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Chapter 1

Introduction

In this thesis, several markets are analyzed in which firms are not able to

produce to order; instead, they can only sell what they already have in stock.

The reasons for a firm not to be able to produce to order can be numerous.

The most common one is that a firm does not produce the good itself, but

buys it from a third-party, and the delivery of a new order takes time. Or the

firm does produce its own goods, but it takes time to start up the machines

and produce a new batch. Producing/purchasing products in advance limits

the quantity output choices of a firm (and its possible competitors), which

has an effect on the revenue, prices and competition-level - if multiple firms

supply the market.

That the extent to which firms are flexible in their price and output de-

cisions has a big effect on the market outcome, has been a topic of interest

of economists for many years. Already in 1838, Auguste Cournot described

two firms competing in the sales of a homogeneous good. In the model, tak-

ing its competitor’s output as given, a firm chooses its quantity output to

maximize profits. The price for which the good is eventually sold is the mar-

ket clearing price. It turns out that in Cournot’s model, both firms make a

strictly positive profit. Joseph Bertrand, in 1883, criticized this model. He

claimed that, since the firms sell exactly the same product, the only thing

that is important for consumers is the price of this product. The firm that

sells it for the lowest price shall accordingly get all of the market demand.

Therefore, in his model, the firms compete in price, not in quantity. Given

that its competitor prices above its marginal costs, a firm will slightly un-

dercut this price and thereby serve the whole market. Since this holds for

both the firms, it turns out that in the end, both firms will set a price that
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is exactly equal to marginal costs and make zero profit (given that marginal

costs are constant and equal for both firms). Both the models and their re-

sults, Cournot’s as well as Bertrand’s, can easily be extended from duopoly

to oligopoly.

The difference in firm profits between the models has stirred up the dis-

cussion about which of the two is the more accurate one - do firms compete in

quantity or in price? This question is not easily answered and depends very

much on the market where the competition takes place. If quantity output

decisions cannot be changed in the short-run, the extra demand that a firm

gains from undercutting its competitors in price, will go to waste. On the

other hand, if a firm can easily serve the extra demand gained from cutting

in price, it will be appealing to do so. In sum, how easily a firm can adjust

or renew the quantity of the product it is selling, will have a big influence on

its profits.

In some markets, firms may only to some extent be flexible in their quan-

tity decisions in the short-run. Kreps and Scheinkman (1983) described

a duopoly in which firms first have to invest in capacity, after which they

compete in price. Under certain assumptions, they find that in their model

price competition actually leads to Cournot outcomes, thereby bridging the

gap between Bertrand and Cournot’s models. In other settings, flexibility

in quantity setting is restricted by assuming that firms have to deal with a

given capacity constraint. Up to the constraint, they can easily adjust their

output, but supplying more than their capacity limit is infinitely costly. In

most models analyzed in the literature, the firms all face the same capacity

constraint. The analysis increases quickly in complexity if firms face indi-

vidual capacity constraints. Therefore, individual capacity constraints are

usually used only in models with at most two firms. If there is no firm for

whom it holds that its competitor(s) together can supply the whole market

demand when price is equal to marginal costs, all firms expect a strictly

positive profit when competing in price. This is shown in a simple model

by Levitan and Shubik (1972), and has been extended by Allen and Hellwig

(1993) and Osborne and Pitchik (1986).

Another method that has been used to overcome the differences in out-

comes between the two models, is to find an intermediate model. In the

last two decades, a strand of literature has appeared in which some of the

firms compete in price and others in quantity.1 The common factor in all

1Examples of articles in which a simultaneous price and quantity competition is analyzed

in a homogeneous framework are Allen (1992) and Qin and Stuart (1997).
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the models described in the last three paragraphs is that less flexibility in

output decisions leads to less severe competition and therefore an increase

in profits.

Flexibility in quantity decisions does not only effect market outcomes in

competition, but also has an effect on the opportunities to collude between

firms. Collusion is not possible if the firms only meet for one single period.

The reason for that is that a firm that defects in that period, cannot be pun-

ished for it by its competitors afterwards. Ergo, every firm has an incentive

to defect. However, this changes when market contact takes place an infi-

nite amount of times - or, as it can be interpreted in practice, the firms have

no idea when market contact will come to an end. If future profits are valu-

able enough and firms are not limited in their choice of capacity, it is a well

known result that any price between the competitive price and the monopoly

price can be colluded on. This is because the gain in profit from defecting one

period cannot make up for the future losses caused by the breakdown of col-

lusion. However, if a firm faces a restrictive capacity constraint, defecting

from the collusive price is less profitable, since it cannot supply the whole

market demand for the lower price it defects with. On the other hand, if

its competitors together do not have enough capacity to serve the market at

the competitive price, the future losses caused by the breakdown of collusion

are also less severe. Both these effects influence the likeliness that collusion

will actually take place. If competitors collude explicitly on one or several of

their strategic variables, this agreement is also called a cartel.

When analyzing the effect of quantity limitations, the market structure

cannot be neglected. A monopolist needs only to consider how its own output

choices today will influence its set of possibilities tomorrow, the day after to-

morrow, etcetera. It does not gain any extra profit from a less severe compe-

tition, since there is none. Firms that operate on a duopolistic or oligopolistic

market need to consider that as well, but take into account at the same time

how their current output choices will influence the future output choices of

their competitors.

A fixed per-period capacity constraint is not the only way in which firms

can be limited in their quantity flexibility. In some models, like in Benoit

and Krishna (1987), firms can invest in capacity accumulation. Or there

is one pool from which all firms extract their resource, as is sometimes the

case with exhaustible resources. In the following, it is described how the

firms in this thesis are restricted in their quantity flexibility and what the

consequences of these limitations are.

11



Chapter 1. Introduction

Chapter 2 deals with a duopoly, in which the firms have a time-span of

two periods in which they compete in the sales of their exogenously given

individual inventory. After those two periods, their product is worthless.

In making their quantity output decisions, the firms have to take into ac-

count not only how this will affect their own inventory level and current

profit, but also future competition. In the next chapter, no longer a fixed

end-period is given and ordering new inventory is now also part of the pos-

sibilities. The analysis is restricted to a monopolistic market structure. The

goal of the monopolist is to determine the best moment to order a new batch

and to maximize its profit on sales. In the last chapter of this thesis, in an

oligopolistic setting, firms make an individual price and quantity decision in

every period. Two types of production are considered: production in advance

and production to order. For both types of production, it is analyzed under

which conditions collusion between firms is sustainable and which form of

collusion is preferred: collusion in price only, or collusion in price ánd quan-

tity.

Dynamic Duopoly with Intertemporal Capacity Con-

straints

In this chapter, a duopoly is studied in which both firms start with an exoge-

nously given capacity, which they cannot renew. They both know that the

demand for the product they are selling will only last for two periods, after

that, their stock is worthless. Examples for these type of markets are, for

instance, fashion items. The price that they will receive for their products

each period is the market clearing price. We distinguish two cases. In the

first, both firms already decide on their sales quantity for each period before

competition actually takes place. We will call this commitment. It is shown

that in this case, there exists a unique pure equilibrium in which, among

others, price goes up over time. And if the difference in capacity between the

two firms increases, consumer surplus and total surplus decrease. In the

other case that is described, firms decide on their second period sales after

the first period of competition already has taken place. We will call this non-

commitment. It is found that here a pure equilibrium does not always exist.

And if an equilibrium does exist, it depends on the starting capacities of the

firms whether price will actually go up or down over time.

12



The Impact of Bulk-Supply on a Dealer’s Sales Strat-

egy

A firm/dealer with monopolistic power is described in this chapter. The

dealer in question can only renew its supply by large batches. Reasons for

this are either because it can only buy the finished product from a whole-

saler or an important part of production is only delivered in large bulks. We

analyze the best moment to reorder and the optimal sales strategy between

those reordering moments. It is found that the dealer always reorders af-

ter the same amount of time. Right after receiving the new batch, its sales

quantity is the highest and this quantity continuously decreases until its

new batch arrives. Its sales pattern is always the same in between any two

consecutive, ordering moments. If future profits become less valuable, con-

trary to what one might think beforehand, there are settings in which the

dealer will increase the time before it reorders.

Collusion in a Price-Quantity Oligopoly

This chapter studies an oligopoly in which the firms have both price and

quantity as strategic variables. The game has an infinite time horizon, and

the strategic variables can be adjusted every period. Two types of industry

are analyzed, production in advance and production to order. In competi-

tion, for both modes of production, the expected profit of all firms is zero. To

increase their profits, the firms can collude in price only, or in both strategic

variables. It is found that, when production is in advance of sales and mar-

ket demand is relatively inelastic, collusion in price only may not be sustain-

able and an additional agreement on outputs may be required to overcome

coordination and incentive problems. On top of this, a price-quota cartel is

more profitable than a price cartel. With production to order, collusion may

not be sustainable without an agreement on production levels.

13





Chapter 2

Dynamic Duopoly with

Intertemporal Capacity

Constraints

2.1 Introduction

In most models of dynamic duopoly, it is assumed that production is in-

stantly adjusted to per-period demand. However, in many real-world ap-

plications, this is not the case. Take for instance a market vendor. He buys

his inventory at a wholesaler in batches. Until the next batch arrives, he has

to decide every day how much of his inventory he is willing to sell at that

day’s market. To maximize profits, the vendor has to take into account how

selling part of his inventory today influences the profits he can make on the

remainder of its stock. Moreover, he will have to take into account how its

actions today will affect the behavior of its competitors the following days.

This chapter analyzes quantity competition in situations where produc-

tion precedes sales and sales take place during a number of periods.1 As

a result, the firm operates under a multi-period capacity constraint. Any

production process that involves batch production would fit this description.

Other examples concern settings with costly transportation, causing stores

to be supplied only every few periods. Another relevant case can be found

in the field of exhaustible resources. Firms at the source cannot renew their

supply, but have many periods to sell the resource.

