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entral in this thesis is the study of classic galactosemia - an inborn error of 

galactose metabolism. We used a cognitive neuroscience perspective to 

investigate neural correlates of language production impairments in patients 

with this disease, as these are one of the most prevailing cognitive 

complications [see Chapter 1 for an introduction on the topic and the approach]. 

New-borns with classic galactosemia show an acute, potentially life-threatening 

syndrome after the ingestion of milk - the main source of dietary galactose. A 

galactose-restricted diet quickly resolves this syndrome, but cannot prevent 

complications on the long term. Among these complications are ovarian 

dysfunction, aberrant bone metabolism, and neurological and cognitive 

impairments.  

Although several studies have characterized the cognitive impairments and 

studied the brain in classic galactosemia, until now there has not been a clear 

relation between brain abnormalities and resulting cognitive impairments. In this 

thesis, I have aimed to provide and characterize this relation by studying the 

brain online – during active task performance. In particular, I have used a 

language production paradigm in which overt speech is elicited in a relatively 

natural manner, and applied this both during electrophysiological recordings and 

during functional magnetic resonance imaging. Adolescent patients with classic 

galactosemia were compared with a healthy control group in order to find 

potential deviations in brain activity patterns, both in the temporal 

(electroencephalography, EEG) [see Chapter 3] and in the spatial domain 

(functional magnetic resonance imaging, fMRI, and related techniques) [see 

Chapter 5]. In addition, the white matter microstructure was assessed in patients 

with classic galactosemia, as compared to the healthy controls [see Chapter 6]. 

Moreover, I was privileged to explore another of my interests: the working of the 

healthy brain. This parallel work offered a working model of how the healthy 

adult brain performs the active language production task [see Chapter 2 and 4], 

in order to investigate in which respects patients with classic galactosemia 

potentially deviate. 

You will find the results of these efforts in the upcoming chapters, in which a 

chapter on findings in patients with galactosemia is preceded by a chapter on 

performance of healthy adults. The dissertation starts with a general 

introduction in which we introduced the inborn error classic galactosemia, the 

perspectives and methods used in cognitive neuroscience, and how they can be 

combined to investigate language production impairments in this disease 

[Chapter 1]. 

C 
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After reading this thesis, I hope the reader will understand the need for this 

specific multidisciplinary research, but also that this work will be taken as an 

example on how to bridge two very different fields to combine expertise and 

yield comprehensive and extensive knowledge. 

Aims of the thesis 

Chapter 1 In a general introduction the disease classic galactosemia and 

the resulting cognitive complications are introduced. In addition, 

the chapter describes language production and working 

memory models and methods used in cognitive neuroscience, 

and how these can be applied to investigate classic 

galactosemia. 

Chapter 2 Healthy adults are studied using electro-encephalography 

(EEG) and its derivative event-related potentials (ERPs) to 

investigate the time course of syntactic planning during 

sentence production. 

Chapter 3 Syntactic sentence production is studied in patients with classic 

galactosemia using EEG/ERP, and compared to healthy age- 

and gender-matched controls to examine potential deviations. 

Chapter 4 Functional neural networks involved in sentence planning are 

investigated in healthy adults, using functional magnetic 

resonance imaging (fMRI) and functional connectivity  

Chapter 5 Patients with classic galactosemia and matched controls are 

studied using fMRI while performing a sentence production task, 

to examine potential deviations in involved functional neural 

networks. 

Chapter 6 Diffusion weighted imaging is used to investigate potential 

abnormalities in white matter microstructure in patients with 

classic galactosemia, as compared to matched healthy controls. 

In addition, correlations with disease variables and with 

behavioural outcome are examined. 

Chapter 7 In a general discussion, the most important results and 

conclusions of the studies presented in this thesis are 

discussed. Furthermore, parallels are drawn across results and 

future perspectives are considered.  
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Summary 

Most humans are social beings and we express our thoughts and feelings 

through language. In contrast to the ease with which we speak, the underlying 

cognitive and neural processes of language production are fairly complex and 

still little understood. In the hereditary metabolic disease classic galactosemia, 

failures in language production processes are among the most reported 

difficulties. It is unclear, however, what the underlying neural cause of this 

cognitive problem is. Modern brain imaging techniques allow us to look into the 

brain of a thinking patient online - while she or he is performing a task, such as 

speaking. We can measure neural activity related to the output side of a process 

indirectly (e.g., articulation). But most importantly, we can look into the planning 

phase prior to an overt response, hence tapping into subcomponents of speech 

planning. These components include verbal memory, intention to speak, and the 

planning of meaning, syntax, and phonology. This paper briefly introduces 

cognitive theories on language production and methods used in cognitive 

neuroscience. It reviews the possibilities of applying them in experimental 

paradigms to investigate language production and verbal memory in 

galactosemia. 
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Introduction 

In normal healthy adults, speaking is fast, automatic, and nearly perfect. Only 1 

word out of a 1000 goes wrong under normal circumstances. We speak to 

others, but we also speak to ourselves, continuously constructing streams of 

verbal thoughts. Only in the rare cases in which our speech production fails, we 

become aware of the speaking process and our errors. In contrast to the ease 

with which we speak, the underlying cognitive and neural process of language 

production is fairly complex and not fully understood yet. Especially when 

patients are impaired in speech and language, it is a scientific and clinical 

challenge to determine where in the language planning process the problem 

occurs. Exploring the nature and finding the cause of the problem, however, is 

of relevance for tailored treatment. Motor related problems should be treated 

differently than deficits of verbal working memory capacity, or the access to 

meaning and sounds of words, or syntactic skills.  

Research from different fields such as Medicine, Psychology, Psycholinguistics, 

Neuropsychology, and Cognitive Neuroscience are working together to form a 

better understanding of the normal language system, but also of language 

disorders. Here we focus on the possibilities to join forces with regard to 

language impairments related to classic galactosemia. Classic galactosemia is 

a hereditary metabolic disease. There is a deficiency of the galactose-1-

phosphate uridyl transferase (GALT) enzyme, active in galactose metabolism 

(Holton et al., 2001). In the acute state, neonates present with lethargy, 

vomiting, diarrhea, failure to thrive, and jaundice. When treatment is started, a 

lifelong galactose-restricted diet, the acute symptoms are relieved. However, 

despite diet the ovaries and the brain remain affected (Gubbels et al., 2008; 

Rubio-Gozalbo et al., 2010; Nelson et al., 1992; Dubroff et al., 2008). 

Osteopenia is also found (Panis et al., 2004), however, whether this is related to 

the disease itself or to acquired calcium and vitamin deficiencies (e.g., vitamin D 

and K) is not yet clear. Among the cognitive problems that are experienced in 

classic galactosemia are lowered intelligence levels, memory problems and 

impaired language and speech (Antshel et al., 2004; Schweitzer et al., 1993; 

Waggoner et al., 1990). Most interestingly, and not at all understood, is that 

these cognitive impairments are developing in a child, despite the adequate 

dietary treatment. Abnormalities in speech and language have been estimated 

to be present in 38-88% of the patients (Hughes et al., 2009; Potter et al., 2008; 

Robertson et al., 2000; Schweitzer et al., 1993; Waggoner et al., 1990; 

Waisbren et al., 1983), although methods and samples differ in these studies. 

Problems are mainly said to be in expressive language. Receptive language is 

relatively unaffected, especially when intelligence problems are mild (Potter et 



Chapter 1 

 14 

al., 2008). There is still debate whether the problems are caused by cognitive 

failures or by a more sensory proprioceptive or motor failure, such as childhood 

apraxia of speech (CAS) (see also Potter et al., 2008, for a discussion on the 

CAS diagnosis). Related to CAS, it has been suggested that the observed 

impairment is an articulation deficit. This interpretation implies that the language 

disorder in these children is related to difficulties in the output phase of the 

language system. On the other hand, as the child acquires expressive 

language, the speech deficit could also be related to diverse stages in the 

neurocognitive preparation phase of speaking. According to language theories, 

these stages concern the selection of meaningful concepts to be expressed, 

their transfer into a meaningful grammatically well-structured message, and 

phonological encoding of phonemes and syllables. In addition, third factors may 

play a role, such as general cognitive skills (IQ) or working memory as they may 

hamper planning and articulation directly or indirectly. 

Until now, the cognitive problems in galactosemia have been described by 

expert speech therapists and neuropsychological testing (e.g., Antshel et al., 

2004; Potter et al., 2008). These offline instruments have the advantage of high 

feasibility. They are very informative, but also have the drawback of response 

bias, related to psychological factors and to response skills. A new and 

additional perspective in the study of galactosemia cognition comes from 

cognitive neuroscience. This field integrates knowledge on cognition with 

expertise in neuroscience and brain research. Using highly advanced 

techniques, brain activation related to cognitive function can be measured 

online, while the patient or healthy volunteer performs the task of interest. These 

methods allow us to track the neural activity related to the entire language 

planning process, from the intention to speak to articulation. By applying these 

techniques to classic galactosemia, one can objectively learn where and when 

in the neural system the difficulties occur along the information processing 

pathway. Findings could be useful for tailoring speech and other therapies for 

children with galactosemia. Now, speech therapy is primarily focused on 

improving articulation and less or not at all on language planning, such as 

practicing the construction of sentences. In a next step, the findings should 

contribute to the understanding of the underlying neural deficit. The detected 

brain regions of interest should be investigated at a micro level (e.g., in terms of 

metabolic effects per regions, or activation patterns at a cortical column level) to 

unravel the neural mechanisms that alter neural coding in galactosemia. 

Towards a working hypothesis In 2007, we studied the medical records of 22 

Dutch children with galactosemia (unpublished data). The cohort consisted of 

11 males and 11 females, age at the time of testing ranged from 2;1 to 18;0. All 
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children adhered to the diet, 13 had received speech therapy at one point in 

their lives (59%) and 15 have (had) special educational programs (68%). 

Reports from clinical experts were reviewed for relevant data on speech and 

language functioning. Next to articulatory problems (in 45% of the cases), these 

experts reported significant difficulties with sentence production in the patients 

(in 64% of the cases). Sentence production difficulties were described as 

making syntactic errors in sentences, producing sentences that were 

inappropriately short for their age, or producing incomplete sentences. Based 

on this observation, one working hypothesis is that patients with galactosemia 

suffer from a syntactical planning impairment, resulting in difficulties in sentence 

production. In addition to the language system itself, working memory is 

involved in language production as well and short sentences might be the result 

of such a verbal working memory problem (see Baddeley, 1992; 2000, for 

working memory models; see Baddeley, 2003, for the relation between 

language and working memory; Bock, 1995; Bock and Levelt, 1994, for 

syntactic production; Hagoort, 2005, for the general psycholinguistic model and 

its link to underlying brain function). Experimental paradigms can be applied to 

test whether the observed language impairment in classic galactosemia is 

related to malfunction within specific language expert systems or whether 

language deficits are a result of a limitation in verbal working memory.  

Methods used in cognitive neuroscience 

The cognitive neuroscience techniques can generally be classified based on 

temporal and spatial resolution. A high temporal resolution method is 

electroencephalography (EEG) and its derivative event related potential (ERP). 

In order to observe neural activity for one specific cognitive process, the EEG 

has to be time-locked to the onset of the stimulus or task by averaging the EEG 

signal in a time window around this moment of interest, resulting in the event 

related potential (ERP). Using ERP, one is able to look into a brain process of 

interest at a milliseconds time scale, which is very relevant for the study of 

cognition, in general a very fast information process. The planning of a word in a 

sentence, for example, takes about 600 ms from intention to articulation. Many 

ERP components (e.g., for perception, attention, memory, language planning, 

and execution) have been studied and characterized by their onset or peak 

latency, peak amplitude, and by their distribution across the scalp (Coles and 

Rugg, 1995; Luck, 2005). For an overview on language components, see Kutas 

and Schmitt (2003). High spatial resolution methods, on the other hand, such as 

functional Magnetic Resonance Imaging (fMRI), are able to locate networks 

involved in cognition (e.g., the language network), and to define functional 
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distinct regions of interest within the network. In addition, they can provide 

information about structural and functional connectivity within the network. 

Diffusion tensor imaging (DTI) is a technique related to MRI that allows for 

tracking fibres of white matter, through which neural signals travel. 

Complementary to MRI, Magnetic Resonance Spectroscopy (MRS) is able to 

determine the concentration of brain metabolites, making it possible to 

investigate the biochemical profile of pathophysiological processes within areas 

imaged (Gujar et al., 2005). Together these methods deliver a great precision in 

unravelling the cognitive information processing within a neural network. 

Towards paradigms to study language production and working 

memory in galactosemia 

Language production  

The boxes in Figure 1.1 depict the cognitive 'stages' of speaking. According to 

Levelt et al. (1989; 1999) and Bock (1995), speaking begins with a planning of a 

message, i.e., the activation of a concept of what one wants to convey to a 

listener. This message can come to mind driven by various stimuli or ideas. 

After visual encoding of a scene or picture and after creating the concept (both 

still preverbal), the meaning of the message has to be encoded (semantic 

encoding). The next process is syntactic encoding where grammatical roles 

(e.g., subject versus object) and syntactical functions (e.g., tense) are assigned. 

These elements are assembled into a syntactic frame. In addition, various sorts 

of information about the word form are activated (e.g., morphemes such as pre- 

or suffixes). Finally, the phonological encoding can take place where the sound 

structure is determined in the form of phonological frames. When the planning of 

these elements is finished, the output is sent to the (pre)motor cortex to activate 

speech muscles to move the tongue and jaw, which allow proper articulation. In 

addition, we have the ability to monitor the process. This process screens the 

output from the speech production process for errors, and makes us overtly 

correct a slip. It can also work without us being aware of it within each of the 

expert systems (see Postma, 2000, for a review). In a nutshell, Figure 1.1 

summarizes major findings from preceding research in language production. 

The numbers in the boxes of Figure 1.1 refer to the time course, or speed, of 

information processing across stages. They reflect time windows in milliseconds 

starting from visual picture onset and are estimated via EEG. These numbers 

have recently been supported by Sahin et al. (2009) using invasive intracranial 

electrophysiological (ICE) recording. 
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The language system has also been described with regard to the brain regions 

sensitive to language production (see Indefrey and Levelt, 2004, for a meta-

analysis). The coloured regions superimposed on a standard brain in Figure 1.1 

depict the language system. As can be seen in this figure, the areas involved in 

language production are widespread. Parts of the temporal lobe are for instance 

involved in error monitoring and semantics. The parietal area (inferior parietal 

gyrus) is implicated in phonology. However, Broca’s area (or BA 44/45) and the 

inferior frontal gyrus (IFG) have been found to be involved in semantics, syntax 

and phonology processes (see overview in Hagoort, 2005; Sahin et al., 2009). It 

has been suggested that the left IFG is the site where the assembly or 

unification takes place after the relevant information has been recruited from 

other brain areas (Hagoort, 2005), while the information is recruited from mid 

temporal areas (Snijders et al., 2009). The information is assumed to travel from 

the temporo-parietal areas through the arcuate fasciculus (i.e., a neural pathway 

of white matter fibres) to the frontal areas (Catani and Mesulam, 2008; Rilling et 

al., 2008).  

 

Figure 1.1. Speech production model. Displayed are cognitive stages (left) and brain areas (right) 

involved in language production. The numbers in the boxes represent estimates of temporal 

encoding for each type of information. After picture presentation (0 ms), the visual system encodes 

the stimulus and activates a preverbal concept. The appropriate lexical entries are selected (150-

225 ms, middle temporal gyrus (d)). The next stage involves syntactic encoding (left inferior frontal 

gyrus (IFG), taking place around 250-350 ms post stimulus (a)). Finally, phonological encoding 

takes place (300-500 ms, posterior superior temporal gyrus, angular gyrus (c)). The message is then 

presumably assembled in the left IFG. After all planning has taken place, the finished speech plan is 

sent to (pre-) motor areas (b) to be prepared for articulation. An online self-monitoring feedback loop 

(275–400 ms, superior temporal gyrus (e)) is capable of keeping track of the speech production 

process and intervenes if required. It has to be noted that boxes or stages are for display purpose 

only. Speech production does not involve encapsulated modules, but involves several brain regions 
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that interact in a cascading manner. (Model adapted from Indefrey and Levelt, 2004, plus recent 

temporal information, for example Sahin et al., 2009) 

 

In order to study language production in classic galactosemia from this 

perspective, we propose example paradigms with focus on core processes, 

such as conceptualization, syntactic encoding and verbal working memory. A 

summary of the paradigms to be used is given in Table 1.1. This is a novel 

multidisciplinary approach that aims to provide new insights in the cognitive 

pathophysiological processes in galactosemia.  

Observed differences (as compared to healthy subjects) in an experiment that 

taps conceptualization could be interpreted as a conceptualization deficit in the 

patient group. As conceptualization is input for further language encoding 

stages, the deficit in turn can cause subsequent problems in following stages. A 

lack of effect during a paradigm tapping conceptualization means that the 

observed language deficit in the patients may be attributed to later processing 

stages, after conceptualization took place. A difference in neural activity (as 

compared to healthy subjects) during a semantic encoding paradigm would 

point to impaired semantic processing in the patients. However, one can 

conclude a semantic deficit only in case the conceptualization account is ruled 

out for reasons expressed above. No differences between the groups with 

regard to semantic planning would indicate proper semantic encoding. Using 

this approach the different stages of language can be tested. One should keep 

in mind, finally, that any suggested impairment in a specific language process in 

galactosemia, necessitates excluding a verbal working memory deficit. There is 

a close interaction between language production systems and verbal working 

memory. In the context of galactosemia, it has to be investigated whether 

patients with galactosemia have difficulties with either one of these functions or 

perhaps with both. However, it is very difficult to disentangle what is attributable 

to an inability to maintain verbal information, for instance during syntactical 

encoding, or to an inability of syntactical encoding per se. 

Furthermore, it should be noted that the translation of experimental paradigms 

from healthy study subjects to patients with galactosemia is not straightforward. 

As was described, many patients have a lower intelligence and are, a priori, 

expected to have difficulties with mastering complex paradigms. Therefore, the 

paradigms have to be simplified such that even the lower functioning patients 

can perform them, or these patients should be excluded from the study group. In 

practice, there should be a balance between designing relatively simple 

paradigms and recruiting patients with intellectual abilities that allow executing  
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the paradigms. When patients with a too low IQ (lower than 80) are excluded, 

the paradigms described in Table 1.1 all are expected to be feasible in the 

patient group. Of special interest in language production for galactosemia is the 

study of syntactic encoding. Our group has performed an ERP study using an 

adapted version of the Indefrey et al. experiment (2001; 2003) in a group of 20 

healthy subjects and in 9 adult patients with galactosemia. The aim was to 

identify the ERP components related to syntactical encoding. Preliminary results 

indicate components of interest in our ERP data comparable to the findings of 

Sahin et al.’s ICE study, where distinct neural activity for semantic, grammatical 

and phonological encoding was found at around 200, 320 and 450 ms after 

target word onset, respectively, at the place of the electrode inserts (BA44/45 or 

Broca’s area). A descriptive comparison of the data can be found in Figure 1.2. 

Further, our findings support the claim that the IFG is not only involved in syntax 

(as was found by the PET study of Indefrey et al., 2001; 2003), but also in 

conceptualization and/or semantic processing. For galactosemia research, this 

means that the IFG is an area of special interest for further investigations. 

Preliminary results in the nine galactosemia adults suggest that language 

production processes in galactosemia might be delayed (i.e., delayed onset 

latencies of the waveforms) in addition to amplitude differences.  

 

Figure 1.2. Local field potentials (LFPs) versus ERPs during syntactical encoding. A descriptive 

comparison is made between the intracranial local field potentials of Sahin et al. (2009) and the 

extracranial EEG/ERP study of our group. Both studies investigated the brain’s response to the 
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encoding of syntax. Sahin et al. instructed their participants to make grammatical inflections while 

our participants were asked to utter a complete sentence in response to an animated scene. Lower 

panel: Overlay of average LFP and ERP within the same time scale. Interestingly, despite the 

differences in the method and in the syntactic task, the morphology of the waveforms is strikingly 

similar in the target peak latencies (200, 320, 450 ms). Granting the assumption that peaks in LFP 

and ERP signal reflect maximal neural activity, this descriptive comparison suggests common 

aspects in the two signal types for language encoding. Upper panel: The brain area depicted in blue 

represents Broca’s area, i.e., the location of the intracranial recording. The red circle reflects the 

presumed source of the EEG data (in correspondence with the PET study results of Indefrey et al., 

2001; 2003, using the same paradigm). The EEG source still has to be confirmed.  

 

Working memory 

The most widely used model of working memory comes from Baddeley (1992; 

2000). In this model, working memory consists of multiple components (e.g., a 

central executive supervisory system; and an episodic buffer, a system 

proposed to link information forming one unified whole, such as in a movie 

scene). Working memory components have been described in terms of brain 

areas and networks (e.g., Cabeza and Nyberg, 2000). So far, not much is 

known on syntactic verbal memory. A suggestion is that the inferior frontal gyrus 

(IFG or BA44) plays a relevant role in assembling strings of information – may 

that be phonological, syntactic, or semantic – into a meaningful message 

(Hagoort, 2005). If one compares the language production network (Figure 1.1) 

with the working memory network (Figure 1.3), one can see that there is an 

overlap, especially in the IFG. Similar to the proposed function of the IFG in 

language production (selection and assembly or unification), this area is 

proposed to be involved in selection, retrieving and maintaining verbal 

information (Martin and Chao, 2001), with syntactic retrieval from mid temporal 

lobes (Snijders et al., 2009). This view suggests that there is a close link 

between the language and the verbal working memory system. 

Linking the multiple disciplines 

Although it is very important to specify where and when failures occur during 

language production and working memory performance in patients with classic 

galactosemia, it might be even more important to understand why they occur. 

To understand the changes or deficits in neural information processing, it is 

important to study the specific data transfer and metabolic processes that affect 

information processing in pre-specified brain regions of interest to see how 

these specific cognitive problems result from the deficiency in galactosemia.  
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Figure 1.3. Working memory model. The anterior temporal pole (a) is believed to play an important 

role in semantic memory retrieval and representation of specific semantic items. Regions in the 

fusiform gyrus (b) have proven to show differential responses to different categories of objects, 

converging in specificity from posterior to anterior regions. The inferior frontal gyrus (IFG) (c, d, e) is 

involved in several (semantic) working memory related tasks: rehearsal (c), selection (d) and 

production (e). The lateral temporal cortex (f) is related to the perception of motion, of both biological 

(dorsal) and artificial (ventral) objects, and to lexical memory, whereas the posterior superior 

temporal gyrus (h) is the presumed region where phonologic loops are maintained. Finally, 

dorsolateral prefrontal cortex (dlPFC) (g) has an overall executive role in working memory tasks 

(after Cabeza et al., 2002; and Martin and Chao, 2001). Obvious is the overlap of this memory 

network with the language network depicted in Figure 1.1. 

 

The pathogenic mechanisms in classic galactosemia and how they result in the 

cognitive impairments despite diet, are not entirely clear. Possibly, the damage 

has already occurred in utero, or in the first few days of life before the diet is 

introduced. Normally, galactose is converted into galactose-1-phosphate (gal-1-

P), further metabolized into glucose-1-phosphate by GALT (i.e., the Leloir 

pathway for galactose metabolism). Because of the GALT deficiency in 

galactosemia, there is an accumulation of gal-1-P and galactitol, which is 

considered to be one of the most important factors in the pathophysiology. Apart 

from the toxicity of these metabolites for body tissue and organs, the 

accumulation is also believed to result in inositol abnormalities (see Berry, 

2011) and aberrant synthesis of glycoproteins and glycolipids, which are 

important building stones, for instance, for myelin. Myelin is a relevant 

component for functional data transfer between neurons and brain regions. 

Indeed, early anatomical MRI scans show abnormal white matter patterns in 
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patients with galactosemia, suggested to be due to abnormal myelin (Nelson et 

al., 1992), implying hampered data transfer. Both language production and 

working memory are carried out in specific networks (see Figures 1.1 and 1.3, 

respectively) that partly overlap with each other (both anatomically and possibly 

functionally). If there is a direct link between myelin degradation and brain 

function, one could expect that myelin is relatively more abnormal within these 

target areas. Studies with high resolution acquisition and advanced analysing 

techniques will have to point out whether the specific functional areas are 

affected. One such approach could be Diffusion Tensor Imaging (DTI), a 

measure that is strongly linked to axonal and myelin integrity, and has proven a 

very sensible and early finding in several asymptomatic brain diseases 

(Nierenberg et al., 2005; Reading et al., 2005). In its more sophisticated 

application, DTI can even provide detailed information regarding anatomical 

connectivity, and will probably be able to indicate whether it diverges between 

patients with galactosemia and healthy controls within the language and 

memory network. The studies that have already been done in galactosemia 

(Kaufman et al., 1995; Nelson et al., 1992) did not show clear regional 

differences, nor correlations with cognitive processes, based on the available 

data (low resolution 0.5-1.5 Tesla scanner). The availability of higher resolution 

scanner in the future allows investigating a functional link between myelin and 

cognition. However, one interesting finding of Nelson et al. is that about one-

third of the patients had mild lateral ventricle enlargement and clustering of 

white matter lesions around the lateral ventricles. Fascinating about this report 

is that the arcuate fasciculus, the white matter bundle connecting temporo-

parietal language areas with the frontal language areas, is located alongside of 

the lateral ventricle. Abnormal myelin might affect the information flow within the 

networks and thus might affect language function. A target method of choice to 

investigate differences in such information flow within neural circuits, such as 

the arcuate fasciculus, in patients with galactosemia versus healthy controls 

would be functional connectivity analysis.  

Recently, it has been suggested that epigenetic factors may be involved in the 

pathology of galactosemia. Coman et al. (2010) studied gene expression 

profiles of four patients with galactosemia. They identified several up- or down-

regulations in gene expressions in these patients. Genes involved in cell 

signalling pathways, such as the mitogen-activated protein kinase (MAPK) 

signalling and the calcium signalling pathway, both implicated in neural 

signalling processes, showed different expression patterns. The most 

dysregulated gene was Septin 4, of which the expression was decreased 85-

fold. Septins are proteins that are involved in a large number of cellular 

functions, such as membrane dynamics, cytokinesis, vesicle trafficking, 
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exocytosis, and apoptosis (Cao et al., 2009; Haller et al., 2005). Septin 4 (or 

SEPT4) proteins have been implicated in neurodegenerative diseases, such as 

Alzheimer’s disease or Parkinson’s disease. It is expressed in all human tissue, 

but shows an high expression in the brain (Haller et al., 2005). Further studies 

will be necessary to elucidate whether these genes are relevant for the origin of 

the chronic complications. One of the possibilities might be to use ultra-high 

field imaging. With this method, the detection of proteins by producing 

specifically tailored contrast mechanisms, e.g., by the use of immunoconjugated 

magnetic nanoparticles (Hilger et al., 2007), might become possible in the 

future. This in turn might permit to quantify the density of specific substances, 

among which Septin 4, which can be linked to specific brain regions of 

functional interest, such as memory or language. 

It would be intriguing to examine whether genes encoding for cognitive functions 

are differentially expressed in galactosemia. One such gene is the FOXP2 

transcription factor gene, which has been implicated in speech and language 

disabilities (Enard et al., 2002; Fisher and Scharff, 2009). Such a research 

would provide another missing link: the link between the genes and behavioural 

level. Ultimately and ideally, in the future a multidisciplinary approach in 

combining genes, gene expressions, protein imaging, and cognition in 

galactosemia should result in a working model that explains the cognitive 

complications observed in galactosemia.  

Conclusions 

A novel and innovative approach is suggested to bridge the gap in disciplines 

between the behavioural level on the one hand and the metabolic and cellular 

level on the other hand, in the context of the hereditary metabolic disease 

classic galactosemia. More specifically, we propose to study language 

production difficulties in patients with galactosemia from the perspective of 

cognitive neuroscience and to correlate language behaviour with brain 

functions, connectivity, and metabolism. Experimental paradigms from language 

production research and highly advanced techniques allow studying the brain 

functions of a patient online. This approach has the major advantage that not 

only the output stage of language production can be studied, but the preceding 

planning stages as well. This is necessary as language production is a fairly 

complex process consisting of several subcomponents, referred to as 

conceptualization, semantic, syntactic, and phonological encoding, followed by 

articulation. It is highly relevant to learn exactly where and when in the cognitive 

and neural system of language the difficulties arise in classic galactosemia to be 

able to offer for example speech therapy in a tailored manner. In addition to 
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language, verbal working memory is highly involved in language production 

processes and vice versa. Next to describing the cognitive deficits in terms of 

timing (ERP) and locations (fMRI), connectivity analysis and the analysis of 

metabolites related to functions are relevant to understand the underlying neural 

processing deficit. The aim of applying these methods and accompanying 

paradigms in galactosemia research - an approach that has never been taken 

before - is to gain more insight in the cognitive pathophysiological processes in 

galactosemia. 
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Summary 

During sentence production, linguistic information (semantics, syntax, 

phonology) of words is retrieved and assembled into a meaningful utterance. 

There is still debate on how we assemble single words into more complex 

syntactic structures such as noun phrases or sentences. In the present study, 

event-related potentials (ERPs) were used to investigate the time course of 

syntactic planning. Thirty-three volunteers described visually animated scenes 

using naming formats that varied in syntactic complexity: from simple words 

(‘W’, e.g., "triangle", "red", "square", "green", "to fly towards"), to noun phrases 

(‘NP’, e.g., "the red triangle", "the green square", "to fly towards"), to a sentence 

(‘S’, e.g., "The red triangle flies towards the green square."). Behaviourally, we 

observed an increase in errors and corrections with increasing syntactic 

complexity, indicating a successful experimental manipulation. In the ERPs 

following scene onset, syntactic complexity variations were found in a P300-like 

component (‘S’/’NP’ > ‘W’) and a fronto-central negativity (linear increase with 

syntactic complexity). In addition, the scene could display two actions - 

unpredictable for the participant, as the disambiguation occurred only later in 

the animation. Time-locked to the moment of visual disambiguation of the action 

and thus the verb, we observed another P300 component (‘S’ > ‘NP’/’W’). The 

data show for the first time evidence of sensitivity to syntactic planning within 

the P300 time window, time-locked to visual events critical of syntactic planning. 

We discuss the findings in the light of current syntactic planning views. 
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Introduction 

Language is an important basis for communications with others. As a speaker, 

we are constantly constructing streams of thoughts and planning messages to 

transfer these thoughts into the outside world. As a listener, we receive 

acoustic, visual and contextual information, and integrate this into a meaningful 

message. Whereas speech production and comprehension (or encoding and 

decoding) have been separate fields in psycholinguistics, recent discussions 

argue that they are interwoven, non-isolated processes that largely share 

underlying mechanisms (see e.g., Kempen, 2013; Pickering and Garrod, 2013). 

Although a lot is already known about online syntactic processing during 

comprehension based on electroencephalography (EEG) and functional 

magnetic resonance imaging (fMRI), comparably less is known for the 

production analogue. A balanced knowledge is necessary to investigate 

potential commonalities of syntactic processing in both modalities. The current 

study focuses on syntactic planning during production and addresses the 

question when in time syntactic planning for speaking takes place. 

There are many accounts on how we apply grammatical rules to be able to 

generate meaningful utterances. In general, most researchers agree that 

speaking involves conceptual, syntactic, and phonological planning that leads to 

articulation. Views differ on whether we should see these processes as serial 

stages, unfolding over time, or more as parallel processes. In classic serial 

accounts, speakers carry out syntactic sentence planning in several steps. First, 

lexical concepts and corresponding syntactic information (e.g., whether it is a 

noun or adjective; lexical selection) are identified and activated. Secondly, 

syntactic relations and functions are assigned to each word (e.g., subject versus 

object; function assignment) and proper inflections are added (e.g., -s for plural, 

-ed for past tense). Finally, words are assembled into so called syntactic 

structural frames (constituent assembly) (Bock and Levelt, 1994; Bock, 1995). 

Friederici (2002; 2011) also assumes serial processing, but suggests that 

syntactic processes first build a local structure, after which grammatical and 

semantic relations are assigned in a utterance. In an interactive view, Kempen 

(2013) (but see also e.g., Hagoort, 2005; Vosse and Kempen, 2008) describes a 

localist neural network model in which grammatical encoding is a task assigned 

to the Unification space (or U-space). Via a recursive transition network (RTN), 

activation spreads across so-called treelets or syntagma's that can be bound to 

lemmas. A list of annotated lemmas is eventually converted to a list of word 

forms. The author notes, however, that although processes (conceptual, 

syntactic) are initiated in parallel, the behaviour of the network may seem serial 

because some processes may require more time. The stage-like behaviour is 
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therefore only an emergent property of the model. Other views do not assume 

that a formal grammar (rules) interacts with a mental lexicon (words). They 

rather consider language as an emergent property, emphasizing the role of the 

user's experience (Elman, 1991; Elman, 2009; Gahl and Yu, 2006; Janssen and 

Barber, 2012; Langacker, 1987; Tomasello, 2005). The role of experience, 

however, is also evident in other, more classic views (e.g., the recursiveness of 

network models, Kempen, 2013). 

