
 

 

 

Price strategy implementation

Citation for published version (APA):

Berger, A., Grigoriev, A., & van Loon, J. (2008). Price strategy implementation. (METEOR Research
Memorandum; No. 035). Maastricht: METEOR, Maastricht University School of Business and Economics.

Document status and date:
Published: 01/01/2008

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:

www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 04 Dec. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Maastricht University Research Portal

https://core.ac.uk/display/231268049?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://cris.maastrichtuniversity.nl/portal/en/publications/price-strategy-implementation(85b56811-0988-4a47-bbf1-9179064359fa).html


André Berger, Alexander Grigoriev,  
Joyce van Loon 
 
Price Strategy Implementation 
 
RM/08/035 
 
JEL code: C44, C61 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Maastricht research school of Economics 
of TEchnology and ORganizations 
 
Universiteit Maastricht 
Faculty of Economics and Business Administration 
P.O. Box 616 
NL - 6200 MD Maastricht 
 
phone : ++31 43 388 3830 
fax : ++31 43 388 4873 
 
 
 



Price Strategy Implementation

André Berger, Alexander Grigoriev, and Joyce van Loon?

Maastricht University, Quantitative Economics,
P.O.Box 616, NL–6200 MD Maastricht, The Netherlands
{a.berger,a.grigoriev,j.vanloon}@ke.unimaas.nl

Abstract. Consider a situation in which a company sells several differ-
ent items to a set of customers. However, the company is not satisfied
with the current pricing strategy and wishes to implement new prices
for the items. Implementing these new prices in one single step might
not be desirable, for example, because of the change in contract prices
for the customers. Therefore, the company changes the prices gradually,
such that the prices charged to a subset of the customers, the target
market, do not differ too much from one period to the next. We propose
a polynomial time algorithm to implement the new prices in the mini-
mum number of time periods needed, given that the prices charged to
the customers in the target market increase by at most a factor 1+ δ, for
predetermined δ > 0. Furthermore, we address the problem to maximize
the revenue when also a maximum number of time periods is predeter-
mined. For this problem, we describe a dynamic program if the number
of possible prices is limited, and a local search algorithm if all prices are
allowed. Also, we present the integer program that models this problem.
Finally, we apply the obtained algorithms in a practical study.

Keywords: Pricing problems, computational complexity, local search, integer
linear program

1 Introduction

A company owns a set of different item types for sale, K = {1, . . . , m}. We
assume that every item type is available in unlimited supply. The set of potential
customers is denoted by J = {1, . . . , n}. Every customer j ∈ J has a personal
demand djk ≥ 0 for every item type k ∈ K. The combination of the demand for
all item types is called a customer’s contract. Every customer j ∈ J is single-
minded and has a valuation bj for the contract, which is the maximum amount
she is willing to pay. Let B = maxj∈J{bj} be an upper bound on the valuations.

In this paper, we regard the problem that the company faces when imple-
menting a new price vector p∗ ∈ Rm

+ . This price vector might be the optimal
price vector obtained by solving the affine pricing algorithm as discussed in [8],

? Supported by METEOR, the Maastricht Research School of Economics of Technol-
ogy and Organizations.



but can also be any other vector that the company wishes to implement. We
assume that the current price vector is p0 6= p∗. Immediate introduction of the
new prices in the next period (e.g. week, month) might not be desirable. For
example, a sudden huge difference in prices may change the perception of cus-
tomers or the position in the market in comparison to the competing companies.
Therefore, the company wants to change prices gradually. Let T = {0, . . . , tmax}
be the set of time periods, where t = 0 is the current time and t = tmax is the
end time of the implementation. For notational purposes, let T+ = T \ {0}.

For every time step t ∈ T , the company has to set price vector pt =
(pt

1, . . . , p
t
m) ∈ Rm

+ . Given these prices, the contract price for customer j ∈ J
is an affine function on her personal demand

pt(j) = dj0 + dj1p
t
1 + · · ·+ djmpt

m.