1This chapter is based on the paper van den Berg et al. (2011a).



Chapter 2. Dynamic Duopoly with Intertemporal Capacity Constraints

We address a number of questions related to the dynamics of the market

structure, the development of prices and sales over time, and the implica-

tions for profits and consumer surplus. We examine the simplest situation

possible: production or resource extraction has already taken place, the com-

modity is sold during two periods and demand is linear. Firms thereby ef-

fectively face a two-period capacity constraint.

In such a multi-period setting, it becomes relevant whether or not firms

use current period outcomes before deciding upon their next period actions.

We refer to these two possibilities as non-commitment versus commitment.

In this chapter, both the non-commitment and the commitment case are an-

alyzed and related to one another. In the commitment setting, the strategy

of a firm specifies the amount it is going to supply at each period. This

amount does not depend on the observed sales of the competing firm in

the previous periods. This type of commitment is encountered, for instance,

in situations where information about previous period(s) profits/sales is not

processed before current period strategy decisions have to be made. In the

non-commitment setting, the strategy of a firm describes how much stock

to sell in each period, conditional on observed sales in previous periods by

the competing firm. In the literature the commitment setting is often an-

alyzed due to its better tractability. Nevertheless, in many settings, the

non-commitment case is more realistic. We will show that the level of com-

mitment can have a serious influence on the results.

In the commitment case, firms base their plan of action only on the level

of initial stock of both the firms. In the exhaustible resource literature, this

case has been analyzed for numerous settings similar to ours. This litera-

ture starts with Hotelling (1931). More recently, Loury (1986), Gaudet and

Long (1994) and Lewis and Schmalensee (1980), all find results that are

compatible with the results we find for the commitment setting. Wirl (2010)

analyses a model with dynamics on the demand and supply side in which

firms use a noncompetitive quantity strategy. We establish the existence of

a unique Nash equilibrium. It is shown that, in this equilibrium, price in-

creases over time and as a consequence, aggregate sales decrease over time.

Aggregate sales per period depend on the distribution of initial production

over the firms. Also, the firm with more stock will never leave the market

before the smaller one does.

In the setting without commitment, a firm’s supply is conditional on the

amounts sold in the previous period. This makes it possible to adjust the

sales path over time in response to observed sales by the competitor. In the

16
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non-commitment setting, there are some combinations of stock for which a

subgame perfect Nash equilibrium does not exist. However, for most combi-

nations, an equilibrium exists and is unique. In equilibrium, the firm with

the larger initial production amount will never leave the market before the

smaller firm. Equilibria in the non-commitment setting may exhibit counter-

intuitive features. For instance, price may decrease over time and therefore

aggregate sales may increase over time. In the exhaustible resource liter-

ature, Salo and Tahvonen (2001) also analyze a non-commitment setting.

Reinganum and Stokey (1985) analyze a setting in which firms extract their

resource from a common property source and in which they can commit to

certain extraction levels only for a limited number of periods.

We find that the equilibrium outcomes in the commitment-setting are

equivalent to the equilibrium outcomes of the non-commitment setting for

most combinations of initial stock. The outcomes differ when one of the firms

is large and the other one is intermediate in stock size. In that situation,

the large firm prefers not being able to commit, whereas the smaller firms

prefers both firms committing. Consumer surplus is almost always higher

in the commitment setting, except for some specific situations in which firms

are very patient. Total surplus is at least as high in the commitment setting

as it is in the non-commitment setting.

Apart from the literature on exhaustible resources, this chapter is re-

lated to those papers that analyze models with capacity constraints. Most of

these papers, for instance Levitan and Shubik (1972), Osborne and Pitchik

(1986) and Bikhchandani and Mamer (1993), use a setting in which firms

compete in price. Bikhchandani and Mamer show that in their case of unit

demand, there is a unique equilibrium, which is robust to extension over

multiple periods and extension over additional sellers. Kreps and Scheinkman

(1983) show in a dynamic game how an individually chosen capacity con-

straint in the first period can influence second-period price competition. More

recently, several papers were written in which firms compete in quantity and

are constrained in capacity. In Gabszewicz and Poddar (1997), firms choose

their level of capacity before demand is known. After true consumers’ de-

mand is known, they compete in quantity for one period. It is shown that a

symmetric subgame perfect Nash equilibrium exists. Laye and Laye (2008)

analyze multi-market Cournot competition with capacity constraints. All

firms can produce a limited amount of a homogeneous product. For this

product they have to choose which part they will sell at every market. In

this situation, a unique Cournot-Nash equilibrium exists. Besanko and Do-

17



Chapter 2. Dynamic Duopoly with Intertemporal Capacity Constraints

raszelski (2004) analyze a dynamic repeated setting in which firms in every

period can invest in capacity and either compete in price or quantity. When

firms compete in quantity, this leads to equal sized firms. However, when

firms compete in price, over time the industry evolves towards asymmetric

firm sizes.

To the best of our knowledge, the only other paper in the literature that

uses an intertemporal capacity constraint, is Biglaiser and Vettas (2004). In

their model, the two competing firms have an equal finite amount of product

that they can sell in two periods. Demand is in units and growing, and

firms compete in prices. The total demand over the two periods is more

than one firm can produce, but less than both firms can produce together.

An important feature of their model is that not only the sellers, but also

the buyers act strategically. One of the results is that, when there is only

one consumer, linear pricing implies there is no pure strategy equilibrium.

Another paper that shows some resemblance with ours is the two-period

model of Saloner (1987). In that paper, there are two periods of production,

after which the goods are sold for the market clearing price. Saloner finds

a unique subgame perfect equilibrium. The results of this paper have been

extended by Pal (1991, 1996), in which the first of the papers allows for

different costs in the two periods of production and the second one extends

this model even further to allow for mixed strategies. Kovenock and Roy

(1998) show that the work of Saloner is not robust against replacing the

third stage by one of price competition, instead of assuming market clearing.

The chapter is organized as follows. The next section introduces the

model. Section 2.3 analyzes the equilibria that result in the commitment

case. The non-commitment situation is addressed in Section 2.4. In Section

2.5, we analyze how the equilibrium outcomes in the commitment setting

relate to the equilibrium outcomes in the non-commitment setting. Section

2.6 concludes. Lengthy and technical proofs are relegated to the appendix.

2.2 Model

We consider two profit maximizing firms that have produced (or bought) a

homogeneous good. Firm i = 1,2 therefore owns a finite amount Si ≥ 0 of

the good. Since the goods are produced beforehand, the production costs are

sunk and they do not play a role in the model. With their fixed amount of

stock as an upperbound, the firms compete in quantity for two periods. A

firm may choose to have residual supply at the end of the second period. The
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2.3. Commitment

quantities sold by firm i in period 1 and period 2 are denoted by qi and r i,

respectively, so qi + r i ≤ Si. The inverse demand each period is

P(Q)= 1−Q,

where Q = q1 + q2 in the first period and Q = r1 + r2 in the second.2,3 Profits

earned in period 2 are discounted with a factor δ ∈ (0,1].

Two cases are analyzed. In the first, firms can commit to a sales strategy

that is independent of sales by their competitor. That is, after production has

taken place, both firms unconditionally decide how much they are going to

sell in each period. This implies that firm i’s strategy space is of the form

Γi = {(qi, r i) ∈R
2
+ | qi + r i ≤ Si}.

The second case is the one of non-commitment. In this case, the amount

a firm is going to offer for sale in a period depends on the realized sales of

its competitor in the previous period. As a result, the second-period strat-

egy of a firm is now the specification of a sales quantity conditional on the

observation of first-period sales. We define Fi = { f i : [0,S1]× [0,S2]→ [0,Si] |

qi+ f i(q1, q2)≤ Si} as the set of functions that assign a feasible second-period

sales quantity to every possible combination of first-period sales. Firm i’s

strategy space is Σi = [0,Si]×Fi.

2.3 Commitment

In the commitment case firms choose a sales path that does not depend on

their competitor’s realized sales. Given strategies (q1, r1) ∈ Γ1 and (q2, r2) ∈

Γ2, the profit Πi(q1, r1, q2, r2) of firm i is given by

Πi(q1, r1, q2, r2)= qiP(qi + q j)+δr iP(r i + r j)

When choosing its sales path (qi, r i), firm i takes the sales path (q j, r j) of

firm j as given, where we use the notation i and j for the two competing

firms. Firm i therefore solves the problem

max
qi ,r i

Πi(q1, r1, q2, r2)

2The results in this chapter can be extended to the more general inverse demand functions

of the form P(Q)= a−bQ, where a,b > 0 and with firms facing unit costs of c, to be interpreted

for instance as handling costs.
3We choose to analyze linear demand only to keep the analysis tractable.
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subject to

qi, r i ≥ 0 and qi + r i ≤ Si.

The result is a best response γi(q j, r j) ∈Γi given by

γi(q j, r j)=



















































































































































(Si,0)







if [q j −δr j < 1−δ−2Si,

q j + r j ≤ 2−2Si and q j, r j ≤ 1]

or [q j ≤ 1−2Si and r j > 1]

(0,Si)







if [q j −δr j > 1−δ+2δSi,

q j + r j ≤ 2−2Si and q j, r j ≤ 1]

or [q j > 1 and r j ≤ 1−2Si]

(

1−δ+2δSi−q j+δr j

2+2δ
,

2Si−1+δ+q j−δr j

2+2δ

)







if 1−δ−2Si ≤ q j −δr j ≤

1−δ+2δSi,

q j + r j ≤ 2−2Si and q j, r j ≤ 1

(1
2
− 1

2
q j,

1
2
− 1

2
r j)

{

if q j + r j > 2−2Si

and q j, r j ≤ 1

(1
2
− 1

2
q j,0)

{

if 1−2Si < q j ≤ 1

and r j > 1

(0, 1
2
− 1

2
r j)

{

if 1−2Si < r j ≤ 1

and q j > 1

(0,0) if q j, r j > 1.