Most theories envision speech production as an incremental process, although 

the units of increment differ between views (Allum and Wheeldon, 2007; Allum 

and Wheeldon, 2009; Bock, 1995; Levelt, 1989), but might also vary across 

speakers (e.g., cognitive capacity, experience), and could be dependent on the 

situational context (e.g., time pressure) (Bock, 1995; Ferreira, 1991; Meyer, 

1996; Wagner et al., 2010). Further, sentence planning can be either lexically or 

structurally incremental (one can guide the other, Bock et al., 2004), or a flexible 

interaction between both. Evidence from a recent study points towards structural 

incrementality (Konopka, 2012), implying a role for structural assembly in early 

sentence production (i.e., preceding lexical retrieval; and in contrast to 

psycholinguistic views in which lexical retrieval occurs prior to syntactic 

planning; Bock and Levelt, 1994; Levelt, 1989). 

Whereas there is still the ongoing debate about the exact nature of syntactic 

planning, only recently studies have ventured to investigate the neural aspects 

of information processing during the production of complete sentences. Several 

brain areas have been reported to be involved in syntactic encoding, including 

the left inferior frontal gyrus (IFG; BA 44/45/47), left posterior middle temporal 

gyrus (MTG, BA 21), and bilateral supplementary motor areas (SMA; BA 6) 

(Haller et al., 2005; Hickok, 2009; Indefrey et al., 2001; Indefrey et al., 2004; 

Menenti et al., 2011; Price, 2010; Segaert et al., 2011). Not much is known, 

however, about the time course of syntactic encoding (see also Ganushchak et 

al., 2011). A method of choice to investigate temporal characteristics of 

information access is EEG, and its derivative, the event-related potential (ERP). 

For single word production, the experimentally elicited lateralized readiness 

potential (LRP) (van Turennout et al., 1997; 1998; 1999), and the N200 go-no 

go component (Schmitt et al., 2000; 2001a; 2001b) have been extensively 

studied in single word and noun phrase production. Based on the LRP and the 

N200 go-no go results, it has been estimated that semantic access precedes 

syntactic access by approximately 90 ms, which is followed by phonological 

encoding after around 40 ms, suggesting incremental planning (but also see the 

discussion in Rahman et al. 2003). So far, the most direct measure of the time 

course of syntactic encoding was carried out via invasive intracranial 
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electrophysiology (ICE). Sahin et al. (2009) used ICE to record local field 

potentials (LFPs) near Broca’s area in patients who had to either read or inflect 

a word (past/presence or singular/plural). The recordings revealed a component 

around 320 ms after target word presentation sensitive to (morpho)syntactic 

processing. In an ERP study, Marek et al. (2007) asked participants to overtly 

describe a walk through a 2D grid consisting of geometric colour figures either in 

a simple (“go up, go right”), medium (“go up to the circle”), or complex (“go up to 

the green circle”) manner. They found a P300-like component at 350-500 ms 

post stimulus onset, distributed over centro-parietal electrodes, that was more 

positive for medium and complex utterance conditions compared to the simple 

condition. The authors concluded that the P300 is sensitive to conceptual and/or 

syntactic complexity variations. 

In summary, electrophysiological studies suggest that syntactic encoding is 

carried out around 300-500 ms after stimulus onset. However, this conclusion is 

based on indirect measures (LRP/N200 go-no go paradigms), rather than direct 

naming; based on rather artificial naming tasks (explicit inflection of a certain 

word within sentence context - which we normally do not do in an highly 

automatic process); or based on ambiguous interpretations of the data (i.e., no 

clear separation of conceptualisation and syntactic complexity in the 

experimental design). In the present study, we used a more direct and natural 

approach, in order to gain insights into the electrophysiological correlates of 

syntactic planning. In analogy to a positron emission tomography (PET) study 

by Indefrey et al. (2001; 2004), we employed a paradigm where visually 

animated scenes elicited overt multi-word utterances in a relatively natural way. 

Participants were instructed to describe the scenes as fast and accurate as 

possible using a sentence -, a noun phrase -, or a single word format (in Dutch). 

For example, in one of the visual stimulations a red triangle bumps into a green 

square. In the complex, sentence-level (‘S’) syntax condition participants would 

describe the scene as “De rode driehoek botst tegen het groene vierkant op.” 

[“The red triangle bumps into the green square.”], in the medium, noun phrase 

level syntax (‘NP’) condition they would illustrate the trial as “de rode driehoek”, 

“het groene vierkant”, “tegen op botsen” [“the red triangle”, “the green square”, 

“to bump into”]. In the minimal syntax, words (‘W’) condition the correct 

response would be “driehoek”, “rood”, “vierkant”, “groen”, “tegen op botsen” 

[“triangle”, “red”, “square”, “green”, “to bump into”]. The participants were 

instructed on the type of naming format at the beginning of each block. Visual 

stimulation was kept constant across conditions. 

The rationale of Indefrey et al. behind the three different utterance types was 

that the required syntactic processing parametrically varied in complexity (2001; 
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2004). Overall the task requires a range of cognitive information processing. 

The visual scene - identical across conditions - triggers visual and conceptual 

encoding of motion, colour, and form, as well as of the action (either 'to fly 

towards' or 'to bump into'). In addition, concepts (i.e., the different geometrical 

figures plus the verb) must be ordered for serial articulation. Linguistic encoding, 

depending on the utterance instruction, should trigger the build-up of the 

appropriate syntactic structure and the filling in of the structure with suitable 

elements. Following the logic of Indefrey et al. we assumed that the ‘W’ 

condition required lexical selection of words but virtually no syntactic encoding. 

In the ‘NP’ condition, syntactic processing was necessary on a noun phrase 

level, because the retrieval of certain syntactic information and inflections was 

required (i.e., the article of a noun, inflection of the adjectives, assembly into a 

phrase). In the ‘S’ condition, syntactic planning was necessary on a sentence 

level, which includes the processing required in the words 'W' and noun phrase 

'NP' conditions, but also the combination of two noun phrases by adding the 

verb in its proper form.  

The application of high resolution EEG allowed us to time-lock the ERP to 

certain events within the utterance planning process. We specify two critical 

events. One event is the scene onset, as it starts the planning of the first 

elements of the utterance. A second critical event is the moment at which the 

target action is disambiguated (both scene variations started identical and 

diverged only from that point on). At that moment, one of the two actions were 

displayed - unpredictable for the participant. The disambiguating visual moment 

allowed the speaker access to the target action concept and its syntactic 

realisation. It also allowed to bind the first noun phrase to the second noun 

phrase, using the target verb. 

ERPs were recorded from the scene onset on. We took a rather explorative 

approach in this study. Based on a more modular, serial account, we expected 

that components sensitive to syntactic processing would show a parametric 

amplitude modulation related to the syntactic complexity variation within a 

certain time window (based on the additive factor logic, Sternberg, 1969). The 

detected time windows of the parametric modulation should give insights into 

the time course of syntactic planning stages. Based on the limited 

electrophysiological literature available (Marek et al., 2007; Sahin et al., 2009), 

we expected to observe a variation with syntactic complexity around 300-500 

ms time window after stimulus onset in correspondence of a P300 component, 

associated with phrase-level syntactic planning. For post-verb disambiguation 

sentence planning, we aimed to present first empirical evidence with this 

experiment. In addition, from a more integrative theoretical view, we did not rule 
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out immediate and parallel integration that would affect neural processing in a 

non-additive manner. This parallel processing might result in early effects in the 

ERP (i.e., in time windows sensitive to visual and conceptual encoding, Hillyard 

et al., 1998; Rabovsky et al., 2012; Rahman and Sommer, 2008). We will 

discuss the results in the light of the different language accounts. 

Materials and Methods 

Ethics statement 

The ethical committee of the Faculty of Psychology and Neuroscience 

(Maastricht University) gave clearance for the study. All participants gave 

written informed consent. 

Participants 

Thirty-four healthy volunteers participated in this study. Data of one participant 

were excluded from the analysis because of the health history and current 

medication use. Twenty-one of the 33 remaining participants were female. One 

was left-handed. The mean age was 21.8 years (SD 2.6 years). All had normal 

or corrected to normal vision and were native Dutch speakers. The participants 

received financial compensation or received academic credit points.  

Stimuli 

Visually animated scenes were presented to the participants. Each scene 

consisted of three geometrical shapes (square, triangle, or circle) having one of 

three different colours (red, blue, and green). The individual figures covered 

approximately 1.6° (height) of visual angle and were configured around the 

centre (one above and two below the centre on either side). The total 

configuration covered approximately 5.8° (width) x 5.4° (height) of visual angle. 

In each trial, one of the three geometrical figures performed an action upon 

another figure: it could either be ‘to fly towards’ or ‘to bump into’. The two scene 

types started visually identical until they diverged at a certain point (see the 

Procedure section for details on how the scenes differed). In each scene two of 

the objects could be distinguished by their colour only. This made it more 

natural to name the colour together with the shape of the objects. The content of 

the scene was randomly varied across trials (i.e., the shapes, colours, 

positioning of the figures, and the action). Such variation of the events in the 

scene was included to keep participants alert and to have online utterance 

planning on a trial by trial basis. 
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The paradigm was designed using Presentation 14.0 software (Neurobehavioral 

Systems, Inc.). 

Procedure 

Participants were instructed to overtly describe the presented animated scenes 

using one of three possible responses: word-‘W’, noun phrase-‘NP’, or 

sentence-‘S’ format (an example for each condition would be as follows: word-

‘W’ - “driehoek”, “rood”, “vierkant”, “groen”, “naar toe vliegen” [“triangle”, “red”, 

“square”, “green”, “to fly towards”]; noun phrase-‘NP’ - “de rode driehoek”, “het 

groene vierkant”, “naar toe vliegen” [“the red triangle”, “the green square”, “to fly 

towards”], and sentence-‘S’ - “De rode driehoek vliegt naar het groene vierkant 

toe.” [“The red triangle flies towards the green square.”]) (see the Introduction 

for an example of the ‘to bump into’ scene types). After having received 

instructions, a practice version consisting of 3 blocks (i.e., one per condition) 

containing 18 trials each was started. The practice session was followed by the 

main experiment, which consisted of three runs. A single run consisted of three 

blocks (one per naming condition). The order of naming conditions was 

randomized within each run (i.e., six possible run types) and across participants.  

Each block started with a brief instruction reflecting the type of naming format to 

be performed (i.e., either ‘SENTENCE’, ‘NOUN PHRASE’, or ‘WORD’), followed 

by 40 trials, consisting of a different scene each (see Stimuli). A total of 120 

trials were recorded for each condition. Each trial started with a fixation point 

(white asterisk on a black background) for 2000 ms, followed by the display of 

the geometric figures that moved. The duration of animation in the scene 

differed (955 or 1885 ms), depending on the action format (‘to fly towards’ or ‘to 

bump into’, respectively). The difference in animation durations was due to a 

different amount of action frames (10 versus 18 frames, where the actual ‘bump’ 

event occurred at frame 14, at 1520 ms after scene onset). The two scenes 

types associated with the two different actions were visually identical until the 

moment that the ‘to fly towards’ trials froze while ‘to bump into’ trials continued. 

The stimulation always ended with a freeze configuration lasting 3000 ms (see 

Figure 2.1). Participants were instructed to start the description of the scene as 

fast and as accurate as possible, and to minimize eye movements. The next trial 

started via a self-paced button push (by USB keyboard key). This self-pacing 

format was chosen to take into account inter-individual differences in naming 

onset and duration. An entire trial took approximately 8000 ms (fixation, scene, 

freeze time and button to switch to the next trial to continue). 
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During the recordings, participants were seated in an electrically-shielded, 

sound-attenuated room in front of a computer monitor (distance approximately 

80 cm). 

 

 

Figure 2.1. Overview of trials. Schematic overview of the experimental trials, separately for the two 

action formats (‘to fly towards’ and ‘to bump into’). For illustrative purposes, only screenshots of the 

trials are displayed (the objects were actually moving). The displayed ERP epochs illustrate the 

different time windows of interest for the analysis (scene epoch, immediately starting after scene 

onset; and bump epoch, after the 'bump' event and hence after disambiguation of the target verb). 

Note that action formats are randomized across trials and are not instructed nor predictable to the 

participants. 

 

Apparatus and EEG recording 

The EEG was measured using an elastic cap in which 32 tin electrodes were 

mounted (Electro-Cap International (ECI), Inc.), positioned according to the 

international 10-20 system (Jasper, 1958). The signal was recorded from twenty 

electrodes - F3, Fz, F4, FC3, FCz, FC4, C3, Cz, C4, CP3, CPz, CP4, P3, Pz, 

P4, O1, Oz, O2, T3 and T4 - referenced online to the left mastoid (A1). Offline 

the signal was re-referenced to the average signal of both A1 and A2. Vertical 

eye movements and blinks were monitored by two electrodes placed at the left 

upper and the lower orbital ridge. Horizontal eye movements were recorded with 

electrodes placed on the left and right cantus. The impedance of all electrodes 

was kept below 5 kΩ. Data acquisition was done using Brain Vision Recorder 

software (Brain Vision, MedCaT B.V.) and the signal was amplified using a 0.05-

50 Hz band pass and sampled at a 2 ms-interval (500 Hz). The scene onset as 
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well as the voice onset triggered a code pulse. The code was written directly 

into the EEG recordings and was used for later event-related analyses. The 

voice onset was recorded via the microphone and transferred as onset time 

pulse into the log file. The pulse was triggered when the sound pressure level 

reached a certain threshold (individually adjusted for each participant). 

Data analyses 

For the behavioural data, the number of errors (i.e., any deviation from the 

expected utterance: incorrect object, colour, action, naming format, or ordering) 

and corrections (i.e., any overt corrective effort during the response utterance) 

were computed using the recorded audio data and the manual scores collected 

online by the experimenter. Dysfluent speech was not necessarily coded as a 

error or correction, only if there was overt corrective effort or a mistake. 

Moreover, we computed the voice onset time (VOT) as the time between the 

onset of the scene and the onset of the overt naming. We also calculated the 

total speech time (TST) that was defined as the time difference between naming 

onset and the button response. VOTs < 0.5 seconds and > 4.5 seconds and 

TSTs < 2 seconds and > 10 seconds were considered outliers and were 

discarded from the analysis. A repeated-measures General Linear Model (GLM) 

with syntactic complexity as factor (3 levels: W, NP, S) was used to analyse the 

behavioural data. 

With respect to the EEG data, trials in which the participant’s response was 

incorrect, corrected or absent were excluded from further analysis. The EEG 

data related to the correct naming trials were epoched from -200 to 2500 ms 

post stimulus onset (to include the entire interval from the onset of visual scene 

to the end of the display/onset of articulation), band pass filtered from .3-30 Hz 

(zero phase, 24dB), and baseline corrected (from -200 to 0 ms).  

In order to reduce artefacts in the signal, Independent Component Analysis 

(ICA) was used. ICA blindly decomposes the multi-channel EEG data into 

temporally maximally independent components (which computationally 

corresponds to components sharing the least mutual information; Makeig and 

Onton, 2009; Onton et al., 2006). An Independent component (IC) is 

characterized by a time course and a scalp topography reflecting the 

contribution (weight) of that component to the EEG signal at each of the scalp 

channels (not to be confused with traditional ERP scalp topographies). The ICs 

typically consist of brain or non-brain (artefact) processes, or are comprised of 

noisy data (e.g., large, atypical movements do not share mutual information with 

the other sources and hence would fall into separate unreliable ICs). Non-brain 

artefact-related (e.g., stereotyped eye blinks, eye movements, and muscle 
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movements) and noisy ICs can be identified by visually inspecting the 

corresponding topographies and time courses. By removing such ICs, one can 

filter out the contributions of those processes to the signal. Therefore, this 

procedure allows de-noising the data, without losing trials and hence statistical 

power. 

In our procedure, we first removed (in the original EEG space) the large and 

atypical artefacts from the data based on visual inspection to avoid that ICA 

would extract unreliable ICs devoted to noisy data. On average, 82.1% of the 

trials were kept for further analysis: 97 trials in ‘S’, 98 in ‘NP’ and 102 in ‘W’ 

condition. Then, the data were decomposed using the infomax algorithm in 

EEGlab (Delorme and Makeig, 2004; http://www.sccn.ucsd.edu/eeglab). Scalp 

map topographies and time courses associated with all ICs were used to identify 

those components related to stereotyped artefacts which were removed from 

the data (e.g., eye movements and blinks typically show a far-frontal projection 

on the map, and are easily spotted by inspecting the time course; muscle 

artefact components have a typical spatial localization to the temporal sites and 

show high power at the high frequencies). This was done individually for all 

participants (on average 7.8 components per dataset, corresponding to 31% of 

components). 

The remaining, task-relevant components were back-projected onto the original 

ERP data space and were averaged across trials, separately for each condition. 

In the back-projected ERPs, epochs were divided in two time ranges: one time 

interval was time-locked to the onset of the scene (preceding the ‘bump’ event; -

200 to 1000 ms after onset of the scene), and one was time-locked to the ‘bump’ 

event (-200 to 800 ms after the ‘bump’ event, or 1320 to 2320 ms post scene 

onset; see also Figure 2.1). Only the ‘bump’ event was considered in the further 

analysis, because it is a visual event to which the data can be time-locked (such 

an event is absent in the ‘to fly towards’ trials). Most importantly, from this time 

on, it was definite which of the two action verbs applied (‘to bump into’ or ‘to fly 

towards’). Prior to this point, the speaker could still doubt on which of the two 

events were to be described, and hence he or she could not anticipate and 

prepare a description of the event (chance level). Note that in the ‘bump’ epoch, 

less trials were included (only the ones in which the figures bumped and not the 

ones in which the figures flew towards each other, as the visual stimulation 

differed between these), corresponding to on average 46 trials in ‘S’, 47 in ‘NP’ 

and 49 in ‘W’. For three participants, information on the scene types was not 

available, hence the analyses on the ‘bump’ epoch were performed on the 

remaining thirty participants. The ‘bump’ epochs were baseline corrected (-200 

to 0 ms after the 'bump' event).  
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Based on visual inspection of the grand averages (averaged across all 

participants), target ERP components and corresponding time windows were 

specified. Time windows were chosen around the component’s maxima (i.e., 

either in a standard way [peak latency plus and minus 30 ms for instance] or – 

especially for later, more variable, components – relying on the data itself to 

choose the most appropriate range) and were kept constant across conditions. 

For each ERP component, the mean signal per condition and participant was 

computed.  

Statistics on ERP data were performed on the mean amplitude data (computed 

per time window, per condition, and per participant). We used a repeated 

measures General Linear Model (GLM) with syntactic complexity as within-

subjects factor (3 levels: W, NP, S) together with two topographical factors: 

laterality (left, central, right) and anterior-posterior (F, FC, C, CP, P, O) (i.e., in 

the omnibus tests, a combined total of 18 electrodes were included). Main 

effects and interaction effects were inspected. Based on interactions between 

topographical factors and condition, additional analyses were performed on 

subsets of electrodes. In case of main effects, linear contrasts were inspected 

first. In case the linear contrasts did not describe the data well, pair-wise 

comparisons were inspected. Corrections for multiple testing (Bonferroni, in 

case of pair-wise comparisons) and for sphericity violations (Greenhouse 

Geisser) were made when necessary. Extreme outlier values (> 3*interquartile 

range) were excluded from the analysis. An alpha of 0.05 (corrected) was used 

as significance level. 

Results 

Behavioural data 

Accuracy 

The number of errors varied linearly with syntactic complexity: the more 

complex the syntax, the higher the number of errors (linear contrast: F1, 32 = 

7.42, p = .010; main effect of syntactic complexity: F1.7, 53.0 = 3.83, p = .035; ‘W’: 

mean 1.09%, SE .23%; ‘NP’: mean 1.29%, SE .25%; ‘S’: mean 1.81%, SE 

.38%). The same effect was observed for the amount of corrections (linear 

contrast: F1, 32 = 19.56, p < .001); main effect of syntactic complexity: F1.8, 58.8 = 

14.00, p < 001; ‘W’: mean 3.50%, SE .38%; ‘NP’: mean 5.86%, SE .69%; ‘S’: 

mean 6.48%, SE .68%; see Figure 2.2). 
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Inspecting any potential differences in accuracy measures between the two 

action verbs revealed no main effects of action verb, nor any interaction effects 

(errors: main effect of action verb p = .116, interaction effect p = .351; 

corrections: main effect of action verb p = .276, interaction effect p = .157). 

 

 

Figure 2.2. Behavioural data. Mean accuracy (left panel) and reaction times (right panel) per 

condition. Reaction times (plus standard errors) are displayed for voice onset times (VOT; left axis) 

and for total speech times (TST; right axis). Asterisks indicate significant linear trends (observed for 

accuracy) or significant contrasts (observed for VOT). ‘W’ = minimal syntax, word condition, ‘NP’ = 

noun phrase-level syntax condition, ‘S’ = sentence-level syntax condition. 

 

Reaction times 

The voice onset times (VOT) revealed a main effect of syntactic complexity (F1.5, 

40.8 = 20.00, p < .001). Contrast analyses showed that in the ‘W’ condition the 

latencies were significantly shorter compared to both the ‘NP’ and ‘S’ condition 

(P < .001, for both cases; ‘W’: mean 1.30 s, SE .061 s; ‘NP’: mean 1.43 s, SE 

.073 s; ‘S’: mean 1.43 s, SE .073 s). Analysis of the total speech time (TST) 

revealed a main effect of syntactic complexity (F1.5, 42.5 = 4.65, p = .023; ‘W’: 

mean 4.21 s, SE .083 s; ‘NP’: mean 4.32 s, SE .098 s; ‘S’: mean 4.28 s, SE .092 

s), but the contrast analysis failed to find any significant differences (Figure 2.2). 

Analysis of the action verbs revealed no main effect and no interaction effect for 

the VOTs (main effect p = .085, interaction effect p = .884). However, there was 

an interaction between action verb and condition in the TST (p = .017). Follow 

up analysis showed that the 'to bump into' trials resulted in higher TST in all 

conditions (all p < .001; on average 4.50 s versus 3.96 s). Further, only in the 'to 

fly towards' trials, there was a condition effect (p = .010): TST was highest for 

the 'NP' condition. 'NP' differed significantly from 'W' (p-corrected = 0.03) and 

marginally significant from 'S' (p-corrected = .069). 
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ERP data 

Visual inspection of the grand averages showed a clear ERP morphology during 

the first 1000 ms post scene onset, followed by a relatively steady period (in 

which no event-related activity was visible) (see Figure 2.3). Another subset of 

ERP components was observable at a relatively late time interval (from 

approximately 1500 ms after scene onset onwards), in correspondence of the 

‘bump’ event when the target verb was disambiguated (i.e., ‘to bump into’ 

instead of ‘to fly towards’). The statistical analysis was focused on these two 

epochs of interest: the first ranged from -200 to 1000 ms after the scene onset 

and prior to the ‘bump’ event (before the action format and thus the verb was 

available) and the second was related to the time window between -200 to 800 

ms after the 'bump' event (when the verb was available, corresponding to 1320 

to 2320 ms after scene onset, limited to the ‘bump’ trials). Statistics were carried 

out across several time windows. Components belonging to the -200 to 1000 ms 

post scene onset time window were labelled as ‘scene’ components. These 

were the P1 scene (90-150 ms), the N1/P2 scene (100-240 ms), the P3 scene 

(350-550 ms), and the fronto-central negativity, post scene (600-900 ms). The 

components following the ‘bump’ event were defined as ‘bump’ components, 

namely the P1/N1 bump (20-150 ms), P2 bump (140-280 ms) and the P3 bump 

(300-500 ms) (Figure 2.3). Note that the labels P1, N1, P2 and P3 are used for 

descriptive purposes. P1 refers, for instance, to the first positive voltage 

inflection, N1 to the first negative voltage inflection and so forth. 

Time windows of interest post scene onset 

Time window 90 - 150 ms – P1 post scene: A positive deflection was observed in 

the 90-150 time window with a clear occipital distribution and a peak around 120 

ms post scene onset. Within this time window, no syntactic complexity effects 

(F2.0, 63.9 = 0.19, p = .830), nor any condition-related interaction effects (p > .15) 

were found. 

Time window 100 - 240 ms – N1/P2 post scene: In the 100-240 ms time window, 

a negative-positive complex was observed with two frontally distributed maxima: 

a (rather small) negative component peaking at 130 ms post stimulus, followed 

by a positive component with a maximum around 210 ms post stimulus onset. 

The N1 was analysed in the 100-160 ms post stimulus onset window, and 

showed no effects of syntactic complexity (F2.0, 63.5 = 0.05, p = .946), nor any 

syntactic complexity-related interaction effects (p > .19). In the P2 time window 

(180-240 ms post stimulus), also no syntactic complexity effects (F1.9, 63.4 = 1.62, 

p = .208) and no interaction effects (p > .17) were found. 
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Figure 2.3. Overview of ERPs. Grand average ERPs, separately for the two action formats (solid 

lines = ‘to bump into’; dashed lines = ‘to fly towards’), across the midline of the scalp (F = Frontal, C 

= Central, P = Parietal, O = Occipital) for the entire epoch interval of -200 to 2500 ms after scene 

onset, reflecting the speech planning from stimulus onset onwards. The two time windows of interest 

are highlighted: the post scene onset time window (where scenes of both action formats, and their 

corresponding ERPs, are still identical) and the post bump event time window (where the analysis 

was limited to the ‘to bump into’ trials, as the ‘to fly towards’ trials did not show an ERP morphology 

during this time window). Target components are indicated by arrows. Negative voltage is plotted 

upward in this and all subsequent figures. Note that for plotting purposes, ERP waveforms 

underwent a low pass filter (5 Hz, 6 dB cut-off). 

 

Time window 350 - 550 ms – P3 post scene: During the 350-550 ms time 

window, a positivity consisting of a parietal and a more anterior distributed 

component was observed. The parietal distributed positivity evolved between 

350 and 450 ms with a maximum around 390 ms after stimulus onset. The 
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analysis revealed no syntactic complexity effect (F2.0, 63.8 = 0.08, p = .923). There 

was a significant interaction effect between syntactic complexity and the 

anterior-posterior factor (F2.9, 93.9 = 4.18, p = .008), but follow up analyses 

revealed no significant effects per anterior-posterior plane (p > .15). 

The second component was analysed in the time window 450-550 ms post 

stimulus onset. The overall analysis revealed a trend towards a significant 

interaction between syntactic complexity and anterior-posterior (F2.6, 82.9 = 2.64, 

p = .063). Simple contrasts showed that only at frontal electrodes (F), a 

significant syntactic complexity effect was present (F1.9, 63.1 = 3.99, p = .025) (FC: 

p = .287; C: p = .719; CP: p = .772; P: p = .976; O: p = .801). Pair-wise 

comparisons at F showed a significant difference between ‘W’ and ‘NP’ (F1, 32 = 

6.31, p-corrected = .017) and a trend towards a difference between ‘W’ and ‘S’ 

(F1, 32 = 4.00, p-corrected = .054) (see Figure 2.4A). 

 

 

Figure 2.4. Syntactic complexity effects following scene onset. Grand average ERPs, separately for 

the three syntactic complexity formats (‘S’, ‘NP’, ‘W’), in the post scene onset epoch. A) The P3 

syntactic complexity effect (‘S’/’NP’ > ‘W’) at frontal midline electrode (Fz) within the time window 

450-550 ms post scene onset, together with the topography maps of the effect distribution across 
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the scalp (bottom; left: ‘S’ minus ‘W’; right: ‘NP’ minus ‘W’). B) The fronto-central negativity that 

modulated with syntactic complexity (linear effect: ‘S’ > ‘NP’ > ‘W’) at fronto-central and central 

midline electrodes (FCz, Cz) within the time window 600-900 ms post stimulus onset. 

 

Time window 600 - 900 ms – fronto-central negativity post scene: A negative 

component was most prominently visible at fronto-central sites in a rather late 

time window (600-900 ms post scene onset). In the overall analysis, a trend 

towards an interaction effect was found between syntactic complexity and 

anterior-posterior (F2.6, 83.0 = 1.83, p = .055). Simple effect analyses on the 

fronto-central plane (FC, C) revealed a significant syntactic complexity effect 

(F2.0, 63.2 = 3.60, p = .034) (at other electrode planes, p > .05). Contrast analysis 

confirmed a linear relation (F1, 32 = 6.80, p = .014): higher syntactic complexity 

related to higher negativity of the target amplitude (see Figure 2.4B). 

Time windows of interest post bump event 

Time window 20 - 150 ms – P1/N1 post bump: In the 20-150 ms time window, a 

positive component was observed (20-80 ms post bump event) followed by a 

negative component (70-150 ms post bump event), both having a central 

distribution. No significant syntactic complexity effects were found (P1 

component: F1.6, 47.3 = 2.05, p = .148; N1 component: (F1.8, 52.1 = 2.93, p = .068), 

nor any significant interactions effect in either component (all p > .1). 

Time window 140 - 280 ms – P2 post bump: In this time window, a component 

complex was visible with an earlier posterior distribution and a later fronto-

central topography. Within this 140-280 ms time window, no significant syntactic 

complexity effect was found (F1.6, 47.5 = 2.64, p = .091), nor any condition related 

interaction effect (p > .17). 

Time window 300 - 500 ms – P3 post bump: A positive component was observed 

in the 300-500 ms time window, having a posterior distribution. In addition to an 

overall marginally significant syntactic complexity effect (F1.8, 47.3 = 3.29, p = 

.052), there was an interaction between syntactic complexity and anterior-

posterior distribution (F2.0, 54.6 = 4.76, p = .012). Simple effect analyses showed 

that only at posterior sites (CP, P), there was a significant syntactic complexity 

effect (F1.8, 47.6 = 4.45, p = .021) (at F, FC: F1.8, 48.5 = 1.92, p = .161). Pair-wise 

comparisons showed that ‘S’ significantly differed from ‘NP’ and differed 

marginally from ‘W’ (p-corrected =.004 and p-corrected = .067, respectively), 

where ‘S’ was more positive than ‘W’ and ‘NP’ (see Figure 2.5). 
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Figure 2.5. Syntactic complexity effects following verb disambiguation: Grand average ERPs, 

separately for the three syntactic complexity formats (‘S’, ‘NP’, ‘W’), in the post ‘bump’ epoch. Top: 

Signals from the centro-parietal and parietal midline electrodes (CPz Pz). The gray-shaded area 

indicates the P3 bump syntactic complexity effect (‘S’ > ‘NP’/’W’) within the time window 300-500 ms 

post bump event. Bottom: The P3 effect distribution as a topographic map (left: ‘S’ minus ‘W’; right: 

‘S’ minus ‘NP’). Note that for plotting purposes, ERP waveforms underwent a low pass filter (5 Hz, 6 

dB cut-off). 

Discussion 

The aim of the present study was to investigate when syntactic encoding takes 

place during sentence planning. The sentence planning was triggered by a 

visual scene of moving objects. We asked participants to overtly describe these 

scenes using naming formats with parametrically varying syntactic complexity 

(using single words ‘W’, noun phrases ‘NP’, or a complete sentence ‘S’). We 

assumed that any variation in neural activity related to syntactic complexity 

would be reflected at the level of the ERP signal. Further, the design of the 

paradigm allowed us to temporally separate initial noun phrase planning starting 

at scene onset, from planning at sentence-level (occurring after all information is 

available, or after target action/verb disambiguation). Based on serial syntactic 

processing views, we expected ERP modulation around 300-500 ms after scene 

onset (associated with noun phrase-level syntactic planning). We based this 

hypothesis on previous behavioural studies on single word productions 

(Indefrey and Levelt, 2004) and on more recent electrophysiological studies 

using sentence production paradigms (Marek et al., 2007; Sahin et al., 2009). 
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However, we did not exclude the possibility of early and non-additive neural 

modulations, as might be predicted by connectionist or interactive models in 

which visual, conceptual and syntactic processes are initiated in parallel and 

influence each other (e.g., Elman, 1991; Kempen, 2013), or might not even be 

viewed independently (e.g., Langacker, 1987). 

Behaviourally, both the number of errors and corrections showed a linear 

relation with syntactic complexity (the more syntax, the more errors and 

corrections), indicating that the intended complexity manipulation was 

successful. The linearity of the pattern can be interpreted as support for 

increasing syntactic complexity. Syntactic complexity did not influence the total 

speech time (TST). The TST, however, differed across action verbs, where 'to 

bump into' trials resulted in longer TSTs in all conditions, compared to 'to fly 

towards' trials. As we analysed only the 'to bump into' trials in the post bump 

time window, this does not pose any difficulties for our results in this window. 

