1]

Identical Jobs
q`

1 + m−1
n

´ P
i∈M esi O

“
log n

log log n

”[9]

Related machines 1/2 +
p

1/4 + (m− 1)s̃ O
“

log
P

i∈M esi

log log
P

i∈M esi

”
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Our contribution In this paper we consider the following neighborhoods: the
jump, swap, push and lexicographical jump neighborhood. We analyze the qual-
ity of each neighborhood by establishing worst-case performance guarantees for
the restricted identical parallel machines, restricted related parallel machines
with identical jobs and restricted related parallel machines problems. The new
performance guarantees are summarized in Table 2, see the unreferenced bounds.
Furthermore, we provide examples to show that these performance guarantees
are tight or almost tight.

2 Performance guarantees for restricted identical parallel
machines

In this section, we provide performance guarantees for the scheduling problem
of minimizing makespan on restricted identical parallel machines. For the jump
neighborhood we obtain the following result.

Theorem 1. A jump-optimal assignment for restricted identical parallel ma-
chines has makespan at most 1/2 +

√
m− 3/4 times the optimal makespan.

Theorem 1 follows straightforward from Theorem 5 since for the case of
identical machines si = 1 for all machines i ∈ M . The following example shows
that there exist instances for which the performance guarantee is tight.

Example 1. Let k be an arbitrary positive integer and consider an instance with
n = k(k−1)+1 jobs and m = n machines. All jobs have processing time pj = 1.
Jobs 1, . . . , k can only be processed on the first k machines. The remaining
jobs are allowable on all machines. Consider the following assignment which is
depicted in Figure 1. Jobs 1, . . . , k are assigned to machine 1. Machines 2, . . . , k
process each k − 1 of the remaining jobs. This assignment is jump optimal and
has a makespan of CA

max = k, whereas in an optimal assignment, each machine
processes only one job and COPT

max = 1. Hence, CA
max /COPT

max = k = 1/2 +√
m− 3/4.

m = k(k − 1) + 1

. . .1

...
...

. . .

. . .2

...

k jobs

k − 1 jobs

k − 1 jobs

(k − 1)2

empty machines

k − 1
machines

...
k

k + 1
... empty

empty

Fig. 1. Jump Optimal Assignment
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The following theorem has been established independently by Awerbuch,
Azar, Richter and Tsur [1] and Gairing, Lücking, Mavronicolas and Monien [9].

Theorem 2 (Awerbuch et al. [1], Gairing et al. [9]). The performance
guarantee of lexjump optimal assignments for the problem of minimizing the
makespan on restricted identical parallel machines is O (log m/ log log m) .

Gairing et al. [9] also provide an example showing that the bound of Theorem
2 is tight up to a constant factor.

3 Performance guarantees for restricted related parallel
machines with identical (unit-length) jobs

In this section, we discuss performance guarantees on restricted related parallel
machines for the special case of identical (unit-length) jobs. The general case for
arbitrary jobs will be discussed in the next section. For now we will assume that
pj = 1 for all jobs j ∈ J . Denote by s− the minimum speed among all machines,
i. e., s− := mini∈M si. For the jump neighborhood we have the following result:

Theorem 3. A jump optimal assignment for restricted related parallel machines
with identical (unit-length) jobs has a makespan of at most√(

1 +
m− 1

n

)∑
i∈M

s̃i

where s̃i denotes the relative speed, i. e., s̃i := si/s−.

Proof: Assume without loss of generality that machine 1 is the critical machine.
Let A be a jump optimal assignment. Then

CA
max = ΛA

1 ≤ ΛA
i +

1
si

∀ i ∈MA
1 =

⋃
j∈JA

1

Mj . (1)

Multiplying the equality above by the corresponding speeds, summing over all
machines i ∈ MA

1 \ {1} and adding the load of machine 1 to both sides of the
inequality yields

s1Λ
A
1 +

∑
i∈MA

1 \{1}

(siC
A
max ) =

∑
i∈MA

1

(siC
A
max ) (2)