The seven cases for Si are mutually exclusive and the best responses against

(q j, r j) are unique. The function γi is continuous.

A pair of strategies (q∗
1 , r∗1, q∗

2 , r∗2) is a Nash equilibrium iff

Π1(q∗
1 , r∗1, q∗

2 , r∗2) ≥ Π1(q1, r1, q∗
2 , r∗2) for all (q1, r1) ∈Γ1,

Π2(q∗
1 , r∗1, q∗

2 , r∗2) ≥ Π2(q∗
1 , r∗1, q2, r2) for all (q2, r2) ∈Γ2,

or, equivalently, γ1(q∗
2 , r∗2)= (q∗

1 , r∗1) and γ2(q∗
1 , r∗1)= (q∗

2 , r∗2).

Given any initial combination (S1,S2,δ), there is a unique equilibrium,

as specified in Table 2.1 and depicted in Figure 2.1. In the figure, δ is fixed

and S1,S2 are variable. A change of δ will not change the shape of the

equilibrium areas, only the ratio between them. We use the superscript ‘c’

to refer to equilibria in the commitment case. The two letters in the sub-

script represent the relative level of stock of respectively firm i and j, where

l stands for low, m for medium and h for high. In Figure 2.1, also the num-

ber of active firms in each period is indicated, where N1/N2/Nr represents
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2.3. Commitment

respectively the number of firms that have strictly positive sales in the first

period, the number of firms that have strictly positive sales in the second

period, and the number of firms that have residual supply at the end of the

second period. The figure shows that the number of active firms increases

when production increases.

Parameter conditions Period 1 Period 2

(Xc
ll
) 0≤ S1 <

1
2
− 1

2
S2 −

1
2
δ qc

1
= S1 rc

1
= 0

0≤ S2 <
1
2
− 1

2
S1 −

1
2
δ qc

2
= S2 rc

2
= 0

(Xc
lm

) 0≤ S1 <
1
3
− 1

3
δ qc

1
= S1 rc

1
= 0

1
2
− 1

2
δ− 1

2
S1 ≤ S2 ≤ 1− 1

2
S1 qc

2
=

1−S1−δ+2δS2

2+2δ
rc

2
=

2S2+S1−1+δ
2+2δ

(Xc
ml

) 1
2
− 1

2
δ− 1

2
S2 ≤ S1 ≤ 1− 1

2
S2 qc

1
=

1−δ+2δS1−S2

2+2δ
rc

1
=

2S1+S2−1+δ
2+2δ

0≤ S2 <
1
3
− 1

3
δ qc

2
= S2 rc

2
= 0

(Xc
lh

) 0≤ S1 <
1
3
− 1

3
δ qc

1
= S1 rc

1
= 0

1− 1
2

S1 < S2 qc
2
= 1

2
− 1

2
S1 rc

2
= 1

2

(Xc
hl

) 1− 1
2

S2 < S1 qc
1
= 1

2
− 1

2
S2 rc

1
= 1

2

0≤ S2 <
1
3
− 1

3
δ qc

2
= S2 rc

2
= 0

(Xc
mm) 1

3
− 1

3
δ≤ S1 ≤ 1− 1

2
S2 qc

1
=

1−δ+3δS1

3+3δ
rc

1
=

3S1−1+δ
3+3δ

1
3
− 1

3
δ≤ S2 ≤ 1− 1

2
S1 qc

2
=

1−δ+3δS2

3+3δ
rc

2
=

3S2−1+δ
3+3δ

(Xc
mh

) 1
3
− 1

3
δ≤ S1 ≤

2
3

qc
1
=

1−δ+3δS1

3+3δ
rc

1
=

3S1−1+δ
3+3δ

1− 1
2

S1 < S2 qc
2
=

2+4δ−3δS1

6+6δ
rc

2
=

4+2δ−3S1

6+6δ

(Xc
hm

) 1− 1
2

S2 < S1 qc
1
=

2+4δ−3δS2

6+6δ
rc

1
=

4+2δ−3S2

6+6δ
1
3
− 1

3
δ< S2 ≤

2
3

qc
2
=

1−δ+3δS2

3+3δ
rc

2
=

3S2−1+δ
3+3δ

(Xc
hh

) 2
3
< S1 qc

1
= 1

3
rc

1
= 1

3
2
3
< S2 qc

2
= 1

3
rc

2
= 1

3

Table 2.1: Equilibria in the commitment case.

When the stock of firm 1 is low, as it is in Regions Xc
ll
, Xc

lm
, and Xc

lh
, it will

sell all of its stock in the first period. These regions are non-empty only if the

discount rate is strictly below one. The discounting of second-period profits

gives firms an incentive to sell in period 1 rather than in period 2. When

firm 1 has a low stock S1, then selling this entirely in the first period will

hardly decrease the marginal revenue in the first period. Consequently, as

long as δ is not too high, marginal revenue in the second period will be less

than the marginal revenue in the first period and firm 1 will sell its entire

production in the first period.
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Figure 2.1: The commitment case: Equilibrium outcome regions and the number

of firms that have stock in respectively period 1, period 2 and after period 2, for

δ= 0.5.

In Regions Xc
ml

, Xc
mm, and Xc

mh
, firm 1 has an intermediate amount of the

commodity in stock. It then maximizes profit by dividing its sales over the

two periods in such a way that marginal revenue in both periods is equal.

In the remaining Regions, Xc
hl

, Xc
hm

and Xc
hh

, firm 1 has a high stock and

acts as if it has no capacity constraints. Firm 1 maximizes its profit in each

period separately as to maximize total profit. It will have residual stock at

the end of period 2.

A similar line of argumentation applies to the equilibrium strategy of

firm 2. Note that in both periods in situation Xc
hh

firms maximize their profit

as if there is no capacity limit. This results in both firms choosing their

Cournot equilibrium quantities of 1
3

in both periods.

The next five propositions describe some comparative statics results for

the case with commitment.

Proposition 2.3.1. In equilibrium, price weakly increases over time.

Proof For any given combination of S1,S2, and δ, one can verify directly

that qc
1
+ qc

2
≥ rc

1
+ rc

2
. Thus, the aggregate sales in the first period weakly

exceed the aggregate sales in the second period and therefore price in the

first period is less than or equal to the price in the second period. �
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2.3. Commitment

Notice, in particular, that as long as its capacity doesn’t prevent it from

doing so, a firm will adjust its sales to achieve equal marginal revenues in

both periods. This together with a discount rate which is less than or equal

to one implies that price cannot decrease over time.

Also the following proposition describes an intuitive result.

Proposition 2.3.2. An increase in Si leads to a weak increase in firm i’s

equilibrium profit.

Proof The derivative of the equilibrium profit function of firm i with respect

to Si is non-negative in every equilibrium outcome region and the profit

function is continuous for all δ,Si,S j ≥ 0. �

Notice, of course, that the profits in Proposition 2.3.2 correspond to sales

revenues and do not take into account the costs of production.

The next proposition studies how the relative stock sizes of the two firms

affect the commodity price. For fixed aggregate stock size S1+S2, we analyze

how an increase in asymmetry |S1 −S2| influences equilibrium outcomes.

Proposition 2.3.3. Given fixed aggregate production S1+S2, an increase in

|S1 −S2| leads to a weak decrease of first-period aggregate equilibrium sales

and therefore a weak increase of first-period equilibrium price. It leads (i)

to a decrease of second-period aggregate equilibrium sales and an increase

of second-period equilibrium price in Regions Xc
mh

and Xc
hm

and (ii) to an in-

crease of second-period aggregate equilibrium sales and a decrease of second-

period equilibrium price in Regions Xc
lm

and Xc
ml

. It has no effect on second-

period aggregate equilibrium sales and equilibrium price in the other regions.

Proof Let S = S1 +S2 be fixed and assume without loss of generality that

S2 ≥ S1. Then |S1−S2| increases if S1 decreases. Since S2 ≥ S1, it holds that

(S1,S2,δ) ∈Xc
ll
∪Xc

lm
∪Xc

lh
∪Xc

mm ∪Xc
mh

∪Xc
hh

. Let Qab be the aggregate sales

in equilibrium region Xab.

For first-period aggregate sales, we find that

Qc
ll
= S,

∂Qc
ll

∂S1
= 0,

Qc
lm

=
1−δ+S1+2δS

2+2δ
,

∂Qc
lm

∂S1
= 1

2+2δ
> 0,

Qc
lh
= 1

2
+ 1

2
S1,

∂Qc
lh

∂S1
= 1

2
> 0,

Qc
mm = 2−2δ+3δS

3+3δ
,

∂Qc
mm

∂S1
= 0,

Qc
mh

=
4+2δ+3δS1

6+6δ
,

∂Qc
mh

∂S1
= 3δ

6+6δ
> 0,

Qc
hh

= 2
3
,

∂Qc
hh

∂S1
= 0.
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For second-period aggregate sales we have that

Qc
ll
= 0,

∂Qc
ll

∂S1
= 0,

Qc
lm

=
2S−S1−1+δ

2+2δ
,

∂Qc
lm

∂S1
=− 1

2+2δ
< 0,

Qc
lh
= 1

2
,

∂Qc
lh

∂S1
= 0,

Qc
mm = 3S−2+2δ

3+3δ
,

∂Qc
mm

∂S1
= 0,

Qc
mh

=
3S1+2+4δ

6+6δ
,

∂Qc
mh

∂S1
= 3

6+6δ
> 0,

Qc
hh

= 2
3
,

∂Qc
hh

∂S1
= 0.

�

A larger difference in stocks results in a higher first-period price. This is

intuitive: consider the extreme case where one of the firms is a monopolist,

resulting in the highest possible first-period price. Surprisingly, the effect

of increasing difference between the firms’ stocks on second-period prices is

ambiguous. In particular, it leads to a weak decrease in second-period price

in Regions Xc
lm

and Xc
ml

. In these regions, the smaller firm has no stock left

at the beginning of period 2. An increase in the size of the bigger firm then

simply leads to more sales by this firm in period 2.