The type of action verb did not affect any of the other behavioural measures, 

excluding the possibility of confounding effects in the post scene epoch where 

both action verbs were analysed together. With respect to the voice onset time 

(VOT), we found that the word-‘W’ condition differs from both the ‘NP’ and ‘S’ 

conditions. In particular, VOT was shorter for the ‘W’ condition (on average 1.30 

s in contrast to 1.43 s, for both ‘NP’ and ‘S’), suggesting that prior to the initiation 

of the utterance there is already syntactic planning at the level of the noun 

phrase. Consistent with that, ‘NP’ and ‘S’ both require planning of noun phrases, 

while 'W' does not. The encoding requirements in 'NP' and 'S' do not differ at 

this moment, while they both differ from 'W'. From this data and design, 

however, we cannot distinguish whether this planning entails syntactic retrieval 

and morpho-syntactic processing (inflections) or syntactic structure building 

(assuming the structure is built incrementally), or both. Either explanation would 

fit the observed modulation. Nevertheless, the data confirm the idea that a 

speaker plans in advance (Bock, 1995; Meyer, 1996; Wagner et al., 2010), in 

this case including already noun phrase related syntactic encoding. This is in 

line with previous work on the production of noun phrases (Alario et al., 2002; 

Schiller and Caramazza, 2006). It should be noted, however, that both the 

extent and the nature of the advance planning might have been imposed by the 

design, because it poses constraints on the available information at this time. 

Previous studies have shown that the extensiveness of utterance planning can 

be varied depending on the speakers' experience (in this case repetition of 

utterances), the circumstances (in this case availability of information), and 

cognitive abilities (see e.g., Konopka, 2012; Wagner et al., 2010). 
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Compared to previous work on production of multi-word utterances, the VOTs 

are relatively long. In a Dutch noun phrase production study, VOTs varied 

around 580-670 ms, depending on the condition (picture word interference 

paradigm) (Schiller and Caramazza, 2006). In another study in which 

participants produced noun phrases, VOTs were around 660-720 ms (Alario et 

al., 2002). However, an important difference between the design used in those 

experiments and in the present one, is the stimulation. In the current study, 

participants were instructed to describe a moving scene. The intended 

message, therefore, has to be derived from a scene consisting of several 

frames. In animations, as opposed to static pictures, it is not immediately clear 

from the start position which figures are going to be involved in the action. The 

information thus has to be integrated over time, which can explain the 

elongation of VOTs. In addition, it is important to note that the VOTs we 

observed are quite similar to the reaction times reported by Indefrey et al. 

(2001), which used similar stimulation (1.29 s for ‘S’, 1.28 for ‘NP’ and 1.23 for 

‘W’; reflecting similar VOTs and effects). 

The observed ERPs related to overt speech production had a similar 

morphology for all conditions (‘W’,’NP’ and ‘S’), with a clearly visible P1, N1, P2, 

P3 complex and a fronto-central negativity following scene onset. Another P1, 

N1, P2 and P3 morphology were found after the 'bump' event (when all 

information including the verb was available). The first divergence across 

syntactic complexity conditions started approximately from 400 ms post scene 

onset on. We will discuss the components and their potential syntactic 

complexity modulations in chronological order, starting from the moment of 

scene onset. 

Initial syntactic planning 

Early components: The first components after scene onset - P1 and N1/P2 - 

showed no variations across syntactic complexity conditions, indicating similar 

demands on the early processing functions. The early components have been 

associated with early perceptual processes, with attention (P1 and N1, Hillyard 

et al., 1998), with the early (pre)verbal stages of conceptual knowledge 

activation (linked to the P1, Rabovsky et al., 2012; Rahman and Sommer, 2008) 

and with lexical access (P2 related, Bles et al., 2007; Costa et al., 2009; 

Strijkers et al., 2009). Although it can never be ruled out completely that the 

response instructions resulted in differential preparatory states perceptual or 

conceptual processing (see e.g., Price and Friston, 1997), the finding that these 

early ERP components were not modulated by our manipulation, indicates that 
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we succeeded to keep the variance of visual and conceptual processing to a 

minimum over the three utterance conditions. 

P3 scene: In a specific window, between 350 and 550 ms post scene onset, a 

P3-like component was clearly visible. It comprised two subcomponents: one 

with a posterior scalp distribution and one with a more anterior focus. No 

variation with syntactic complexity was found in the posteriorly distributed 

activity (350-450 ms post scene onset). At anterior sites variation with syntactic 

complexity was present within the P3 time window (450-550 ms). The word-‘W’ 

condition significantly differed from the noun phrase-‘NP’ and (marginally) from 

the sentence-‘S’ conditions, where ‘NP’ and ‘S’ elicited a higher positivity 

compared to ‘W’. At this time point, the action format of the scene (verb) was still 

ambiguous, but visual input was sufficient to give way to first noun phrase 

planning (nouns and adjectives). ‘W’ did not require retrieval of syntactic 

information or inflections at a noun phrase level, while the noun phrase ‘NP’ and 

sentence ‘S’ condition did (e.g., the retrieval of the syntactic gender reflected in 

the adjective [in Dutch ‘de/het’] and the inflection of the adjectives [‘groen > 

groene’; green]). The noun phrase-related syntactic processing might in turn be 

reflected in higher P3 amplitudes at frontal sites. 

Syntax-first language accounts assume that utterance structure is build prior to 

any lemma retrieval and morpho-syntactic processing (Friederici, 2011). The 

observed data would also support such a view. Either this component reflects 

incremental structure building of the noun phrases, or it might be that the 

structure is already be available, and the modulation reflects online filling of 

information into the structure. Processing requirements for 'NP' and 'S' do not 

differ for both scenarios, but they both differ from 'W'. Most importantly, the 

observed ERP modulation between 450-550 ms post scene onset indicates that 

this time window is sensitive to syntactic noun phrase planning. 

In a previous electrophysiological production study, the P3 has been associated 

with conceptual and/or syntactic complexity (350-500 ms post stimulus onset, 

Marek et al., 2007), but the distribution of this component was centro-parietal 

(while in the current study, the effect was anterior). It seems unlikely, however, 

that the present effect reflects conceptual planning, as previous studies found 

conceptual effects in earlier time windows (e.g., 120 ms post stimulus 

presentation, Rahman and Sommer, 2008), and we did not find such early 

modulations. Also, the design of the current study minimized conceptual 

processing. Further, with respect to timing, the result is in line with studies on 

the time course of single word production of Indefrey and Levelt (2004), with 

Koester and Schiller's study on morphological encoding (priming effects were 

found 350-650 ms after picture onset, 2008) and with Sahin et al.’s study (2009) 
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who suggested that syntactic encoding starts around 320 ms post stimulus 

onset (although paradigms differ). In these previous studies, syntactic structure 

building was not required, suggesting that the P3 effect observed in the current 

study does not reflect structure building only. In more general, non-linguistic 

terms, the P3 has been associated with a monitoring function, context updating 

and working memory actions (see e.g., Coles and Rugg, 1995). It has also been 

proposed that the P3 amplitude reflects activities in a network controlled by joint 

operations of both attention and working memory (Kok, 2001). Whether the ERP 

effect observed in this study reflects directly the differential demands on 

syntactic or differential demands on attention and working memory processes 

accompanying the linguistic processes cannot be disentangled. The present P3 

result shows that syntactic modulation either directly (direct modulation of the 

P3) or indirectly (P3 modulation via attention and processing load) correlates 

with neural activation in this time window, indicating active syntactic processing 

in this time range. 

Late negativity: The data also revealed a clear linear relation of syntactic 

complexity across naming conditions within a (bilateral) fronto-central negativity 

at 600-900 ms post scene onset. In particular, we observed that - in terms of 

amplitudes - ‘S’ elicited the most negative activity, followed by ‘NP’ and ‘W’. To 

our knowledge there is no previous report on such an ERP modulation during 

overt sentence production planning. We can only speculate about its 

interpretation here based on the complexity manipulation in our experiment. 

This fronto-central negativity might reflect directly (continued) syntactic structure 

building of the sentence to be uttered, as the syntactic structures varied across 

the three conditions, and can be anticipated on. Some language accounts, 

however, suggest that structure building already occurs relatively early in 

sentence production (Konopka, 2012), which would not be in agreement with 

the observed rather late ERP modulation. Alternatively, it might reflect 

modulated working memory demands or a check/control monitoring on the 

appropriateness of the planning so far.  

Sentence-level planning 

Early post bump components: After a period of activity around baseline, without 

any clear distinguishable ERP components (from approximately 1000-1400 ms 

post scene onset), another temporal event occurred in the visual stimulation: the 

‘bump’ event. At that moment in time, it became definite which of the verbs had 

to be used (‘to bump into’ or ‘to fly towards’). In the ‘bump’ trials - time-locked to 

the clearly defined 'bump' event - another set of ERP components arose that 

were absent in the ‘to fly towards’ trials. This absence was most likely due to the 
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lack of a clear temporal event in the latter condition. We assume that similar 

cognitive processes occur in these 'to fly towards' trials, but they do not occur in 

temporal synchrony to an external event - as there is no such event. Hence, 

they cannot be detected by the averaging model of ERPs. The ERPs related to 

the 'bump' event showed a centrally distributed P1/N1 and a subsequent P2 

complex (comprised of a posterior and more fronto-central component), but no 

syntactic complexity effects in these component. Analogous to the early post 

scene onset ERP components, these ERP components are most likely 

associated with more perceptual, conceptual, and basic attention processes 

related to the 'bump' event. Their insensitivity to the complexity modulation 

suggests again comparable visual and conceptual processing across 

conditions. Note that around the time of this post 'bump' epoch, the voice onset 

started on average (1.3 - 1.4 s after stimulus onset), which has been reported in 

the past to cause high frequency artefacts in the ERP signal (see also 

Ganushchak et al., 2011). To avoid noise in the data caused by artefacts, we 

used ICA to clean the data. Independent components related to eye and muscle 

artefacts were filtered out of the data. As a result, we were able to observe a 

clear ERP morphology. Note that this is of interest from a methodological point 

of view, as the applied pre-processing revealed interpretable production ERPs 

within overt naming trials, even in relatively late time windows. 

P3 post bump: We again observed variation with syntactic complexity within the 

P3-time window, but with a different, more parietal distribution (instead of a 

frontal distribution). In addition to differences in topographic distribution, we 

observed a difference in amplitude modulations across conditions. The ‘S’ 

condition was significantly more positive compared to ‘NP’ and marginally 

compared to ‘W’ ('NP' and 'W' did not differ from each other). The pattern of the 

complexity effect thus differed from the post scene P3 (where ‘S’ and ‘NP’ were 

more positive compared to ‘W’), which is an interesting functional segregation of 

two types of P3 effects. The difference in topography further suggests two 

different sources for the post scene onset P3 and post bump onset P3. At this 

moment in time (300-500 ms post bump event; or 1820-2020 ms post scene 

onset), all information was available to the participant (including the type of 

verb). Under the assumption that planning of the first noun phrases was already 

initiated immediately after scene onset, it is likely that planning within this later 

time window was related to local encoding of the newly available element - the 

verb - (e.g., lexical access, inflection) and to the (potentially continued) 

assembly of the utterance in general. The specific pattern of syntactic 

complexity effects is consistent with the idea that only in ‘S’ inflection of the verb 

plus assembly of all elements into a syntactically well-formed utterance was 

needed, while in ‘NP’ and ‘W’ this was not necessary. In the latter cases, the 
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verb was expressed as its unmarked form (infinitive) and the word order was 

according to a predefined format. 

Taken together, the complexity modulation in this study was reflected in both 

modulations in behaviour and in the ERP. In the fronto-central negativity we 

observed a linear pattern (the more syntactic planning, the higher the 

amplitude). In both the P3 following scene onset and following verb 

disambiguation, we observed a different complexity variation. This variation was 

segregated in terms of function and topography (amplitude modulations and 

distribution differed, respectively), indicating different neural sources. The 

pattern in the components suggests that the frontal P3 reflects early noun 

phrase planning, while the later parietal P3 indicates noun phrase assembly and 

integration processes. While other studies have already observed syntactic 

modulations in the (first) P3 time window (e.g., Marek et al., 2007; Sahin et al., 

2009), the current study is the first to delineate syntactic sentence planning over 

time and to investigate the entire time window, using a more realistic display of 

moving objects instead of static line drawings of scenes. Therewith, it extends 

the findings of previous studies and demonstrates the possibility of investigating 

relatively late components of sentence production in a naturalistic manner.  

The observation of clear, distinguishable - relatively late - time windows 

sensitive to syntactic encoding and a lack of any early ERP effects, seems not 

to support integrative accounts that assume early initiation of all processes. 

However, it cannot be excluded that the observed stage-like behaviour in the 

data emerged as a property of parallel accounts (Kempen, 2013). Speculatively, 

the data do not seem to directly support evidence for language as an emergent 

property, as one might expect enhanced planning for the new, un-learned 

utterance structures ('W', and in lesser extent 'NP') compared to the natural and 

learned structure of the sentences in 'S'. However, other experimental setups 

would be needed to test such models directly and explicitly. 

The results are in agreement with incremental encoding of the utterance, 

unfolding over time. From the current design, however, we cannot distinguish 

whether lemma retrieval/assignment and morpho-syntactic processing comes 

first, or only after syntactic structure building.  

Although linear effects were expected, based on the parametric variation across 

conditions and the results of the PET study (Indefrey et al., 2001; 2004), this 

was not always the case. The effect in both P3 components was not linear, but 

reflected a different modulation ('W' versus 'NP'/'S', and 'W'/'NP' versus 'S', 

respectively). Notably, the current ERP study was able to delineate the time-

insensitive PET result over time. By exploiting the high temporal resolution and 

certain aspects of the design, the current ERP results give us more insight in the 
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temporal aspect of syntactic encoding. The observed ERP pattern further 

suggests that the overall PET effect is a summation of neural activity within 

different time windows and with distributed neural sources. The functional role 

of the left IFG and the observed linear correlation with syntactic complexity has 

to be re-evaluated in future experiments. 

Inherent to the study of syntactic encoding is that it is impossible to create a 

pure manipulation of syntactic planning, as it never occurs in isolation and is 

difficult to manipulate without changing any of the other processes (Ganushchak 

et al., 2011). For instance, we cannot exclude differential perceptual effects 

across conditions caused by the instructions, as certain naming format in a 

given block may alter the perception and degree of attention to certain objects. 

The observed lack of effects in the early ERP components supports the idea 

that any perceptual and attentional differences were negligible in the present 

design. 

In addition, all three conditions required temporal ordering of the words into an 

utterance. This temporal ordering is related to conceptual encoding (Levelt, 

1989) and might involve some form of structure building. Next to the need of 

listing adjectives and nouns in a serial order, the infinite verb in 'W' and 'NP' is 

also a phrase ("naar toe vliegen" or "to fly towards"). Overall, ordering and 

minimal structure encoding might have decreased the net difference between 

complexity conditions. However, the lack of early ERP effects and the later, 

observed complexity effects, indicate that the conceptual ordering was not 

different across conditions, and that the complexity manipulation was sufficient 

to be reflected in the data, respectively. 

Another limitation of the study was that the blocked design resulted in 

repetitions of the same response condition, and thus the same type and 

structure. Repeating the same structure across trials and conditions was chosen 

to keep conceptual processes as constant as possible, but may have potentially 

caused priming effects. It is plausible that structural priming effects might have 

occurred in the current study, facilitating the processing of a subsequent 

utterance with the same structure (Pickering and Branigan, 1999). The priming 

might have reduced planning of the structure across trials. Nevertheless, even 

in face of potential structural priming effects, the syntactic complexity 

modulation was robustly found in several components. In future research, the 

use of filler trials requiring different utterance structures could be considered, to 

avoid structural priming effects and potentially increase the magnitude of the 

effects. 
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Conclusion 

In this study, we have examined the temporal aspects of syntactic encoding in 

sentence production. ERPs were cleaned from (muscle) artefacts using ICA, 

and we observed a clear ERP morphology. Event related potentials associated 

with immediate noun phrase-planning were found starting from scene onset on. 

By exploiting the fact that verb availability was not immediate, but temporally 

defined by an event, we were able to investigate relatively late ERPs related to 

noun phrase assemblies and overall sentence integration. More specifically, we 

found that overt description of a movie-like scene elicited very similar P1/N1/P2 

components across all complexity conditions (words, noun phrases, or sentence 

format). From 400 ms onwards, conditions started to deviate in specific time 

windows. In particular, we found three components showing a modulation with 

syntactic complexity: following scene onset an anterior P3 scene effect (at 450-

550 ms post scene onset; ‘S’/’NP’ > ‘W’) and a fronto-central negativity (at 600-

900 ms post scene onset; ‘S’ > ‘NP’ > ‘W’) were observed, and following the 

‘bump’ event another, more posterior, P3 effect (300-500 ms after verb 

availability; ‘S’ > ‘NP’/’W’). We interpret the components in the first time window 

- the P3 scene and fronto-central negativity - as related to syntactic encoding of 

noun phrases. The P3 related syntactic encoding here seems to involve the 

retrieval of syntactic information, such as inflections, and the assembly of words 

into phrases, in which ‘S’/’NP’ differ from ‘W’. The late negativity seems 

sensitive to syntactic structure building as it modulates differently across the 

three conditions. The ERP component in the later time window - the P3 bump - 

is related to more global syntactic planning at the sentence level. This may 

involve encoding of the verb and continued assembly of the utterance, in which 

‘S’ differs from ‘NP’/’W’. The data show that the P300 time window is sensitive to 

syntactic planning, both at noun phrase-level and at sentence-level. The 

functional segregation and differential topographical distributions of the P3 

components further indicates different neural sources, suggesting that noun 

phrase planning and sentence-level planning require different cognitive 

operations. 
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Summary 

Patients with classic galactosemia, an inborn error of metabolism, have speech 

and language production impairments. Past research primarily focused on 

speech (motor) problems, but these cannot solely explain the language 

impairments. Which specific deficits contribute to the impairments in language 

production is not yet known. Deficits in semantic and syntactic planning are 

plausible and require further investigation. In the present study, we examined 

syntactic encoding while patients and matched controls overtly described 

scenes of moving objects using either separate words (minimal syntactic 

planning) or sentences (sentence-level syntactic planning). The design of the 

paradigm also allowed tapping into local noun phrase- and more global 

sentence-level syntactic planning. Simultaneously, we recorded event-related 

potentials (ERPs). The patients needed more time to prepare and finish the 

utterances and made more errors. The patient ERPs had a very similar 

morphology to that of healthy controls, indicating overall comparable neural 

processing. Most importantly, the ERPs diverged from those of controls in 

several functionally informative time windows, ranging from very early (90-150 

ms post scene onset) to relatively late (1820-2020 ms post scene onset). These 

time windows can be associated with different linguistic encoding stages. The 

ERP results present the first neuroscientific evidence for language production 

impairments in patients with galactosemia in lexical and syntactic planning 

stages, i.e., prior to the linguistic output phase. Hence, these findings shed new 

light on the language impairments in this disease. 
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Introduction 

Patients with classic galactosemia, an inborn error of galactose metabolism, 

have speech and language production impairments whereas comprehension is 

relatively preserved (Potter et al., 2008; Waisbren et al., 1983). Such 

impairments can be burdensome to patients as they might hamper 

communication and hence social interactions. Nevertheless, underlying 

language processing components and neural correlates of these impairments 

are poorly understood. 

In classic galactosemia, there is a deficiency of the enzyme activity that 

converts galactose-1-phosphate (gal-1-P) into UDP-galactose (i.e., the 

galactose-1-phophate uridyl transferase [GALT] enzyme). This is due to 

mutations in the GALT gene, located on the short arm of chromosome 9. A 

galactose-restricted diet resolves the neonatal toxic symptoms, but cannot 

prevent the emergence of cognitive difficulties such as lowered intelligence, 

memory problems, slower general information processing and impaired speech 

and language production (Antshel et al., 2004; Doyle et al., 2010; Potter et al., 

2008; Potter, 2011; Schadewaldt et al., 2010; Schweitzer et al., 1993; 

Waggoner et al., 1990; Waisbren et al., 2012; Widhalm et al., 2002), while 

receptive language or comprehension is relatively preserved (Potter et al., 

2008). Voice and motor speech disorders (e.g., childhood apraxia of speech or 

dysarthria) have been reported (Nelson et al., 1991; Potter, 2011; Robertson et 

al., 2000; Shriberg et al., 2011; Webb et al., 2003) as well as problems with 

word retrieval, grammar and vocabulary (the latter impairments are related to 

the planning of a message and not with the verbal output of a message) 

(Schweitzer et al., 1993; Waggoner et al., 1990; Waisbren et al., 1983). 

Although patients can experience a broad spectrum of cognitive impairments, 

the speech and language impairments cannot be solely explained by lower 

cognitive abilities in general (Potter et al., 2008; Waggoner et al., 1990; 

Waisbren et al., 1983) (e.g., some patients with low intelligence have no 

language impairments, while others with average intelligence have language 

impairments, Potter et al., 2008). Hitherto, the main focus of research, diagnosis 

and treatment has been on speech (output) difficulties (e.g., on voice disorders 

or childhood apraxia of speech (Nelson et al., 1991; Potter, 2011; Robertson et 

al., 2000; Shriberg et al., 2011). However, speech (output) impairments cannot 

solely explain the language impairments. Language production is a complex 

process comprising multiple processing stages prior to the output stage (Bock, 

1995; Indefrey, 2011; Levelt, 1989). In galactosemia, nonetheless, it has never 

been studied how language production is affected. In this study, we took a 

cognitive point of view, examining language production using psycholinguistic 
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models. In the remainder of this manuscript we will refer to ‘language 

production’ as specified in the field of linguistics and cognitive neuroscience, 

namely describing the cognitive phases that are involved in planning a message 

prior to the articulation. 

Psycholinguistic models of language production suggest cognitive stages in 

which relevant language information is planned over time. First, an intended 

message has to be transferred into a conceptual/semantic representation. 

Appropriate lexical entries are selected and retrieved as well as the 

corresponding grammatical and syntactic information. Structural syntactic 

frames are constructed and assembled or filled in producing a well-formed 

utterance. Finally, the message is encoded and articulated (Bock and Levelt, 

1994; Bock, 1995). The language production process has been investigated in 

many picture naming experiments using reaction times (see Levelt et al., 1999, 

for a review) and event related potentials (ERPs, derivatives of the 

electroencephalogram, Kutas and Schmitt, 2003). This way, sensitive time 

windows have been suggested for the language production stages. It has been 

shown that conceptual information is activated around 120 ms after stimulus 

onset (e.g., Rahman and Sommer, 2008), followed by semantic processing. 

This is followed by syntactic encoding approximately 90 ms later, serving as 

input to phonological encoding after another 40 ms. The processes are not fully 

serial but might overlap in time, suggesting cascading information flow over time 

(see for an overview Indefrey, 2011; Jansma et al., 2004; Schmitt et al., 2000; 

van Turennout et al., 1997). Each of the planning steps can be linked to specific 

brain areas within a cortical network (see overviews in Hickok, 2009; Indefrey, 

2011; Price, 2010). Ignoring other potentially relevant factors for a moment, any 

type of impairment might therefore be directly related to dysfunction within this 

network. Lesions within specific areas may affect production and 

comprehension separately (Friederici, 2006; Rogalski et al., 2011), whereas 

disruptions of connectivity between areas may delay or disturb language 

processing (Glasser and Rilling, 2008). Few imaging studies have been 

conducted in galactosemia, observing anatomical brain abnormalities, such as 

white matter abnormalities, cerebral and cerebellar atrophy (Kaufman et al., 

1995; Nelson et al., 1992), but it remains uncertain whether specific areas or 

networks might be particularly affected. 

A screening of our patient cohort’s medical files suggested a syntactic deficit in 

the patients with galactosemia as their utterances were described as short, 

simple and frequently as syntactically incorrect. Necessary steps in syntactic 

encoding are identification and activation of grammatical information associated 

with the concepts (e.g., whether it is a noun or adjective; lexical selection), the 
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assignment of syntactic relations or grammatical functions to each word (e.g., 

subject versus object; function assignment), inflection of words (e.g., -s for 

plural, -ed for past tense) and assembly of words into so called syntactic 

structural frames, i.e., syntactic plans (constituent assembly) (Bock and Levelt, 

1994; Bock, 1995). It deduces that in syntactic planning more local phrasal-level 

planning (first steps described) can be distinguished from more global sentence-

level planning (assembly into a frame and utterance). Especially in multi-word 

utterances, it is believed that the scope of planning is incremental such that the 

utterance can be initiated as soon as certain elements are available (e.g., Allum 

and Wheeldon, 2007; Allum and Wheeldon, 2009; Bock, 1995; Levelt, 1989). 

The amount of advance planning is suggested to be in terms of functional 

phrases (e.g., Allum and Wheeldon, 2009), but is also dependent on the 

cognitive load of the utterance and the cognitive capacity of the speaker (Bock, 

1995; Meyer, 1996; Wagner et al., 2010). In healthy controls, syntactic 

processing has been studied in the context of syntactic anomalies or syntactic 

complexity during comprehension (P600 and left anterior negativity [LAN] ERP 

components) (e.g., Hagoort, 2003; Kaan et al., 2000). In terms of brain areas, 

syntactic encoding and sentence processing have been related to the left 

inferior frontal gyrus (i.e., left IFG, encompassing Broca's area, Hickok, 2009; 

Indefrey et al., 2001; Indefrey et al., 2004; Sahin et al., 2009). In comprehension 

research, studies assume that the left IFG is retrieving and integrating lexical 

information from long term memory, most likely from left temporal areas 

(Hagoort, 2003; Hagoort, 2005; Snijders et al., 2009; Vosse and Kempen, 

2000). A similar process can be assumed for speech planning in which concepts 

have to be integrated into proper syntactic and phonological frames (see Sahin 

et al., 2009, for first empirical indications using intracranial electrophysiology). 

In the present study, we aimed to investigate whether patients with classic 

galactosemia have impairments in sentence production by recording high 

temporal resolution ERPs during a language task. This method allowed us to 

track the neural activity related to the entire language planning process from the 

intention to speak onwards, across sensitive time windows. Comparing the 

patients’ ERP (i.e., morphology of the wave, amplitude and latency of 

components) with that of healthy controls gives us an indication on whether 

syntactic encoding is intact, delayed, or malfunctioning at a millisecond time 

resolution. An experimental paradigm was used that elicits overt utterances in 

response to an animated scene in a relatively natural manner. Through different 

instructions, the reports of the scene varied in syntactic complexity (Indefrey et 

al., 2001; 2004), allowing us to study syntactic effects within the ERP. The 

content of the scenes differed from trial to trial (i.e., the geometrical figure, 

colour of the figures and verb) and not all information was available from the 
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scene onset (i.e., the verb; the actor could either ‘bump into’ or ‘fly towards’ the 

other figure; both scene variations start visually identical, and diverge at a 

certain point). The participants therefore could not anticipate the action of the 

figure, ensuring active generation of the utterances (instead of only automated 

processes). Further, it allowed us to tap into both early local phrasal-level 

planning of noun phrases (starting immediately after scene onset, associated 

with initiation of planning the first elements of the utterance that are already 

available: the first nouns and corresponding adjectives) and on later global 

sentence-level planning (when all relevant information is at hand, including the 

verb; adding the construction of the utterance). Time windows of any deviations, 

relative to the visual stimulation, give information on whether differences are 

related to early conceptual, early local syntactic, or rather late global syntactic or 

articulatory processing. Specifically, variation with syntactic complexity would 

reflect time windows relevant for syntactic encoding during sentence production. 

Moreover, relevant cognitive functions (i.e., visual memory, attention, working 

memory) were studied independently using standardized tests and related to the 

ERP data in order to exclude possible confounding of these more basic 

functions.  

Materials and methods 

Ethics statement 

The Medical Ethical Committee of Maastricht University Hospital/Maastricht 

University (azM/UM) gave ethical clearance for this study. All participants, and 

for minors also both parents/caregivers, gave written informed consent.  

Participants 

Twenty-four adolescent patients with classic galactosemia and twenty-one 

healthy controls participated in this study. Classic galactosemia was diagnosed 

by GALT enzyme activity assay and/or GALT-gene mutation analysis. Two 

participants (both patients) were excluded because of difficulties executing the 

ERP task. Patient characteristics can be found in Table 3.1. Of the remaining 22 

patients, 15 were female and 7 male, mean age 14.9 years (SD 2.2 years, range 

10.8 - 19.1 years). The control group consisted of 14 females and 7 males mean 

age 14.2 years (SD 1.8 years, range 11.4 - 17.0 years). Neither gender nor age 

differed significantly between the groups [F1, 41 = .01, p = .92 and F1, 41 = 1.07, p 

= .31, respectively]. Participants had no other relevant health condition, all had 

normal or corrected to normal vision, and were native Dutch speakers. 
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Table 3.1. Galactosemia patient characteristics 

 
N Mean SD 

Range of 
values 

Age at diagnosis (in days) 22 12.4 14.3 0 - 60 

Age at introduction of diet  

(in days) 
22 12.2 14.4 0 - 60 

GALT activity (in % of mean 
reference value) 

1, 2
 

20 0.60 0.57 ND 3 - 1.83 

Urine galactose level  

(in µmol/mmol creatinine) 
4
 

22 12.0 21.1 ND 3 – 96 

Urine galactitol level 

 (in µmol/mmol creatinine) 
4
 

22 132.0 22.8 94 – 187 

Special education 
5
 22 68.2 %   

Speech therapy 
5
 22 86.4 %   

Motor therapy 
5
 22 50.0 %   

GALT gene mutation 10 50 % Q188R / Q188R  

 5 25 % Q188R / other 6  

 5 25 % other 7  

 

GALT enzyme activities indicate that all patients have the classic galactosemia type. Urine 

galactose and galactitol levels indicate adequate dietary compliance. 
1
 GALT activity was measured 

at diagnosis; 
2
 In case the GALT activity is not reported, it was confirmed by the treating physician to 

be severely decreased; 
3
 ND = not detected; 

4
 Urine levels were measured within three months of 

testing; 
5
 At some point in life; 

6
 Q188R / L195P (n=4) or Q188R / S135W (n=1); 

7
 L195P / K229N 

(n=3) or 400Tdel/unknown (n=2) 

 

Neuropsychological tests 

The Rey Osterreith Complex Figure was used to assess visuo-motor skills 

(Copy subtest), short term visual memory (Immediate Recall) and long term 
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visual memory (Delayed Recall and Recognition) (Meyers and Meyers, 1995). 

The Bourdon-Vos test was used to measure sustained attention skills (mean 

RT) (Vos, 1988). The Digit Span (Forward and Backward) addressed verbal 

working memory skills (van Haasen et al., 1986). 

Language paradigm during EEG recording 

Visually animated scenes were presented to the participants. Each scene 

consisted of three geometrical shapes (square, triangle, or circle) having one of 

three different colours (red, blue or green). In each trial, one of the three 

geometrical figures performed an action upon another figure (one figure moves 

towards or bumps into another figures; described by either ‘to fly towards’ or ‘to 

bump into’). Participants were asked to either passively watch the scene (control 

task, ‘C’) or to describe the animated scene overtly using one of two possible 

responses that varied in syntactic complexity: using separate words, ‘W’ (e.g., 

“triangle”, “red”, “square”, “green”, “to bump into”; minimal syntactic planning) or 

using sentences, ‘S’ (e.g., “The red triangle bumps into the green square.”; 

sentence-level syntactic planning) (Indefrey et al., 2001; 2004). Participants 

were asked to keep the naming format of the phrases constant over trials. In the 

word ‘W’ naming format, lexical access of words is required, but virtually no 

syntactic encoding. In the sentence ‘S’ naming format, in contrast, syntactic 

encoding is required on local noun phrase level (e.g., inflection of adjectives) 

and on sentence level (e.g., inflection of the verb, determination of the word 

order, constructing and filling in of the syntactic frame). The control (‘C’) 

condition was added in this study to receive relevant information for the required 

non-linguistic resources (e.g., visual processes, attention). 

Procedure 

The study was conducted in two sessions. In the first session, the 

neuropsychological tests were carried out in all participants after explanation 

and written informed consent were given (by the participant and both 

parents/caregiver). In the second session, the language paradigm and EEG 

recordings took place. After a brief explanation, participants were prepared and 

seated in an electrically-shielded, sound-attenuated room in front of a computer 

monitor. The session started with the control task ‘C’, followed by instructions 

and a practice version of the language task (consisting of 18 practice trials per 

condition) and the main language experiment. 

The main language task consisted of three runs in a blocked design. Each run 

comprised two blocks which were randomized within the run and counter-
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balanced between participants to exclude order effects. Each block started with 

a brief instruction reflecting the expected naming format (i.e., either 

‘SENTENCE’ or ‘WORD’) followed by 32 trials of different scene displays, of 

which the content (figures, colours, action and arrangement) was randomized. 

Per condition and participant, a total of 96 trials were recorded. The control task 

consisted of three consecutive runs, having a total of 108 trials. Figure 3.1 gives 

a schematic overview of the sequences of events within a trial. The duration of 

animation in the scene differed (955 or 1885 ms) depending on the action 

format (‘to fly towards’ or ‘to bump into’, respectively). The difference in 

animation durations is caused by a different amount of action frames (10 versus 

18 frames, where the actual ‘bump’ event occurred at frame 14, at 1520 ms after 

scene onset). Note that the movements in the scenes are visually identical until 

they diverge at the moment the ‘to fly towards’ trials freeze while ‘to bump into’ 

trials continue. Participants were instructed to start the description as fast and 

accurate as possible. The next trials started via a self-paced button push (USB-

keyboard key), except for the control trials which had a fixed 2000 ms interval 

between trials. Control trials had approximately the same duration as the 

linguistic trials. 