≤ s1Λ
A
1 +

∑
i∈MA

1 \{1}

(siΛ
A
i + 1) =

∑
i∈MA

1

(siΛ
A
i ) + (x− 1) (3)

where x :=
∣∣MA

1

∣∣. Thus, in A, the machines in MA
1 process together a load of

at least 1− x +
∑

i∈MA
1
(siC

A
max ). In an optimal assignment OPT each machine
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i ∈ M processes a load of at most siC
OPT
max . Hence, in any optimal assignment,

a load of at least
1− x +

∑
i∈MA

1

(
si(CA

max − COPT
max )

)
must be assigned to machines in M\MA

1 . Thus,∑
i∈M\MA

1

siC
OPT
max ≥ 1− x +

∑
i∈MA

1

(
si(CA

max − COPT
max )

)
.

yielding

CA
max ·

∑
i∈MA

1

si ≤ (x−1)+COPT
max ·

∑
i∈M

si ≤ (m−1)
COPT

max

n

∑
i∈M

si +COPT
max ·

∑
i∈M

si

= COPT
max

(
1 +

m− 1
n

)∑
i∈M

si

as x ≤ m, and COPT
max ·

∑
i∈M si ≥

∑
j∈J pj = n, that is 1 ≤ (COPT

max /n)
∑

i∈M si.
We obtain

CA
max

COPT
max

≤
(
1 + m−1

n

)∑
i∈M si∑

i∈MA
1

si
(4)

Furthermore, we have that s1C
A
max ≤

∑
i∈MA

1
(siC

OPT
max ) from which it follows

that
CA

max

COPT
max

≤
∑

i∈MA
1

si

s1
≤
∑

i∈MA
1

si

s−
. (5)

Combining (4) and (5) provides us with the result

CA
max

COPT
max

=

√(
CA

max

COPT
max

)2 (4)&(5)

≤

√√√√((1 + m−1
n

)∑
i∈M si∑

i∈MA
1

si

)(∑
i∈MA

1
si

s−

)
(6)

=

√(
1 +

m− 1
n

)∑
i∈M

s̃i (7)

ut

The example below shows that there exist instances of three machines and
particular speeds for which the performance guarantee of Theorem 3 is asymp-
totically tight. We remark that the example below can be generalized to any
number of machines.

Example 2. Let k be an arbitrary strictly positive integer and consider the fol-
lowing instance and a jump-optimal assignment A. Each job has processing re-
quirement pj = 1 as is required in this section. We have three machines for which
s1 = s− = 1, s2 = k− 1 and s3 = k(k− 1)− 1. k jobs are assigned to machine 1
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but are allowed on machines 1 and 2. k(k − 1)− 1 jobs are assigned to machine
2 but are allowed on machines 2 and 3. No jobs are assigned to machine 3. We
have ΛA

1 = CA
max = k, ΛA

2 = k − 1/(k − 1) and ΛA
3 = 0. An optimal assign-

ment is obtained by assigning k − 1 jobs, which are in A assigned to machine
1, to machine 2 and by assigning all jobs which are in A assigned to machine
2, to machine 3. Consequently, CA

max /COPT
max = k/1 = k. Theorem 3 yields the

following upper bound on the performance guarantees„
1 +

m− 1

n

« X
i∈M

esi =

s„
1 +

3− 1

k2 − 1

«
(k2 − 1) =

p
k2 + 1

k→∞−→ k =
CA

max

COPT
max

. (8)

The results from Gairing, Lücking, Mavronicolas and Monien [9] yield the
following result.

Theorem 4 (Gairing et al. [9], Theorem 3.1 and Theorem 4.2). The
performance guarantee of a lexjump optimal assignment for the problem of min-
imizing the makespan on restricted related parallel machines and identical jobs
is Θ (log n/ log log n).

4 Performance guarantees for restricted related parallel
machines

In this section, we establish performance guarantees for the scheduling problem
of minimizing the makespan on restricted related parallel machines. Recall that
in this machine environment pij = pj/si for i ∈ Mj and pij = ∞ otherwise.
Let s+ := maxi∈M si and let s− := mini∈M si. For the jump neighborhood we
obtain the following result.

Theorem 5. A jump optimal assignment for restricted related parallel machines
has makespan at most 1/2 +

√
1/4 + (m− 1)s̃ times the optimal solution value;

where s̃ := s+/s− = maxi,h∈M si/sh.