We call a customer a winner if she can afford her contract and receives it. We
denote the set of winners by W t = {j ∈ J : pt(j) ≤ bj}. The company’s revenue
in time t is Πt =

∑
j∈W t pt(j). The company’s total revenue is equal to

Π =
∑

t∈T

Πt =
∑

t∈T

∑

j∈W t

pt(j).

Given price vector p∗, we can easily determine for which customers the price
of the contract does not exceed valuation, that is, W ∗ = {j ∈ J : p∗(j) ≤ bj}.
We call W ∗ the target market. When implementing the optimal pricing strategy,
we have to satisfy the restriction that for these customers the price of the contract
may increase at most a factor of (1+δ) between two consecutive periods for some
positive δ, which will be predetermined by the company. That is, given price
vectors p0, p∗ and δ, the company has to satisfy the following two constraints.

Constraint 1 pt(j) ≤ (1 + δ)pt−1(j), ∀ j ∈ W ∗, t ∈ T+.

Constraint 2 ptmax
k = p∗k, ∀ k ∈ K.

In this paper, we address two problems:

Problem 1. Given p0, p∗ and δ > 0, find price vectors pt for all t ∈ T+, so as to
minimize tmax subject to Constraints 1 and 2.

Problem 2. Given p0, p∗, δ > 0 and tmax that is large enough to satisfy Con-
straints 1 and 2, find price vectors pt for all t ∈ T+ subject to Constraints 1
and 2 so as to maximize

∑
t∈T Πt.

1.1 Related work

The pricing regime referred to as affine pricing, as suggested by Grigoriev, van
Loon and Uetz [8], appears to be particularly suitable for practical applications.
It seems to be a more realistic model than the single item pricing model that
was discussed in many previous papers on algorithmic profit maximizing pricing

2



problems [1, 3–10]. Note that single item pricing would require to determine a
price for each copy of an item individually. In fact, affine pricing even gener-
alizes the single item pricing models; see [8]. It is known that, for the affine
pricing problem with a non-constant number of distinct items m, the maximum
revenue is hard to approximate within a semi-logarithmic factor in the num-
ber of customers n [5]. However, for constant m, there exists a polynomial time
algorithm [8].

1.2 Our results

For Problem 1, we show how to calculate the minimum number of time periods
and we present an algorithm to find the price vectors with computation time
O(nm + m log B). For Problem 2 with integer price vectors, we describe a dy-
namic program that runs in polynomial time if the number of item types m is
constant. For the problem with continuous price vectors, the dynamic program
gives an approximate solution with performance guarantee (1+ ε) for any ε > 0,
and a computation time of O(f(ε)). Then, we introduce a local search algorithm
that, in every time period t > 0, selects a pricing strategy that yields the highest
total revenue to the company, but also satisfies the above constraints. Although
we were not able to estimate the performance guarantee on the solution of this
algorithm, computational studies show that the obtained revenue is not far from
the optimal total revenue calculated by solving an integer linear program.

2 Implementation in minimal time

We assume that the price of any item type in the current solution is at least equal
to some very small ε > 0, that is, p0

k ≥ ε for all k ∈ K. Let qj denote the ratio
between customer j’s contract price in the optimal and current pricing strategy
and let q be the maximum ratio among all customers in the target market, that
is,

q = max
j∈W∗

{qj} = max
j∈W∗

{
p∗(j)
p0(j)

}
.

Theorem 1. Given current price vector p0, the minimum number of steps to
implement price vector p∗ is tmax = tq, where tq = max{1, dlog1+δ qe}.

Proof. Since p0 6= p∗, tmax ≥ 1, that is, we need at least one step to implement
the new prices. By Constraint 1 we know that

p∗(j) ≤ (1 + δ)tmaxp0(j), ∀ j ∈ W ∗.