 

 

Figure 3.1. Overview of the sequences of events within trials. Timing of events within an 

experimental trial, separated for the two action formats (‘to fly towards’ and ‘to bump into’). Time is 

displayed upwards. The block started with the instruction cue (‘WORD’ or ‘SENTENCE’), a fixation 

cross, a ready sign, and a randomized sequence of trials. For each trail type screenshots are 

displayed to illustrate the actual moving time period of the objects along with the moments of 

expected response of the participant, and the corresponding ERP epochs of interest (time-locked to 

scene onset and the bump event, respectively). 
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Electroencephalography (EEG) recording 

The EEG recording was done using an elastic cap in which 32 tin electrodes 

were mounted (Electro-Cap International (ECI), Inc.), positioned according to 

the international 10-20 system (Jasper, 1958). Twenty electrodes - F3, Fz, F4, 

FC3, FCz, FC4, C3, Cz, C4, CP3, CPz, CP4, P3, Pz, P4, O1, Oz, O2, T3 and T4 

- were measured as active leads, AFz was used as the ground electrode. The 

left mastoid (A1) was used as online reference. Offline the signal was re-

referenced to the average signal of both mastoids. Vertical eye movements and 

blinks were monitored by two electrodes placed at the left upper and lower 

orbital ridge. Horizontal eye movements were recorded with electrodes placed 

on the left and right cantus. The impedance of all electrodes was kept below 5 

kΩ. Data acquisition was done using Brain Vision Recorder software (Brain 

Vision, MedCaT B.V.) and the signal was amplified using a 0.05-50 Hz band 

pass and sampled at a 500 Hz interval. The scene onset as well as the voice 

onset triggered a TTL pulse directly into the EEG recordings. The voice onset 

pulse was initiated whenever the sound pressure level reached a certain 

threshold (individually adjusted to each subject) and was transferred via a 

microphone. 

Data analyses 

The number of errors and self-corrections were computed using the recorded 

audio data and manual (online) scores. Errors were defined as any deviation 

from the expected utterance (i.e., incorrect figure, colour, action, naming format 

or ordering). Self-corrections were defined as any overt corrective effort during 

the response utterance. The voice onset time (VOT) was determined as the time 

between the scene onset and the onset of the voice response; the total speech 

time (TST) was cautiously estimated as the time between the onset of the voice 

response and the button push indicating when participants were ready to 

continue. VOTs < 0.5 seconds and > 4.5 seconds and TSTs < 2 seconds and > 

10 seconds were considered outliers and discarded from analysis. The 

neuropsychological data were standardized using norm data and classified 

according to the guidelines of Lezak (1995). A repeated measures General 

Linear Model was used to analyse the behavioural data (VOT, TST, errors and 

self-corrections) having Condition (‘W’ versus ‘S’) as the within-subject factor 

and Group (patients, controls) as between-subject factor. The standardized 

neuropsychological data were analysed using frequency tables (for the 

classified data) and univariate GLM to examine group differences. 

With respect to the EEG data, trials in which the participant’s response was 

absent were excluded from analysis. The EEG data were epoched from -200 to 



ERPs of sentence planning in galactosemia 

 67 

2500 ms post scene onset (to include the entire interval from onset of visual 

scene to the end of the display/onset of articulation), band-pass filtered from 

0.3-30 Hz (zero phase, 24dB) and baseline corrected (from -200 to 0 ms). Large 

visual artefacts were removed. In addition, data were decomposed using the 

infomax Independent Component Analysis (ICA) in EEGlab (Delorme and 

Makeig, 2004). This method disentangles brain- and artefact-related processes 

by searching for maximally independent components (Makeig and Onton, 

2009). Stereotype artefact-related components reflecting eye movements, noise 

and muscle activity were subsequently removed. On average, 84.5% of all trials 

(SD 5.2%) were kept for analysis [no difference between groups, F1, 41 = .00, p = 

.988]: mean 96 trials in ‘C’, 79 in ‘W’ and 78 in ‘S’. The remaining components 

(the cleaned data) were back-projected into the ERP. In the back-projected 

ERPs, epochs were divided in two time ranges: one interval related to the scene 

onset (-200 to 1000 ms after scene onset), and one related to the bump event (-

200 to 800 ms after the bump event, or 1320 to 2320 ms post scene onset) (see 

also Figure 3.1). Note that in the bump epoch, only ‘to bump into’ trials were 

included (and no ‘to fly towards’ trials), corresponding to on average 49 trials in 

‘C’, 39 in ‘W’ and 40 in ‘S’. The bump epochs were baseline corrected (-200 to 0 

ms after the bump event). Based on visual inspection of the grand averages, 

target peak ERP components and corresponding time windows were specified 

on which we conducted mean amplitude analyses. 

ERP statistics were performed on the mean amplitude data per time window, 

condition, and participant using repeated measures GLM with Condition as 

within-subjects factor (‘C’, ‘W’, ‘S’), and two within-subject topographical factors 

Laterality (left, central, right) and Anterior-Posterior (F, FC, C, CP, P, O). Based 

on visual inspection, additional analyses were performed on subsets of 

electrodes. Group was added as the between-subjects factor (patients, 

controls). Pearson’s correlations were used to examine the relationship between 

the ERP data and behaviour (online measures of reaction times and accuracy) 

and other cognitive functions (offline neuropsychological tests); and with patient 

characteristics (e.g., mutation, rest activity of the enzyme). Where necessary, 

corrections were made for multiple testing (Bonferroni) and for sphericity 

violations (Greenhouse Geisser). Age and gender were added as covariates in 

all analyses but the ones performed on standardized data. An alpha of 0.05 was 

used as significance level. 
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Results 

Neuropsychological test results 

The patients scored significantly lower compared to controls on the following 

subtests: Rey Complex Figure Copy, Immediate and Delayed Recall and 

Recognition; Bourdon-Vos total RT and number of errors; and Digit span [.000 < 

p < .027]. However, when the Rey Complex Figure Copy score was subtracted 

from the Immediate Recall score (not standardized, to control for visuo-motor 

differences), the groups did not differ [p = .75]. Examining the slope of the three 

Bourdon-Vos RTs (not standardized, to examine the sustainability of attention), 

the groups did not differ either [p = .25]. The groups did not differ on the number 

of omissions and corrections on the Bourdon-Vos [p = .91 and p = .33, 

respectively]. Table 3.2 gives an overview of the neuropsychological data of the 

patient group (control data is not presented for clarity reasons). 

 

Table 3.2. Classified neuropsychological data of the patients with galactosemia 

 Very 
low 

Low 
Below 

average 
Average 

Above 
average 

High 
Very 
high 

Expected 
distribution 

2.3 % 7.4 % 17.7 % 45.2 % 17.7 % 7.4 % 2.3 % 

Rey Complex 
Figure 

       

Copy 68.2 % 13.6 % 18.2 % 1     

Time to 
copy 

- 8.3 % 91.7 % 1     

Immediate      
Recall 

59.1 % 22.7 % 9.1 % 4.5 % 4.5 % - - 

Delayed 
Recall 

54.5 % 27.3 % 9.1 % 9.1 % - - - 

Recognition 27.3 % 18.2 % 18.2 % 31.8 % 4.5 % - - 

Bourdon-Vos        

Total RT - 59.1 % 27.3 % 13.6 % - - - 
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Number of 
omissions 

  59.1 % 36.4 % 4.5 %   

Number of 
corrections 

  4.5 % 45.5 % 50.0 %   

Number of 
errors 

  36.4 % 63.3 % -   

Digit Span        

 42.9 % 23.8 % 14.3 % 19.0 % - - - 

 

Presented are the percentages of patients scoring within the particular classifications as described 

in Lezak (1995): z < -2 very low; -2 < z < -1.3 low; -1.3 < z < -0.6 below average; -0.6 < z < 0.6 

average; 0.6 < z < 1.3 above average; 1.3 < z < 2 high; z > 2 very high. Note that the expected 

distribution reflect percentages based on the normal distribution. 
1 
Below average or higher 

 

Behavioural data language paradigm 

Accuracy 

The number of errors differed between groups, [F1, 39 = 12.24, p = .001]: the 

patients made more errors than the controls. There was no difference in the 

number of errors between the word ‘W’ versus the sentence ‘S’ condition [F1, 39 

= 2.14, p = .151]. The number of self-corrections showed no group difference 

[F1, 39 = 0.06, p = .801], but a condition effect. More self-corrections were made 

in ‘S’ compared to ‘W’ [F1, 39 = 27.78, p < .001] (Figure 3.2). 

Reaction times 

The patients had longer VOTs and longer TSTs compared to controls [F1, 37 = 

5.28, p = .027 and F1, 37 = 13.15, p = .001, respectively]. The TST was longer in 

‘S’ [F1, 37 = 26.41, p <.001]. No condition effect for the VOT was observed in 

either group [F1, 37 = .06, p = .807]. 

Correlations behavioural data and neuropsychological data 

In both groups, lower scores on the Rey Complex Figure (Immediate and 

Delayed Recall) were related to more errors [patients: -.543 < r < -.490, .009 < p 

< .021; controls: -.550 < r < -.478, .010 < p < .028]. In patients, lower 

performance on the Rey Immediate recall task was associated with longer TSTs 

[r = -.651, p = .001]. 
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Figure 3.2. Behavioural data. Behavioural data per group and per condition. ‘W’ = Word condition; 

‘S’ = Sentence condition. Presented are estimated marginal means with standard error (SE) bars. 

Asterisks indicate significant effects (p < .05). 

 

ERP data 

The ERP waveforms depict the planning phase of the utterance from scene 

onset onwards. Figure 3.3 shows the grand average waveforms of the patients 

with galactosemia versus the matched controls for the entire epoch interval of -

200 to 2500 ms after scene onset (averaged across conditions). Separate lines 

are shown for the two action formats ‘to fly towards’ and ‘to bump into’. The 

figure illustrates that the scenes (and the corresponding ERPs) were identical 

until approximately 1000 ms post scene onset and start to diverge relatively late. 

Visual inspection of the grand averages showed a clear ERP morphology during 

the first thousand milliseconds post scene onset, followed by a relatively steady 

period (in which no event-related activity is visible). Another subset of ERP 

components was observable at a relatively late time interval (from 

approximately 1500 ms after scene onset onwards), restricted to the bump 

trials. Analyses were directed towards these two epochs of interest: -200 to 

1000 ms after the scene onset (before the action format and thus the verb is 

available; local syntactic planning) and -200 to 800 ms after the bump event 

(when the verb is available, corresponding to 1320 to 2320 ms after scene 

onset, limited to the bump trials; global sentence-level syntactic planning). As 

the arrows in Figure 3.3 depict, there are several time points at several 

electrodes where groups and/or conditions differ, starting early in time. The 
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overall morphology, however, was quite similar (see also topographies in Figure 

3.3). Statistical analyses were carried out across several time windows with 

labels ‘scene’ referring to components following scene onset, and label ‘bump’ 

referring to components following the ‘bump’ event: 90-150 ms (referred to as 

P1 scene), 100-160 ms (N1 scene), 180-240 ms (P2 scene) and 350-650 ms 

(P3 scene) post scene onset; 70-170 ms (N1 bump), 180-280 ms (P2 bump) 

and 300-500 ms (P3 bump) post bump event. Note that the labels P1, N1, P2 

and P3 are used for descriptive purposes. 

 

 

Figure 3.3. Overview of ERPs and topographies. Top: Grand average ERPs of the patients with 

galactosemia (blue) and the healthy controls (green) across the midline of the scalp (F = Frontal, C 

= Central, P = Parietal, O = Occipital). The lines are averaged across conditions, but separate for 

the two action formats: solid lines represent the ‘to bump into’ format; dashed lines the ‘to fly 

towards’ format. The two epochs of interest are highlighted: the post scene onset epoch (where 

scenes of both action formats, and their corresponding ERPs, are still identical) and the post bump 

event epoch (where the analyses was limited to the ‘to bump into’ trials, as the ‘to fly towards’ trials 

do not show an ERP morphology during this time window). Negative voltage is plotted up in this and 

all subsequent figures. Bottom: Overview of the topographical distributions over the scalp of the 
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components of interest, separate for each group. Both the ERPs and the corresponding 

topographies illustrate an overall similar morphology for the patients and controls. 

 

Time windows of interest post scene onset 

Time window 90-150 ms – P1 scene 

A positive component was observed with a maximum around 120 ms post 

scene onset and an occipital scalp distribution. Analyses were restricted to the 

occipital plane (O). A Group effect [F1, 39 = 6.00, p = .019] was visible and 

significant in all three conditions (‘C’: p = .032, ‘W’: p = .021, ‘S’: p = .021), with 

the patients’ ERP being more positive. The patients but not the controls showed 

a trend in the Condition effect [F1.6, 30.2 = 2.91, p = .081]. Simple contrasts in the 

patients data revealed that ‘C’ differed from both ‘W’ and ‘S’ [p = .004 en p = 

.024, respectively] (see Figure 3.4A). 

Time window 100-160 ms – N1 scene 

At anterior sites, a negative component was observed at 100-160 ms after 

scene onset, with a maximum at 130 ms. Analyses were restricted to F3, Fz, F4. 

No clear condition effect was revealed. The Group effect was not significant 

either [F1, 39 = 3.47, p = .070]. 

Time window 180-240 ms – P2 scene 

A positive component was observed peaking around 210 ms after scene onset. 

Analyses showed that this component was largest over midline fronto-central 

and parietal sites. Because of interactions between Condition and the 

topographical factors, the analysis was further conducted on sub-regions. 

At the right side of the scalp (F4, FC4, C4, CP4, P4) there was a Condition 

effect [F2.0, 76.0 = 7.93, p = .001]. Follow-up analyses showed that ‘C’ differed 

from both ‘W’ and ‘S’ [p = .001 and p = .007, respectively]. There was no 

difference between ‘W’ and ‘S’. Recordings at right posterior electrodes (CP4, 

P4) revealed a Group effect [F1, 39 = 4.62, p = .038]. Follow-up analyses showed 

that the patients’ ERP signal in the linguistic conditions (but not in passive 

watching) was more positive compared to controls [‘W’: F1, 39 = 4.31, p = .044; 

‘S’: F1, 39 = 4.97, p = .032] (see Figure 3.4B). 

Only in controls, better sustainability of attention (lower slope of the Bourdon 

Vos reaction times) was associated with a larger linguistic condition effect (i.e., 

difference in mean amplitudes between ‘C’ and both ‘W’ and ‘S’ at FC4) [‘C’-‘W’: 

r = -.444, p = .044; ‘C’-’S’: r = -.754, p < .001]. 
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Time window 350-650 ms – P3 scene 

During this time window, a large long-lasting positive activity was observed, with 

a maximum at posterior sites. Analyses indicated interactions between the 

Condition effect and the electrode locations. Therefore, further analyses were 

performed on sub-regions. 

In central and parietal regions (FC, C, CP, P), a Condition effect was observed 

[F2.0, 77.3 = 21.19, p < .001]. Pair wise comparisons showed that ‘C’ differed from 

‘W’ and ‘S’ [both p < .001]. The groups did not differ significantly and the 

Condition effect was the same for both groups. At frontal regions (F), a 

difference was observed between ‘S’ and ‘W’ [F1, 39 = 4.84, p = .034]. However, 

this effect was only present in the controls [F1, 18 = 7.59, p = .013] and not in the 

patients [F1, 19 = .02, p = .884] (see Figure 3.4C). At the frontal site, there is a 

trend towards a difference in amplitudes between groups [F1, 39 = 2.63, p = .113]. 

In controls, larger syntactic complexity effects (i.e., mean amplitude difference 

between ‘S’ and ‘W’ at Fz) were associated with shorter TSTs (in ‘S’) [r = -.462, 

p = .035]. In patients, longer VOTs (in ‘S’) were associated with smaller 

syntactic complexity effects [r =- .474, p = .030]. 

Time windows of interest post bump event 

Time window 70-170 ms – N1 bump 

At anterior sites, a negative component was visible at 70-170 ms after the bump 

event, on average peaking at 130 ms. Analyses were restricted to frontal and 

fronto-central electrodes (F FC). There was no significant Condition effect [F1.8, 

71.3 = 1.96, p = .151], nor any interaction effects. The groups did not differ either 

[F1, 39 = 0.65, p = .43]. 

Time window 180-280 ms – P2 bump 

Around 230 ms post bump event, a large positive component was observed. 

The topographic distribution was fronto-central. Analyses therefore were 

restricted to these electrodes (F FC C). In addition to Condition and Group 

effects, interaction effects were found between the factor Anterior-Posterior and 

both Group and Condition.  

Sub-analyses revealed only a marginal Condition effect in the FC plane [F2.0, 77.9 

= 2.94, p = .059], while the Group effect was significant (F1, 39 = 9.42, p = .004]. 

In the central plane (C), there was a clear Condition effect [F2.0, 77.7 = 9.24, p < 

.001], where ‘C’ differed from both ‘W’ and ‘S’ [p = .000 and p = .006, 

respectively]. The two linguistic conditions did not differ [p = .214]. The Group 
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effect was significant [F1, 39 = 12.88, p = .001], reflected in more positive 

amplitudes in the patients’ ERP compared to controls (see Figure 3.5A). 

 

 

Figure 3.4. Overview of the ERP effects in the post scene onset epoch. A) Grand average 

waveforms of the occipital midline electrode (Oz) displaying the P1 Group effect (patients > controls) 

within the time window 90-150 ms post scene onset. This group effect (difference between groups) 

is also displayed in the topography. B) Grand average waveforms of two right-hemispheric 

electrodes (i.e., FC4, CP4) displaying the P2 Group effect (patients > controls; also displayed in the 

topography) and the lexical access effect (‘W’=’S’ > ‘C’) within the time window 180-240 ms post 

stimulus. C) Grand averages of the anterior P3 syntactic complexity effect (‘S’ > ‘W’; highlighted in 

dark grey), significant in controls but not in patients, within the time window 350 – 650 ms post scene 

onset. The corresponding topographies of the syntactic complexity effect also show the effect in the 

controls, while no clear effect is observable in the patients. 

 

Only in controls, larger linguistic condition effects (i.e., difference between non-

linguistic and linguistic conditions at Cz) were associated with shorter VOTs [‘C’-

’W’ effect: r = -.497, p = .033; ‘C’-’S’ effect: r = -.633, p = .002] and with fewer 

errors [‘C’-’W’ effect: r = -.517, p = .016; ‘C’-’S’ effect: r = -.602, p = .004]. Only in 

patients, better visual memory performance (Rey Complex Figure Immediate 
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and Delayed Recall) was related to larger linguistic condition effects (‘C’-’W’) [r 

= .570, p = .006; r = .611, p = .003, respectively].  

Time window 300-500 ms – P3 bump 

Between 300 and 500 ms post bump event, a large positive component was 

observed. The component was broadly distributed, with a maximum over 

posterior sites (CP P). Analyses were performed on F FC C CP P electrode 

lines. In addition to a significant Condition effect, there were interactions 

between the Anterior-Posterior topographical factor and the Condition factor. 

The groups differed across the entire scalp [F1, 39 = 11.21, p = .002; in all 

conditions, ‘C’: p = .046, ‘W’: p = .010, ‘S’ p = .001]. 

Sub-analyses revealed a Condition effect that was present in all planes (except 

for F), but was largest at posterior sites [P: Condition F2.0, 76.0 = 9.08, p < .001]. 

Follow up analyses showed that ‘C’ differed from both ‘W’ and ‘S’ [p < .001 and 

p = .002, respectively]. Posterior, the linguistic conditions did not deviate. 

Anterior, however, ‘W’ and ‘S’ differed significantly [FC: p =.025], with ‘S’ being 

more positive than ‘W’. There was no interaction between Group and Condition 

(see Figure 3.5B). 

Only in controls, better sustainability of attention was associated with larger 

syntactic complexity effects (i.e., difference in mean amplitude between ‘S’ and 

‘W’ at FCz) [r = .498, p = .022]. 

Associations between outcome data and patient characteristics 

There were no significant correlations between the patient characteristics (i.e., 

age at introduction diet, GALT enzyme activity, urine galactose and galactitol 

values) and the ERP data. Inspection of correlations with behavioural data 

revealed that older age at introduction of diet was related to longer TSTs [r = 

.689, p = .001]. Further, higher urine galactitol values were correlated with the 

shorter VOTs [r = -.514, p = .017]. Better verbal working memory scores (Digit 

Span) were related to lower galactitol values in urine [r = -.471, p = 0.031]. 

Differential effects for patients with different genotypes were explored 

(homozygous for Q188R versus other mutations). The GALT enzyme activity 

and urine galactose and galactitol values did not differ across groups. The 

Q188R homozygous group had longer VOTs [only in the ‘W’ condition, F1, 18 = 

5.21, p = .036]. No differences in neuropsychological scores were found, but the 

groups differed with respect to the ERP effects: the syntactic complexity effect 

(i.e., difference between the linguistic conditions in the P3 bump time window) 

was greater in the ‘other mutation’ group compared to the homozygous group 

[F1, 19 = 13.36, p = .002].  
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Figure 3.5. Overview of the ERP effects in the post bump event epoch. A) Grand average 

waveforms of the central midline electrode (Cz) displaying the P2 bump group effect (patients > 

controls; also reflected in the topography) and the P2 bump linguistic condition or lexical access 

effect (‘W’=’S’ < ‘C’) within the time window 180-280 ms post bump event. B) Grand averages of the 

fronto-central midline electrode (FCz) reflecting the P3 bump syntactic complexity effect (‘S’ > ‘W’; 

reflected in the dark grey fill in the ERPs and in the corresponding topographies) and the P3 group 

effect (patients > controls; see also topography) within time window 300 – 500 ms post bump event. 

 

Discussion 

This study is the first to apply theories, methods, and experimental paradigms 

from cognitive neuroscience to study language production impairments in 

classic galactosemia. This approach reveals impairments in several language 

production stages prior to articulation in these patients.  

Behavioural data 

The adolescent participants described animated scenes using different syntactic 

complexity formats: either separate words (‘W’) or complete sentences (‘S’). 

Both groups required more self-corrections and speaking time in the sentence 

condition as compared to the word condition, suggesting that the intended 

complexity variation of syntactic planning was successful. Several outcome 

measures are found to deviate in patients compared to matched controls. The 

patients made more errors than controls (8.8% versus 2.8% of all trials). They 

needed more time to prepare (VOT 2.0 versus 1.8 seconds) and to finish the 

utterance (TST averaged across conditions: 5.1 versus 4.3 seconds), indicating 
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that the patients were both slower and less accurate. Interestingly, in both 

groups, the error rates and voice onset times did not differ across the sentence 

and the word condition. The finding that the speaking time is modulated by 

syntactic complexity, but the voice onset time is not, suggests that most of the 

syntactic planning occurs after the initiation of the utterance.  

ERP components of healthy controls 

The ERPs reflect the entire information processing sequence, including visual 

processing of the figures and their movements, and the language planning 

process. We will first discuss the effects of the condition modulations in the 

control group only, in order to make inferences on their functional relevance. 

Several time windows showed a condition modulation, before and after the 

action format (the verb) became clear, reflecting the early initiation of the 

utterance and the incremental nature of the language planning. 

The P1 scene is, with respect to distribution and latency, most likely an instance 

of the occipital P100, traditionally associated with visual and attention processes 

(Coles and Rugg, 1995; Luck, 2005). The P1 has also been linked to motion 

processing of visual stimuli (i.e., influenced by on- and offset, linked to V1, 

Mercier et al., 2009) and to conceptual processes (Rabovsky et al., 2012; 

Rahman and Sommer, 2008). There was no modulation with condition, 

indicating similar requirements for motion processing, attention and 

conceptualisation across the conditions in this study. The P2 scene component 

is most likely a P200, traditionally observed over anterior sites (Luck, 2005) and 

linked to lexical access of words during picture naming (e.g., Costa et al., 2009; 

Strijkers et al., 2009) or word reading (Bles et al., 2007). Along this line, the 

observed effect likely reflects lexical access, as the linguistic conditions (‘W’ and 

‘S’) do not differ in lexical requirements or P2 modulation, but differ from passive 

viewing (not requiring lexical access). Although the scene just started at this 

point, it is already clear which figure is the actor and which object is involved in 

the action, while the action format - verb - is still ambiguous. Therefore, lexical 

access is most likely restricted to access of the first noun phrase (actor). The 

idea that planning starts with the onset of the visual stimuli is consistent with the 

idea that language production is (at least partly) driven by visual input or visual 

attention (Bock, 1982; Meyer and Lethaus, 2004; see also Mortensen et al., 

2008). The long lasting and widely distributed P3 scene resembles a P300. 

Anterior, the P3 showed variation with syntactic complexity. The timing and 

direction of the effect is in line with previous reports of the P300 reflecting 

integration of working memory and attention, both necessary for updating 

incoming information over time (e.g., Kok, 2001). The observed ERP variation 
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with syntactic complexity at the frontal midline (where ‘S’ is more positive than 

‘W’) can be explained by the need for more attention- and memory-related 

resources in case of higher syntactic complexity, or could be a direct indication 

for more complex syntactic processing. At this time point, the action format 

(verb) is still ambiguous as differentiation between the two potential verbs can 

only happen after appropriate visual input (the bump, at 1520 ms after scene 

onset). Based on this, we conclude that syntactic planning reflected by the P3 

must be restricted to local syntactic processing (i.e., retrieval of syntactic 

information about the actor/noun, inflection of the adjective). As there was no 

syntactic complexity effect in the VOT, we can assume that the utterance is 

initiated prior to syntactic planning once the first element of lexical access is in 

(noun or noun phrase) (Allum and Wheeldon, 2007; Allum and Wheeldon, 

2009). Larger P3 syntactic complexity effects were associated with shorter 

TSTs, indicating that more advanced local syntactic planning decreases the 

speaking time or increases the efficiency of the language process. In the 

following time window, the ERP shows activity around baseline (approximately 

900 to 1400 ms post scene onset), presumably reflecting neural activity without 

clearly measurable events (eventually due to high variation in cognitive 

processing within and between groups). Then, divergence across action formats 

(verbs) occurs both scene-wise and ERP-wise. Time-locked to the moment of 

the bump, another set of ERP components arise (in the ‘to bump into’ trials only, 

presumably because the lack of a clear temporal event in the ‘to fly towards’ 

trials). During the fronto-central P2 bump component, we observed a condition 

pattern identical to that of the P2 scene component: the two linguistic conditions 

differed from passive watching, but not from each other. Now, all information is 

available (including the verb), making lexical access of the verb possible in an 

unambiguous way. Larger linguistic condition effects (i.e., difference between 

non-linguistic and linguistic conditions) were related to shorter VOTs and less 

errors, indicating that larger linguistic condition effects are associated with more 

accurate and faster performance. Finally, the large and widely distributed P3 

bump component probably reflects a P300. Again, this post-bump P3 showed a 

similar pattern as the post-scene P3: variation with syntactic complexity. At this 

point, not only local but also global syntactic planning is required in the 

sentence condition (i.e., combination and integration of all noun phrases and the 

verb into a well-formed sentence), reflected in the larger P3 amplitudes. To sum, 

the functional interpretation of the ERPs in healthy controls is such that it starts 

with a set of components related to processing of moving visual 

information/conceptualisation (P1 scene), lexical access of the noun phrases 

(P2 scene) and local syntactic planning of the noun phrases (P3 scene). When 

all information, including the verb, is available, the ERP continues with similar 
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components related to lexical access of the verb (P2 bump) and to syntactic 

planning on a more global sentence-level (P3 bump). 

Relatively few studies have examined overt naming during ERPs recording, 

especially not using multi-word utterances (e.g., Jansma et al., 2004; Koester 

and Schiller, 2008; Marek et al., 2007; Strijkers et al., 2009). Marek et al. (2007) 

elicited multi-word utterances and sentences and found a posterior P3-like 

component (350-500 ms post stimulus) reflecting syntactic complexity (in 

addition to increasing conceptual complexity, as the used paradigm did not 

disentangle the two). In the present study, conceptual complexity was kept 

constant, suggesting that the observed P3 modulations speak to syntactic 

complexity proper. The production P3’s that are found in the current study and 

the described previous studies, might therefore be analogous to the P600/SPS 

in syntactic comprehension (Hagoort et al., 1993; Kaan et al., 2000; Osterhout 

and Holcomb, 1992), albeit with a more anterior distribution of the syntactic 

effect. The finding that both instances of the P3 in this study (post scene and 

post bump event) display the syntactic complexity effect provides additional 

support for a role for syntactic encoding in this component. 

Psycholinguistic models of speech processing assume incremental planning of 

an utterance (e.g., Bock, 1995; Levelt, 1989; Meyer, 1996). In our study, the 

utterance seems to be initiated after lexical access of the first noun, but prior to 

syntactic planning of this noun phrase (as the VOT did not vary with syntactic 

complexity). Our results therefore support the idea that an utterance can be 

initiated before the visual stimulation is finished (and before all necessary 

information is available). In addition, by means of ERP variations, we could look 

into the linguistic planning phase. Well before voice onset and before the visual 

input of the scene is complete, we observed activation related to local syntactic 

planning. When all information was available, there was continuation of 

syntactic encoding (on a more global, sentence-level). Although this paradigm 

was originally implemented using PET (Indefrey et al., 2001; 2004), this study 

demonstrates its suitability for high temporal resolution methods, since it allows 

us to disentangle this early local and later more global planning. 

ERP components of patients with classic galactosemia 

The patient ERPs showed a similar morphology compared to that of the 

matched controls, suggesting a generally intact neural network of cognition and 

language processing. The patient ERP differed from those of controls in several 

time windows. In the P1 scene component, related to attention, visual 

integration of moving objects and conceptualisation processes, the patients 

showed higher amplitudes in all three conditions (classically interpreted as more 
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effortful processing) compared to controls. The fact that the patients differed in 

all conditions from controls, including passive watching, suggests early visual or 

attention processing deficits or an increased effort to integrate moving objects 

over time. Moreover, the patients showed a difference between linguistic and 

non-linguistic conditions (‘W’/’S’ versus ‘C’) that was not present in controls, 

suggesting linguistic effects in this early time window, likely reflecting impaired 

conceptualization. This is the first evidence that the patients diverge at an early 

stage in cognitive information processing from healthy controls during the 

preparation of language. In the P2 scene, associated with lexical access, the 

patients showed the same pattern of condition effects as the controls (difference 

between control condition and both language conditions). Posterior, the patients 

showed greater amplitudes in both language-related conditions compared to 

controls, suggesting difficulties with lexical access. During the P3 scene, the 

patients did not show the syntactic effect. The finding that the controls showed 

this syntactic variation but the patients did not can be interpreted as a ceiling 

effect for the patients: the sentence condition does not diverge from the word 

condition, as the ceiling level of memory/attention resources is already reached 

in the word condition (descriptively corroborated by the grand averages showing 

that in the patient ERP both the ‘W’ and ‘S’ condition are in the same range as 

the ‘S’ condition in controls). It could be that the patients perform less efficient 

advance syntactic planning. In controls, larger syntactic complexity effects (i.e., 

more advance syntactic planning) were associated with shorter TSTs. The 

patients needed more speaking time compared to controls, also indicative of 

less (efficient) advance syntactic planning. Different from the controls, smaller 

syntactic complexity effects were related to longer VOTs, suggesting that for the 

patients, less advance syntactic planning is related to slower or later initiation of 

the utterance. The patient’ ERP further deviates from controls in the P2 bump 

component, providing additional support for impaired lexical access in the 

patients. Finally, the groups differed from each other during the P3 bump 

component, with the patients having larger mean amplitudes compared to 

controls. The syntactic variation was also present in the patients (opposite to the 

P3 scene component, where only the controls showed this variation). Two 

explanations are: they require more resources when engaging sentence-level 

syntactic planning (explaining the higher amplitudes) or, they compensate for 

earlier impairments in local syntactic planning by engaging in both local and 

sentence-level syntactic planning at a later (post bump) planning phase causing 

the higher amplitudes. We cannot disentangle between these alternatives at the 

moment. 

The finding that there were no significant (or minor) differences in the ERP 

morphology between the groups in passive watching confirms an overall 
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comparable cognitive system, suggesting that behavioural language 

impairments of the patients are not part of a severe general impairment. This 

assumption receives empirical support by the observed difference in ERPs 

between groups for the linguistic task. These differences cannot be explained 

merely by differences in the visual processing between conditions, but must be 

related to higher language function – as this was the task manipulation. Besides 

language planning the effects could be explained by variation in attentional or 

memory resources. Such variation across different naming formats cannot be 

excluded.  