Proof: Consider a jump optimal assignment A having makespan CA
max . Assume

w.l.o.g. that machine 1 is a critical machine, i. e.,ΛA
1 = CA

max . Let MA
1 be the

set of machines to which a job, currently assigned to machine 1 for assignment
A, can be moved, i. e.,MA

1 =
⋃

j∈JA
1
Mj . Let x := |MA

1 | and p+ := maxj∈J pj .
Consider a machine i ∈MA

1 such that i 6= 1. Then, there exists at least one job
j ∈ JA

1 such that i ∈Mj . By jump optimality of A we have, ΛA
i +pj/si ≥ CA

max .
Consequently, ΛA

i ≥ CA
max − p+/si for all i ∈ MA

1 \ {1}. Multiplying the last
inequality by si and accumulating over all machines i ∈MA

1 we obtain,

∑
i∈MA

1

LA
i =

∑
i∈MA

1

siΛ
A
i ≥ s1C

A
max +

∑
i∈MA

1 \{1}

si

(
CA

max −
p+

si

)
. (9)
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To convert assignment A to an optimal assignment with makespan COPT
max , we

need to move at least a load of

s1(CA
max − COPT

max ) +
∑

i∈MA
1 :i 6=1

si

(
CA

max − COPT
max − p+

si

)
(10)

from the machines in MA
1 to the machines in M\MA

1 . Therefore,

(m− x)s+COPT
max ≥

∑
i∈M\MA

1

siΛ
OPT
i (11)

(10)

≥ s1(CA
max − COPT

max ) (12)

+
∑

i∈MA
1 :i 6=1

si

(
CA

max − COPT
max

)
−

∑
i∈MA

1 :i 6=1

p+ (13)

=
∑

i∈MA
1

si

(
CA

max − COPT
max

)
− (x− 1)p+ (14)

≥
∑

i∈MA
1

si

(
CA

max − COPT
max

)
− (x− 1)s+COPT

max , (15)

since p+/s+ ≤ COPT
max . Then,

CA
max

COPT
max

≤
(m− x)s+ +

∑
i∈MA

1
si + (x− 1)s+∑

i∈MA
1

si
=

(m− 1)s+∑
i∈MA

1
si

+ 1. (16)

As in an optimal assignment the jobs in JA
1 must be assigned to the machines

in MA
1 , we have s1C

A
max ≤

∑
i∈MA

1
si COPT

max and consequently

CA
max

COPT
max

≤
∑

i∈MA
1

si

s1
≤
∑

i∈MA
1

si

s−
. (17)

Combining (16) and (17) yields

CA
max

COPT
max

(
CA

max

COPT
max

− 1
)

(17)

≤
∑

i∈MA
1

si

s−

(
CA

max

COPT
max

− 1
)

(16)

≤ (m− 1)
s+

s−
. (18)

From this it follows that,

CA
max

COPT
max

≤ 1
2

+

√
1
4

+ (m− 1)
s+

s−
. (19)

ut

Note that the bound given in Theorem 5 corresponds to the bound given
in Theorem 1 by setting si = 1 for all machines i ∈ M . Therefore, Example 1
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shows that the bound of Theorem 5 is tight for s̃ = 1. The example below shows
that there exist instances with non-identical speeds for which a jump optimal
assignment has a makespan of at least

√
s̃(m− 1) + 1/4 · COPT

max , leaving a gap
of less than 1/2 between the upper and the lower bound on the performance
guarantee.

Example 3. Let k > 1 be an arbitrary strictly positive integer and consider the
following instance. Let there be m = k + 3 machines having speeds s1 = 1 and
s2 = . . . = sm = k. Let there be k + 1 jobs of size pj = 1 for which Mj = {1, 2}
and k + 1 jobs of size pj = k for which Mj = M . Additionally, there is one job
of size ε > 0 which is only allowed on machine 1. In an optimal assignment, one
job of size 1 and the one job of size ε are assigned to machine 1, k jobs of size 1
are assigned to machine 2 and 1 job of size k is assigned to each of the remaining
machines. Then, COPT

max = 1+ε. Consider the following jump optimal assignment
A: k + 1 jobs of size 1 and the one job of size ε are assigned to machine 1, k + 1
jobs of size k are assigned to machine 2 and all the other machines remain empty.
Then CA

max = k + 1 + ε. Hence, when ε tends to zero, CA
max /COPT

max tends to
k + 1. Since k + 1 >

√
k(k + 2) + 1/4 =

√
s̃(m− 1) + 1/4, we have established

a lower bound of
√

s̃(m− 1) + 1/4 on the performance guarantee of the jump
neighborhood for related parallel machines by taking ε small enough.