The following proposition studies the consequences of increased stocks

for consumer surplus. Consumer surplus in the first period and in the sec-

ond period is respectively 1
2
(q1 + q2)2 and 1

2
(r1 + r2)2. To compute the total

consumer surplus we have to discount the second-period consumer surplus

by δ. Consumer surplus is therefore given by 1
2
(q1 + q2)2 + 1

2
δ(r1 + r2)2.

Proposition 2.3.4. Equilibrium consumer surplus weakly increases if the

stock of at least one of the firms increases.

Proof It follows directly from the equilibrium outcomes that per-period

sales weakly increase in S1 and S2. �

Since the effect of an increase in |S1 −S2| on second-period sales is am-

biguous by Proposition 2.3.3, it is not a priori clear how such an increase

affects consumer surplus. The next proposition states, nevertheless, that

this effect is unambiguously negative.

Proposition 2.3.5. Given fixed aggregate stock S1+S2, an increase in |S1−

S2| leads to a weak decrease in equilibrium consumer surplus.
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Proof Proposition 2.3.3 implies a weak decrease in sales in both periods

when |S1−S2| increases, and therefore a weak decrease in consumer surplus,

except possibly in Regions Xc
lm

and Xc
ml

.

Consider some (S1,S2,δ) in Region Xc
lm

or Xc
ml

. Assume without loss of

generality that S2 ≥ S1, so |S1−S2| increases if S1 decreases. Then (S1,S2,δ)

belongs to Region Xc
lm

. Consumer surplus is given by

1

2

(

1−δ+S1 +2δS

2+2δ

)2

−
1

2
δ

(

2S−S1 −1+δ

2+2δ

)2

,

where, as before, S = S1 +S2. The derivative of the expression above with

respect to S1 is given by

1−δ+S1 +2δS

(2+2δ)2
+δ

2S−S1 −1+δ

(2+2δ)2
,

which is easily shown to be non-negative. �

An increase in inequality in firm sizes makes the bigger firm relatively

more powerful compared to the smaller firm. This gives the bigger firm

the opportunity to portray more “monopolist-like” behavior, which influences

consumer surplus negatively.

By the same type of analysis, it can be shown that the results we have

found for equilibrium consumer surplus coincide with the results that can

be found for equilibrium total surplus. Total surplus is defined as the sum of

consumer surplus and both the firms’ surplus. In this case, total surplus is

(q1 + q2)(1−
1

2
(q1 + q2))+δ(r1 + r2)(1−

1

2
(r1 + r2)).

Equilibrium total surplus weakly increases if production by at least one of

the firms increases and, given fixed aggregate production S1 + S2, an in-

crease in |S1 −S2| leads to a weak decrease in equilibrium total surplus.

Summary of comparative statics results for the commitment case

We find that, when firms have the power to commit to an unconditional sales

strategy, price never decreases over time. A firm’s profit increases when its

stock increases and so does consumer surplus and total surplus. Finally,

an increase in the difference between the stocks of the firms leads to lower

sales in period 1 and lower consumer surplus and total surplus. The effect

on period 2 sales is ambiguous.

25



Chapter 2. Dynamic Duopoly with Intertemporal Capacity Constraints

2.4 Non-commitment

We now study the case where the sales strategy of a firm in period 2 depends

on the observed first-period sales. Once firms arrive in the second period

of the game, they play a one-period game with capacity constraints. We

analyze the subgame perfect Nash equilibria of the game. We do this by first

analyzing the Nash equilibria of all possible period 2 subgames.

Consider the subgame q = (q1, q2) in period 2 that results from first-

period sales (q1, q2) by the firms. Denote firm i’s second-period stock by

Ti = Si −qi. Now we can define σiq : [0,T j]→ [0,Ti] as firm i’s best response

function in subgame q. Given sales r j by firm j, firm i solves the problem

max
r i

r iP(r i + r j)

subject to

0≤ r i ≤ Ti.

The best response for firm i in period 2 is then given by

σiq(r j)=

{

Ti, if 0≤ Ti ≤
1
2
− 1

2
r j,

max{0, 1
2
− 1

2
r j}, otherwise.

Quantities (r∗1, r∗2) are a Nash equilibrium of the second-period subgame

q if and only if σ1q(r∗2) = r∗1 and σ2q(r∗1) = r∗2. Each subgame q has a unique

Nash equilibrium as specified in Table 2.2 and depicted in Figure 2.2.4

In Region Yhh, both firms have sufficient residual stock in the second

period to choose their unconstrained profit maximizing sales quantity. In

Regions Yhl and Ylh, only one firm is restricted by its residual stock, respec-

tively firm 1 and firm 2. In Region Yll both firms are restricted by their

residual stock and sell in the second period all they have left.

The equilibrium action chosen by firm i in period 2 is given by the func-

tion f ∗
i

defined by

f ∗i (qi, q j)=















1
3
, if Ti,T j >

1
3
,

1
2
− 1

2
T j, if Ti >

1
2
− 1

2
T j and T j ≤

1
3
,

Ti, if Ti ≤
1
3

or T j ≤ 1−2Ti.

(2.1)

4This figure was earlier portrayed in Krishnan and Röller (1993), Figure 1. Their Stage 5

problem coincides with our second-period subgame.
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Ti T j r i r j profits i profits j

(Yhh) > 1
3

> 1
3

1
3

1
3

1
9

1
9

(Ylh) ≤ 1
3

>
1−Ti

2
Ti

1−Ti

2
Ti(

1−Ti

2
) (

1−Ti

2
)2

(Yhl) >
1−T j

2
≤ 1

3

1−T j

2
T j

(1−T j)
2

4
T j(

1−T j

2
)

(Yll) ≤
1−T j

2
≤

1−Ti

2
Ti T j Ti(1−Ti −T j) T j(1−Ti −T j)

Table 2.2: Second-period equilibrium outcomes.
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Figure 2.2: Second-period equilibrium regions for δ= 0.5.
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We now replace the second-period subgames by the second-period out-

comes as induced by f ∗. The result is a one-period reduced game with pay-

offs given by

Π
R
i (qi, q j)=Πi(qi, q j, f ∗i (qi, q j), f ∗j (qi, q j)), 0≤ qi ≤ Si, 0≤ q j ≤ S j.

It follows that the reduced profit function of firm i is given by

Π
R
i (qi, q j) = qi(1− qi − q j)+ (2.2)



















1
9
δ, if Ti >

1
3

and T j >
1
3
, (Yhh)

1
2
δTi(1−Ti), if 1−2T j < Ti ≤

1
3
, (Ylh)

1
4
δ(1−T j)

2, if Ti >
1
2
− 1

2
T j and T j ≤

1
3
, (Yhl)

δTi(1−Ti −T j), if Ti ≤min{1
2
− 1

2
T j,1−2T j}. (Yll)

A pair of strategies (q∗
1 , q∗

2) is a Nash equilibrium of the reduced game iff it

holds that

Π
R
1 (q∗

1 , q∗
2) ≥ Π

R
1 (q1, q∗

2), for all q1 ∈ [0,S1],

Π
R
2 (q∗

1 , q∗
2) ≥ Π

R
2 (q∗

1 , q2), for all q2 ∈ [0,S2].

A Nash equilibrium (q∗
1 , q∗

2) of the reduced game corresponds to a subgame

perfect Nash equilibrium (q∗
1 , f ∗1 , q∗

2 , f ∗2 ) of the complete game and vice versa.

Lemma 2.4.1. q∗
i
, q∗

j
≤ 1

2
for any Nash equilibrium (q∗

1 , q∗
2) of the reduced

game.

Proof The first-period profit is qi(1−qi−q j), which is strictly decreasing in

qi if qi >
1
2
− 1

2
q j, so in particular if qi >

1
2
. If firm i decreases its first-period

sales, it increases its second-period stock. As can be seen in Table 2.2, firm i’s

second-period profit never decreases when its second-period stock increases.

Consequently, firm i strictly increases its profits if it sets qi =
1
2

instead of

qi >
1
2
. �

Using the reduced profit function (2.2), we determine the reduced best

responses, denoting by σR
i

(q j) the reduced best response of firm i against

q j. Appendix A provides the computational details. Given q j, the reduced

profit function is not always concave, though it is continuous. As a conse-

quence, the reduced best response against q j does always exist, but may

not be unique. We therefore have a reduced best response correspondence
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2.4. Non-commitment

rather than a reduced best response function. This correspondence may fail

to be convex-valued though it is upper hemi-continuous. The reduced best

response correspondence of firm i is presented in Appendix A.

Quantities (q∗
1 , q∗

2) are a Nash equilibrium of the reduced game if and

only if q∗
i
∈σR

i
(q∗

j
) and q∗

j
∈σR

j
(q∗

i
). The Nash equilibria of the reduced game,

and thereby the subgame perfect Nash equilibria of the game of interest, are

calculated in Appendix B. Since the reduced best response correspondences

are not convex-valued, it is not guaranteed that a subgame perfect Nash

equilibrium exists. Indeed, it turns out that for some combinations of Si,S j

and δ a subgame perfect Nash equilibrium fails to exist.

The set of exogenous variables (S1,S2,δ) can be partitioned in 12 regions.

In each region in which there exists an equilibrium, the equilibria share

the same qualitative features and are differentiable functions of S1,S2, and

δ. The equilibrium regions are given in Table 2.3 and depicted in Figure

2.3 for δ = 0.5. Table 2.3 also shows the equilibrium outcomes. We use the

superscript ‘nc’ to refer to equilibria in the non-commitment case. The two

letters in the subscript represent the relative level of stock of respectively

firm i and j , where l stands for low, m for medium, m’ for medium-high and

h for high.

As is illustrated by Figure 2.3 for δ = 1/2, the 12 regions are mutually

exclusive. This property is generally true, leading to the following theorem.

Theorem 2.4.2. There is at most one subgame perfect Nash equilibrium for

every combination of S1,S2, and δ.