We investigated whether the observed impairments were purely linguistic in 

nature or whether they can be explained by other cognitive difficulties by looking 

into their neuropsychological test profile and by comparing the ERP with test 

results of specific cognitive functions. As reported in the result section and 

consistent with previous reports (Antshel et al., 2004; Doyle et al., 2010; 

Schweitzer et al., 1993; Waggoner et al., 1990), the patients scored lower on 

several neuropsychological tests. The patients were slower (Bourdon-Vos 

reaction times, Vos, 1988) and had difficulties with the visuo-motor task (Rey 

Complex Figure Copy subtest, Meyers and Meyers, 1995, among other things 

requiring the integration of a multitude of components into a unifying whole). 

Important too is that visual working memory, when corrected for the visuo-motor 

differences, was not significantly worse in the patients. Therefore, visual 

working memory (keeping the visual scene online and actively in mind) cannot 

explain the behavioural and ERP-related differences between the groups. 

Verbal working memory performance (van Haasen et al., 1986), however, was 

lower in the patients, potentially adding to the language impairments. 

Importantly, verbal working memory scores were not correlated to the 

behavioural and ERP effects during the language task. The lack of correlation 

suggested that verbal working memory did not directly contribute to the 

observed ERP effects. Interestingly, several domains that are affected in the 

patients with classic galactosemia (i.e., visuo-motor skills, motion processing) 

require some form of integration of information over time. Such an integration 

deficit may also lead to the difficulties in constructing syntactic frames as well as 

difficulties to access and fill in the right words into these frames (Bock and 

Levelt, 1994). 

Correlations with patient variables (i.e., GALT enzyme activity, age at 

introduction diet, urine galactose and galactitol values) were far from robust, 

consistent with previous studies failing to find predictive value for these 

variables (e.g., Kaufman et al., 1995; Shield et al., 2000; Waggoner et al., 

1990). We observed that patients homozygous for the Q188R mutation 
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performed worse on certain aspects compared to patients with other mutations, 

which is in line with other, but not all, studies (Shield et al., 2000). Patients with 

the Q188R/Q188R mutation had longer VOTs and showed smaller syntactic 

complexity effects in the P3 bump ERP component. 

Previous studies in classic galactosemia have reported general cognitive 

slowing and diffuse white matter abnormalities (Dubroff et al., 2008; Nelson et 

al., 1992; Widhalm et al., 2002), theoretically linked to deficient galactosylation 

of cerebrosides (an important component of myelin) (Lebea and Pretorius, 

2005). In line with these findings, our study showed longer reaction times for the 

patients (both the time needed to prepare and to finish the utterance). In the 

ERP data, we did not find any delays in the overall evolution of the ERP 

components. The morphology of the signal was similar for patients and controls. 

We observed amplitude differences, suggesting an alteration in the neural 

activity related to a certain cognitive processing phase, which indicates that 

brain abnormalities might be more clustered than previously suggested. Within 

the P3 scene time window we see a comparable onset of the component, but 

the P3 seems to be extended in time for patients compared to matched controls. 

As depicted in Figure 3.4C, for controls the ERP signal for the ‘W’ and ‘S’ 

conditions catches up with the signal of the ‘C’ condition sooner, especially 

more posterior. This overall ERP pattern of the patients suggests that the local 

neural circuits work within time windows that are comparable to those of healthy 

controls. However, the larger amplitudes in the patient ERPs indicate aberrant 

neural activation patterns. Accumulating metabolites or resulting deficiencies 

that alter neuronal signalling might be involved herein (e.g., myo-inositol, Berry, 

2011). In contrast, the overall integration problem might result from problems of 

long distance neural communication possibly associated with myelin 

abnormalities compromising information transfer (Dubroff et al., 2008; Nelson et 

al., 1992). However, whether abnormal cell signalling and/or brain connectivity 

is affected and in which specific regions, requires further investigation. 

To summarize, patients with classic galactosemia show difficulties in this 

language production task, both behaviourally (less accurate and slower) and in 

their ERPs, compared to healthy controls. The ERP deviations start already 

around the time that attention is directed towards the relevant, moving objects 

and conceptual knowledge of these objects becomes available, suggesting that 

these processes are affected by the disease. The ERP differences continue 

through the consecutive linguistic preparation phases, indicating affected lexical 

access and impaired syntactic planning (both local and sentence-level syntactic 

planning). We conclude that, although anecdotal reports have appeared on 

weak word retrieval and sentence construction, this study is the first to provide 
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neurocognitive evidence for language impairments in patients with classic 

galactosemia. These impairments affect the planning of language, which occurs 

prior to the output stage. Based on the ERP data, we suggest that these 

impairments are related to problems in lexical access and syntactic planning of 

an utterance. These findings are relevant for speech and language therapies 

within this patient group, deserving further investigation. 
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Summary 

During syntactic sentence planning, we retrieve and assign syntactic 

information, and assemble words and phrases into sentences. In the present 

study, we investigated the neural network involved in overt sentence production. 

By using functional magnetic resonance imaging (fMRI) and studying both 

activation and connectivity patterns, we aimed to learn how the language 

production network delineates into networks associated with syntactic planning 

and motor speech planning. Participants were instructed to overtly describe 

animated visual scenes using one of three naming formats, varying in syntactic 

complexity (from single words, to noun phrases, to a sentence). First, we 

examined which brain areas showed a parametric modulation with syntactic 

complexity. Both the left inferior frontal gyrus (IFG) and left pre-supplementary 

motor area (pre-SMA) showed this modulation: activity increased with 

increasing syntactic complexity. Then, these two regions were taken as seeds in 

a seed-based functional connectivity analysis to investigate with which brain 

areas these syntactically-modulated areas functionally connect. Both seed 

regions correlated with different functional networks: the left IFG with inferior 

and middle frontal areas, insula, superior temporal sulcus / middle temporal 

gyrus and supramarginal gyrus - a left-lateralized network associated with 

syntactic processing. The left pre-SMA in turn correlated with bilateral 

(pre)SMA, precentral gyus, superior temporal gyrus/planum temporale, and 

superior parietal regions - a bilateral network associated with motor speech 

planning. The present study shows that the language network has specialized 

functional sub-networks that may work in parallel to deal with different aspects 

of language production. Such delineation is necessary and useful for better 

understanding of the language production network and disorders that affect its 

functioning. We further demonstrate that overt naming can be studied in fMRI 

using animated scenes to make the production task as natural as possible.  
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Introduction 

Planning sentences is a universal part of everyday language production. 

Syntactic planning is required to retrieve and assign syntactic information, and 

to construct the phrases to make up the sentence. There is still debate on the 

specifics of how we carry out syntactic planning, but there is general agreement 

from psycholinguistic research that once the initial noun phrase plan is there, 

motor speech planning starts preparing the appropriate articulation (Bock, 1995; 

Levelt, 1989). Recent electrophysiological studies focusing on temporal aspects 

of syntactic complexity have found syntactic modulations around 300-500 ms 

after onset stimulus (Marek et al., 2007; Sahin et al., 2009; Timmers et al., 

2013), supporting psycholinguistic models of speech production (Indefrey and 

Levelt, 2004). There is also evidence for continuing syntactic integration after 

the initiation phase, i.e., at later time points during sentence production 

(Timmers et al., 2013). Several PET and fMRI studies investigated regions of 

interest associated with syntactic planning. We will follow up on these studies to 

detect functional networks associated with syntactic processing during speech 

production.  

From previous fundamental studies, we know that the left inferior frontal gyrus 

(IFG) plays an important role in syntactic processing (see reviews of e.g., 

Cappa, 2012; Price, 2012). Modulating the amount of syntactic planning in 

language production resulted in parametric variations in the left IFG, or more 

specifically the left Rolandic operculum (Indefrey et al., 2001). Recent 

adaptation studies also indicated a prominent role for this region in syntactic 

planning in sentence context (Menenti et al., 2011; Segaert et al., 2011), both 

for production and for comprehension. Direct electrophysiological measures in 

this area further revealed distinct activity for grammatical processing, but also 

for lexical and phonological processing (Sahin et al., 2009). This latter finding 

illustrates the notion that the left IFG has been associated with more than 

syntactic processing only. In interactive frameworks, it is suggested that the left 

IFG plays an important role in unification: retrieving relevant words from the 

mental lexicon (long term memory) and combining them into larger units 

(Hagoort, 2005, Vosse and Kempen, 2000). In comprehension, studies have 

found that the left posterior IFG is the site where the online integration or 

unification takes place after the relevant lexical-syntactic information has been 

recruited, in which the posterior middle temporal gyrus (MTG) plays a relevant 

role (Snijders et al., 2009; 2010). A similar interaction of lexical-syntactic 

retrieval and syntactic unification might take place during production. In addition, 

the left IFG - or more specifically the pars opercularis - is also associated with 
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motor response selection, in a network also including pre-SMA (BA 6), cingulate 

motor area, and ventral premotor area (Tremblay and Small, 2011). 

Although the left IFG is an important region of interest, it is not the only one. 

Recently, a study investigated syntactic processing in a natural setting (story 

listening), and found involvement of the left anterior temporal lobe (aTL) in 

syntactic computations (sentence structure building) (Brennan et al., 2012). The 

authors suggested that left IFG was involved in more memory-related syntactic 

operations, while the aTL was associated with structure building computations. 

Other studies have found a collection of regions also showing modulations with 

syntactic processing including left posterior middle temporal gyrus (MTG, BA 

21), and bilateral (pre)supplementary motor areas (pre-SMA; BA 6) (Menenti et 

al., 2011; Segaert et al., 2011). In a sentence generation paradigm, the left 

medial frontal gyrus (BA 6), superior parietal lobule (BA 7), and right insula (BA 

13) have been implicated in syntactic processing as well (Haller et al., 2005). In 

another study attempting to separate confounding influences from working 

memory and articulation in syntactic processing, a similar language network 

was found to be recruited during grammatical processing, including left IFG (BA 

44/45/47), anterior insula, and medial SMA (Sahin et al., 2006). The authors 

suggested that BA 45 and the insula were associated more with the articulation 

aspects instead of pure syntactic processing. 

Although several brain areas have been implicated in syntactic planning, there 

have been no studies yet directly investigating sentence production in a 

functional network context. We employed a paradigm in which syntactic 

complexity is varied in a relatively natural manner (adapted from Indefrey et al., 

2001; see also Timmers et al., 2012). Participants were instructed to overtly 

describe a visually animated scene using response conditions that varied in 

their syntactic planning requirements. To control for visual processing demands 

related to the complex stimuli, passive watching conditions were added in which 

identical stimulation was presented without any language component. In this 

explorative study, we first identified which regions showed a parametric 

modulation with syntactic complexity. Then, we used a seed-based functional 

connectivity analysis to investigate with which areas these syntactically-

modulated regions functionally correlated. A second aim was to disentangle 

networks engaged in syntactic planning and motor speech planning. This aim is 

of relevance from a fundamental point of view on the integrative nature of 

language processing. However, it is also of interest from the perspective of 

diagnostic aspects in language disorders, as disorders may result from 

problems in one of the relevant networks, or from impairments in both the 

syntactic planning and motor speech planning network. 
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Methods 

Participants 

Twelve healthy volunteers participated in this study. Ten were female and two 

were male, having a mean age of 24.4 years (SD 2.0 years). All participants 

were right-handed, had normal or corrected to normal vision, and were native 

Dutch speakers. They received financial compensation or received academic 

credit points for participating in the study. Participants were screened for MRI 

compatibility and signed informed consent. The ethical committee of the Faculty 

of Psychology and Neuroscience, Maastricht University, gave clearance for the 

study. 

Language paradigm 

Visually animated scenes were presented to the participants, consisting of three 

coloured geometric figures of which one moved towards another figure in one of 

two different ways (either ‘to fly towards’ or ‘to bump into’). Content of the 

scenes was randomized. They were instructed to either passively watch the 

scene (which could be static or animated, referred to as ‘passive watching static’ 

[‘PS’] or ‘passive watching animated’ [‘PA’], respectively) or describe the scene 

using one of three overt responses that varied in syntactic complexity. More 

specifically, participants were asked to either use a complete sentence (e.g., 

“The red triangle bumps into the green square.”; sentence-level syntactic 

planning; referred to as the ‘sentence’ condition or ‘S’), to use a noun phrases 

(e.g., "the red triangle", "the green square", "to bump into"; noun-phrase level 

syntactic planning; referred to as the ‘noun phrase’ condition or ‘NP’) or to use 

separate words (e.g., “triangle”, “red”, “square”, “green”, “to bump into”; minimal 

syntactic planning; referred to as the ‘word’ condition or ‘W’). For more detailed 

information on the paradigm, see Timmers et al. (2012; 2013). 

Procedure 

The sessions started with providing the participants with information on 

scanning procedures, and safety measures. Participants received instructions 

and practiced the language task (the practice version consisted of 12 practice 

trials per condition). After safety precautions were taken (e.g., removal of any 

metals, ear plugs in order to damp the sounds), participants were placed 

comfortably inside the scanner, with their head fixed with soft foam pads. 

Through a mirror attached to the head coil, participants were able to see a 

screen on which the stimuli were projected. 
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During the acquisition of the functional images, participants performed the 

language task, consisting of 4 runs in a blocked design (see Figure 4.1). In each 

run, there were 10 blocks (two per condition), and per block there were 5 trials 

of scenes. Per set of five blocks (each condition occurring once), conditions 

were randomized. Each run started with a repetition of the general instructions 

of the task. Prior to each block, there was a baseline period of 5 TR (10 s) 

during which a fixation point was displayed, followed by the presentation of the 

instruction for the specific block for 2 TR (4 s). The instruction included an 

acronym for the required naming format accompanied by an example in case of 

the overt descriptions, followed by a baseline period of 3 TR (6 s). Trials started 

with a fixation period of 1 TR (2 s), followed by the onset of the scene (animated 

plus freeze period; total duration of 4.5 seconds) and a blank screen (1.5 

seconds) (together 3 TR). From the onset of the scene, participants had 6 

seconds to give their response. The total trial duration was 4 TR (8 s), and the 

total block duration was 60 seconds. One run had a duration of approximately 

10 minutes. Per participant, fMRI data of a total of 40 blocks were recorded (8 

per condition). Participants were instructed not to move their heads, and to 

speak at a soft volume to minimize movement. They were asked to describe the 

scenes as fast and as accurate as possible and to abort the descriptions in case 

the fixation mark signalled the subsequent scene (to avoid time pressure). 

Stimulus presentation was synchronized with MR data acquisition using 

Presentation Software (Neurobehavioral Systems Inc).  

Data acquisition 

Data were acquired on a 3-T Siemens Magnetom Allegra head scanner 

(Siemens Medical System, Erlangen, Germany) using a 8-channel head coil, 

and a 3-T Siemens Trio whole body scanner (Siemens Medical System, 

Erlangen, Germany), using a 32-channel head coil (acquisition on two different 

scanners was necessary because of irresolvable technical problems with the 

first scanner and head coil; acquisition parameters were identical unless 

specified otherwise). 

For the functional MRI sequence, thirty-two axial slices (3.5 mm iso-voxel, 

interslice distance 0 mm) covering the entire cortical volume were collected 

using a standard echo-planar imaging (EPI) sequence (repetition time [TR] = 

2000 ms, matrix size = 64 x 64, echo time [TE] = 30 ms, flip angle = 90°). For 

each run, we collected 305 functional volumes, of which the first 4 were 

excluded from subsequent data analysis due to T1 saturation.  
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Figure 4.1. Schematic overview of the language production task. Showed are the contents of one 

block (top: starting with an instruction of the specific block condition, followed by five trials of the 

same condition, comprising one block) and one run (bottom: a run starts with general instructions of 

the task, followed by eight blocks - two per condition - preceded by a fixation point). 

 

In order to be able to post hoc correct the EPI data for inhomogeneities in the 

magnetic field, a field mapping sequence was acquired (TR = 704 ms; TE[1] = 

5.11 ms; TE[2] = 7.57 ms, identical slice positioning to EPI acquisition).  

Anatomical images were obtained using a 1 x 1 x 1 mm resolution T1-weighted 

ADNI MPRAGE sequence (TR = 2250 ms; TE = 2.6 ms; flip angle = 9°). 192 

slices were collected covering the entire brain. 

Data analysis 

Data were analysed using the BrainVoyager QX 2.6 software package (Brain 

Innovation, Maastricht, the Netherlands). Functional data were first corrected for 

EPI distortions using the anatabacus plugin for BVQX (Breman et al., 2009), 

which applies the pixelshift algorithm (Jezzard and Balaban, 1995). The 

undistorted data were pre-processed: slice scan time differences and 3D head 

motion were corrected (all runs were aligned to the third run - closest in time to 

the anatomical scan - in order to improve co-registration). Linear trends were 
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removed and a temporal high pass filter was applied (4 cycles per run, or 1 

cycle per 75 volumes). After pre-processing, the functional runs were co-

registered with the 3D anatomical data and normalized to Talairach space. 

By segmenting the grey and white matter in the anatomical images, white matter 

reconstructions of both hemispheres of each participant were made. Per 

hemisphere, cortical meshes were aligned to a dynamic group average using a 

cortex based alignment algorithm (Goebel et al., 2006). A group-aligned 

average cortical surface of each hemisphere was created. On the merged 

cortical surface, the univariate random-effects (RFX) statistical analysis was 

performed. A design matrix was created with the 5 conditions predictors (i.e., 'S', 

'NP', 'W', 'PA', 'PS'), adjusted for the hemodynamic response delay. The six 

parameters describing the 3D head motion (3 translation parameters, 3 rotation 

parameters) were normalized and added as confound variables. In addition, the 

mean signal from the cerebral spinal fluid (CSF) and white matter (WM) was 

extracted, normalized and added as confounders as well. Global statistical 

contrasts between the three language conditions and passive watching / 

baseline were inspected at the level of the whole cortex, FDR corrected at q = 

.05. Subsequently, patches of interest (POIs) were extracted, of which the beta 

values per language condition were extracted. The beta values were fed into a 

repeated measures General Linear Model in order to evaluate syntactic 

complexity effects. Based on the syntactic complexity effects, POIs were 

selected as seeds for a seed-based functional connectivity analysis. In this 

analysis, the entire time course of a specific region of interest or seed is 

extracted and correlated with all other vertices on the cortical surface. Regions 

that showed spatiotemporal synchronicity with the seed region were 

subsequently interpreted as forming a functional network with the seed region 

(Huettel et al., 2004; Li et al., 2009). For the seeds, the peak vertex of the POI 

was determined and dilated to 61 vertices. The time course of the POI was 

extracted, normalized and fed into an RFX analysis as predictor, together with 

the above-specified confound variables. Resulting maps were inspected at the 

level of the whole cortex, FDR corrected at q = .05. 

Results 

Cortical surface analysis 

A contrast analysis of the three language conditions with baseline (‘S’ + ‘NP’ + 

‘W’ > baseline) revealed several regions, including occipital regions (e.g., 

motion area, MT), left IFG, bilateral (pre)motor and STG / planum temporale 

(PT), left pre-SMA and the superior parietal region (see Figure 4.2A).  
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To exclude confounding by visual processing, we contrasted the three language 

production conditions with the two passive watching conditions (‘S’ + ‘NP’ + ‘W’ 

> ‘PA’ + ‘PS’). A similar network of regions appeared, including bilateral 

(pre)motor and STG, left pre-SMA, left IFG (pars opercularis) and the right 

insula (depicted in Figure 4.2B). Controlling for visual confounding was 

confirmed by the absence of occipital regions in this contrast (visual inspection). 

 

 

Figure 4.2. RFX based contrast analysis of overt sentence processing. A. Areas that are activated 

more during language production compared to baseline. B. Brain regions activated more during 

language production than during passive watching of similar animated visual scenes. Both statistical 

contrast maps are FDR corrected at q = .05, with a cluster size threshold of 25 mm
2
. 

 

Patches of interest analysis 

From the language-specific contrast (‘S’ + ‘NP’ + ‘W’ > ‘PA’ + ‘PS’), patches of 

interest (POIs) were extracted (cluster size threshold = 50 mm
2
). Ten POIs 

survived the threshold: left and right superior temporal area / PT, left and right 

ventral precentral gyrus/central sulcus, left and right dorsal central sulcus, left 

(pre)SMA, left IFG, right insula and two regions within the left superior parietal 
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cortex. Beta values were extracted in order to inspect for language-specific 

condition effects. 

Table 4.1 presents those POIs in which a syntactic effect was observed. A linear 

contrast was found in both the left (pre)SMA and the left IFG: beta values were 

higher for ‘S’ than for ‘NP’ than for ‘W’. Both left and right ventral precentral 

areas showed a significant syntactic modulation effect as well, explained by a 

quadratic contrast. 

 

Table 4.1. Patch of interest analysis: regions showing a significant modulation 

with syntactic complexity 

      peak coordinates 

Region contrast F p modulation # vertices tal x tal y tal z 

Left 

        

 

inferior frontal gyrus linear 5.14 0.045 S > NP > W 103 -51 8 14 

 

ventral precentral area quadratic 11.66 0.006 NP > S, W 1279 -50 -11 26 

 

(pre)supplementary 
motor area linear 12.51 0.005 S > NP > W 134 -5 -6 62 

Right 

        

 

ventral precentral area quadratic 5.199 0.044 S, NP > W 956 39 -15 33 

 

Seed-based correlation analysis 

The dilated peak vertices of the POIs of the two areas showing a linear relation 

with syntactic complexity (i.e., left IFG and left pre-SMA) were placed as seeds 

in two separate seed-based correlation analyses. Resulting connectivity maps, 

plus the corresponding seeds are presented in Figure 4.3. When placing the left 

IFG as a seed, activation correlated with that of several regions, including left 

insula, left inferior and middle frontal regions (to lesser extent on right), middle 

temporal gyrus (MTG) / superior temporal sulcus (STS), supramarginal gyrus 

(SMG), and medial superior frontal region (anterior cingulate region). Using the 

left (pre)SMA as seed, we observed again a correlation with several regions, 

including bilateral (pre)supplementary motor regions, precentral gyrus and 

sulcus, bilateral superior parietal regions, and bilateral STG / PT. 

 



Functional networks of sentence production 

 95 

 

Figure 4.3. Correlation maps of two separate language networks based on seed-based correlation 

analysis. Left: left IFG as seed; right: left SMA as seed. Both contrasts are based on an RFX 

analysis, statistical map FDR corrected at q = .05, cluster size threshold of 25 mm
2
. Seeds were 

defined based on their syntactic sensitivity, as determined by a POI analysis. 

 

Discussion 

The current study aimed to investigate the neural network involved in sentence 

production, and to see how it delineates into networks associated with syntactic 

planning and motor speech planning. We used a paradigm in which the amount 

of syntactic planning was parametrically varied from words to noun phrases to 

sentences (Indefrey et al., 2001; see also Timmers et al., 2013). Visual 

processing of the complex animated visual stimuli was controlled for by 

contrasting the language production conditions with passive watching conditions 

using identical scenes without the language component. An explorative analysis 

approach was chosen in which we first examined which brain areas showed a 

parametric modulation with syntactic complexity. It appeared that both the left 

IFG and left pre-SMA showed this modulation: activity increased with increasing 

syntactic complexity. Then, these two regions were taken as seeds in a seed-

based functional connectivity analysis, to investigate with which brain areas 

these syntactic-modulated areas functionally correlate or communicate. Two 

networks of regions appeared, which will be discussed in more detail below. 

The finding that left IFG and left pre-SMA modulated with syntactic planning 

supports previous findings. Several studies have observed such modulations 

within these regions (Haller et al., 2005; Indefrey et al., 2001; Menenti et al., 

2011; Segaert et al., 2011). The left IFG is suggested to be involved in 

unification or integration of syntactic processes (Hagoort, 2005; Snijders et al., 

2010; Vosse and Kempen, 2000). Consistent with an integration role, the 

observed correlation of IFG with middle frontal gyrus (MFG) or dorsolateral 

prefrontal frontal cortex could reflect cognitive control and working memory 
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interactions. The correlation with superior medial frontal or anterior cingulate 

regions may reflect performance monitoring or response suppression processes 

(see Wood and Grafman, 2003, for an overview on prefrontal cortex; Price, 

2012). Correlations of IFG with the left insula, superior temporal sulcus (STS) / 

middle temporal gyrus (MTG), and supramarginal gyrus (SMG) relate to 

language production (note that the observed regions show great overlap with a 

resting state functional connectivity study using, among other regions, the left 

IFG/pars opercularis as a seed, Xiang et al., 2010). The posterior MTG has 

been suggested to be a lexical interface, linking semantic information to other 

relevant information (Hickok and Poeppel, 2007). In sentence comprehension, 

the posterior MTG was suggested to be the site where lexical and syntactic 

properties are retrieved from the mental lexicon (Snijders et al., 2009, 2010). 

The STS in its turn has been related to phonological planning, and is suggested 

to be the site for phonological processes and representations (Hickok, 2009). It 

is plausible that in analogue to the interface between left IFG and posterior MTG 

for lexical-syntactic information, the STS is important for retrieving phonological 

information, that will be integrated later in left IFG. Further, the SMG has been 

implicated in phonological processing as well (Price, 2010; 2012), while the left 

anterior insula is described as part of the articulatory network (Hickok and 

Poeppel, 2007; Price, 2010; 2012). Through its connections with these regions, 

the left IFG indeed seems to be involved in the syntactic processing (varying 

across the naming conditions), and can well be associated with 'integration' or 

'unifying' during sentence production. 

The pre-SMA is part of the so called supplementary motor complex (SMC), 

which consists of SMA proper, pre-SMA and the supplementary eye field 

(Nachev et al., 2008). Pre-SMA lies anterior to the vertical anterior commissure 

line, while SMA lies posterior to it. In our study, the syntactic modulation was 

observed in pre-SMA, although the distinction is only a fine one. Studies have 

shown that the SMC makes an important contribution to (learning of) the 

sequencing of actions. Pre-SMA is activated in tasks requiring some form of 

cognitive control, or inhibiting or switching between tasks or responses (see 

Nachev et al., 2008, for a review). Segaert et al. suggested to interpret the 

observed syntactic modulations in pre-SMA in terms of the sequencing of 

syllable structures (2011). Indeed, during sentence production and in the current 

paradigm, switching and inhibiting responses, as well as sequencing plays an 

important role (i.e., sequencing of syllables, but also of words and phrases). It 

could be speculated that sequencing differs across naming conditions. The 

sentence ('S') condition might trigger more extensive sequencing activity within 

pre-SMA, compared to artificial telegram style listing separate words (as is the 

case in the words 'W' condition). In terms of functional connectivity, the activity 
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in pre-SMA was correlated with bilateral STG / PT, SMC, (pre)motor regions in 

precentral gyrus and sulcus, and superior parietal cortex. A comprehensive 

review associates the pre-SMA, SMA and motor cortex in the initiation and 

execution of speech (Price, 2010, but see also e.g., Bouchard et al., 2013; 

Indefrey and Levelt, 2004), while the superior parietal region and PT are 

implicated in sensory-motor integration processes (Hickok and Poeppel, 2007). 

The STG has a relevant role in phonological planning and monitoring (Indefrey 

and Levelt, 2004; Christoffels et al., 2007; 2011). Thus, compared with the left 

IFG-syntax network, this pre-SMA seed-based network seems to be much more 

motor speech related.  

It should be noted that although the seed-based functional connectivity analysis 

provides statistically straightforward data, it has some important limitations (see 

also Li et al., 2009). One drawback is that the correlations are calculated across 

the entire time course. This means that the presented connectivity maps might 

not be purely related to language production activity, but also to the passive 

watching conditions or even to the baseline (rest) periods. Vice versa, it might 

be the case that the connectivity maps are driven primarily by one of the 

conditions (e.g., the sentence condition). Future analyses could be directed 

towards selecting the activity specific for the conditions. This would allow to 

examine modulations in the connectivity patterns per condition (i.e., as in the 

psychophysiological interaction approach, Friston et al., 1997). In addition, 

obtained results give information concerning correlations, but not concerning the 

direction of influences. Methods such as Granger Causality could be used to 

investigate effective connectivity patterns, and learn which areas in the obtained 

maps influence which (Roebroeck et al., 2005). 

To conclude, in this explorative study, fMRI contrasts revealed that both left IFG 

and left pre-SMA show parametric modulation with complexity during syntactic 

planning of overt speech. The functional connectivity analysis with left IFG and 

left pre-SMA as seeds, most interestingly revealed that both areas are operating 

within different neural circuits within the language network. Left IFG is 

functionally connected within a left lateralized syntactic-integration network, and 

left pre-SMA with a bilateral motor speech network. Overall, this study 

demonstrated that overt naming can be well studied in fMRI using animated 

scenes, to make the production task as natural as possible. It furthermore 

showed that different neural circuits within the language network can be 

delineated within the same cognitive task. 
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Summary 

Patients with the inherited metabolic disorder classic galactosemia have 

language production impairments in several planning stages. The 

characteristics of these impairments are not yet understood. Here, we focus on 

the syntactic aspect of sentence planning. We used functional magnetic 

resonance imaging (fMRI) to study neural activity and connectivity while the 

patients carried out an active language production task. Participants were asked 

to describe an animated visual scene using one of two language conditions, 

varying in syntactic complexity (single words versus a sentence). In cognitive 

terms, this task involved visual processing, conceptualisation of the target 

objects and action, followed by syntactic and phonological planning, and 

articulation. Results showed that the patients recruited a generally similar 

network of brain regions compared to healthy controls, but recruited additional 

and more extensive regions. Both groups showed modulations with syntactic 

complexity in left inferior frontal gyrus (IFG), a region associated with syntactic 

planning, and in right insula - mainly active in patient group. In addition, patients 

showed a modulation with syntax in left superior temporal gyrus (STG), whereas 

the controls did not. Further, patients showed increased activity in right STG and 

right supplementary motor area (SMA). In the functional connectivity patterns, a 

similar pattern emerged with more extensive connectivity with frontal and motor 

regions, and more restricted and weaker connectivity with superior temporal 

regions. Patients also showed higher baseline cerebral blood flow (CBF) in right 

IFG and trends towards higher CBF in bilateral STG, SMA and the insula. Taken 

together, the data demonstrate that language abnormalities in classic 

galactosemia are associated with specific changes within the language network. 

These changes point towards impairments related to both syntactic planning 

and motor speech planning in patients with classic galactosemia. 
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Introduction 

There is neuroscientific evidence for language production impairments in 

several planning stages in patients with classic galactosemia, an inborn error of 

galactose metabolism (Timmers et al., 2012). In the current study, we used 

functional magnetic resonance imaging (fMRI) to investigate potential deviations 

in functional neural networks involved in language production. 

Classic galactosemia is a potentially lethal disorder that results from a profound 

deficiency of galactose-1-phosphate uridyl transferase (GALT) enzyme activity, 

involved in the metabolism of galactose important for energy delivery and 

glycosylation of complex molecules (Holton et al., 2001). Most infants with 

galactosemia are born apparently healthy, but after exposure to breast milk or a 

milk-based formula (containing large amounts of galactose), suffer a rapid and 

devastating demise. Early diagnosis dietary restriction of galactose, prevents or 

resolves the acute manifestations of the disease. However, significant 

complications appear later in childhood. Patients may experience complications 

related to the bones, the ovaries and the brain (Panis et al., 2004; Rubio-

Gozalbo et al., 2010; Waggoner et al., 1990; Waisbren et al., 2012). 

Neurological and cognitive impairments include a lower intelligence, memory 

impairments, slower information processing, and motor dysfunction (Antshel et 

al., 2004; Doyle et al., 2010; Rubio-Agusti et al., 2013; Widhalm et al., 2002). 

Classic galactosemia is also associated with voice disorders, motor (speech), 

and language impairments. In her study, Potter (2011) found that about 58% of 

the children with galactosemia had decreased respiratory-phonatory support for 

speech, and disturbed vocal quality was observed in 33% of the patients. The 

author suggested that the observed problems were indicative of cerebellar 

dysfunction. Childhood apraxia of speech (CAS) or verbal dyspraxia has 

traditionally been reported as an explanation for the speech- and language 

impairments in galactosemia (Nelson et al., 1991; Robertson et al., 2000; 

Waggoner et al., 1990), although recent estimations indicate that only about 20-

25% of the patients with galactosemia meet the criteria for CAS (Potter, 2011; 

Shriberg et al., 2011). In addition, it has been recognised that patients with 

galactosemia do not only have speech or motor related abnormalities (or both, 

Potter et al., 2013), but also impairments in language planning. Early reports 

already described decreased vocabulary, grammar and word retrieval problems 

(Schweitzer et al., 1993; Waggoner et al., 1990; Waisbren et al., 1983). Potter et 

al. (2008) showed that the majority of patients with galactosemia and a history 

of speech sound disorders also had language disorders, which could not be 

explained by lower cognitive abilities. A recent study showed a case with classic 

galactosemia who already at a pre-linguistic level (age 13 month) showed 



Chapter 5 

  102 

clinically significant delays on pre-linguistic skills (Lewis et al., 2013). The same 

group showed that three out of the four children in their study did not meet age-

appropriate phonological awareness (aged 7-9) (Lewis et al., 2012). Recently, 

we used a high temporal resolution method, electroencephalography/event 

related potential (EEG/ERP), to investigate time windows sensitive to syntactic 

planning within patients and matched controls (Timmers et al., 2012). As 

EEG/ERP is rather poor in spatial resolution, the current study used fMRI to 

compare the neural network associated with language production across 

patients and matched controls.  