By definition of q, there exists some customer j′ ∈ W ∗ such that

q =
p∗(j′)
p0(j′)

≤ (1 + δ)tmax ⇔ tmax ≥ log1+δ q. (1)

3



Combining inequality (1) with the facts that the minimum number of time pe-
riods needed is integer and at least equal to one, we have that tmax ≥ tq =
max{1, dlog1+δ qe}.

Let the prices be located on the straight line in Rm
+ between p0 and p∗. For

every price vector pt, t ∈ T , we know that

pt = λtp∗ + (1− λt)p0, (2)

for some λt ∈ [0, 1]. Now, we define

λt = min
j∈W∗

{
(1 + δ)pt−1(j)− p0(j)

p∗(j)− p0(j)

}
. (3)

Combining Equations (2) and (3), for every t ∈ T+ and j ∈ W ∗ we have

pt(j) = dj0 + dj1

(
(p∗1 − p0

1)λ
t + p0

1

)
+ . . . + djm

(
(p∗m − p0

m)λt + p0
m

)

= p0(j) + (p∗(j)− p0(j))λt

≤ p0(j) + (p∗(j)− p0(j))
(1 + δ)pt−1(j)− p0(j)

p∗(j)− p0(j)
= (1 + δ)pt−1(j), (4)

thus Condition 1 is satisfied. Moreover, the customer that minimizes λt also
maximizes q, that is,

arg min
j∈W∗

{
(1 + δ)pt−1(j)− p0(j)

p∗(j)− p0(j)

}

= arg min
j∈W∗

{
(1 + δ)

((
p∗(j)− p0(j)

)
λt−1 + p0(j)

)− p0(j)
p∗(j)− p0(j)

}

= arg min
j∈W∗

{
(1 + δ)λt−1 +

δp0(j)
p∗(j)− p0(j)

}
= arg max

j∈W∗

{
p∗(j)
p0(j)

}
. (5)

Consequently, at step tq = max{1, dlog1+δ qe} we reach p∗. Thus, tmax ≤ tq. As
we also showed that tmax ≥ tq, the claim is proven. ut

Using the steps in the proof above, we define the straight line algorithm as
follows. Given δ > 0 and price vectors p0 and p∗, let j′ ∈ W ∗ be the customer
with q = p∗(j′)/p0(j′). Then, combining Equations (3) and (5), we have

λt =
(1 + δ)pt−1(j′)− p0(j′)

p∗(j′)− p0(j′)
,

for all time steps t = 1, . . . , tq, where tq = max{1, dlog1+δ qe}. Let pt
k = (p∗k −

p0
k)λt + p0

k be the price of item type k ∈ K in time period t = 1, . . . , tq − 1.
Finally, in time period tq, we implement price vector p∗.

Theorem 2. The straight line algorithm finds a price implementation from p0

to p∗ in O(nm + m log B) time.

4



Proof. The price implementation generated by the straight line algorithm sat-
isfies Condition 1 by (4) and Condition 2 by definition of the final step in the
algorithm. Thus, the algorithm solves Problem 1. Finding customer j′ ∈ W ∗ who
maximizes q takes O(nm) time, as we calculate the ratio between the contract
prices for the new and current price vectors, for every customer in the target
market. For all t = 1, . . . , tq − 1, where tq = max{1, dlog1+δ qe}, we need to find
λt which can be done in O(m) time, as we need to calculate pt−1(j′). Then, im-
plementing the price vector pt takes O(m) time, which results in a total running
time of O(nm + tqm). Integer tq is bounded from above by the logarithm of the
largest valuation, as q = maxj∈W∗{p∗(j)/p0(j)} only depends on the contract
prices of the winners given price vector p∗. Consequently, the computation time
of the straight line algorithm is O(nm + m log B). ut

3 Maximize total revenue

First, for Problem 2 restricted to integer prices, we present a dynamic program-
ming algorithm that runs in pseudo-polynomial time. Then, using straightfor-
ward scaling argument, we transform the algorithm to a (1 + ε)-approximation
algorithm for the same problem with continuous prices, for any desired precision
ε > 0.