Proof It follows from comparing the constraints in Table 2.3, that all re-

gions are disjoint. Therefore, every combination of Si,S j and δ belongs to at

most one equilibrium region. The Nash equilibrium of the reduced game is

therefore unique for (Si,S j,δ) in Regions Xnc
ll

up to and including Xnc
hh

. The

reduced game has no Nash equilibrium for (Si,S j,δ) belonging to Region

Xnc
Ø

. Nash equilibria for the reduced game are in a one to one relationship

with subgame perfect Nash equilibria of the complete game. �

In some cases an equilibrium does not exist.5

Theorem 2.4.3. For every δ, there is a set of stock levels (S1,S2) with non-

empty interior for which an equilibrium does not exist.

5More specifically, no pure equilibrium exists. Since the reduced strategy spaces are

nonempty compact subsets of R and the payoff functions Π
R
i

(qi , q j) are continuous (Glicks-

berg, 1952), there will be a mixed equilibrium.
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Parameter conditions Period 1 Period 2

(Xnc
ll

) 0≤ S1 <
1
2
− 1

2
δ− 1

2
S2 qnc

1
= S1 rnc

1
= 0

0≤ S2 <
1
2
− 1

2
δ− 1

2
S1 qnc

2
= S2 rnc

2
= 0

(Xnc
lm

) 0≤ S1 <
1
3
(1−δ) qnc

1
= S1 rnc

1
= 0

1
2
− 1

2
δ− 1

2
S1 ≤ S2 ≤ 1− 1

2
S1 qnc

2
=

1−S1+2δS2−δ
2+2δ

rnc
2

=
2S2−1+S1+δ

2+2δ

(Xnc
ml

) 1
2
− 1

2
δ− 1

2
S2 ≤ S1 ≤ 1− 1

2
S2 qnc

1
=

1−S2+2δS1−δ
2+2δ

rnc
2

=
2S1−1+S2+δ

2+2δ

0≤ S2 <
1
3
(1−δ) qnc

2
= S2 rnc

2
= 0

(Xnc
lh

) 0≤ S1 <
1
3
(1−δ) qnc

1
= S1 rnc

1
= 0

S2 > 1− 1
2

S1 qnc
2

= 1
2
− 1

2
S1 rnc

2
= 1

2

(Xnc
hl

) S1 > 1− 1
2

S2 qnc
1

= 1
2
− 1

2
S2 rnc

1
= 1

2

0≤ S2 <
1
3
(1−δ) qnc

2
= S2 rnc

2
= 0

(Xnc
mma) 1

3
(1−δ)≤ S1 ≤β1

1
3
(1−δ)≤ S2 ≤β2 qnc

1
=

1−δ+3δS1

3+3δ
rnc

1
=

3S1−1+δ
3+3δ

(Xnc
mmb) β3 < S1 ≤ 1− 1

2
S2 qnc

2
=

1−δ+3δS2

3+3δ
rnc

2
=

3S2−1+δ
3+3δ

β4 < S2 ≤ 1− 1
2

S1

(Xnc
mh

) 1
3
(1−δ)≤ S1 ≤

2
3
− 1

9
δ qnc

1
=

1−δ+2δS1

3+2δ
rnc

1
=

3S1−1+δ
3+2δ

S2 >β5 qnc
2

=
2+3δ−2δS1

6+4δ
rnc

2
=

4+δ−3S1

6+4δ

(Xnc
hm

) S1 >β6 qnc
1

=
2+3δ−2δS2

6+4δ
rnc

1
=

4+δ−3S2

6+4δ
1
3
(1−δ)≤ S2 ≤

2
3
− 1

9
δ qnc

2
=

1−δ+2δS2

3+2δ
rnc

2
=

3S2−1+δ
3+2δ

(Xnc
m’h

) 2
3
− 1

9
δ< S1 ≤

2
3

qnc
1

= S1 −
1
3

rnc
1

= 1
3

S2 >β7 qnc
2

= 2
3
− 1

2
S1 rnc

2
= 1

3

(Xnc
hm’

) S1 >β8 qnc
1

= 2
3
− 1

2
S2 rnc

1
= 1

3
2
3
− 1

9
δ< S2 ≤

2
3

qnc
2

= S2 −
1
3

rnc
2

= 1
3

(Xnc
hh

) S1 >
2
3

qnc
1

= 1
3

rnc
1

= 1
3

S2 >
2
3

qnc
2

= 1
3

rnc
2

= 1
3

(Xnc
Ø

) All other values of (S1,S2,δ) No equilibrium

Explanation of the symbols

β1
7
6
−S2 −

1
6
δ+

√

(1+δ)(1+ 1
2
δ)

1+δ
(5

6
+ 1

6
δ−S2)

β2
7
6
−S1 −

1
6
δ+

√

(1+δ)(1+ 1
2
δ)

1+δ
(5

6
+ 1

6
δ−S1)

β3
4+5 1

2
δ− 1

2
δ2−3δS2

6+6δ

β4
4+5 1

2
δ− 1

2
δ2−3δS1

6+6δ

β5

7+6 1
2
δ+ 3

2
δ2−6S1−5δS1−δ

2S1+(5+5δ−2δS1)
√

(1+δ)(1+ 1
2
δ)

6+7δ+2δ2+(6+4δ)
√

(1+δ)(1+ 1
2
δ)

β6

7+6 1
2
δ+ 3

2
δ2−6S2−5δS2−δ

2S2+(5+5δ−2δS2)
√

(1+δ)(1+ 1
2
δ)

6+7δ+2δ2+(6+4δ)
√

(1+δ)(1+ 1
2
δ)

β7
10+6δ−7S1−3δS1

8+6δ

β8
10+6δ−7S2−3δS2

8+6δ

Table 2.3: Equilibria in the non-commitment case.
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Figure 2.3: The non-commitment case: Equilibrium outcome regions and the num-

ber of firms that have stock in respectively period 1, period 2 and after period 2, for

δ= 0.5.

Proof It can be verified that for each δ, the set of stock profiles (S1,S2) such

that (S1,S2,δ) belongs to Region Xnc
Ø

has a non-empty interior. �

Figure 2.3 gives an overview of the dynamic development of the market

structure, where again N1/N2/Nr represents the number of firms that sell

the commodity in the first period, the number of firms that sell the commod-

ity in the second period, and the number of firms that have residual stock

by the end of the second period. Just as in the non-commitment case, the

number of active firms increases when initial production levels increase.

Some of the regions in the non-commitment case coincide with those in

the case with commitment. This holds specifically for the Regions Xnc
ll

, Xnc
lm

,

Xnc
ml

, Xnc
lh

, Xnc
hl

, Xnc
mm, and Xnc

hh
.6 For these regions, the equilibrium outcomes

in the commitment and in the non-commitment case are equivalent.

In the commitment case, the price never decreases from period 1 to pe-

riod 2. The reason is that a decreasing price would make it profitable for

a firm to transfer some of its sales from period 2 to period 1. This line of

6We have named the regions in the non-commitment case in such a way that the names

in the commitment and non-commitment case coincide as much as possible.
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reasoning does not hold when there is no commitment. Indeed, in the non-

commitment case a transfer of sales from period 2 to period 1 may trigger a

reaction by the competing firm, which renders such a transfer unprofitable,

even when the price in period 1 is higher than in period 2.

Proposition 2.4.4. In Regions Xnc
ll

,Xnc
lm

,Xnc
ml

,Xnc
lh

,Xnc
hl

,Xnc
mm and Xnc

hh
, the equi-

librium price weakly increases over time. For any δ, there is a set of stock lev-

els (S1,S2) ∈ Xnc
mh

∪Xnc
m’h

∪Xnc
hm

∪Xnc
hm’

with non-empty interior such that the

equilibrium price strictly decreases over time. In particular, the equilibrium

price strictly decreases over time if and only if Si < S j and

2−2δ

3−2δ
≤ Si <

2

3
−

1

9
δ,

S j >
7+61

2
δ+ 3

2
δ2 −6Si −5δSi −δ2Si + (5+5δ−2δSi)

√

(1+δ)(1+ 1
2
δ)

6+7δ+2δ2 + (6+4δ)
√

(1+δ)(1+ 1
2
δ)

or
2

3
−

1

9
δ< Si <

2

3
,

S j >
10+6δ−7Si −3δSi

8+6δ
.

Proof By Proposition 2.3.1, price never decreases over time in the commit-

ment situation. Price decreases in the non-commitment case are therefore

only possible in regions where the non-commitment case is different from

the case with commitment, i.e. Regions Xnc
mh

, Xnc
hm

, Xnc
m’h

, and Xnc
hm’

. In these

regions, one firm has an intermediate and one firm has a high stock level.

Let i be the intermediate firm and let j be the large firm. In Regions Xnc
mh

and Xnc
hm

it holds that

1

3
(1−δ) < Si ≤

2

3
−

1

9
δ,

S j >
7+61

2
δ+ 3

2
δ2 −6Si −5δSi −δ2Si + (5+5δ−2δSi)

√

(1+δ)(1+ 1
2
δ)

6+7δ+2δ2 + (6+4δ)
√

(1+δ)(1+ 1
2
δ)

.

The total quantity sold in the first period is

qnc
i + qnc

j =
1−δ+2δSi

3+2δ
+

2+3δ−2δSi

6+4δ
=

4+δ+2δSi

6+4δ
.
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2.4. Non-commitment

The total quantity sold in the second period is

rnc
i + rnc

j =
3Si −1+δ

3+2δ
+

4+δ−3Si

6+4δ
=

3Si +2+3δ

6+4δ
.

The price strictly decreases from period 1 to period 2 when 4+δ+2δSi <

3Si +2+3δ, so when Si >
2−2δ
3−2δ

.

In Regions Xnc
m’h

and Xnc
hm’

we have

2

3
−

1

9
δ < Si ≤

2

3

S j >
10+6δ−7Si −3δSi

8+6δ
.