Previous brain studies in classic galactosemia have shown abnormalities. 

Nelson et al (1992) studied the brains of 67 treated patients (ranging in age from 

one month to 42 years) anatomically and found evidence of mild cerebral 

atrophy (often surrounding the lateral ventricles), cerebellar atrophy in some 

patients, and white matter abnormalities (hyperintensities on T2-weighted data). 

They postulated that the latter might reflect altered myelination as a result of 

abnormal galactocerebrosides which have been shown to be altered in 

histopathological studies in classic galactosemia (Haberland et al., 1971; Ng et 

al., 1989). Other studies have shown similar white matter changes in patients 

with galactosemia, histopathologically or with brain imaging (Crome, 1962; 

Hughes et al., 2009; Krabbi et al., 2011; Rubio-Agusti et al., 2013; Wang et al., 

2001). In a [
18

F]fluorodeoxyglucose (FDG) positron emission tomography (PET) 

study, Dubroff et al. (2008) found widespread decreases in cortical glucose 

metabolism (e.g., in the superior temporal gyrus [STG], medial occipital lobe, 

parietal lobe, cerebellum, calcarine cortex, superior frontal cortex, and superior 

parietal cortex) in addition to some increases in glucose metabolism (in the 

cingulate cortex and temporal poles). Also, nonspecific decreases in 

metabolism were found in the white matter. The authors suggested that there 

might be a relation with the neuropsychological profile of the patients. Hitherto, 

no clear relationship has been found between impairments observed during 

imaging and the cognitive outcome (Kaufman et al., 1995). In the current study, 

we aimed to directly link online language performance to neural data (see 

Timmers et al., 2011, for more information on the framework and approach).  

According to neurocognitive theories of language planning, sentence production 

requires multiple planning stages over time. Based on perceptual input or 

thoughts, a speaker first finds concepts that he/she wants to express in a 

message. These concepts are transferred into neural representation of words 

and sentences in a process that involves access to meaning, syntactic function, 

and phonology. Once parts of this sentence plan are ready, the speaker starts 

to articulate. All this happens online within milliseconds, without us being aware 
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of the underlying neural computations (Bock and Levelt, 1994; Levelt et al., 

1999; Vosse and Kempen, 2000). In patients with galactosemia, high temporal 

resolution EEG/ERP showed that impairments occur already quite early in the 

process, starting from conceptualisation and continuing during lexical and 

syntactic planning (Timmers et al., 2012). 

During language production, several brain regions are recruited, including areas 

in the superior temporal lobe, the temporal-parietal junction and in the inferior 

frontal lobe (Hickok, 2009; Indefrey, 2011, Price, 2010; 2012). For syntactic 

planning, the left inferior frontal gyrus (IFG) has been depicted as (one of) the 

most important regions (BA44/6/45) (see e.g., Cappa, 2012; Indefrey et al., 

2001; 2004), in addition to the medial frontal gyrus (BA 6), superior parietal 

lobule (BA 7), right insula (BA 13), left posterior middle temporal gyrus (MTG) 

and bilateral supplementary motor areas (SMA, BA 6) (Haller et al., 2005; Sahin 

et al., 2006; Menenti et al., 2011; Segaert et al., 2011). For lexical-semantic 

processing, the posterior MTG and anterior temporal lobe (ATL) have been 

implicated most (see Hickok, 2009). Conceptual planning is reflected in a 

network including left MTG, medial superior frontal gyrus (SFG), left MFG, and 

left angular gyrus/inferior parietal gyrus (Ye et al., 2011). The superior temporal 

gyrus (STG) in turn has been linked to phonological planning and monitoring 

(Indefrey and Levelt, 2004; Christoffels et al., 2007; 2011). The left posterior 

part of planum temporale (PT) (also called area Spt or Sylvian parietal-temporal 

area), has been associated with sensory-motor integration, because of evidence 

gathered in fMRI studies (Hickok et al., 2009), but also because of its 

connectivity to the motor areas (Buchsbaum et al., 2001).  

The current study will characterize functional networks associated with active 

language production in patients with galactosemia as compared to controls. We 

acquired fMRI data to examine activity and connectivity patterns within relevant 

brain areas. An important issue in patient studies is a possible confounding role 

of abnormal cerebral blood flow (CBF) that can contribute to an abnormal fMRI 

signal (the blood oxygenation level dependent [BOLD] signal) (Uludağ et al., 

2006). The BOLD signal is directly affected by the blood oxygenation and 

volume, and the blood oxygenation in turn changes with CBF, cerebral blood 

oxygen consumption (CMRO2), and cerebral blood volume (CBV). Baseline 

differences in CBF can have effects on the sensitivity of the BOLD signal, which 

could confound observed BOLD changes, which is why CBF is a relevant 

control for group comparisons in fMRI. CBF was measured in this study using 

arterial spin labelling (ASL). In order to associate the high temporal resolution 

data to high spatial resolution data of the current study, we used a similar 

paradigm to the one used in the previous EEG study. Participants were 
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instructed to either passively watch the presented visually animated scenes 

(control condition), or overtly describe it using one of two responses that vary in 

syntactic complexity (i.e., using sentences or separate words; see Indefrey et 

al., 2001; Timmers et al., 2012). We will examine whether there are any 

differences across groups as to which brain areas are recruited during language 

production, and more specifically syntactic planning, and as to which brain 

areas are functionally connected during this task. 

Methods 

Participants 

Thirteen adolescent and young adult patients with galactosemia and thirteen 

healthy controls participated in this study. Classic galactosemia was diagnosed 

by GALT enzyme activity assay and/or GALT-gene mutational analysis. Two 

participants were excluded: one adolescent patient because of extensive motion 

during the scanning and one adolescent control because of a current health 

condition. Twelve patients remained in the analysis: three males and nine 

females, mean age 17.4 years (SD 1.9 years, range 14.6 – 21.1 years). Patient 

characteristics can be found in Table 5.1. The control group consisted of three 

males and nine females, mean age 17.1 years (SD 1.9 years, range 14.0 – 20.0 

years). Age did not differ significantly between the groups [F1, 22 = .12, p =.73]. 

Participants had no other relevant health conditions. All had normal or corrected 

to normal vision, and were native Dutch speakers. All participants were 

screened for MRI compatibility and signed informed consent (in case of minors, 

both parents/caregivers also gave written informed consent). The Medical 

Ethical Committee of Maastricht University Hospital/Maastricht University 

(azM/UM) gave ethical clearance for this study. 

 

Table 5.1. Classic galactosemia patient characteristics 

 N 
Mean / 

Percentage 
Range 

Age at diagnosis (in days) 12 11.1 0 – 35 

Age at introduction of diet (in days) 12 11.0 0 – 35 

Special education 
1
 12 75 %  

Speech therapy 
1
 12 92 %  

Motor therapy 
1
 12 42 %  
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GALT activity (% of reference value) 12 0.55% 0 % - 1.52 % 

GALT mutation 5 45 % Q188R / Q188R 

 1 9 % Q188R / L195P 

 3 27 % L195P / K229 

 2 18 % other 
2
 

 

1
 At some point in life; 

2
 400Tdel/unknown (n = 2) 

 

Language paradigm 

Visually animated scenes, consisting of three coloured geometric figures, of 

which one moved towards another (either ‘to fly towards’ or ‘to bump into’), were 

presented to the participants. They were instructed to either passively watch the 

scene or to describe it overtly. During passive watching (control condition), the 

scene could be static or animated, referred to as ‘passive watching static’ [‘PS’] 

or ‘passive watching animated’ [‘PA’], respectively. Further, during the main 

active naming conditions, the scene could be described using one of two overt 

responses that varied in syntactic complexity: a complete sentence (e.g., “The 

red triangle bumps into the green square.”; sentence-level syntactic planning; 

referred to as ‘overt description sentence’ or ‘S’) or separate words (e.g., 

“triangle”, “red”, “square”, “green”, “to bump into”; minimal syntactic planning; 

referred to as ‘overt description words’ or ‘W’). Hence, in total there were four 

conditions. For more detailed information on the paradigm, see Timmers et al. 

(2012; 2013).  

Procedure 

The session started with acquainting the participants in a simulation (dummy) 

scanner (Maastricht University), where participants (and if present, their 

parents/caregivers) received information on the scanning procedures and safety 

measures. To prevent excessive motion during scanning, participants were 

explicitly instructed on the effects of motions, on how to prevent motion in the 

scanner and participants practiced lying and speaking in the scanner. After 

acquaintance, participants received instructions and practiced the language 

paradigm (the practice version consisted of 12 practice trials per condition, or 

more until adequate performance of the task was reached). After safety 

precautions were taken (e.g., removal of any metals, ear plugs in order to damp 

the sounds), the participant was placed comfortably inside the scanner, with 

their head fixed with soft foam pads. Through a mirror attached to the head coil, 
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participants were able to see a screen on which the stimuli and an entertaining 

movie were projected (the movie already played while participants were placed 

in the scanner for distraction purposes). 

Prior to the language task, the arterial spin labelling (ASL) sequence was 

recorded. During this scan, the participants were instructed to relax, clear their 

heads, and not think of anything in particular. A fixation point was presented, but 

participants were not obliged to fixate. It was not allowed, however, to close the 

eyes during this scan. 

The main language task consisted of 4 runs in a blocked design. In each run, 

there were 8 blocks (two per condition), and per block there were 5 trials or 

scenes (see Figure 5.1). Conditions were randomized per set of four blocks 

(each condition occurring once). Prior to each block, there was a baseline 

period of 10 seconds (with a fixation point), after which the instruction for the 

specific block was presented for 4 seconds (accompanied by an example in 

case of the overt descriptions), followed by a baseline period of 6 seconds. 

Trials started with a fixation period of 2 seconds, followed by the onset of the 

scene (animated plus freeze period; total duration of 4.5 seconds) and a blank 

screen (1.5 seconds). From the onset of the scene on, participants had 6 

seconds to give their response. Total trial duration was 8 seconds, and total 

block duration was 60 seconds. One run had a duration of approximately 8 

minutes. Per participant, a total of 32 blocks were recorded (8 per condition). 

Participants were instructed to describe the scenes as fast and accurate as 

possible and to abort the descriptions in case the fixation mark signalling the 

next scene appeared (to avoid timing difficulties and stress). Stimulus 

presentation was synchronized with MR data acquisition by triggering the 

stimulus program (Presentation Software, Neurobehavioral Systems Inc) with 

the beginning of each trial. 

Data acquisition 

Data were acquired on a 3-T Siemens Magnetom Allegra head scanner 

(Siemens Medical System, Erlangen, Germany) using a 8-channel head coil, 

and a 3-T Siemens Trio whole body scanner (Siemens Medical System, 

Erlangen, Germany), using a 32-channel head coil (acquisition on two different 

scanners was necessary because of irresolvable technical problems with the 

first scanner and head coil; scanner parameters were identical unless otherwise 

specified; of each group four participants were scanned on the Allegra scanner). 
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Figure 5.1. Schematic overview of the language production task. This figure shows the contents of 

one block (top: starting with an instruction of the specific block condition, followed by fixation points 

and five trials of the same condition, comprising one block) and one run (bottom: a run starts with 

general instructions of the task, followed by eight blocks -two per condition- preceded by a fixation 

point). Further, the conditions and instructed responses are described. 

 

For the functional MRI sequence, thirty-two axial slices (3.5 mm iso-voxel, 

interslice distance 0 mm) covering the entire cortical volume were collected 

using a standard echo-planar imaging (EPI) sequence (repetition time [TR] = 

2000 ms, matrix size = 64 x 64, echo time [TE] = 30 ms, flip angle = 90°). For 

each run, we collected approximately 240 functional volumes, of which the first 

4 were excluded due to T1 saturation.  

For the functional MRI sequence, thirty-two axial slices (3.5 mm iso-voxel, 

interslice distance 0 mm) covering the entire cortical volume were collected 

using a standard echo-planar imaging (EPI) sequence (repetition time [TR] = 

2000 ms, matrix size = 64 x 64, echo time [TE] = 30 ms, flip angle = 90°). For 

each run, we collected approximately 240 functional volumes, of which the first 

4 were excluded due to T1 saturation.  
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In order to be able to post hoc correct the EPI data for inhomogeneities in the 

magnetic field, a field mapping sequence was acquired (TR = 704 ms; TE[1] = 

5.11 ms; TE[2] = 7.57 ms, identical slice positioning to EPI acquisition). 

Anatomical images were obtained using a 1 x 1 x 1 mm resolution T1-weighted 

ADNI MPRAGE sequence (TR = 2250 ms; TE = 2.6 ms; flip angle = 9°). 192 

slices were collected covering the whole brain.  

For the ASL, we used the PICORE-QUIPSS II ASL sequence with the following 

parameters: TI1 = 700 ms, TIs=900 ms and TI2= 1400 ms. 100 volumes were 

collected with 8 slices, positioned to cover the inferior frontal, superior temporal 

and inferior parietal regions (TR = 2000 ms; TE = 20 ms [Trio: TR = 17 ms]; flip 

angle = 90°). In the calibration sequence, 10 volumes were acquired with 

identical slice positioning (TR = 10.000 ms; TE = 20 ms [Trio: TR = 17 ms]; flip 

angle = 90°). 

Data analyses 

Data were analysed using the BrainVoyager QX 2.6 software package (Brain 

Innovation, Maastricht, the Netherlands). Functional data were first corrected for 

geometrical EPI distortions using the anatabacus plugin for BVQX (Breman et 

al., 2009), which applies the pixelshift algorithm (Jezzard and Balaban, 1995). 

The undistorted data were pre-processed: slice scan time differences and 3D 

head motion were corrected (all runs were aligned to the third run -closest in 

time to the anatomical scan- in order to improve co-registration). Runs in which 

the motion exceeded 10 mm were excluded from the analysis (i.e., 1 run was 

excluded); volumes in which the motion exceeded 5 mm were excluded from the 

design matrix (i.e., 8 runs of in total 4 participants -3 patients and 1 control- 

were adapted). In general, however, the motion was less than the voxel size 

(3.5 mm). Linear trends were removed. After pre-processing, the functional runs 

were co-registered with the 3D anatomical data and normalized in Talairach 

space. Subsequently, a temporal high pass filter (3 cycles per run, or 1 cycle per 

approximately 80 volumes) and a 3D spatial smoothing procedure (Gaussian 

filter FWHM of 4mm) was applied.  

By segmenting the grey and white matter in the anatomical images, white matter 

reconstructions of both hemispheres of each participant were made. Per 

hemisphere, cortical meshes were aligned to a dynamic group average using a 

cortex-based alignment algorithm implemented in BVQX (Goebel et al., 2006). 

A group-aligned average cortical surface of each hemisphere was created, after 

which the two hemispheres and corresponding data were merged again.  
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Per participant and per run, a design matrix was created with the 4 conditions 

(i.e., S, W, PA, PS), adjusted for the hemodynamic response delay. The six 

parameters describing the 3D head motion (3 translation parameters, 3 rotation 

parameters) were normalized and added as variables of no interest 

(confounders), as well as the extracted mean signal from the cerebral spinal 

fluid (CSF) and white matter (WM) (as an estimate of physiological noise). On 

the cortical surface, a univariate random-effects (RFX) analysis was performed, 

per group. Resulting maps were overlaid and in overlapping regions (visually 

inspected), patches of interest (POIs; equivalent to region of interest [ROI] in 

surface space) were extracted (cluster size threshold = 25 mm
2
). The peak 

vertex was determined and dilated to 61 vertices, and beta values were 

extracted per condition and per participant. The beta values were fed into a 

repeated measures General Linear Model having age as a covariate in order to 

evaluate group and syntactic complexity effects. In addition, individual beta 

maps per condition were extracted from the RFX analysis in order to inspect 

group differences across the maps (based on t-test, p-values of 0.005 and lower 

are presented). 

Further, based on syntactic complexity effects, POIs were selected as seeds for 

a seed-based functional connectivity analysis. In this analysis, the entire time 

course of a specific POI (i.e., seed) is extracted and correlated or regressed 

with all other vertices on the cortical surface. The rationale is that regions that 

show temporal correlations (or synchronisation) with the seed region are 

interpreted as forming a functional network with the seed region (Huettel et al., 

2004; Li et al., 2009). Again, the dilated peak POIs were used: the time course 

was extracted, normalized and fed into a RFX analysis as a predictor, together 

with the confound predictors (same as in univariate RFX; separate per group). 

In addition, individual beta maps per seed were extracted in order to examine 

group differences across the maps (based on t-test, p-value of 0.005 and lower 

are presented). Statistical contrasts were inspected at the level of the whole 

cortex, if not otherwise specified: FDR corrected at q = .05. 

The perfusion-based arterial spin labelling (ASL) data were corrected for 3D 

head motion as well, after which they were co-registered to the anatomical data 

(both the ASL data and the calibration data). Using the volume-based ASL 

plugin in BVQX, absolute (quantitative) cerebral blood flow (aCBF) maps were 

created for each participant. CBF-weighted images were determined as the 

running difference of control and tagged images using the surround subtraction 

method, and calibration was done using the intensity M0 (see Çavuşoğlu et al., 

2009, for details). The resulting aCBF maps were converted to surface space 

and projected onto the cortical surface of each participant. The group-averaged 
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dilated peak POIs (i.e., all containing 61 vertices) were transferred back to 

individual subject space (i.e., as the aCBF maps were in subject space as well). 

From the individual POIs, the aCBF data were extracted. The data quality and 

efficiency of the tagging were evaluated by inspecting the aCBF values in the 

occipital cortex, and comparing the values to a reference value of around 50 

ml/100g/min for grey matter in visual cortex (Chen et al., 2008). Participants with 

absolute CBF values less than 20 ml/100g/min (to incorporate safety margin) 

were discarded from the analysis. In the final dataset, General Linear Model 

analyses were performed per POI in order to evaluate group differences in 

aCBF. 

Results 

The structural (T1-weighted) data of all patients were evaluated by a 

neuroradiologist (PH). All were evaluated as normal, except one that showed 

evidence of cortical and subcortical atrophy.  

Language production sensitive areas 

Statistical maps of both groups displaying the regions that are sensitive to 

language production in comparison to baseline [‘S’ + ‘W’ > baseline] are shown 

in Figure 5.2A. A generally similar network of regions was observed in both 

groups, including the bilateral precentral gyrus (PG), bilateral superior temporal 

gyrus (STG) / planum temporale (PT), bilateral pre-supplementary motor area 

(pre-SMA), left inferior frontal gyrus (IFG), left insula, regions in the left superior 

parietal and in bilateral medial occipital lobe. Maps in Figure 5.2B show the 

contrast of passive watching versus baseline ['PA' + 'PS' > baseline]. It revealed 

that controls recruit several areas during passive watching that are also 

recruited during active language production, which is not/less present in 

patients. To compare the groups purely with respect to language production and 

to avoid confounding by differences in passive watching, all subsequent 

analyses will be restricted to the contrast language production versus baseline 

[‘S’ + ‘W’ > baseline] instead of to the contrast language production versus 

passive watching ['S' + 'W' > 'PA' + 'PS']. 

Several group differences were observed. The patient group showed a more 

restricted involvement (i.e., less BOLD signal change) of the superior temporal 

lobe (bilateral) and the PT, and a more extensive recruitment in the left IFG, left 

PG and bilateral pre-SMA. In addition, the right insula is recruited in the 

patients, whereas it is not statistically significant in the controls.  
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Figure 5.2. Statistical maps (FDR correction threshold of q < .05), separate per group (controls 

displayed in dark blue; patients with galactosemia in purple). A. The contrast language production 

versus baseline [‘S’ + ‘W’ > baseline] is shown. B. The contrast passive watching versus baseline 

[‘PA’ + ‘PS’ > baseline]. For illustration purposes, the statistical threshold for this latter contrast was 

artificially lowered in the patients, to make it more comparable to the other condition and other group 

(p < .005). 

 

The statistical analysis corroborated that there are several regions showing a 

group difference in the BOLD response (see Figure 5.3). A lower BOLD signal 

change in the patient group as compared to the controls was found in left STG, 

left PT and bilateral occipital regions, while a higher signal change in the 

patients was observed in left middle and superior frontal regions, bilateral PG 

and right posterior insula.  

 

 

Figure 5.3. Group differences across the cortical surface in the contrast language production versus 

baseline ['S' + W' > baseline]. In red, areas are shown in which patients showed higher BOLD signal 

change compared to controls; in blue regions, the patients showed lower signal change compared to 

controls. 
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Patch of interest analysis 

In the POI analysis, several effects were found (see Table 5.2). A group effect 

was observed in the right STG and pre-SMA, where the patients showed higher 

BOLD signal change as compared to the controls. Further, there was an 

interaction effect between group and syntactic complexity in left STG: only the 

patients showed increased signal change during 'S' condition as compared to 

'W'. In the left IFG and right insula, there is a main effect of syntactic complexity: 

sentences 'S' elicited higher signal change compared to words 'W' (no 

interaction effect; although right insula was only part of the patient's language 

network). 

Cerebral blood flow differences during baseline 

Three participants were excluded from the CBF analyses due to insufficient 

tagging efficiency as evaluated by the predetermined criterion (two patients, one 

control participant). The following POIs were covered by the ASL sequence: 

bilateral IFG, STG and insula. Only the right IFG showed a significant difference 

across groups [F1, 16 = 4.84, p = 0.043], with patients having a higher aCBF 

compared to controls (see Figure 5.4).  

 

 

Figure 5.4. Overview of the baseline cerebral blood flow values, per group and per POI (all POIs 

consisted of 61 vertices). Although a trend was present in all POIs, the difference was significant 

only in right IFG. * p < 0.05. 
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Functional connectivity analysis 

Regions showing a modulation with syntactic complexity - left IFG and right 

insula - were used as seeds in a correlation analysis. In addition, a seed was 

placed in left pre-SMA as this region was sensitive to syntactic modulations in 

healthy adults during the execution of the identical task (Timmers et al., 

forthcoming). Resulting functional connectivity maps for patients and matched 

controls are shown in Figure 5.5. Confirming results found in the healthy adults, 

we observed relatively separate networks correlating with the left IFG and left 

pre-SMA, respectively. 

In the controls, activity in the left IFG seed region correlated with other regions 

in the left inferior and middle frontal gyrus (MFG), left insula, left PT / 

supramarginal gyrus (SMG), left posterior superior and middle temporal gyrus 

(MTG) and right IFG. In the patients, generally a similar network appeared. 

However, additional regions showed a correlation with the left IFG, including the 

precentral gyrus and sulcus, more anterior parts of left STG and left MTG, and a 

larger region in right anterior IFG. The statistical comparison corroborated group 

differences: stronger connectivity in the patient group was observed with 

bilateral superior temporal sulcus (STS) / MTG, and with left posterior insula. 

Weaker connectivity was observed with right PT, and bilateral superior parietal 

regions. 

The activity of the right anterior insula seed correlated with activity in right IFG 

and MFG, left anterior insula, and bilateral anterior cingulate cortex (ACC) in 

controls. In patients, the same correlation network was observed, but a more 

extensive network appeared, involving the right precentral and postcentral 

areas, and right STG. Statistical comparisons revealed stronger connectivity in 

the patient group with left PG and posterior MFG; and group differences in 

bilateral parietal areas. In addition, weaker connectivity was found with bilateral 

central sulcus.  

Finally, the connectivity maps showed that the left pre-SMA seed was 

functionally connected with bilateral (pre)SMA, bilateral PG, bilateral STG, left 

PT, and left superior parietal regions. In patients, this finding was again similar. 

However, in contrast to the controls, the group maps showed that in patients the 

seed region correlated more extensively with bilateral (pre)SMA, and PG, and 

less with bilateral STG and left PT. Statistical tests revealed indeed stronger 

connectivity in the patient group with bilateral (pre)SMA, left MFG, right PT and 

insula, and weaker connectivity with left posterior STG and MTG, and with 

bilateral parieto-occipital regions. 
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Figure 5.5. Functional connectivity maps. Left and middle column: Statistical maps resulting from the 

seed-based functional connectivity analysis, separate per group (red indicates positive correlation, 

blue indicates negative correlation). Seed regions were defined based on observed syntactic 

complexity modulation: the left IFG, right insula (see Table 5.2). In addition, the left (pre)SMA was 

included as a seed region, as it has been reported sensitive to syntactic modulations in this task in 

healthy adults (Timmers et al., forthcoming). The seeds are overlaid in green. Maps are thresholded 

at FDR q < 0.05. Right column: Group differences in seed-based connectivity maps across the 

cortical surface, per seed region. In red, areas are shown in which patients showed stronger 

connectivity compared to controls; in blue regions, patients showed weaker connectivity compared 

to controls. Maps are thresholded at p < 0.005. 

 

Discussion 

The current study investigated functional networks associated with language 

production deficits in patients with classic galactosemia, a disease of galactose 

metabolism. For the first time in this patient group, a sentence production 

paradigm was combined with functional MRI. This allowed us to study brain 
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areas and neural networks involved in processing this task. One main finding 

was that the patients recruited a generally similar network during language 

production, as compared to controls. This finding is in line with our previous 

EEG study, in which we used event-related potentials (ERPs, derivatives from 

the EEG) to study the time course of syntactic encoding with the identical 

paradigm. An ERP is an electrophysiological measure of the brain's response 

time locked to a certain stimulus or task. The ERP data of patients and controls 

showed a similar morphology of the ERP waveform, indicating similar neural 

sources of brain activity over time between the two groups (Timmers et al., 

2012).  

A second main finding was that within this target network associated with 

language processing, we observed specific differences in neural activity and 

functional connectivity patterns between patients and controls. This is again in 

line with ERP findings that showed alterations between groups and conditions in 

specific time windows sensitive for syntactic encoding, but also in time windows 

related to conceptual and lexical planning. The current fMRI data showed that 

patients - in comparison to matched controls - involved more extensive, and 

additional areas (in left frontal cortex, PG and SMA; and right insula, 

respectively), while involving other areas less (left STG, PT). A similar pattern 

was observed in functional connectivity maps of the patients, showing stronger 

connectivity with regions in frontal and motor cortex, and weaker connectivity 

with posterior superior temporal regions, compared to controls. Together, the 

data present the first evidence of specific affected neural activity and 

connectivity during language production in this patient population. 

The data revealed that both groups showed a modulation with syntactic 

complexity in left IFG (higher activity for sentences 'S' compared to words 'W'). 

This finding supports previous studies with healthy controls (e.g., Indefrey et al., 

2001; Segaert et al., 2011, Timmers et al., forthcoming). Together with the 

absence of a group effect in activity level in left IFG, it indicates that the left IFG 

is similarly associated with syntactic planning in both groups. The functional 

connectivity patterns with the left IFG seed region, however, showed differences 

across the groups. The patients showed stronger connectivity with bilateral 

STS/MTG, compared to controls. Comprehension studies have found functional 

interactions between left IFG and left posterior MTG (Snijders et al., 2009). The 

authors suggested that the left IFG subserves online integration of lexical-

syntactic information into sentence structure, while activity in posterior MTG 

reflects retrieval processes of lexical-syntactic information from the mental 

lexicon. Stronger connectivity between the left IFG and the posterior MTG in 

patients with galactosemia could reflect increased effort during lexical-syntactic 
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processes, probably related to verbal working memory load. This would be in 

line with previous EEG findings of increased ERP amplitudes during time 

windows associated with lexical planning (Timmers et al., 2012).  

In the univariate language contrast (language production versus baseline), we 

observed less signal change in the PT. This points towards aberrant sensory-

motor integration, a function associated with both PT (see Hickok and Poeppel, 

2007; Hickok, 2009). This finding would be in line with previously reported motor 

speech disorders in galactosemia (Potter, 2011; Shriberg et al., 2011). 

Hypoactivity of the posterior STG and PT has been observed in patients with a 

specific language impairment (SLI) (Badcock et al., 2012), and with childhood 

apraxia of speech (CAS) as well (Liegeois et al., 2003). This idea finds support 

by our findings of a weaker connectivity in patients between IFG as seed region 

and the right PT, and bilateral superior parietal regions. Hence both the fMRI 

and the functional connectivity pattern suggest a suboptimal communication 

between frontal areas associated with overall language planning (IFG) and 

temporal and parietal sensory-motor integration (PT, superior parietal region).  

Another effect of syntactic modulation was found in the right insula, a region 

mainly recruited in patients. Activation of the right insula during syntactic 

planning has been found in few earlier studies as well (Haller et al., 2005; Sahin 

et al., 2006), although it has been suggested that insula activity is associated 

more with articulation aspects instead of pure syntactic planning (Sahin et al., 

2006). A recent review indicates that the left anterior insula is associated mainly 

with planning of articulation, rather than execution (see Price, 2010; 2012), and 

in specific with generalized orofacial functions (e.g., lip and tongue movement, 

and vocalization; Brown et al., 2009). Damage to this region can result in 

apraxia of speech (Ogar et al., 2005). In addition, the (middle posterior) insula 

was found to functionally connect to motor and sensory-motor regions, 

suggesting involvement in sensory-motor integration (Cauda et al., 2011). The 

current data revealed that patients showed stronger connectivity between the 

right insula and regions in the left PG and posterior MFG, and bilateral parietal 

areas, as compared to controls. These findings again suggest alterations in 

neural activity patterns related to motor speech planning. Open to this point is 

whether this insula network has evolved in patients over time to compensate for 

lack of connectivity between IFG and PT/parietal areas. 

Furthermore, patients showed an additional syntactic modulation effect in left 

STG, while the controls did not. This is in contrast with the rather consistent 

finding of less STG recruitment in this task. To recapitulate, patients show 

higher signal change in right STG during language production, lower signal 

change in the left STG, but show a modulation with syntactic complexity in left 
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STG, that is absent in the matched controls. The left STG, as far as we know, 

has not been reported in production studies modulating syntactic complexity. It 

has been reported in language comprehension studies as relevant for 

understanding syntactically complex sentences, and for the integration of 

semantic and syntactic information (see Grodzinsky and Friederici, 2006, for an 

overview). Recruiting and involving additional areas for syntactic planning 

indicates the need for additional neural recourses. As language comprehension 

in the patients is rather intact, it may well be that STG is recruited in patients for 

production purpose too. An alternative explanation is that the observed 

modulated reflects increased monitoring in the complex syntactic (sentence) 

condition as compared to the more simple (words) condition, as speech 

monitoring is associated with the activity in the STG (Indefrey and Levelt, 2004; 

Christoffels et al., 2007; 2011). 

In contrast to healthy adults performing the same task (Timmers et al., 

forthcoming), the patients and the matched adolescent controls did not show a 

syntactic modulation in left pre-SMA. Other studies have found syntactic effects 

in the pre-SMA as well, and have interpreted these effects in terms of 

sequencing processes (Segaert et al., 2011). Thus, activity in pre-SMA might be 

more motor-related than purely language-related. Consistent with that 

suggestion, the seed in left pre-SMA was functionally connected with bilateral 

SMA, PG, STG, and left PT and superior parietal regions. In the patients, using 

pre-SMA as seed region, we observed stronger connectivity with bilateral SMA, 

MFG, right PT and insula, compared to controls. As these regions are all 

implicated in the (sensory)motor system, this finding further supports the notion 

of altered motor planning during speech production in these patients. 

The overall pattern of the results suggests abnormalities associated with 

syntactic planning (in the IFG/MTG/STS network), as well as with (sensory-) 

motor planning of speech production (SMA/insula/STG/PT network). The latter 

finding is not entirely unexpected, given previous studies reporting motor 

speech impairments, such as childhood apraxia of speech, dysathria, and 

respiratory/phonatory difficulties (Potter, 2011; Shriberg et al., 2011), 

movements impairments (e.g., tremor, dystonia) (Rubio-Agusti et al., 2013), and 

co-occurring motor and speech disorders (e.g., speech, coordination and 

strength disorders) (Potter et al., 2013). In addition, 92% of the patients in the 

current study needed speech therapy, and 42% needed physical therapy at one 

point in life. The findings further indicate that the employed paradigm was able 

to capture both the cognitive and the motor aspects of language production, 

reflected in the relatively separated networks functionally connected to the left 

IFG, and right insula/left SMA, respectively.  
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The higher activations, stronger connectivity as well as the more extensive 

network for language production - and specifically syntactic production - might 

have several reasons. First, it might reflect adaptation mechanisms of the 

patients to cope with cognitive difficulties in the task (our previous study 

demonstrated lower performance of the patients on this particular task, Timmers 

et al., 2012). Higher cognitive demands might lead to a higher signal change 

within an area, but it might also result in consulting additional cognitive 

resources related to attention and working memory (see Harvey et al., 2005, for 

an example analogy in major depressive disorder). Alternatively, the finding 

might reflect general neural compensation. For example, we observed that the 

right hemisphere was more involved in the patient group as compared to the 

controls. This finding would then be in line with the idea that the right 

hemisphere is involved in neural compensation for left hemispheric deficits 

(Moore, 1989).  