In order to prove Theorem 6, we make use of the Gamma function. The
Gamma function is denoted by Γ (x) and is defined by Γ (x) :=

∫∞
0

tx−1e−x∂t for
x ∈ R+. Let Γ−1(x) denote the inverse Gamma function. For any natural number
N the gamma function is defined as Γ (N + 1) := N !. It is known that both
the Gamma function as well as the inverse Gamma function are monotonically
increasing and that Γ−1(x) = O(log x/ log log x). Let COPT

max denote the optimal
makespan. We introduce the following notation. For an assignment A and for any
positive integer k, we define the set RA

k =
{
i ∈ M : ΛA

i ≥ k · COPT
max

}
, i. e., RA

k

denotes the set of machines having a latency of at least k · COPT
max . Let RA

k =
RA

k \RA
k+1. An illustration of these definitions is provided in Figure 2. Before

proving Theorem 6, we first establish the lemma below.

Lemma 1. Let A be a lexjump optimal assignment. Then, a job j ∈ JA
i assigned

to a machine i ∈ RA
k+1 will not be assigned to a machine h ∈ M \ RA

k in any
optimal assignment.

Proof: Consider a job j such that A(j) ∈ RA
k+1. If Mj ⊆ RA

k , then the statement
of the lemma is trivially satisfied. Otherwise, let i be a machine in M\RA

k and
let i ∈Mj . Since A is a lexjump optimal assignment,

ΛA
i +

pj

si
≥ ΛA

A(j) ≥ (k + 1)COPT
max . (20)

As i ∈ M \RA
k , ΛA

i < k COPT
max and thus pj/si > COPT

max . Hence, in an optimal
assignment, job j will not be assigned to any machine i ∈Mj ∩

(
M\RA

k

)
. ut

For the lexjump neighborhood for restricted related parallel machines we
have the following result.
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kCOPT
MAX

CA
MAX(k + 1)COPT

MAXCOPT
MAX

Rk

Rk

Rk+1

Fig. 2. Illustration of definition of RA
k

Theorem 6. The performance guarantee of lexjump optimal assignments for
the problem of minimizing the makespan on restricted related parallel machines
is

O

(
log
∑

i s̃i

log log
∑

i s̃i

)
where s̃i denotes the relative speed, i. e., s̃i = si/s−.

Proof: Consider a lexjump optimal assignment A with makespan CA
max . By

definition of RA
k , the total load of the machines in RA

k+1 is
∑

i∈RA
k+1

siΛ
A
i ≥

(k + 1)
∑

i∈RA
k+1

siC
OPT
max . By Lemma 1, we know that any job assigned in A

on a machine in RA
k+1 needs to be assigned on a machine in RA

k in an optimal
assignment. Therefore, in any optimal assignment, the machines in RA

k need to
process at least a load of k

∑
i∈RA

k+1
si COPT

max . Hence, for all k, we have∑
i∈RA

k

si COPT
max ≥

∑
i∈RA

k+1

k si COPT
max (21)

from which it follows that∑
i∈RA

k

si =
∑

i∈RA
k

si +
∑

i∈RA
k+1

si ≥ k
∑

i∈RA
k+1

si +
∑

i∈RA
k+1

si = (k + 1)
∑

i∈RA
k+1

si. (22)

Letting c = bCA
max /COPT

max c, it follows that
∑

i∈RA
0

si ≥ c!
∑

i∈RA
c

si and
consequently

∑
i∈RA

0
s̃i ≥ c!