The total quantity sold in the first period is

qnc
i + qnc

j = Si −
1

3
+

2

3
−

1

2
Si =

1

2
Si +

1

3
.

The total quantity sold in the second period is

rnc
i + rnc

j =
1

3
+

1

3
=

2

3
.

Since 1
2

Si +
1
3
< 2

3
as long as Si <

2
3
, in this region, price strictly decreases

from period one to period two whenever Si 6=
2
3
. �

Proposition 2.4.4 makes clear that price may decrease over time in the

non-commit-ment case. This can happen for the following reason. In the set-

tings where price decreases over time, the larger firm reacts in both periods

– unrestricted by its stock – per-period optimal to the sales of the smaller

firm. Since the smaller firm has a stock less than 1/3 in the second period,

the larger firm cannot deviate in the first period in such a way that the

smaller firm will lower its second-period sales. This implies that the larger

firm cannot increase profits by deviating. The smaller firm, just as in the

commitment case, might want to transfer some of its sales from the second

to the first period. However, in the non-commitment situation, if the smaller

firm transfers sales from period 2 to period 1, there will be a response by

the larger firm. The larger firm reacts to this transfer by increasing its

second-period sales, causing the second-period price to fall. Therefore, the

second-period profits of the smaller firm drop. The decrease in profits in the

second period outweigh the increase in profits in the first period. This makes
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transferring sales from the second-period to the first not worth the while for

the smaller firm.

In the commitment case, an increase in a firm’s stock leads to an increase

in profits. Is this property still true in the non-commitment case? It is eas-

ily shown, with the help of the derivatives of the equilibrium profits, that

within each region profit rises when a firm’s stock level increases. More-

over, the profit function is continuous on the domain of (Si,S j,δ) for which

an equilibrium exists. However, it is still possible for the profit to decrease

when a firm’s stock level increases, namely when a small increase in stock

level leads to non-existence of equilibrium. The next proposition confirms

that such decreases in profit may occur for specific parameter values. That

is, equilibria may not be “destroy-proof”.

Proposition 2.4.5. An increase in Si, ceteris paribus, leads to a weak in-

crease of the equilibrium profit of firm i, as long as the increase doesn’t

change the equilibrium outcome region. If an increase in Si does change

the equilibrium outcome region, there are combinations of Si,S j and δ such

that an increase in Si leads to a strict decrease in equilibrium profit of firm

i.

Proof The derivative of the equilibrium profit function with respect to Si

is non-negative in every equilibrium region. The non-existence of an equi-

librium for some combinations of (Si,S j,δ) makes it possible that a strict

increase in Si leads to a strict decrease in the equilibrium profit of firm i.

Take δ= 0.2, S j = 0.69824, and

Si =
7

6
−S j −

1

6
δ+

√

(1+δ)(1+ 1
2
δ)

1+δ
(
5

6
+

1

6
δ−S j)≈ 0.59634.

These parameters correspond to a point on the upper boundary of Region Xnc
mm.

The equilibrium profit for firm i equals 0.12937. We now let Si increase to

S′
i =

7+61
2
δ+ 3

2
δ2 −6S j −78δS j −2δ2S j + (5+5δ−6S j −4δS j)

√

(1+δ)(1+ 1
2
δ)

6+5δ+δ2 +2δ
√

(1+δ)(1+ 1
2
δ)

≈ 0.61011.

Our parameters now belong to Region Xnc
mh

. The equilibrium profit for firm i

equals 0.12751. �

We now study the consequences of increasing difference in stock size on

sales.
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Proposition 2.4.6. Given fixed aggregate stock S1+S2, an increase in |S1−

S2| leads to a weak decrease in first-period aggregate equilibrium sales and

a weak increase of first-period equilibrium price. It leads to a decrease in

second-period aggregate equilibrium sales and an increase in second-period

equilibrium price in Regions Xc
mh

and Xc
hm

and to an increase in second-

period aggregate equilibrium sales and a decrease in second-period equilib-

rium price in Regions Xc
lm

and Xc
ml

. It has no effect on second-period aggre-

gate equilibrium sales and equilibrium price in the other regions.

Proof Let S = S1 +S2 be fixed and assume without loss of generality that

S2 ≥ S1. Then |S1−S2| increases if S1 decreases. Since S2 ≥ S1, it holds that

(S1,S2,δ) ∈Xnc
ll
∪Xnc

lm
∪Xnc

lh
∪Xnc

mm ∪Xnc
mh

∪Xnc
m’h

∪Xnc
hh

. It holds that

Qnc
ll

= S,
∂Qnc

ll

∂S1
= 0,

Qnc
lm

=
1−δ+S1+2δS

2+2δ
,

∂Qnc
lm

∂S1
= 1

2+2δ
> 0,

Qnc
lh

= 1
2
+ 1

2
S1,

∂Qnc
lh

∂S1
= 1

2
> 0,

Qnc
mm = 2−2δ+3δS

3+3δ
,

∂Qnc
mm

∂S1
= 0,

Qnc
mh

=
4+δ+2δS1

6+4δ
,

∂Qnc
mh

∂S1
= 2δ

6+4δ
> 0,

Qnc
m’h

= 1
2

S1 +
1
3
,

∂Qnc
m’h

∂S1
= 1

2
> 0.

Qnc
hh

= 2
3
,

∂Qnc
hh

∂S1
= 0,

Between Regions Xnc
mm and Xnc

mh
there is no equilibrium. Consider an in-

crease in S1 together with a decrease of the same magnitude in S2 that leads

to a move from Region Xnc
mh

to Region Xnc
mm. It holds that Qnc

mm coincides with

Qc
mm and

Qnc
mh =

4+δ+2δS1

6+4δ
<

4+2δ+3δS1

6+6δ
=Qc

mh.

The desired result for this case now follows from Proposition 2.3.3.

Between Regions Xnc
m’h

and Xnc
mm there is no equilibrium. Consider an

increase in S1 together with a decrease of the same magnitude in S2 that

leads to a move from Region Xnc
m’h

to Region Xnc
mm. Again, it holds that Qnc

mm

coincides with Qc
mm, Region Xnc

m’h
is a subset of Region Xc

mh
, and

Qnc
m’h

=
1

2
S1 +

1

3
≤

4+2δ+3δS1

6+6δ
=Qc

mh,

where S1 ≤ 2/3 is used to derive the inequality sign. The desired result for

this case now follows from Proposition 2.3.3.
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For second-period aggregate sales we have that

Qnc
ll

= 0,
∂Qnc

ll

∂S1
= 0,

Qnc
lm

=
2S−S1−1+δ

2+2δ
,

∂Qnc
lm

∂S1
=− 1

2+2δ
< 0,

Qnc
lh

= 1
2
,

∂Qnc
lh

∂S1
= 0,

Qnc
mm = 3S−2+2δ

3+3δ
,

∂Qnc
mm

∂S1
= 0,

Qnc
mh

=
3S1+2+3δ

6+4δ
,

∂Qnc
mh

∂S1
= 3

6+4δ
> 0,

Qnc
m’h

= 2
3
,

∂Qnc
m’h

∂S1
= 0,

Qnc
hh

= 2
3
,

∂Qnc
hh

∂S1
= 0.

�

Between Regions Xnc
mm and Xnc

mh
there is no equilibrium. For this region,

the consequences of increasing disparity of initial stock on second-period

aggregate sales haven’t been discussed yet.

Proposition 2.4.7. Consider an increase in S1 together with a decrease of

the same magnitude in S2 that leads to a move from Region Xnc
mh

to Re-

gion Xnc
mm. The second-period equilibrium sales may both decrease and in-

crease, depending on the values of S1,S2, and δ.

Proof For instance, when S1 = 5/9, S2 = 3/4, and δ= 1, we are in Region Xnc
mh

and the aggregate second-period sales are equal to 2/3. After an increase

in S1 accompanied by a decrease in S2 of the same magnitude resulting in

S1 = S2 = 47/72, we are in Region Xnc
mm and the aggregate second-period sales

are equal to 47/72 < 2/3. We now make the same calculations for a discount

rate equal to 1/2. When (S1,S2,δ) = (5/9,3/4,1/2) we are in Region Xnc
mh

and

the aggregate second-period sales are equal to 13/24, whereas at (S1,S2,δ)=

(47/72,47/72,1/2) we are in Region Xnc
mm and the aggregate second-period

sales are equal to 35/54> 13/24. �

So, in these settings, increasing disparity of initial stock can increase as

well as decrease second-period aggregate sales. There is also no equilibrium

between Regions Xnc
mm and Xnc

m’h
. Here, it can be shown that an increase in

disparity of initial stock will always decrease second period sales.

Proposition 2.4.8. An increase in S1 together with a decrease of the same

size in S2 that leads from Region Xnc
m’h

to Region Xnc
mm will univocally lead to

a decrease in second-period sales.
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Proof In Region Xnc
mm it holds that S1 +S2 ≤ 4/3, we have that

Qnc
mm =

3S−2+2δ

3+3δ
≤

2

3
=Qnc

m’h
.

�

Analogous results hold for comparative statics involving Regions Xnc
mm

and Xnc
hm

, and Regions Xnc
mm and Xnc

hm’
.

We next evaluate the effect of an increase in stock on consumer surplus.

We use the same measure for consumer surplus as before.

Proposition 2.4.9. An increase in Si, ceteris paribus, leads to a weak in-

crease in equilibrium consumer surplus, as long as the increase doesn’t change

the equilibrium outcome region. For some combinations of Si,S j and δ, a

strict increase in Si does change the equilibrium outcome region. This can

lead to a strict decrease in equilibrium consumer surplus.

Proof It follows directly from the equilibrium outcomes that per-period

sales in every equilibrium outcome region weakly increase in S1 and S2.

However, take δ,Si,S
′
i

and S j as defined in the proof of Proposition 2.4.5.

Equilibrium consumer surplus for δ,Si,S j is

CSnc
mm ≈ 0.25818.

An increase from Si to S′
i

results in equilibrium consumer surplus of

CSnc
mh ≈ 0.25600.