Moreover, in the right IFG a significant baseline CBF difference was found, and 

trends towards a difference in all other covered regions (the slab covered 

bilateral inferior frontal, insular, and superior temporal regions). The CBF was 

higher in the patient group compared to the controls. A higher baseline level of 

CBF results in lower sensitivity of the BOLD signal, hence a smaller BOLD 

signal change for the same amount of neuronal activity change (Brown et al., 

2003). Thus, the observed increases in the BOLD signal in the patients are not 

explainable by the observed baseline CBF differences.  

An explanation for the observed CBF findings (higher in patients compared to 

controls) is still lacking. In a PET study in patients with galactosemia, the 

authors also observed increases in baseline glucose metabolism in the 

cingulate and temporal regions (Dubroff et al., 2008). This would be in line with 

a tight linkage between baseline CBF and baseline glucose metabolism. 

However, more prominent in the PET study were widespread decreases in 

glucose metabolism, including in the STG, medial occipital lobe and superior 

frontal cortex, which contrast the current findings of increased CBF. However, 

as the PET study differed in many respects (spatial resolution, age of the 

patients, sample size), it is difficult to draw direct comparisons.  

In terms of pathophysiological mechanisms, researchers have suggested 

involvement of myelin deficits (Nelson et al., 1992), as well as altered signalling 

due to myo-inositol abnormalities (Berry, 2011). Myelin abnormalities have been 

found to be relatively widespread across the brain (Nelson et al., 1992), 

although a recent diffusion weighted imaging study from our group observed 

specific regional differences (Timmers et al., submitted). As a result of affected 

myelin, neural information transfer will be less efficient, hence might result in 
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more spread activity patterns. It cannot explain, however, the recruitment of 

additional regions in both language production in general and syntactic 

planning. In addition, other mechanisms are required to explain why some brain 

areas are more affected than others. It has been suggested that epigenetic 

factors are involved (Coman et al., 2010), and future studies have to be 

conducted in order to link these expression profiles to the cognitive profile 

observed in galactosemia. Variations in genetic profile have already been linked 

to relatively specific language impairments (e.g., mutations in FOXP2 gene, see 

Liegeois et al., 2003). 

To conclude, for the first time we show altered neural activity and connectivity 

during active language performance in classic galactosemia. Both the patient 

and control group showed syntactic planning modulations in left IFG, but the 

patients recruited additional areas for this function. Furthermore, we observed 

several specific group differences in the neural activation and functional 

connectivity patterns. We showed that these differences are not related to 

baseline differences between groups in CBF. In addition to aspects of higher 

cognitive load and working memory, the observed difference could point to 

compensation mechanisms for disease-based functional alterations within the 

language network. Full compensation, however, seems to fail in the context of 

language production. Overall, the results demonstrate that these language 

production abnormalities in classic galactosemia are associated with both the 

cognitive counterpart of language production (including syntactic encoding), as 

well as the motor speech (planning) part. This conclusion is based on the 

observed alternations in distinct networks for syntactic planning and motor 

planning in these patients.  
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Summary 

White matter abnormalities have been observed in patients with classic 

galactosemia, an inborn error of galactose metabolism. However, the MRI data 

that has been collected in the past has been generally qualitative in nature. 

Hence, it has been difficult to obtain a comprehensive overview of the 

abnormalities, and to find correlations with outcome and behaviour. The current 

study used high angular, multi-shell diffusion weighted imaging to investigate 

the white matter microstructure in this disease in more detail. In addition to 

standard diffusion tensor imaging (DTI) analyses, we applied neurite orientation 

dispersion and density imaging (NODDI). This analysis technique was designed 

to estimate neurite density and orientation dispersion, two key contributors to 

the widely used fractional anisotropy (FA, derived from DTI), that are 

furthermore biologically interpretable. Results showed extensive white matter 

abnormalities: neurite density index (NDI) was lower in the patient group in 

bilateral anterior areas, and orientation dispersion index (ODI) was increased 

mainly in the left hemisphere. The specific regional profiles are in general 

agreement with the cognitive profile observed in galactosemia showing higher 

order cognitive impairments, and language and motor impairments, 

respectively. Moreover, the white matter properties correlated with disease 

variables (i.e., age, age at onset of diet) and with behavioural outcome (e.g., 

visual working memory). To conclude, this study provides the first quantitative 

evidence of white matter pathology with respect to both density and dispersion 

of neurites in these patients. The results are discussed in light of suggested 

pathophysiological mechanisms. 
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Introduction 

White matter (WM) pathology has been repeatedly observed in classic 

galactosemia, an inherited disorder of galactose metabolism due to severe 

galactose-1-phosphate uridylyltransferase (GALT) deficiency (Holton et al., 

2001). Neonates develop acute symptoms following the ingestion of galactose. 

A galactose-restricted diet resolves the acute symptoms, but long term 

complications still occur in these patients, including language production 

impairments, speech (motor) abnormalities, slower information processing, 

memory and executive functioning deficits, and generally a lower intelligence 

level, despite compliance with the dietary galactose restriction (Antshel et al., 

2004; Doyle et al., 2010; Potter et al., 2008; Potter, 2011; Rubio-Agusti et al., 

2013; Timmers et al., 2011; Waisbren et al., 2012). 

The first extensive study on magnetic resonance imaging (MRI) appearance 

revealed signal hyperintensities on T2-weighted (anatomical) images in the 

majority of patient's peripheral cerebral and cerebellar WM (Nelson et al., 1992), 

with normal signal in internal capsule and corpus callosum. Widespread small 

lesions were found in the WM (17%), with a tendency to be clustered around the 

lateral ventricle. Further, mildly enlarged lateral ventricles (33%), and signs of 

cerebellar atrophy (13%) were observed. The authors postulated that the 

abnormal signal intensity was due to a primary abnormality in the biochemical 

structure of myelin secondary to abnormal and/or deficient galactocerebrosides. 

Histopathological and biochemical examination in an untreated adult patient 

with galactosemia revealed low galactocerebroside levels, which support this 

idea (Haberland et al., 1971). Later studies continued to observe white matter 

abnormalities (Crome, 1962; Hughes et al., 2009; Otaduy et al., 2006; Rubio-

Agusti et al., 2013; Wang et al., 2001), and links with affected myelination 

(Böhles et al., 1986; Widhalm et al., 2002). 

Until now, collected MRI data of patients with galactosemia has been generally 

qualitative in nature. The lack of quantification makes it difficult to obtain an 

accurate picture of the abnormalities, to find correlations with outcome and to 

compare across studies. To investigate WM pathology in more detail, and in a 

quantitative manner, diffusion-weighted imaging (DWI) can be used to assess 

properties and potential abnormalities in tissue microstructure. By modelling the 

diffusion of water molecules, many different parameters can be estimated. Most 

widely known is fractional anisotropy (FA), based on diffusion tensor imaging 

(DTI). FA concerns the degree of anisotropic diffusion, which is higher in WM 

(because of coherently formed fibre bundles) compared to grey matter (GM). In 

numerous diseases, reductions in FA have been found, and linked to axonal 

degeneration (e.g., in amyotrophic lateral sclerosis, Chapman et al., 2013) or 
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myelin breakdown (e.g., in multiple sclerosis, Roosendaal et al., 2009). FA has 

been shown to be a very sensitive measure, but is inherently non-specific 

(Pierpaoli et al., 1996) as a reduction could be caused by a reduction in neurite 

density, an increase in dispersion of orientation, and several other factors. To 

disentangle these key contributors to FA, an approach called neurite orientation 

dispersion and density imaging (NODDI) was developed (Zhang et al., 2012). 

By distinguishing three compartments (intra-, extra-neurite, and cerebral spinal 

fluid) that are each modelled in a biologically informed manner, these 

parameters can be estimated and analysed individually. Measures of neurite 

density and orientation dispersion in WM and GM have shown great 

correspondence to histological measures such as optical myelin staining 

intensity (Jespersen et al., 2010), and quantitative Golgi analysis (Jespersen et 

al., 2012), respectively. In WM, orientation dispersion quantifies the bending 

and fanning of axons and changes in neurite morphology have been implicated 

in diseases, although still mainly studied histologically in post-mortem tissue. In 

multiple sclerosis, for instance, axonal loss, reflected by reductions in axonal 

density and axonal area has been found in normal appearing WM (Evanglou et 

al., 2000). The correlation between FA and neurite density, however, is 

relatively weak, suggesting that for diseases primarily affecting axonal density, 

neurite density might be a more sensitive marker of pathology compared to FA. 

Successful and reliable estimation of neurite density and orientation dispersion 

has been shown in previous studies (Assaf and Basser, 2005; Zhang et al., 

2012), and a recent clinical study has demonstrated its usefulness in 

localisation of cortical malformations in epilepsy patients (Winston et al., 2013). 

In the current study, we applied NODDI to a patient cohort with classic 

galactosemia to study white matter microstructure and establish relationships 

with the observed cognitive profile. Because of the limited available literature, 

we took an explorative approach and focused on potential changes in the main 

white matter tracts of the brain. 

Methods 

Participants 

Eight patients with galactosemia and eight healthy controls participated in this 

study. Classic galactosemia was diagnosed by GALT enzyme activity assay 

and/or GALT-gene mutational analysis, and all patients adhered to a galactose 

restricted diet (see Table 6.1). Characteristics of the groups can be found in 

Table 6.1. Participants had no other relevant health conditions, were screened 

for MRI compatibility, and signed informed consent (in case of minors, both 
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parents/caregivers also gave written informed consent). The Medical Ethical 

Committee of the Maastricht University Hospital/Maastricht University gave 

ethical clearance for this study. 

  

Table 6.1. Participant characteristics 

 
patients  controls 

 
Number range  number range 

group size 8 
 

8 
 

males / females 2 / 6 
 

3 / 6 
 

age (in years) 
1
 17.9 15.9 – 21.2 17.2 14.7 – 20.0 

GALT activity  

(in % of reference value) 
2
 

0.54% 0 – 1.52 % 
  

GALT mutation 4 (50%) 

2 (25%) 

1 (12.5%) 

Q188R/Q188R 

400Tdel/unknown 

L195P/K229N 

  
 

  
urine galactose 

concentration  

(in µmol/mmol creatinine) 

11.9 ND 3 - 33 
 

urine galactitol 
concentration  

(in µmol/mmol creatinine)  

140 97 - 187 
  

age at initiation of diet  

(in days) 
11.8 0 – 35 

  

visual working memory  

(t-score) 
4
 

32.3 22 – 51 
  

sustained attention  

(mean RT) 
5
 

13.8 s 11.3 – 18.1 s 
 

verbal working memory  

(norm score) 
6
 

3.9 3 – 7 
 

voice onset time sentence 
production (in seconds) 

7
 

1.97 s 1.49 – 2.20 s 
  

 

1 
Age did not differ significantly between the groups [F1, 16 = 0.44, p = 0.519]. 

2
 GALT activity was 

measured at diagnosis; 
3 

ND = not detectable; 
4
 as assessed by Rey Osterreith Complex Figure 

Immediate recall (Meyers and Meyers, 1995); 
5
 as assessed by mean reaction time in Bourdon-Vos 

task (Vos, 1988); 
6
 as assessed by Digit Span subtest of WISC-R [norm score has mean of 10, SD 
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of 3] (van Haasen et al., 1986); 
7
 average voice onset time in a sentence production task (see 

Timmers et al., 2012, for more information on these behavioural measures) 

 

Procedures 

The session started with acquainting the participants in a mock (dummy) 

scanner (Maastricht University), where participants received information on the 

scanning procedures and safety measures. After safety precautions were taken, 

the participant was placed comfortably inside the real scanner. Through a mirror 

attached to the head coil, participants were able to see a screen on which an 

entertaining movie was projected during the acquisition (to distract and minimize 

movements). The DWI was part of a larger project (other data will be described 

elsewhere). 

Data acquisition 

Data were acquired on a 3-T Siemens Trio whole body scanner (Siemens 

Medical System, Erlangen, Germany), using a 32-channel head coil. The DWI 

data were obtained using a doubly refocused single-shot spin echo EPI 

sequence. 64 slices with a voxel-size of 2.2 mm were obtained (TR = 8500 ms; 

TE = 97 ms). Data were acquired at two different b-values: b = 1000 s/mm
2
 with 

64 diffusion-encoding gradient directions and b = 2000 s/mm
2
 with 64 diffusion 

directions. In addition, 5 b=0 images were collected, two of which were acquired 

using a reversed phase encoding direction (posterior to anterior), to allow the 

estimation of susceptibility induced distortions. The diffusion encoding directions 

spanned the entire sphere. 

Data analyses 

Pre-processing of the data started with estimating susceptibility induced 

distortions. As part of the data was acquired using reversed phase-encode 

directions, pairs of images were available with distortions going in opposite 

directions. From these pairs, the susceptibility-induced off-resonance field was 

estimated using a method similar to the one described in Andersson et al. 

(2003) (topup of FMRIB Software Library [FSL], Smith et al., 2004). Further, 

eddy current-induced distortions and subject motion were estimated, and all 

distortions were corrected, by simultaneously modelling the effects of diffusion 

eddy currents (using a Gaussian process) and movements on the image (using 

FSL's eddy). Using each participant's output from the eddy method, the b-

vectors were rotated to account for the corrections. 
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From one shell of the corrected DWI data (b1000), the diffusion tensors were 

estimated using a linear fitting algorithm (dtifit, implemented in FSL). DTI-TK 

was used for tensor-based spatial normalization of the volumes to an iteratively 

optimized template (Zhang et al., 2006). The algorithm applies a deformable 

registration to the tensor images, resulting in improved registration as compared 

to FA-based registration algorithms (Keihaninejad et al., 2013). The resulting 

normalized images were averaged, and high-resolution FA maps (1 mm iso-

voxel) were derived. The mean FA image was thinned to create a mean FA 

skeleton, representing the centres of all tracts common to the group (as 

implemented in tract based spatial statistics [TBSS] of FSL, Smith et al., 2006). 

Each subject's aligned data was then projected onto this skeleton using 

calculated distance maps, and the resulting data were fed into the statistical 

analysis. 

In parallel, neurite orientation dispersion and density imaging (NODDI) was 

applied to the pre-processed data. The NODDI tissue model distinguishes 

between three compartments: 1) intra-neurite space, representing neurites 

(space bounded by neurite membranes) and modelled as restricted diffusion (in 

particular, sticks, incorporating orientation dispersion utilizing a Watson 

distribution); 2) extra-neurite space, surrounding the neurites (occupied typically 

by glia cells and somas in GM), which is modelled as hindered, but not 

restricted diffusion (anisotropic Gaussian diffusion); and 3) cerebral spinal fluid 

(CSF), modelled as isotropic Gaussian diffusion. The main resulting parameters 

of NODDI are: neurite density index (NDI), derived from the intra-neurite volume 

fraction (typically high in WM, low in GM); and orientation dispersion index 

(ODI), which quantifies the angular variation of neurite orientation (ranging from 

0 for perfectly coherently oriented structures, to 1 for isotropic structures; 

typically high in GM, low in WM). The output scalar images from NODDI were 

normalized to the - already defined - study-specific common group space using 

the transformation fields as calculated per participant during the tensor-based 

registration. Then, the normalized NDI and ODI data were projected onto the -

already calculated- mean FA skeleton using the original distance maps. 

On the skeletonised FA, NDI and ODI maps, permutation-based statistics were 

carried out (as implemented by randomise in FSL; 5000 permutations). First, a 

design was used having group as a between-subjects factor, and age as a 

covariate. Second, correlations with several disease and available behavioural 

outcomes (see Table 6.1) were examined across the skeleton and within 

regions of interest. P-values were corrected by means of the Threshold-Free 

Cluster Enhancement (TFCE) option (Smith and Nichols, 2009). A corrected 

alpha level of 0.05 was considered as significant. 
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Results 

Differences across groups 

On the left columns of both sides in Figure 6.1, the mean FA maps are shown 

with the mean FA skeleton. Superimposed are the significant group differences, 

which are observed across the majority of the WM tracts, except for the 

cerebellar tracts. 

In the middle columns of Figure 6.1, the mean NDI maps, the skeleton and 

corresponding group differences are shown. Comparing these differences with 

FA, one can notice that the density changes overlap with FA changes, but are 

more localized. NDI changes were found mainly bilateral and located mostly in 

the anterior part of the brain. In Figure 6.2, the NDI group differences are 

overlaid on colour maps in coronal and sagittal orientations, aiding in the 

localization of the tracts (using Wakana et al., 2003). Affected tracts include the 

anterior part of the corpus callosum (CC) and forceps minor (bilateral), corona 

radiata (bilateral), part of the internal (IC; right) and external capsula (EC; right), 

uncinate fasciculus (UF; bilateral), superior longitudinal fasciculus (SLF; 

bilateral) and inferior longitudinal fasciculus (ILF; right).  

On the right-sided columns in Figure 6.1, group differences in ODI are 

displayed, overlaid on the mean ODI maps and the skeleton. Again, the ODI 

changes are overlapping with FA, but more specifically localized. The dispersion 

changes are mainly located on the left, middle parts of the brain and show 

minimal overlap with the NDI changes (see Figure 6.2 for an overlay of the 

results on coronal and sagittal colour-coded images). Affected tracts include the 

CC, corona radiata (bilateral) and IC (cortico-spinal tract), EC, SLF, and ILF. 

In order to examine the cerebellum irrespective of the skeleton, ROIs were 

manually drawn based on the group averaged FA map: two in bilateral middle 

cerebellar peduncles (one more anterior, one more posterior). No group 

differences were found in FA, NDI or ODI (all p > 0.3). 
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Figure 6.1. Group differences in main white matter tracts. Average group maps of the FA values, 

neurite density index (NDI) values, and orientation dispersion index (ODI) values (all ranging from 

0.2 - 0.8), in transversal slices covering the majority of the brain from superior to inferior. 

Superimposed are the mean FA skeleton (green) and the statistical group differences (red: controls 

> patients; blue: patients > controls). Presented results are TFCE-corrected and thresholded at a 

corrected alpha-level of 0.05. For display purposes, the results are thickened by filling it out into the 

local tracts (as implemented in TBSS). Note that left is right in these images. 

 

Correlations with disease and behavioural variables 

FA, NDI and ODI did not correlate with age across the skeleton in the controls. 

ODI values in the patients, however, tended to be higher in older patients in 

several regions, mostly on the right hemisphere (Figure 6.3). No correlations 

with age were found for NDI and FA in the patients, or with any of the other 

behavioural measures. 
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Figure 6.3. Correlations between ODI and age across the skeleton. Significant correlations are 

overlaid on the mean skeleton and mean ODI map. Depicted in blue are positive correlations (there 

are no negative correlations). Presented results are TFCE-corrected and thresholded at a corrected 

alpha-level of 0.05. For display purposes, the results are thickened. Note that left is right in these 

images. 

 

 

Of the areas in which significant group differences in NDI and/or ODI were 

found, regions of interest (ROIs) were created. Mean parameter values within 

these regions can be found in Table 6.2. Associations with age (in both groups), 

and with several other variables were calculated (only available for the patients; 

see Table 6.2). Results showed that ODI in the CC was positively associated 

with age of the patients. In controls, FA in the left CC, ILF and SLF was 

associated with age, showing the opposite (negative) relation to that observed in 

the patients. In addition, the age at onset of diet showed several negative 

correlations: in bilateral forceps minor (with NDI, only right forceps minor 

correlated negatively with FA), and in EC (with FA). Several other trends (p < 

0.01) were observed as well (see Table 6.2). A selection of the correlations is 

plotted in Figure 6.4. 
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Mean values in the ROIs were correlated with available cognitive measures of 

the patient group as well
1
. Visual working memory performance was positively 

correlated with FA in right ILF (better performances are associated with higher 

FA), and several trends were observed and shown in Table 6.2.  

 

 

 

Figure 6.4. ROI correlation analyses. A selection of significant correlations of regions of interests 

(ROIs) based on group differences in NDI (A) or in ODI (B). Added are a linear trend line, the 

correlation, and an illustration of the location of the ROI.  

 

Discussion 

The current study has enabled us to investigate for the first time white matter 

(WM) properties in the main WM tracts of patients with the metabolic disorder 

classic galactosemia. In addition, the NODDI analysis allowed us to go beyond 

the standard fractional anisotropy (FA) analyses and include estimations of 

neurite density and orientation dispersion. Previous studies have consistently 

found WM abnormalities in these patients, and this study extends these findings 

                                                        
1
 All patients are part of a study cohort, and participated in earlier studies as well. 
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by showing lower FA values, lower neurite density (NDI), and higher orientation 

dispersion (ODI) in several tracts as compared to the control group. Moreover, 

we observed correlations of these parameters with disease variables and 

behavioural outcome. 

Extensive differences were found across the patient group and the matched 

controls. Standard DTI analyses showed lower FA values in the patient group 

spread over almost the entire cerebrum, illustrating the sensitivity but non-

specificity of FA. Reductions in FA values have been found in numerous studies 

and have been linked to axonal degradation, myelin abnormalities, or a general 

lower integrity of the white matter (see Winston, 2012, for an overview). 

However, lower FA values can be the result of a number of underlying 

mechanisms. Reduced density, increased orientation dispersion, and other 

factors can contribute to lower FA values. The NODDI analyses allowed us to 

disentangle the FA into NDI and ODI, and as expected these measures showed 

more localized and specific results. Lower NDI was found in multiple tracts, 

mainly in the anterior parts of the brain (bilateral), and higher ODI was found 

mostly left-lateralized in multiple tracts. Other studies have found widespread 

white matter abnormalities in these patients, with a tendency to be clustered 

around the lateral ventricles (Nelson et al., 1992). Although the current data 

does not support the notion of small widespread lesions and a patchy nature of 

the abnormalities, we observed that abnormalities tended to cluster along the 

lateral ventricles, as for instance the SLF, ILF and IC run alongside this 

ventricle. In contrast to Nelson et al. (1992), we observed involvement of both 

the CC and IC, suggesting that the current method is more sensitive to reveal 

abnormalities. Surprisingly, we did not observe any abnormalities in the 

cerebellar WM, not by using the skeleton-approach nor the ROI-approach. 

However, we cannot exclude that there may be fine-grained differences in 

cerebellar WM that will be picked up with higher resolution images, larger 

sample sizes and/or in tract-specific analyses. 

The finding that several major tracts are less dense in patients with classic 

galactosemia could be an indirect result of abnormal myelination. Although 

diffusion cannot directly assess myelin, a reduction in myelin will result in 

reduced NDI (i.e., myelin loss increases in the extra-neurite space, which - 

indirectly - leads to a reduction in the - relative - volume fraction of the intra-

neurite space). In turn, this reduced density could lead to less coherently 

organized axons, and thus to increased ODI. In other words, increases in ODI 

could be an indirect result of abnormal myelination as well. In GM, ODI is 

associated with dendritic branching and hence with density of local synaptic 

connectivity. In WM, which needs to be coherently oriented to be efficient, 



White matter abnormalities in galactosemia 

 

 139 

higher dispersion may be less favourable. Increased ODI in these patients might 

also be a result of reduced or delayed pruning of the axons. In several regions, 

however, we observed an increasing ODI with increasing age. Noticeable is that 

the correlations between ODI and age were mainly observed in the right 

hemisphere, while the group differences were largest in the left hemisphere. 

Speculatively, it might be the case that the ODI values in the left hemisphere 

showed little variation across participants because of the degradation (floor 

effect), and hence no proper correlation with age. In the right hemisphere there 

might have been more variation in ODI values, enabling us to find a correlation 

with age (see Table 6.2 to compare the standard deviations). Another 

explanation for the increased orientation dispersion is that it reflects increased 

branching of axons as a compensation mechanism. Longitudinal designs could 

give more insight in this matter. 

The pattern of the observed abnormalities is generally in line with the described 

cognitive profile in classic galactosemia. The neuropsychological profile 

includes motor / speech, language, (working) memory, visuo-spatial, and 

attention problems (Antshel et al., 2004; Doyle et al., 2010; Waggoner et al., 

1990; Waisbren et al., 2012). In general, the left-lateralized nature of the ODI 

findings is in accordance with the observed language and motor abnormalities, 

as both are generally left-lateralized as well (Gotts et al., 2013; Kell et al., 2011). 

More specifically, we observed abnormalities in both the UF (NDI) and the SLF 

(NDI and ODI). These tracts, or more specifically part of the SFL (also referred 

to as the arcuate fasciculus, AF), are strongly associated with language 

processing (Friederici, 2009; Glasser and Rilling, 2008). The AF connects 

temporal and parietal regions with the frontal lobe. Abnormalities in the AF have 

been linked to conduction aphasia for instance (Catani and Mesulam, 2008), 

and underdevelopment of this tract in children goes hand in hand with language 

processing difficulties (see Friederici, 2009). The finding that longer voice onset 

times (worse performance) in a language production paradigm tends to be 

associated with higher orientation dispersion (less favourable) in the SLF is also 

consistent with the involvement of this tract in the observed language 

abnormalities. The UF has furthermore been associated with language 

functions, among other reasons because of its left-lateralized nature (FA values 

are higher in the left UF), and the regions it connects. It provides a ventral route 

between inferior frontal regions and more anterior superior temporal regions. 

Recently, it was suggested that the ventral routes are important for 

comprehension of language (mapping sounds to meaning) (Saur et al., 2008). In 

addition, we observed involvement of the IC that contains fibres projecting from 

the medulla oblongata to the cerebral cortex, and include motor tracts such as 
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the corticospinal tracts. We also found abnormalities surrounding the precentral 

gyrus, the premotor and primary motor area of the brain. These two latter 

findings are in line with motor abnormalities and motor speech abnormalities 

that are often reported in patients with galactosemia (Potter, 2011; Potter et al., 

2013; Rubio-Agusti et al., 2013; Shriberg et al., 2011).  

Furthermore, the anterior nature of the NDI changes and the extensive 

involvement of the corona radiata fit with a profile showing impairments in 

higher order processes. For instance, working memory functions are subserved 

by regions in the prefrontal and inferior frontal cortex, among other regions 

(Cabeza et al., 2002; Martin and Chao, 2001). Additionally, maturation of white 

matter in several regions of the frontal lobe correlates with performance in 

working memory tasks (see Klingberg, 2006), and networks of attention have 

been shown to involve the SLF and anterior corona radiata (Ge et al., 2013). In 

the current study, lower performance in behavioural tasks such as visual 

working memory and sustained attention tended to be associated with lower 

(less favourable) NDI and FA in the anterior corona radiata.  

Several studies in galactosemia have suggested that the cognitive 

complications progress with age, while others have refuted this claim (e.g., 

Doyle et al., 2010; Waisbren et al., 2012). In the current study, we found a clear 

relation with age. When inspecting the main WM tracts (i.e., the entire skeleton), 

we found several regions showing a negative relation between age and ODI, 

meaning that ODI tends to be higher in older patients (but not in controls). Also 

when inspecting the specific regions in which group differences were found, 

multiple relations with age are observed, showing that lower FA or higher 

orientation dispersion in mainly the CC, forceps minor and corona radiata tends 

to be observed in older patients. No or opposite correlations were found in the 

controls group. Although we are mindful that our sample size was relatively 

small and the data are cross-sectional in nature, the results seem to indicate a 

progressive nature, at least with respect to the ODI changes. As earlier 

reported, we observed a negative relation with the age at onset of the diet. The 

present data suggests that the older the patient at the onset of the diet, the less 

favourable the white matter properties are in many WM tracts, including bilateral 

forceps minor, IC, EC, SLF, ILF, and right corona radiata.  

It remains unclear why certain regions are more affected than others. NDI is 

lower particularly in anterior regions. One potential explanation is that tracts that 

mature relatively late are affected most. It is known that, during normal 

development, myelination starts in the posterior parts of the brain and spreads 

to anterior regions. In prefrontal regions myelination even continues into 

adolescence (Asato et al., 2010; Fuster, 2008). Hence it might be the case that 
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this late myelination is more disturbed. Future studies to understand the timing 

and precise mechanisms of the damage are warranted.  

Conclusion 

We demonstrated extensive white matter abnormalities in patients with classic 

galactosemia in both the density of the neurites and the orientation dispersion 

(two key contributors to standard FA). Specific regional profiles were found that 

are in general agreement with the cognitive profile in galactosemia: a left-

lateralized profile in ODI is in line with language and motor abnormalities, while 

the anterior pattern of NDI changes is in accordance with the general profile of 

higher order cognitive impairments. In addition, white matter properties were 

correlated with disease variables such as age and age of onset of the diet, and 

with behavioural outcome such as visual working memory, attention, and 

language performance. Hence this explorative study provides the first 

quantitative evidence of white matter abnormalities revealing both density and 

dispersion changes. Further studies should focus on specific tracts, and explore 

in depth the relations between these tracts and cognitive (dys)functioning. 
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n this dissertation, we have used a multidisciplinary approach to investigate 

language production impairments in patients with classic galactosemia, an 

inborn error of galactose metabolism (Holton et al., 2001). We aimed to learn 

more about the language impairments caused by this metabolic disease by 

using methods and perspectives from cognitive neuroscience [see Chapter 1]. 

The product of these joined efforts is bundled in this thesis and here I will 

discuss the most important results, conclusions, and further perspectives. 

In the first chapters, we used electroencephalography (EEG), and its derivative 

event-related potentials (ERPs), to investigate temporal characteristics of 

language production. In particular, we adapted a paradigm in which multi-word 

utterances were elicited in a relatively natural manner via animated visual 

scenes (Indefrey et al., 2001, 2003). In the paradigm, the amount of syntactic 

complexity in the utterances is manipulated, allowing us to focus on syntactic 

planning specifically. Important to note is that experiments were conducted 

essentially within three groups: adolescent patients with classic galactosemia, 

age- and gender-matched healthy controls, and healthy adults (to obtain a basic 

understanding and a working model). Hence, the data presented in the different 

chapters are independent. 

In healthy adults [Chapter 2], we observed that the paradigm was successful 

insofar that increasing syntactic complexity resulted in an increase in errors and 

corrections. Studying the ERPs (i.e., the brain's averaged response to the 

stimulus or task at hand), we found ERP components associated with 

immediate noun phrase-planning: a syntactic modulation was observed in a first 

P3 (450-550 ms post scene onset) and in a fronto-central negativity (600-900 

ms post scene onset). In addition, we were able to examine relatively late ERP 

components, related to noun phrase assemblies and overall sentence 

integration: another P3 component varying with syntactic planning was 

observed (300-500 ms after a second critical visual event; equivalent to 1820-

2020 ms post scene onset). These data shows for the first time evidence of 

sensitivity to syntactic planning within the P3 time window, time-locked to visual 

events critical of syntactic planning. 

In the group of patients with classic galactosemia and matched controls 

[Chapter 3], the same paradigm was employed. Previous studies showed that 

these patients often experience speech and language impairments (see e.g., 

Potter et al., 2008; Waisbren et al., 1983), but the focus in the literature and 

clinical practice had mostly been on (motor) speech disorders. Behaviourally, 

we observed that the patients needed more time to prepare and finish the 

utterances, and made more errors. The patient ERPs had a very similar 

morphology to those of healthy controls, indicating overall comparable neural 

I 
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processing. However, the patients showed diverging ERP components in 

several time windows, starting very early in the process (90-150 ms post scene 

onset) and continuing throughout several language planning stages. In this 

study, we provided for the first time neuroscientific evidence of language 

production impairments in conceptual, lexical and syntactic planning stages, 

which could not be explained by a (motor) speech disorder only. 

Comparing the adult data with the patient and adolescent control data, several 

agreements, but also some differences are observed. Note also that the 

paradigm was slightly modified (or simplified) for the adolescents by having only 

two syntactic conditions ('sentences' and 'words'), while the adult's paradigm 

contained an extra intermediate 'noun phrase' condition. Both adults and 

adolescents showed syntactic modulations in the behavioural data (both in the 

amount of corrections), in an early P3 component (adolescents: 350-650 ms 

post scene onset; adults: 450-550 ms and 600-900 ms post scene onset), and in 

a later P3 component (300-500 ms verb disambiguation in both). This 

comparison reveals that adults showed a more distinctive profile with two 

separated syntactic modulations following scene onset and more behavioural 

modulations. In addition, the adults showed a syntactic modulation in the voice 

onset times, while the adolescents did not. This indicates that in adult speakers, 

there is already advance syntactic planning prior to initiation of the utterance, 

while in adolescents this is not the case. The differences are most likely due to 

the age difference across the groups (adults were on average 21 years of age, 

while adolescents were on average 14-15 years old). In future studies, it would 

be interesting to draw a more direct comparison across the age groups. 