In Problem 2 we want to find the strategy that maximizes the total revenue
over tmax periods, that is,

Π =
∑

t∈T

Πt =
∑

t∈T

∑

j∈W t

pt(j).

3.1 Dynamic program

We find the integer price vectors to optimize the total revenue by a pseudo-
polynomial dynamic program A2, which determines the longest u−v path in an
acyclic digraph. Let tmax be the number of time periods the company wants to
use to implement pricing strategy p∗, and let T = {0, 1, . . . , tmax}. We construct
a digraph D = (N,A) of tmax +1 layers, in which we find the longest u−v path.
A node is of the form (t, pt), where t is the time period, or layer, and pt is an
integer price vector. Arcs are only created between two consecutive layers.

In layer 0, there is only node u = (0, p0), and in layer tmax there is only node
v = (tmax, p

tmax), where ptmax = p∗. There exists an arc between node (t−1, pt−1)
and node (t, pt) if

• t ∈ T+,
• pt−1 and pt are integer price vectors,
• pt(j) ≤ (1 + δ)pt−1(j) for all j ∈ W ∗.

The length of the arc is Πt−1. The longest u−v path corresponds to the pricing
strategy that yields maximum total revenue. Note that the length of this path
is equal to the total revenue.

5



Theorem 3. Dynamic programming algorithm A2 solves Problem 2 with integer
price vectors in time O(t2maxB

2mn).

Proof. Correctness of the dynamic program follows from the fact that we enu-
merate over all possible integer price vectors. The number of nodes in layer t is
O(Bm), which means that in total we have O(tmaxB

m) nodes in the digraph.
The number of arcs is O(t2maxB

2m). Determining the length of an arc, that is,
Πt−1, takes O(nm) time. Finding the longest u − v path in a digraph is linear
in the number of arcs [2], in which we include the calculation of the arc lengths.
So the claimed complexity follows. ut

In order to solve the problem with continuous price vectors, let ε > 0 be the
precision of the prices. Allowing prices to be integer multipliers of ε, we arrive
at the following corollary.

Corollary 1. Dynamic programming algorithm A2 is a (1 + ε)-approximation
algorithm running in O(t2max(B/ε)2mn), for any ε > 0.

Because of this corollary and the fact that the running time is fairly large, we
introduce a local search algorithm.

3.2 Local search

The local search algorithm that we present in this section executes in every time
period t ∈ T+ the affine pricing algorithm; see [8, Algorithm 1]. The local search
algorithm A3 is formally described in Algorithm 1. Afterwards, we present an
example. In this section, we assume that the price vector p∗ is the optimal price
vector for the given instance of the affine pricing problem.

Note that this algorithm assures that as soon as we are able to reach the
optimal price vector p∗, we will stay at this level as there is obviously no better
price vector in reach.

Example 1. Consider a setting with three customers and two items, and δ =
1. The valuation constraints p(j) ≤ bj are p(1) = 16p1 + 32p2 ≤ 512 = b1,
p(2) = 20p1 + 20p2 ≤ 400 = b2 and p(3) = 28p1 + 16p2 ≤ 448 = b3, displayed in
Figure 1. Using the affine pricing algorithm, we know that the optimal pricing
is p∗ = (8, 12). The current price vector is p0 = (2, 1). With this current price
vector, customer 1 pays 64, customer 2 pays 60 and customer 3 pays 72. First,
we create an arrangement of linear inequalities

16 p1
1 + 32 p1

2 ≤ (1 + δ)64 = 128
20 p1

1 + 20 p1
2 ≤ (1 + δ)60 = 120

28 p1
1 + 16 p1

2 ≤ (1 + δ)72 = 144
p1
1 ≥ 0

p1
2 ≥ 0.