�

That is, just like the firms, consumers usually gain from an increase in

stock. There are settings in which consumers are better off if a firm does

not increase its stock. However, this can only happen if, for some stock lev-

els in between the old and new stock level of the firm, ceteris paribus, an

equilibrium doesn’t exist.

The influence of increasing difference in stock level on consumer surplus

is given in the following proposition.

Proposition 2.4.10. Given fixed aggregate stock S1+S2, an increase in |S1−

S2| leads to a weak decrease in equilibrium consumer surplus.

37



Chapter 2. Dynamic Duopoly with Intertemporal Capacity Constraints

Proof By Proposition 2.3.5, this proposition holds for |S1 −S2|, as long as

(S1,S2,δ) ∉Xnc
mh

∪Xnc
hm

∪Xnc
m’h

∪Xnc
hm’

. Assume, without loss of generality, that

S2 ≥ S1, so |S1 −S2| increases if S1 decreases. Proposition 2.4.6 implies a

weak decrease in sales in both periods when |S1 −S2| increases, and there-

fore a weak decrease in consumer surplus, for Region Xnc
m’h

and Xnc
mh

. The

remaining cases to check are those where a decrease in S1 changes the equi-

librium outcome from a point in Xnc
mm to a point in Xnc

mh
or from Xnc

mm to Xnc
m’h

.

Let c = S1 +S2, where c is a constant. Consumer surplus in Region Xnc
mh

and Region Xnc
m’h

is

CSnc
mh =

1

2
(
4+δ+2δS1

6+4δ
)2 +

1

2
δ(

3S1 +2+3δ

6+4δ
)2,

CSnc
m’h

=
1

2
(
1

2
S1 +

1

3
)2 +

2

9
δ,

and in Region Xnc
mm

CSnc
mm =

1

2
(
2−2δ+3δc

3+3δ
)2 +

1

2
δ(

3c−2+2δ

3+3δ
)2.

As mentioned, consumer surplus in Regions Xnc
mh

and Xnc
m’h

increases

with S1, for fixed c. In Region Xnc
mm, consumer surplus doesn’t change if S1

changes, for fixed c. This implies that, if CSnc
mh

≤ CSnc
mm for any (S1,S2,δ) ∈

{(S1,S2,δ) | S2 =β5, 1
3
(1−δ)≤ S1 ≤

2
3
− 1

9
δ}, consumer surplus decreases when

an increase in S1 changes the equilibrium outcome from period Xnc
mh

to Xnc
mm.

Calculations indeed show that CSnc
mh

≤ CSnc
mm for these values of (S1,S2,δ).

It also implies that, if CSnc
m’h

≤ CSnc
mm for any (S1,S2,δ) ∈ {(S1,S2,δ) | S2 =

β7, 2
3
− 1

9
δ < S1 ≤ 2

3
}, consumer surplus decreases when an increase in S1

changes the equilibrium outcome from period Xnc
m’h

to Xnc
mm. �

The last part of this section is, again, devoted to total surplus. We have

already seen that an increase in a firm’s stock can lead to a decrease in its

equilibrium profit and in consumer surplus. It will not come as a surprise

that, with some extra calculations, the same type of results can be found for

total surplus. If an increase in stock of one of the firms doesn’t change the

equilibrium outcome region, equilibrium total surplus increases with this

increase in stock. If an increase in stock of one of the firms does change the

equilibrium outcome region, for some combinations of variables, this leads

to a decrease in total surplus. And, given fixed aggregate stock S1 +S2, an

increase in |S1 −S2| leads to a weak decrease in equilibrium total surplus.
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Summary of comparative statics results for the non-commitment case

In this section we have found that there is at most one subgame perfect Nash

equilibrium for each combination of Si,S j and δ. In contrast to the commit-

ment situation, in the case without commitment it is possible that the equi-

librium price decreases over time and that a firm’s profit increases when it

produces less. Increasing disparity in firm size leads to higher first-period

equilibrium prices and lower sales, but has ambiguous effects on second-

period equilibrium prices. Within every equilibrium outcome region, an in-

crease in some firm’s production level leads to an increase in it’s profit, an

increase in consumer surplus and an increase in total surplus. However,

there are situations in which an increase in some firm’s production level can

lead to a decrease in its profits, a decrease in consumer surplus and/or a

decrease in total surplus.

2.5 Commitment versus Non-commitment

In this section, we analyze how the equilibrium outcomes of the commitment

setting are related to the equilibrium outcomes of the non-commitment case.

For certain regions, as was mentioned before, the equilibrium outcomes

coincide. Notice that the equilibrium outcome corresponds to equilibrium

sales by the two firms in both periods.

Proposition 2.5.1. For every (S1,S2,δ) ∈Xnc
ll
∪Xnc

lm
∪Xnc

ml
∪Xnc

lh
∪Xnc

hl
∪Xnc

mm∪

Xnc
hh

, the equilibrium sales in the non-commitment case coincide with those of

the commitment setting.

Proof From the constraints defining the various regions it follows that

Xnc
ll

⊆ Xc
ll
, Xnc

lm
⊆ Xc

lm
, Xnc

ml
⊆ Xc

ml
, Xnc

lh
⊆ Xc

lh
, Xnc

hl
⊆ Xc

hl
,Xnc

mm ⊆ Xc
mm, and Xnc

hh
⊆

Xc
hh

. The equilibrium sales in Regions Xnc
ll

, Xnc
lm

, Xnc
ml

, Xnc
lh

, Xnc
hl

, Xnc
mm, and Xnc

hh

coincide with the equilibrium sales in Region Xc
ll
, Xc

lm
, Xc

ml
, Xc

lh
, Xc

hl
, Xc

mm,

and Xc
hh

, respectively. �

An equilibrium always exists when S1 = S2. Since, for these produc-

tion levels, (S1,S1,δ) ∈ Xnc
ll

∪Xnc
mm∪Xnc

hh
when there is no commitment and

(S1,S1,δ) ∈ Xc
ll
∪Xc

mm ∪Xc
hh

when there is commitment, the following corol-

lary follows.

Corollary 2.5.2. When firms 1 and 2 are symmetric, the equilibrium sales

in the commitment case coincide with those of the non-commitment setting.
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The equivalence in equilibrium outcomes no longer holds when (Si,S j,δ) ∈

Xnc
mh

∪Xnc
hm

∪Xnc
m’h

∪Xnc
hm’

∪Xnc
Ø

. In these cases, there is one firm of intermediate

size, and one firm that can react almost unrestrictedly to the quantities of its

competitor. In the following we refer to these firms as the intermediate firm

and the large firm, respectively. We show that the large firm gains and the

intermediate firm loses from being in the non-commitment case, whenever

we are not in Region Xnc
Ø

, i.e. whenever a subgame perfect Nash equilibrium

exists in the non-commitment case.

Proposition 2.5.3. For every (S1,S2,δ) outside Region Xnc
Ø

, the change in

equilibrium outcome from the commitment case to the non-commitment case

is to the advantage of the larger firm and to the disadvantage of the smaller

firm.

Proof Assume without loss of generality that S2 ≥ S1. Whenever there is a

change in the equilibrium outcome, it holds that (S1,S2,δ) belongs to Region

Xc
mh

. Firm 2 has profits equal to

Π
c
2 = (

2+4δ−3δS1

6+6δ
)2 +δ(

4+2δ−3S1

6+6δ
)2.

It also holds that (S1,S2,δ) belongs to Region Xnc
mh

or Region Xnc
m’h

. In Region

Xnc
mh

, firm 2 has profits equal to

Π
nc
2 = (

2+3δ−2δS1

6+4δ
)2 +δ(

4+δ−3S1

6+4δ
)2.

In Region Xnc
m’h

the profits of firm 2 are equal to

Π
nc
2 =

4

9
+

1

9
δ−

2

3
S1 +

1

4
(S1)2.

We have that S1 ≤
2
3

in all these regions, from which it follows that Πnc
2

≥Π
c
2
.

Analogous calculations show the opposite relation for the profits of firm 1.

�

The intuition for this proposition follows from the same line of reasoning

as that of Proposition 2.4.4. The total quantity sold is, in both the settings,

the same for each firm. The small firm sells all of its stock in two periods,

whereas the large firm reacts per-period optimal. The small firm sells more

of its stock in the first period commitment setting than in the first period

non-commitment setting and for the large firm it is the other way around.
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2.5. Commitment versus Non-commitment

Price is higher in the first period non-commitment setting than in the first

period commitment setting (see Proposition 2.5.4). For the second period,

it is the other way around again. Therefore, the large firm makes more

profit and the small firm makes less profit in the non-commitment setting,

compared to the commitment setting. The small firm cannot change this

by selling more of its stock in the first period, since this will induce the

large firm to sell extra in the second period, thereby making this deviation

unprofitable.

The following proposition describes the consequences of commitment for

equilibrium prices and sales.

Proposition 2.5.4. For every (S1,S2,δ) outside Region Xnc
Ø

, the first-period

equilibrium price in the non-commitment case is greater than or equal to

the first-period equilibrium price in the commitment case and the second-

period equilibrium price in the non-commitment case is less than or equal to

the second-period equilibrium price in the commitment setting. The opposite

relationships hold for aggregate sales in the two periods.

Proof We assume without loss of generality that S2 ≥ S1. Whenever there

is a change in the equilibrium price, (S1,S2,δ) belongs to Region Xc
mh

. In

Region Xc
mh

, prices in the first and second period are respectively

pc
1 =

2+4δ−3δS1

6+6δ
and pc

2 =
4+2δ−3S1

6+6δ
.

It also holds that (S1,S2,δ) belongs to Region Xnc
mh

or Xnc
m’h

. In Region Xnc
mh

,

prices are

pnc
1 =

2+3δ−2δS1

6+4δ
and pnc

2 =
4+δ−3S1

6+4δ

and in Region Xnc
m’h

, prices are

pnc
1 =

2

3
−

1

2
S1 and pnc

2 =
1

3
.