In the following chapters, we used functional magnetic resonance imaging 

(fMRI) to investigate potential deviations in functional neural networks involved 

in language production. Starting with healthy adults [Chapter 4], we learned that 

both the left inferior frontal gyrus (IFG) and left pre-supplementary motor area 

(pre-SMA) show parametric modulations with syntactic planning. When looking 

at functional connectivity patterns, we observed that the left IFG and left pre-

SMA communicated with a different network of brain regions during the 

language production. While left IFG seed was functionally correlated to a left-

lateralized collection of regions in middle and inferior frontal regions, insula, 

planum temporale and middle temporal gyrus/superior temporal sulcus; the left 

pre-SMA seed was functionally connected to bilateral motor-related regions 

including bilateral SMA, precentral gyrus and sulcus and superior parietal 

regions. This study shows that the language network has specialized functional 

sub-networks for syntactic planning and integration on the one hand (left-

lateralized network) and motor speech planning on the other hand (bilateral 
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network). These functional networks may work in parallel to deal with the 

different aspects of language production. Future analyses will look into 

modulations of these correlations with syntactic planning, and into directions of 

connectivity (who influences who, as can be investigated using Granger 

Causality approaches, Roebroeck et al., 2005). 

In patients with classic galactosemia [Chapter 5], we observed a generally 

similar network compared to the matched controls (and to the adults). All 

groups, including the patients, showed a syntactic modulation in left IFG. 

However, the patients recruited additional and more extensive frontal and motor 

regions while performing the language production task, and less posterior 

temporal regions. The patients showed an additional syntactic modulation in the 

left superior temporal gyrus (STG), and in right insula, and showed increased 

activity in the right STG and right SMA. The functional connectivity data 

revealed a similar pattern: a similar collection of regions was functionally 

correlated with the seed regions (placed in left IFG, left SMA, right insula), but in 

the patients more extensive connectivity with frontal and motor regions was 

observed, and more restricted and weaker connectivity with superior temporal 

regions. For the first time, we showed altered neural activity and connectivity 

during active language performance in classic galactosemia. The results are in 

agreement with the EEG/ERP study [Chapter 3], that showed increased 

amplitudes in several ERP components, but a generally similar morphology of 

the ERP waveform. The data demonstrate that language abnormalities in 

classic galactosemia are associated with both the cognitive counterpart of 

language production (including lexical and syntactic encoding), as well as the 

motor speech part. 

Again comparing the age groups, we observed a generally similar network of 

regions recruited for the language production task. All three groups showed a 

syntactic modulation in left IFG, a region often associated with syntactic 

processing (e.g., Indefrey et al., 2001; Segaert et al., 2011). In contrast to the 

adults, however, the patients and adolescent controls did not show a syntactic 

modulation in left SMA. One possible methodological explanation for the 

absence of this effect could be the simplified version of the paradigm in the 

adolescents (with only two syntactic modulated conditions versus three in the 

adults). Another explanation could be that for adolescents the conditions were 

equally difficult with regard to speech preparation (i.e., age related differences in 

performing the task). Supporting this reasoning are a lack of syntactic 

modulation effects in the amount of errors and the voice onset times in 

adolescents, and an overall weaker performance as compared to the adults 

(both in accuracy and reaction times). The functional connectivity patterns were 
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very similar as well, showing two separate networks correlating to left IFG and 

left pre-SMA. Again, a more direct comparison of these results would be 

interesting to investigate aspects associated with development. 

Finally, in the last chapter [Chapter 6] we used diffusion weighted imaging (DWI) 

to assess white matter microstructure in patients with galactosemia. White 

matter abnormalities are often reported in classic galactosemia (through 

histopathological and structural imaging studies), but have never been 

quantified before. By using neurite orientation dispersion and density imaging 

(NODDI) (Zhang et al., 2012), we were able to estimate neurite density and 

orientation dispersion: two key contributors to fractional anisotropy (FA), the 

standard measure derived from diffusion tensor imaging. The data revealed 

extensive differences across the groups in the main white matter tracts. Specific 

regional patterns in density and dispersion changes were found that are in 

general agreement with the observed cognitive profile in galactosemia. A left-

lateralized profile in dispersion changes is in line with language and motor 

abnormalities, while the anterior pattern of density changes is in accordance 

with the general profile of higher order cognitive impairments. Furthermore, 

several correlations were found with disease variables and behavioural 

outcome. Hence, this explorative study provides the first quantitative evidence 

of white matter microstructure abnormalities revealing both changes the density 

and orientation dispersion of neurites in classic galactosemia. 

Taken together, we have provided evidence that patients with galactosemia 

show altered neural activity in conceptual, lexical and syntactic planning time 

windows [Chapter 3]; evidence of generally similar, but specific differences in 

recruitment of and connectivity between specific brain regions of interest for 

language planning and production [Chapter 5]; and evidence of affected white 

matter tracts that connect to regions involved in, among other things, language 

production and motor function. One of the driving forces in this dissertation was 

the hypothesis that motor speech disorders such as childhood apraxia of 

speech did not explain the full range of language production impairments that 

were observed in classic galactosemia [see Chapter 1]. Supporting this 

hypothesis are the observed impairments during language production that - 

according to psycholinguistic theories - occur prior in time to the output stages 

[Chapter 3]. However, we have also provided evidence that part of the 

impairments is related to sensory-motor integration, motor planning and 

execution. In both Chapter 5 and 6, we observed altered activity in and 

connectivity patterns between brain areas, in addition to affected white matter 

tracts that are involved with both language and motor speech planning. Hence, 

we have to conclude that the difficulties lie not only in the cognitive part of 
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language planning, and not only in motor planning or execution of speech, but in 

a combination of both. Future studies with designs that explicitly disentangle 

cognitive versus motor contributions to language production will gain more 

insight in their relative contributions. 

Another driving force was the interesting dissociation between impaired 

language production and relatively intact language comprehension. Although 

production and comprehension have been separate fields of study in 

psycholinguistics, recent discussions suggest that they might be more 

interwoven than previously assumed, and that they largely share underlying 

neural mechanisms (see e.g., Kempen, 2013; Pickering and Garrod, 2013). 

Nevertheless, some regions and processes are more involved in production 

compared to comprehension. For instance, bilateral pre- and postcentral gyri 

showed more adaptation and hence more involvement in production than in 

comprehension processes (Menenti et al., 2011). In addition, the left MFG, left 

anterior insula, left putamen, anterior cingulate, (pre)SMA, motor cortex, and 

cerebellum are found to be more specifically activated during speaking than 

during listening (see Price, 2010; 2012, for an overview). The finding that many 

of these regions are specifically shown to be deviating in terms of activity or 

connectivity in classic galactosemia is key to explaining the observed 

dissociation between speaking and listening. It would be interesting to conduct 

specific studies into the comprehension counterpart. For instance, the same 

paradigm as was used in this thesis could be applied in a comprehension 

context (see Indefrey et al., 2003), after which direct comparisons of both tasks 

can be made within individuals and across groups. 

An important issue in clinical studies is possible confounding by abnormal 

cerebral blood flow (CBF) that can contribute to an abnormal fMRI signal - the 

blood oxygenation level dependent (BOLD) signal (Uludağ et al., 2006). 

Observed group differences could well be due to differences in overall blood 

flow between groups and hence may lead to different sensitivity of the BOLD 

signal. In this thesis, we employed arterial spin labelling (ASL) to quantify CBF 

to examine whether patients differ in baseline CBF as compared to controls. In 

one region (and trends in the other regions), higher CBF was observed in the 

patient group. However, higher baseline CBF implies higher blood oxygenation 

and lower amount of deoxygenated haemoglobin. As the BOLD signal is 

sensitive to changes in deoxygenated haemoglobin, this will be reflected in a 

reduced dynamic range and hence lower BOLD signal sensitivity (i.e., lower 

signal change for the same amount of neuronal activation) (see e.g., Brown et 

al., 2003). As we observed increased BOLD signal changes in the patients, this 

means that these differences cannot be explained by CBF differences across 



General Discussion  

 149 

groups. Further investigation of the baseline CBF levels in these patients, 

however, is warranted. 

An important point to note about the fMRI studies described in this thesis is that 

analyses are focused on the cerebral cortex. As a method of choice, cortex-

based alignment was applied to achieve an optimal alignment of the individual 

brains. As a consequence, subcortical structures and the cerebellum are not 

included in the analyses. Future studies are required to look into these 

structures and their involvement in classic galactosemia per se (as cerebellar 

involvement is often suggested in this disease, see e.g., Potter et al., 2013; 

Rubio-Agusti et al., 2013), and their role in the language production impairments 

in this disease.  

Further, one obvious aim should be to be able to make predictions and 

statements on the individual level of the patient, both with respect to present 

and future performance (progression of the disease). Can we predict from the 

brain data which patient will show more difficulties in the cognitive planning part 

and less in the articulatory part, or vice versa? And what other variables (e.g., 

gender, age, diet, social factors) are important and can help to predict outcome? 

Such information will be particularly useful in designing tailored treatment 

approaches. 

In addition to the need for more studies on language abnormalities, other 

cognitive domains deserve more attention as well. For instance, how can we 

explain that almost all patients with classic galactosemia experience difficulties 

with mathematics and arithmetics (Antshell et al., 2004; Bosch et al., 2004)? 

And what is the role of working memory in the cognitive impairments? In the 

EEG/ERP study [Chapter 3], we failed to find a correlation between verbal 

working memory performance and the ERP results, suggesting that potential 

impairments in verbal working memory did not contribute to the observed effects 

in that study. However, the important role of memory deserves more attention in 

this group of patient as clearly, any working memory impairments will affect the 

higher order cognition. 

Besides using cognitive tasks in combination with neuroimaging (e.g., ERP or 

fMRI), or correlating cognitive performance with imaging data (e.g., with density 

measures in white matter tracts), one could consider resting state fMRI. Resting 

state fMRI concerns spontaneous neural activity in the absence of any explicit 

task. The rationale is that these spontaneous activity patterns reveal information 

about the functional organization of the brain (Damoiseaux et al., 2006). The 

fact that there is no need for active task performance is especially attractive in 

studying clinical populations, where participants often have difficulties 

performing a task or the risk of large task-related movement effects is present. 
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In galactosemia, resting state fMRI could give an overview of potential 

deviations in intrinsic functional networks. For instance, researchers have 

identified several resting state networks including the default mode, 

sensory/motor, executive control, fronto-parietal, and auditory network (Rosazza 

and Minati, 2011). It would be interesting to study these networks in patients 

with classic galactosemia, after which more detailed studies into the networks 

can follow. 

Recently, researchers, clinicians and dieticians have joined forces and initiated 

an international consortium (European-America Galactosemia Network), 

supported by the patient organisations. By working together, researchers will be 

able to generate large sample sizes and collect a multitude of data. One of the 

most important aims for the consortium and for galactosemia research in 

general is to better understand pathophysiological mechanisms behind the 

complications, and to design new treatment approaches. Despite the diet, the 

majority of patients still develop complications mainly affecting the female 

gonads and the brain. Suggested mechanisms behind the brain abnormalities 

are: 1) glycosylation deficits affecting galactocerebrosides, which result in 

secondary myelin abnormalities; 2) (myo)inostitol deficiency affecting neuronal 

signalling. The data presented in this dissertation support the idea of abnormal 

myelin, resulting in white matter abnormalities [Chapter 6]. Whether the altered 

neural activation patterns are a result of these myelin abnormalities, a result of 

signalling deficiencies, or both, cannot be directly answered. For instance, it is 

very plausible that a more extensive recruitment of brain areas is part of an 

adaptation mechanism, to compensate for less efficient information transfer. 

And compensation might partly be quite successful, as comprehension of 

language is relatively intact in this disease, but it partly also fails given the 

observed impairments in production of language. Our discovery of specific 

involvement of brain areas that are particularly associated to speaking (and less 

or not to listening) might shed some brighter light onto the correlation of brain 

damage/alterations and cognitive impairments. In line with the compensation 

hypothesis, we see increased dispersion in white matter tracts associated with 

language and motor function. Increased dispersion reflects less coherent 

neurites, which could theoretically result in more widespread neural activity 

patterns. But, as the dispersion changes are rather subtle, the changes most 

likely only reflect local changes in microstructure, which probably would not 

result in the observed BOLD signal changes. Further and direct comparisons of 

fMRI data on cognitive functioning and NODDI data are needed to understand 

their link. For instance, tractography algorithms could be used to examine the 

microstructure of white matter tracts that connect specific regions of interest 

(Bastiani et al., 2012), and to investigate potential differences in terminations of 
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these tracts across groups (e.g., in human arcuate fasciculus, there are more 

terminations in MTG compared to monkeys, and more in left hemisphere than 

right hemisphere, indicating involvement in language processes, Rilling et al., 

2008). 

Furthermore, to gain more insight in the mechanisms and the compensation 

theories, we would need more information about the timing of damage (e.g., 

prenatal, perinatal, or chronic toxicity), and about the developmental aspects. 

One of the drawbacks in classic galactosemia research has been the lack of an 

animal model showing the human phenotype. Recently, a Drosophila 

Melanogaster has been developed for galactosemia that has shown to be very 

useful to study various aspect of this disease (Kushner et al., 2010). However, 

this model is not suitable to study complex glycosylation abnormalities and in 

particular galactosylation, because of the differences with the glycosylation 

machinery in humans. Currently, the galactosemia research group at the 

Maastricht University Medical Center is working on a zebrafish (Danio Rerio) 

knock-out model for galactosemia. This zebrafish has shown to be an excellent 

model for numerous diseases affecting the brain (see e.g., Avila et al., 2007), 

among other things because of its transparent embryos and the rapid 

development. The brain and its development can be studied using imaging 

methods (e.g., MRI), behavioural studies (e.g., activity levels), and histological 

techniques (e.g., staining of myelin and neurons). Animal models should be 

transferred more systematically into human brain research to interpret observed 

patterns in (f)MRI, DWI, and ERPs. A translational approach from animal to 

human brain models will allow us at one point to resolve questions that have 

risen or remained unanswered from this dissertation and other research, and 

vice versa. 

Conclusions and take home messages 

In the current dissertation, we pioneered the application of cognitive 

neuroscience research in the galactosemia field. We investigated neural 

correlates of language impairments in classic galactosemia, using a variety of 

methods from cognitive neuroscience. We found evidence of impairment in the 

cognitive planning of language, but also in motor speech planning and 

execution. These impairments where reported within a temporal domain, which 

relates to millisecond time windows in which neural activation in patients differs 

from controls. Furthermore, these impairments were also mapped in the spatial 

domain, in terms of targeting specific regions of interests, functional 

connectivity, and anatomical connectivity. 
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We have demonstrated the potential of joining forces across disciplines in order 

to achieve a better understanding of this disease. For practitioners, it will be 

relevant that we provided (additional) evidence that patients with galactosemia 

can experience more difficulties than purely related to articulation and planning 

of articulation. Our data suggest that in some individuals more attention should 

be given to linguistic planning stages (conceptual, lexical, syntactic encoding) in 

diagnostic and treatment settings. To patients and their families, we would like 

to say "thank you" for taking the efforts and for spending your time in our 

laboratories. Your data form a very important contribution to understanding how 

and why the observed differences in brain function appear, and how they relate 

to cognitive performance. At one point such findings must translate into 

appropriate treatment strategies. We hope that this dissertation can be one 

building stone for the complex puzzle called classic galactosemia.  
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ABBREVIATIONS 

(a)CBF   (absolute) cerebral blood flow  

(f)MRI   (functional) Magnetic Resonance Imaging  

AF  arcuate fasciculus 

ASL   arterial spin labelling  

ATL   anterior temporal lobe  

BOLD   blood oxygenated level dependent  

CAS  childhood apraxia of speech  

CSF  cerebral spinal fluid 

CC  corpus callosum  

DTI  diffusion tensor imaging  

DWI   diffusion weighted imaging  

EC   external capsule  

EEG   electroencephalography  

ERP   event related potential  

FA   fractional anisotropy  

FDR   false discovery rate  

GALT   galactose-1-phosphate uridyl transferase  

GLM   general linear model 

GM   grey matter  

IC   internal capsule  

ICA   independent component analysis 

ICE   intracranial electrophysiological 

IFG   inferior frontal gyrus  

ILF   inferior longitudinal fasciculus  

MFG   middle frontal gyrus  

MTG   middle temporal gyrus  

NDI   neurite density index  

NODDI   neurite orientation dispersion and density imaging  

ODI   orientation dispersion index  

PET   positron emission tomography  

POI   patch of interest  

(pre)SMA  (pre)supplementary motor area  

PT   planum temporale  

RFX   random-effects analysis  

ROI   region of interest  

SFG   superior frontal gyrus  

SLF   superior longitudinal fasciculus  

SMG  supramarginal gyrus 

STG   superior temporal gyrus  



 

 156 

STS   superior temporal sulcus 

TST  total speech time 

UF   uncinate fasciculus  

VOT  voice onset time 

WM   white matter 
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he focus in this thesis is on language production impairments in classic  

galactosemia - an inherited disease of galactose metabolism. We examined 

neural correlates of these impairments experienced by patients with classic 

galactosemia by using methods and perspectives from cognitive neuroscience. 

Previous studies have examined the cognitive profile in classic galactosemia, 

and imaging studies have shown structural abnormalities in the brain. In this 

thesis we investigated the brain online – during an active language production 

task - to establish the link between brain function and the observed language 

impairments. We examined temporal (when in time) and spatial (where in the 

brain) aspects of language production in the healthy adult brain, and in analogy 

in a group of patients with classic galactosemia who were compared to age- and 

gender matched controls. 

In Chapter 1, we introduced the disease classic galactosemia and the 

complications that patients with this disease can experience, despite 

compliance to the dietary treatment. We presented basic cognitive neuroscience 

techniques and cognitive models related to language production and working 

memory, and described how these could be applied to the study of this disease. 

The most relevant techniques in this thesis are: electroencephalography (EEG) 

and functional and diffusion weighted magnetic resonance imaging (fMRI and 

DW-MRI, respectively). Using EEG, one is able to look into a brain process of 

interest at a milliseconds time scale (i.e., high temporal resolution). fMRI on the 

other hand has high spatial resolution and is able to locate networks involved in 

language, and to define functional connectivity among regions within the 

network (e.g., which brain regions are working together during language). DW-

MRI can be used to assess properties and potential abnormalities in white 

matter microstructure (i.e., the fibres through which information travels across 

brain cells or neurons). The aim of applying these methods and accompanying 

paradigms in galactosemia research - an approach that has never been taken 

before – is to gain more insight in the pathophysiological processes in 

galactosemia. 

In Chapter 2, we studied healthy adult volunteers using electro-

encephalography (EEG) and its derivative event-related potentials (ERPs) to 

investigate the time course of syntactic planning during sentence production. 

During the syntactic planning stage, grammatical roles (e.g., subject versus 

object) and syntactical functions (e.g., tense) are assigned, and elements are 

assembled into a syntactic frame. To study this stage, a paradigm was used in 

which visual animated scenes were presented to elicit utterances that varied in 

syntactic complexity (from words to noun phrases to sentences) - a paradigm 

used throughout this thesis. In the behavioural data, we observed an increase in 
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errors and corrections with increasing syntactic complexity, indicating a 

successful experimental manipulation. In the ERPs, we observed that the 

syntactic complexity variation resulted in several modulations across the entire 

time window. The data showed that the P300 time window is sensitive to 

syntactic planning, both at noun phrase-level and at sentence-level. Further, we 

demonstrated that overt naming can be studied in EEG/ERP using animated 

scenes in a relatively natural manner.  

In Chapter 3, the same paradigm was applied to examine sentence production 

in adolescent patients with classic galactosemia versus age- and gender-

matched controls. We observed that the patients needed more time to prepare 

and finish the utterances and made more errors. Further, the patient ERPs had 

a very similar morphology to that of healthy controls, indicating overall 

comparable neural processing. However, the ERPs also diverged from those of 

controls in several functionally informative time windows, ranging from very 

early (90-150 ms after scene onset) to relatively late (1820-2020 ms after scene 

onset). These time windows can be associated with different linguistic encoding 

stages. These results present the first neuroscientific evidence for language 

production impairments in patients with classic galactosemia in lexical and 

syntactic planning stages, i.e., prior to the linguistic output phase.  

In Chapter 4, we investigated spatial aspects of language planning. Functional 

neural networks involved in sentence planning were examined in healthy adults. 

Again, a similar paradigm was used, now combined with functional magnetic 

resonance imaging (fMRI) and functional connectivity. These techniques 

allowed us to study which brain areas are activated during the task and which 

areas work functionally together. We observed that activity in both the left 

inferior frontal gyrus (IFG) and left pre-supplementary motor area (pre-SMA) 

increased with increasing syntactic complexity. Further, we observed that these 

regions correlated with different functional networks. The study showed that the 

language network has specialized functional sub-networks that may work in 

parallel to deal with different aspects of language production.  

In Chapter 5, patients with classic galactosemia and matched controls were 

studied with fMRI while performing the same sentence production task. Results 

showed that the patients recruited a generally similar network of brain regions 

compared to healthy controls, but also additional and more extensive regions. In 

the functional connectivity patterns, a similar pattern emerged with more 

extensive connectivity with frontal and motor regions in the patients, and more 

restricted and weaker connectivity with superior temporal regions. The data 

demonstrated that language abnormalities in classic galactosemia are 

associated with specific changes within the language network. These changes 
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point towards impairments related to both syntactic planning and motor speech 

planning in patients with classic galactosemia. 

In Chapter 6, diffusion weighted imaging was used to investigate potential 

abnormalities in white matter microstructure properties in patients with classic 

galactosemia, as compared to matched healthy controls. We applied neurite 

orientation dispersion and density imaging (NODDI), a technique designed to 

estimate neurite density and orientation dispersion, two key contributors to the 

widely used fractional anisotropy (FA, derived from standard diffusion tensor 

imaging - DTI). Results showed extensive white matter abnormalities: neurite 

density index (NDI) was lower in the patient group in bilateral anterior areas, 

and orientation dispersion index (ODI) was increased mainly in the left 

hemisphere. The specific regional profiles are in general agreement with the 

cognitive profile observed in classic galactosemia showing higher order 

cognitive impairments, and language and motor impairments, respectively. 

Moreover, the white matter properties correlated with disease variables (i.e., 

age, age at onset of diet) and with behavioural outcome (e.g., visual working 

memory). This explorative study provides the first quantitative measures of 

white matter abnormalities revealing both density and dispersion changes. 

These findings confirm and extend previous qualitative observations of white 

matter abnormalities. The measured changes in microstructure are in line with 

abnormal myelination, although the increased neurite dispersion in orientation 

might partly also reflect compensation mechanisms. 

Finally, Chapter 7 provides a general discussion, where the most important 

results and conclusions of the studies presented in this thesis are discussed. 

Furthermore, parallels are drawn across results and future perspectives are 

considered. Taken together, we pioneered the application of cognitive 

neuroscience research in the galactosemia field and have demonstrated the 

potential of joining forces across disciplines in order to achieve a better 

understanding of this disease.  
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e focus in dit proefschrift ligt op het bestuderen van problemen met 

taalproductie in klassieke galactosemie – een erfelijke ziekte in de 

galactose-stofwisseling. We hebben de neurale correlaten onderzocht van deze 

problemen die patiënten met klassieke galactosemie veelal ervaren. Daarvoor 

hebben we gebruik gemaakt van methoden en perspectieven uit de cognitieve 

neurowetenschappen. Eerdere studies hebben al gekeken naar het cognitieve 

profiel van patiënten met klassieke galactosemie en door gebruik te maken van 

beeldvormende technieken zijn er ook structurele afwijkingen in de hersenen 

geconstateerd. In dit proefschrift was het doel om de hersenen aan het werk 

(online) te bestuderen – tijdens actieve uitvoering van een taalproductietaak – om 

de link vast te stellen tussen het functioneren van de hersenen en de 

geobserveerde taalproblemen. We hebben gekeken naar temporele (wanneer 

in tijd) en spatiële (waar in de hersenen) aspecten van taalproductie. Dit hebben 

we gedaan zowel in een groep gezonde volwassenen en in analogie ook in een 

groep patiënten met klassieke galactosemie welke vergeleken werden met een 

controlegroep met vergelijkbare leeftijd en geslacht. 

In Hoofdstuk 1 hebben we de ziekte klassieke galactosemie geïntroduceerd 

alsmede de complicaties die patiënten met deze ziekte ondanks het volgen van 

de dieetbehandeling kunnen ervaren. We hebben elementaire technieken uit de 

cognitieve neurowetenschappen en cognitieve modellen met betrekking tot 

taalproductie en werkgeheugen gepresenteerd. De meest relevante technieken 

die we hebben gebruikt in dit proefschrift zijn: elektro-encefalografie (EEG), en 

functionele en diffusie-gewogen magnetic resonance imaging (fMRI en DW-

MRI, respectievelijk). Met EEG kunnen we naar de relevante hersenprocessen 

kijken op een tijdsschaal van milliseconden (dus een hoge temporele resolutie). 

fMRI, aan de andere kant, heeft hoge spatiële resolutie en is in staat om 

hersennetwerken te lokaliseren die betrokken zijn bij taal. Ook kunnen we met 

behulp van fMRI kijken naar functionele connectiviteit tussen gebieden binnen 

zulke netwerken (dus welke hersengebieden samenwerken tijdens het 

produceren van taal bijvoorbeeld). DW-MRI wordt gebruikt om kenmerken en 

eventuele afwijkingen in de microstructuur van witte stof te onderzoeken (dit zijn 

de verbindingen tussen hersencellen ofwel de vezelbanen waar de informatie 

door reist). Het doel van het toepassen van deze methoden en bijbehorende 

paradigma’s in onderzoek naar klassieke galactosemie - een aanpak die nog 

niet eerder is genomen - is om meer inzicht te krijgen in de pathofysiologische 

processen die zich afspelen in deze ziekte. 

In Hoofdstuk 2 onderzochten we het tijdsverloop van syntactische planning 

tijdens zinproductie in gezonde volwassen vrijwilligers met behulp van EEG en 

de afgeleide event-related potentials (ERPs). Syntactische planning is een 
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stadium in de taalplanning waarin grammaticale rollen (bijv. onderwerp versus 

lijdend voorwerp) en syntactische functies (bijv. de tijd) worden toegewezen en 

elementen worden samengevoegd in een syntactisch frame. Om dit stadium te 

onderzoeken, hebben we een paradigma / taak gebruikt waarin visueel 

geanimeerde scènes werden gepresenteerd. We vroegen de deelnemers om 

deze scènes te beschrijven in uitingen variërend in syntactische complexiteit 

(van woorden, via naamwoordgroepen [noun phrases], tot hele zinnen) – een 

paradigma dat vaker in dit proefschrift gebruikt wordt. In de gedragsdata zagen 

we een toename van fouten en correcties naarmate de syntactische 

complexiteit toenam. Dit wijst op een succesvolle experimentele manipulatie 

van syntactische complexiteit. In de ERP's zagen we dat de variatie in 

syntactische complexiteit resulteerde in een aantal modulaties verspreid over 

het gehele tijdvenster. De gegevens toonden aan dat het zogenaamde P300 

tijdvenster gevoelig is voor syntactische planning, zowel op het niveau van 

naamwoordgroepen als op zin-niveau. Verder hebben we aangetoond dat 

overte taalproductie (hardop praten) kan worden bestudeerd met behulp van 

EEG/ERP en geanimeerde scènes om een relatief natuurlijke setting te creëren. 

In Hoofdstuk 3 hebben we hetzelfde paradigma toegepast om zin-productie te 

bestuderen in adolescente patiënten met klassieke galactosemie versus leeftijd- 

en geslacht-gematchte controles. We vonden dat de patiënten meer tijd nodig 

hadden voor de voorbereiding en de afwerking van de uitingen en dat ze 

bovendien meer fouten maakten. Verder hadden de ERP’s van de patiënten 

een morfologie / vorm die vergelijkbaar was met die van de gezonde controles, 

wat wijst op een over het algemeen vergelijkbare neurale verwerking. Echter, 

we vonden ook dat de ERP’s van de patiënten afwijkingen vertoonden 

vergeleken met die van de controles in verschillende tijdvensters, variërend van 

zeer vroege (90-150 ms na start van de scène) tot relatief late vensters (1820-

2020 ms na start van de scène). Deze tijdvensters kunnen worden 

geassocieerd met verschillende stadia in het taalproductieproces. Deze 

resultaten presenteren het eerste neurowetenschappelijk bewijs voor 

taalproductie-beperkingen in patiënten met klassieke galactosemie in lexicale 

en syntactische planning – dus voorafgaand aan de output / articulatie-fase (het 

daadwerkelijk uitspreken van de woorden of zinnen). 

In Hoofdstuk 4 hebben we de spatiële aspecten van taalplanning bestudeerd. 

Functionele neurale netwerken die betrokken zijn bij taalproductie werden 

onderzocht in een groep gezonde volwassenen. Opnieuw hebben we een 

soortgelijk paradigma gebruikt, maar ditmaal gecombineerd met functionele 

magnetic resonance imaging (fMRI) en functionele connectiviteit. Deze 

technieken kunnen lokaliseren welke hersengebieden actief zijn tijdens een taak 
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en welke gebieden functioneel samenwerken. We zagen dat de activiteit in 

zowel de linker inferieure frontale gyrus (IFG) en het linker pre-supplementaire 

motorgebied (pre-SMA) steeg met toenemende syntactische complexiteit. 

Verder hebben we vastgesteld dat deze gebieden elk correleerden met aparte 

functionele netwerken. De studie toonde daarmee aan dat het taalnetwerk 

bestaat uit gespecialiseerde functionele sub-netwerken die parallel werken om 

zich bezig te houden met verschillende aspecten van taalproductie. 

In Hoofdstuk 5 hebben we patiënten met klassieke galactosemie en gematchte 

controles bestudeerd met fMRI tijdens het uitvoeren van dezelfde 

taalproductietaak. De resultaten toonden aan dat de patiënten een over het 

algemeen vergelijkbaar netwerk van hersengebieden aanroepen vergeleken 

met gezonde controles, maar ook aanvullende en meer uitgebreide gebieden. In 

de patronen van de functionele connectiviteit zagen we een vergelijkbaar 

resultaat met meer uitgebreide connectiviteit met frontale en motorische 

gebieden bij de patiënten, en beperktere en zwakkere connectiviteit met 

superieur temporale gebieden. De gegevens toonden aan dat taalafwijkingen in 

klassieke galactosemie samenhangen met specifieke veranderingen in het 

taalnetwerk in de hersenen. Deze veranderingen wijzen op afwijkingen met 

betrekking tot zowel de syntactische planning en de spraak/motorische planning 

bij patiënten met klassieke galactosemie. 

In Hoofdstuk 6 werd diffusie-gewogen MRI gebruikt om potentiële afwijkingen te 

onderzoeken in de witte stof microstructuur van patiënten met klassieke 

galactosemie, vergeleken met gezonde controles. We hebben gebruik gemaakt 

van een techniek genaamd: neurite orientiation dispersion and density imaging 

(NODDI). Deze techniek is ontwikkeld om de dichtheid van neurieten / 

vezelbundels en de spreiding in oriëntatie van deze bundels te onderzoeken 

(dus in hoeverre ze allen dezelfde kant op lopen of een spreiding of dispersie 

hebben in de oriëntatie), twee belangrijke onderdelen van de veel gebruikte 

maat fractionele anisotropie (FA, afgeleid van standaard diffusion tensor 

imaging - DTI). De resultaten toonden uitgebreide witte stof afwijkingen aan: de 

neuriet dichtheidsindex (NDI) was lager in de groep patiënten in bilateraal 

anterieure gebieden, en de oriëntatie dispersie-index (ODI) was hoger in meer 

posterieure gebieden in de linker hersenhelft. De specifieke regionale profielen 

zijn over het algemeen in overeenstemming met het cognitieve profiel 

waargenomen bij klassieke galactosemie, namelijk respectievelijk met hogere 

orde cognitieve problemen, en taal- en motorische stoornissen. Bovendien 

waren de witte stof eigenschappen gecorreleerd met ziekte-variabelen (zoals 

met leeftijd en leeftijd bij aanvang van het dieet) en met gedragsmaten (zoals 

visueel werkgeheugen). Deze verkennende studie levert de eerste kwantitatieve 
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metingen van witte stof afwijkingen, die zowel veranderingen laten zien in de 

dichtheid en de spreiding in oriëntatie van neurieten. Deze bevindingen 

bevestigen en breiden voorgaande kwalitatieve observaties van witte stof 

afwijkingen uit. De gemeten veranderingen in de microstructuur zijn in 

overeenstemming met abnormale myelinatie, hoewel de verhoogde spreiding in 

de oriëntatie van neurieten ook deels compensatiemechanismen kan 

reflecteren.  

Tot slot geeft Hoofdstuk 7 een algemene discussie, waar de belangrijkste 

resultaten en conclusies van de studies uit dit proefschrift worden besproken. 

Verder worden parallellen getrokken tussen de resultaten en worden 

vooruitzichten beschouwd. Al met al pionieren we in de toepassing van cognitief 

neurowetenschappelijk onderzoek op het gebied van klassieke galactosemie. 

Bovendien laten we de potentie zien van het bundelen van krachten tussen 

disciplines om tot een beter begrip van deze ziekte te komen. 
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here to begin.. I have met and worked with many different people during 
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Thank you Anke en Thomas (and Mario for a while) for sharing your office with 

me. For you it is the other way around: at first I was hardly ever there until I 

started to spend my time on the MRI analyses. Anke, I learned a lot from you 
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