These constraints are represented by the dotted lines in the figure. The optimal
price vector is p1 = (4, 2). Repeating this procedure leads to p2 = (8, 4). Then,

6



Algorithm 1: Local search algorithm A3

Given p0 and δ > 0. Let Π∗ = Π0;
foreach t ∈ T+ do

Let Πt = 0, pt = 0 and W t = J ;
foreach set of m linearly independent equalities out of the |W ∗|+ m
equalities pt(j) = (1 + δ)pt−1(j), j ∈ W ∗, and pt

k = 0, k ∈ K do
Determine price vector p that is characterized by these m equalities;
Let p(j) = dj0 + dj1p1 + · · ·+ djmpm be the price of the contract
requested by customer j ∈ J ;
Let W = {j ∈ J : p(j) ≤ bj} be the set of winners;
Let Π =

∑
j∈W p(j) be the total revenue;

if Π > Πt then
Let Πt = Π, pt = p and W t = W ;

end

end
Π∗+ = Πt;

end

we get 16p2
1 + 32p2

2 ≤ (1 + δ)256 = 512, 20p2
1 + 20p2

2 ≤ (1 + δ)240 = 480, and
28p2

1 +16p2
2 ≤ (1+ δ)288 = 576. Thus, this gives the arrangement defined by the

valuation constraint of customer 1, and the dash-dotted lines in the figure. The
optimal solution p∗ is reachable, so the algorithm selects this price vector and
keeps selecting it for all periods t ≥ 3, t ∈ T .

2 4 6 8 10 12 14 16 18 20 24 28 32

2

4

6

8

10

12

14

16

18

20

24

28

(1)

(2)

(3)

22

26

22 26 30

30

32

34

36

p
0

p
T

Fig. 1. Graphical representation of an instance for m = 2.

7



Theorem 4. Local search algorithm A3 runs in O(tmax(n + m)m(m3 + nm))
time, which is in O(tmaxn

m+1) if the number of item types is constant.

Proof. In the affine pricing algorithm that is applied during the local search,
we consider

(|W∗|+m
m

) ∈ O((n + m)m) systems of m equalities each. In each
of these iterations, we solve a linear system in m variables and m constraints
to determine the price vector, which takes O(m3) time. Computation of the
contract prices, winners, and the revenue takes O(nm) time. We perform these
steps for all t ∈ T+, so the claimed complexity follows. ut

4 Computational experiments

We apply the straight line algorithm A1 and the local search algorithm A3 to
implement the optimal pricing strategy for a telephone operator. The item types
are available in unlimited supply, as we are selling digital goods. We assume
customers to be single-minded, that is, each customer either accepts the offer
for the contract or she leaves to a competitor. In this practical application, we
determine the start-up tariff, a price per minute for calling within the country
and abroad, and a price per sent text message. The data we use contain detailed
information about the phone usage of many customers. For each customer, we
can exactly determine the demand for the different item types and therefore the
contract she requests. Let p1 be the start-up price for a call, p2 the price per
minute for calling domestically, p3 the price per text message, and p4 the price
per minute for calling abroad. Then, the price for the contract of customer j ∈ J
is defined as

p(j) = dj1p1 + dj2p2 + dj3p3 + dj4p4,

where dj1 is the number of calls customer j wants to make, dj2 is the number of
minutes she calls within the country, dj3 is the number of text messages she sends,
and dj4 is the number of minutes she calls abroad. We assume that customers
are rational, and therefore select the cheapest offer for their contract. Thus, a
customer only accepts our offer for her contract if we offer the cheapest price in
the market. Therefore, we define the valuation of a customer the cheapest price
for her contract at any competitor.

We apply the described algorithms to three different samples of a data set
that resembles reality. Every sample contains ten customers. The current price
vector in euro is p0 = (0.01, 0.06, 0.01, 0.75) and δ = 0.05. In this section we
determine the minimum number of time periods, and the number of periods
used by local search algorithm A3 to implement the optimal prices. Then, we
predetermine tmax = 40 and find the optimal pricing strategy. This strategy is
calculated by the integer program described below. In an optimal solution at
time t ∈ T , we know that variable πt

j = pt(j) if j ∈ W t and πt
j = bj otherwise.