∑
i∈RA

c
s̃i. Since, R0 = M and

∑
i∈RA

c
s̃i ≥ |RA

c | ≥ 1
as s̃i ≥ 1∀ i ∈ M and as the critical machine is in RA

c , we have
∑

i∈M s̃i ≥ c! =
Γ (c+1). Using the fact that the inverse of the Gamma function is monotonically
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increasing, the latter inequality yields, CA
max /COPT

max ≤ c + 1 ≤ Γ−1
(∑

i∈M s̃i

)
and finally

CA
max /COPT

max = O

(
log
∑

i

s̃i/ log log
∑

i

s̃i

)
. (23)

ut

Note that the bound given in the above theorem confirms to the bound given
in Theorem 2 by setting si = 1 for all i ∈ M . The following example shows that
there exist instances for which the bound of Theorem 6 is tight up to a constant
factor.

Example 4. Let k > 1 be an arbitrary strictly positive integer and let s > 1. Con-
sider the following instance and assignment. Each job has a processing require-
ment pj = s. The machines are partitioned into sk + 1 groups, S0, S1, . . . , Ssk.
Group S0 consists of only one machine which has a speed of one. For l = 1, . . . , sk,
group Sl contains kΠ l−1

i=1(sk − i) machines each having a processing speed of s.
In assignment A, each machine in group Sl, for l ≥ 1, processes sk − l jobs.
k jobs are assigned to the machine in S0. Each job j ∈ JA

i with i ∈ Sl has
Mj = Sl ∪ Sl+1. A is lexjump optimal with makespan sk, whereas COPT

max = 1.
The optimal solution is attained by assigning one job to each machine i ∈ Sl for
l ≥ 1 and leaving the machine in S0 empty. Moreover,

∑
i

s̃i ≤ 1 + sk
sk−1∑
i=0

(sk − 1)!
i!

≤ 1 + (sk)!
+∞∑
i=0

1
i!

(24)

≤ 1 + e (sk)! ≤ (sk + 2)! = Γ (sk + 3) . (25)

where Γ (n) denotes the gamma function, i. e.,Γ (n) = (n−1)! for some integer
n. Hence, using the fact that the inverse of the Gamma function is monotonically
increasing, CA

max /COPT
max = sk ≥ Γ−1 (

∑
i s̃i) − 3. Thus, we are able to provide

instances for which CA
max /COPT

max is in Ω(log
∑

i s̃i/ log log
∑

i s̃i).

Gairing, Lücking, Mavronicolas and Monien [9] established the following re-
sult.

Theorem 7 (Gairing et al. [9]). A lexjump optimal assignment for restricted
related parallel machines has a performance guarantee of at most m.

Furthermore, they provide an example which establishes a lower bound of
m− 1 on the performance guarantee. Theorems 6 and 7 both establish an upper
bound on the performance guarantee of a lexjump optimal solution. It can be
shown that neither result implies the other result, i. e., we can construct examples
for which the bound of Theorem 6 is tight and the bound of Theorem 7 is not
and vice versa.
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5 Concluding Remarks

Since swap optimal assignments as well as push optimal assignments are both
jump optimal, we have that Theorems 1, 3 and 5 directly carry over to the swap
and the push neighborhood. Moreover, the Examples and 1, 2 and 3 are swap
and push optimal. Hence, the tightness results for the jump neighborhood apply
to the swap and the push neighborhood as well.

So far we have focused on the quality of the local optima with respect to
four neighborhoods. It is also interesting to know the number of iterations that
an iterative improvement procedure needs to find these local optima. Brucker,
Hurink, and Werner [2], Hurkens and Vredeveld [16] and Schuurman and Vrede-
veld [26] gave bounds to find a jump optimal solution for the identical parallel
machines and the related parallel machines environments when there are no eligi-
bility constraints. Gairing, Lücking, Mavronicolas, Monien and Spirakis [11] and
Feldmann, Gairing, Lücking, Monien and Rode [7] gave bounds on the number
of iterations needed to find a lexjump optimal solution for identical and related
parallel machines, respectively. However, the procedure of Feldmann et al. allows
for non-improving jumps too, so it is not an iterative improvement procedure.
We conjecture that an iterative improvement procedure exists which reaches a
jump or lexjump optimal assignment in polynomial time. However, the proofs of
the results stated above for reaching a jump or lexjump optimal assignment in
polynomial time on unrestricted parallel machine scheduling cannot be general-
ized to restricted parallel machine scheduling in a straightforward manner.
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