Binary variable xt
j is equal to 0 if j ∈ W t and 1 otherwise.

8



max
∑T

t=0

∑
j∈J

(
πt

j − xt
jbj

)
s.t. pt(j) ≤ (1 + δ)pt−1(j) ∀ t ∈ T+, ∀ j ∈ W ∗

πt
j ≤ bj ∀ t ∈ T, ∀ j ∈ J

πt
j ≤ pt(j) ∀ t ∈ T, ∀ j ∈ J

pt(j) ≤ (1 + δ)Bxt
j + bj ∀ t ∈ T, ∀ j ∈ J

ptmax
k = p∗k ∀ k ∈ K
pt

k ≥ 0 ∀ t ∈ T, ∀ k ∈ K
πt

j ≥ 0 ∀ t ∈ T, ∀ j ∈ J
xt

j ∈ {0, 1} ∀ t ∈ T, ∀ j ∈ J

Sample 1 For the first sample, the optimal price vector is p∗ = (0.175136,
0.170037, 0.087114, 0.766734). The minimum number of time steps needed to
implement p∗ starting from p0 is 31. The total revenue generated by the straight
line algorithm is 64230.64. The optimal revenue for implementing p∗ in 31 steps is
70936.90, which means that the revenue of the straight line algorithm is 90.55%
of the optimal revenue. The local search algorithm needs at least 34 steps to
implement p∗. However, running this algorithm for 31 steps generates a total
revenue of 70968.47, which is even larger than the optimal revenue when we do
implement p∗.

For the second problem, we set tmax = 40. The optimal revenue is equal to
99020.27, and the optimal price vector is implemented from step 33 onwards.
The local search algorithm yields a revenue of 98898.67, which is 99.88% of
the optimal revenue. The straight line algorithm outputs a revenue of 92192.83,
which is 93.11% of optimal. Both these algorithms instantly give the optimal
solution. Solving the integer program takes 2 seconds.

Sample 2 The optimal price vector for the second sample is p∗ = (0.109423,
0.173030, 0.216197, 0.666756). The minimum number of time steps needed to
implement p∗ starting from p0 is 29. The total revenue generated by the straight
line algorithm is 35339.58. The optimal revenue for implementing p∗ in 29 steps is
37449.57, which means that the revenue of the straight line algorithm is 94.37%
of the optimal revenue. The local search algorithm needs at least 32 steps to
implement p∗. Running this algorithm for 29 steps generates a total revenue of
37244.64, which is 99.45% of the optimal revenue when we do implement p∗.

For the second problem, we set tmax = 40. The optimal revenue is equal to
56229.31, and the optimal price vector is implemented from step 29 onwards.
The local search algorithm yields a revenue of 56004.24, which is 99.60% of
the optimal revenue. The straight line algorithm outputs a revenue of 54121.09,
which is 96.25% of optimal. Both these algorithms instantly give the optimal
solution. Solving the integer program takes 338 seconds.

Sample 3 For the last sample, the optimal price vector is p∗ = (0.112089,
0.188362, 0.102176, 1.467432). The minimum number of time steps needed to
implement p∗ starting from p0 is 33. The total revenue generated by the straight
line algorithm is 24293.19. The optimal revenue for implementing p∗ in 33 steps is
27825.56, which means that the revenue of the straight line algorithm is 87.31%

9



of the optimal revenue. In this sample, the local search algorithm also needs 33
steps to implement p∗, and generates a revenue of 27736.29, which is 99.68% of
the optimal revenue.

For the second problem, we set tmax = 40. The optimal revenue is equal to
36833.93, and the optimal price vector is implemented from step 33 onwards.
The local search algorithm yields a revenue of 36744.66, which is 99.76% of
the optimal revenue. The straight line algorithm outputs a revenue of 33301.56,
which is 90.41% of optimal. Both these algorithms instantly give the optimal
solution. Solving the integer program takes 3 seconds.

Sample 1 Sample 2 Sample 3

min tmax 31 29 33
MIP 70936.90 37449.57 27825.56
Straight 64230.64 90.55% 35339.58 94.37% 24293.19 87.31%
LS till tmax 70968.47 100.04% 37244.64 99.45% 27736.29 99.68%

tmax 40 40 40
MIP 99020.27 56229.31 36833.93
Straight 92192.83 93.11% 54121.09 96.25% 33301.56 90.41%
LS 98898.67 99.88% 56004.24 99.60% 36744.66 99.76%

Table 1. Summary of computational results.

5 Conclusion

Regarding Problem 1, we can easily calculate the minimum tmax, and find price
vectors pt for all t ∈ T+ in polynomial time using the straight line algorithm.
The local search algorithm might need more steps to implement p∗, but using
this algorithm can be more profitable to the company than even using the integer
program, as there we have the requirement that ptmax should be equal to p∗.

For Problem 2 restricted to integer prices, we present a dynamic programming
algorithm that runs in pseudo-polynomial time. We extend this result and derive
a (1+ ε)-approximation algorithm for the same problem with continuous prices,
for any desired precision ε > 0. The local search algorithm seems very useful
in practice, and yields close-to-optimal revenues according to our computational
results.

References

1. G. Aggarwal, T. Feder, R. Motwani, and A. Zhu, Algorithms for multi-product
pricing, Automata, Languages and Programming - ICALP 2004 (J. Dı́az,
J. Karhumäki, A. Lepistö, and D. Sannella, eds.), Lecture Notes in Computer
Science, vol. 3142, Springer, 2004, pp. 72–83.

10



2. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network flows, Prentice Hall, New
Jersey, 1993.

3. M. F. Balcan and A. Blum, Approximation algorithms and online mechanisms for
item pricing, Proceedings of the 7th ACM Conference on Electronic Commerce,
ACM, 2006, pp. 29–35.

4. P. Briest and P. Krysta, Single-minded unlimited supply pricing on sparse instances,
Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms,
ACM-SIAM, 2006, pp. 1093–1102.

5. E. D. Demaine, U. Feige, M.T. Hajiaghayi, and M. R. Salavatipour, Combination
can be hard: Approximability of the unique coverage problem, Proceedings of the
17th Annual ACM-SIAM Symposium on Discrete Algorithms, ACM-SIAM, 2006,
pp. 162–171.

6. K. Elbassioni, R. Sitters, and Y. Zhang, A quasi-ptas for profit-maximizing pricing
on line graphs, Proceedings of the 15th Annual European Symposium on Algo-
rithms (L. Arge and E. Welzl, eds.), Lecture Notes in Computer Science, vol. 4698,
Springer, 2007, pp. 451–462.

7. A. Grigoriev, J. van Loon, R. Sitters, and M. Uetz, Optimal pricing of capacitated
networks, Networks (2008, to appear).

8. A. Grigoriev, J. van Loon, M. Sviridenko, M. Uetz, and T. Vredeveld, Bundle
pricing with comparable items, Algorithms - ESA 2007 (L. Arge, M. Hoffmann,
and E. Welzl, eds.), Lecture Notes in Computer Science, vol. 4698, Springer, 2007,
pp. 475–486.

9. V. Guruswami, J. D. Hartline, A. R. Karlin, D. Kempe, C. Kenyon, and F. Mc-
Sherry, On profit-maximizing envy-free pricing, Proceedings of the 16th Annual
ACM-SIAM Symposium on Discrete Algorithms, ACM-SIAM, 2005, pp. 1164–
1173.

10. J. D. Hartline and V. Koltun, Near-optimal pricing in near-linear time, Algorithms
and Data Structures - WADS 2005 (F. K. H. A. Dehne, A. López-Ortiz, and J.-
R. Sack, eds.), Lecture Notes in Computer Sciences, vol. 3608, Springer, 2005,
pp. 422–431.

11