In Region Xc
mh

it holds that (1− δ)/3 < S1 ≤ 2
3
, from which it follows that

pc
1
≤ pnc

1
and pc

2
≥ pnc

2
. �

The equilibrium outcome in the commitment case does not always coin-

cide with the equilibrium outcome in the non-commitment setting, in par-

ticular when there is one intermediate and one large firm. In these cases,
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it is the intermediate firm that would deviate if the commitment equilib-

rium quantities were chosen in the non-commitment setting. By transfer-

ring some of its quantity from the first to the second period, the intermedi-

ate firm could improve its profit, knowing that it forces the bigger firm to

adjust its second-period quantity downwards. This opportunity to deviate

profitably leads to the non-existence of an equilibrium in Region Xnc
Ø

.

In Regions Xnc
mh

, Xnc
hm

, Xnc
m’h

, and Xnc
hm’

, the profitable deviation of the in-

termediate firm results in a change in the equilibrium outcome. Perhaps

surprisingly, the equilibrium outcomes change to the disadvantage of the in-

termediate firm. To avoid a deviation by the intermediate firm, in the non-

commitment case the large firm sets a higher first-period quantity than in

the commitment case. This increase in sales by the large firm is more than

offset by lower first-period sales by the intermediate firm. The first-period

equilibrium price is higher in the non-commitment case than in the commit-

ment setting. The intermediate firm still sells all its production, leading to

a strong increase in its second-period sales. The second-period equilibrium

price is lower in the non-commitment case than in the commitment setting.

The large firm reacts per-period optimal to the intermediate firms and has

the same total sales as before. It follows that the profit for the intermedi-

ate firm is lower in the non-commitment setting than in the commitment

setting, whilst it is the other way around for the large firm.

Regarding consumer surplus, we mention the following. One may expect

the ability to commit to lead to less competition in the commitment setting

than in the case without commitment. However, this only holds for some

settings in which future profits are hardly discounted. The non-commitment

setting gives the large firm more opportunity to use its power, which, as a

result, increases the first period price and decreases the second period price.

Due to discounting, in most cases this results in consumer surplus being

lower in the non-commitment setting than in the case with commitment.

Proposition 2.5.5. For every (S1,S2,δ), such that (S1,S2,δ) ∉ Xnc
Ø

and δ ≤

24
25

, consumers prefer the commitment setting over the non-commitment set-

ting. If δ> 24
25

, there are combinations of (S1,S2,δ) for which consumers prefer

the non-commitment setting.

Proof We assume, without loss of generality, that S2 ≥ S1. Whenever there

is a change in consumer surplus between the settings, (S1,S2,δ) belongs to

Region Xc
mh

, and to Region Xnc
mh

or Xnc
m’h

. Consumer surplus in Regions Xc
mh

,
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2.5. Commitment versus Non-commitment

Xnc
mh

and Xnc
m’h

is respectively

CSc
mh = (

4+2δ+3δS1

6+6δ
)2 +δ(

3S1 +2+4δ

6+6δ
)2,

CSnc
mh = (

4+δ+2δS1

6+4δ
)2 +δ(

3S1 +2+3δ

6+4δ
)2,

CSnc
m’h

= (
1

2
S1 +

1

3
)2 +

4

9
δ.

For Region Xnc
mh

and Xnc
m’h

, it holds respectively that 1
3
(1−δ)≤ Si ≤

2
3
− 1

9
δ and

2
3
− 1

9
δ< Si ≤

2
3
. Now,

CSc
mh ≥CSnc

mh for Si ∈ [
1

3
(1−δ),

24−7δ−17δ2

3δ
]

and

CSc
mh ≥CSnc

m’h
for Si ∈ [−2+

8

3
δ,

2

3
].

It holds that

24−7δ−17δ2

3δ
≥

2

3
−

1

9
δ

iff δ≤ 24
25

and

−2+
8

3
δ≤

2

3
−

1

9
δ

iff δ ≤ 24
25

. So for δ ≤ 24
25

, consumers prefer the commitment setting over the

non-commitment setting. �

The smaller firm prefers the commitment setting, the larger firm prefers

the non-commitment setting and consumers prefer in most situations the

commitment setting. Which setting then maximizes total surplus is the

question yet to answer.

Proposition 2.5.6. Total surplus is higher in the commitment setting than

in the non-commitment setting.

Proof We again assume w.l.o.g. that S2 ≥ S1. Whenever there is a change

in total surplus between the commitment and the non-commitment setting,

(S1,S2,δ) belongs to Region Xc
mh

, and to Region Xnc
mh

or Xnc
m’h

. Total surplus
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in Regions Xc
mh

, Xnc
mh

and Xnc
m’h

is respectively

TSc
mh = (

4+2δ+3δS1

6+6δ
)(1-

1

2
(
4+2δ+3δS1

6+6δ
))+δ(

3S1 +2+4δ

6+6δ
)(1-

1

2
(
3S1 +2+4δ

6+6δ
)),

TSnc
mh = (

4+δ+2δS1

6+4δ
)(1-

1

2
(
4+δ+2δS1

6+4δ
))+δ(

3S1 +2+3δ

6+4δ
)(1-

1

2
(
3S1 +2+3δ

6+4δ
)),

TSnc
m’h

= (
1

2
S1 +

1

3
)(1−

1

2
(
1

2
S1 +

1

3
))+δ(

2

3
)(1−

1

3
).

For Region Xnc
hm

and Region Xnc
hm’

, it holds respectively that 1
3
(1−δ) ≤ Si ≤

2
3
− 1

9
δ and 2

3
− 1

9
δ< Si ≤

2
3
. Now,

TSnc
mh ≥TSc

mh iff S1 ∈ [
−12+5δ+7δ2

3δ
,
1

3
(1−δ)]

and

TSnc
m’h

≥TSc
mh iff S1 ∈ [

2

3
,2−

4

3
δ].

So, for S1 ∈ [1
3
(1−δ), 2

3
], total surplus is the highest in the commitment set-

ting. �

Summary of comparative statics results for the commitment versus the

non-commitment case

The following can be said about the equilibrium outcome regions. There

is no difference between the equilibrium outcomes in the commitment and

the non-commitment case if the firms are of equal size. Non-commitment

is preferred over commitment only by the larger of the two firms. When

there is no commitment, the first-period equilibrium price is higher and the

second-period equilibrium price is lower than in the case with commitment.

Consumer surplus is in most cases highest in the commitment setting and

total surplus is in all cases highest in the commitment setting.

2.6 Concluding Remarks

We have shown that whether firms can or cannot commit to their sales strat-

egy influences prices, sales quantities, profits and surplus. Comparative

statics in the case with commitment conform to standard intuition. In the

non-commitment situation, however, a number of counterintuitive results

were found. First, equilibria may fail to exist. Moreover, in equilibrium

prices may decrease over time and higher stocks can lead to lower revenues
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from sales. Large firms benefit from the absence of commitment, contrary to

small firms and, in most cases, consumers.

We have limited the analysis to the case where competition takes place

during two periods. We expect our main results to be true in the multi-

period setting as well, but we fail to have an analytically tractable model

specification for that situation.

We have only analyzed the case where production has already taken

place, and firms compete in sales strategies. An extension of the model could

be to make the production capacity choice of the firms endogenous, if, again,

the tractability issues can be overcome.

Another issue that should be addressed in future research is to what ex-

tent the choice for quantity competition affects our outcomes. It is natural

to address the questions of this chapter for models of price competition. Also

here, however, it is challenging to find a model specification that is suffi-

ciently general but still analytically tractable.
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2.A The Reduced Best Response Correspondence

We derive the reduced best response correspondence of firm i for the non-

commitment case. To keep the appendix within reasonable length, we have

omitted the derivation of second-order conditions. In accordance with Propo-

sition 2.4.1, we can restrict our analysis to best responses against q j ≤
1
2
. We

distinguish three cases:

(A) q j < S j −
1
2
,

(B) S j −
1
2
≤ q j < S j −

1
3
,

(C) S j −
1
3
≤ q j ≤ S j.

These three cases correspond to the three cases of residual stock T j =

S j − q j of firm j with qualitatively different second-period behavior of firm

j.

(A) q j < S j −
1
2

Using the reduced profit function (2.2), for 0 ≤ qi < Si −
1
3
, profit is given by

(Yhh), and for Si−
1
3
≤ qi ≤ Si, profit is given by (Ylh). Taking the unrestricted

first-order condition of the profit function in (Yhh) and (Ylh) and solving for

qi results in qhh
i

and qlh
i

given by

qhh
i =

1

2
−

1

2
q j,

qlh
i =

1− q j −
1
2
δ+δSi

2+δ
.

It holds that qhh
i

∈ [0,Si−
1
3
) if and only if 5

6
− 1

2
q j < Si. Similarly, it holds that

qlh
i
∈ [Si −

1
3
,Si] if and only if 1

2
− 1

2
q j −

1
4
δ≤ Si ≤

5
6
− 1

12
δ− 1

2
q j. We therefore

find that the reduced best response q∗
i

of player 1 to q j is given by

q∗
i =



















Si, if 0≤ Si <
1
2
− 1

2
q j −

1
4
δ,

1−q j−
1
2
δ+δSi

2+δ
, if 1

2
− 1

2
q j −

1
4
δ≤ Si ≤

5
6
− 1

12
δ− 1

2
q j,

Si −
1
3
, if 5

6
− 1

12
δ− 1

2
q j < Si ≤

5
6
− 1

2
q j,

1
2
− 1

2
q j, if 5

6
− 1

2
q j < Si.
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(B) S j −
1
2
≤ q j < S j −

1
3

It follows from the reduced profit function (2.2) that, for 0≤ qi < Si−
1
3
, profit

is given by (Yhh), for Si −
1
3
≤ qi < 2T j −1+Si, profit is given by (Ylh), and

for 2T j − 1+Si ≤ qi ≤ Si, profit is given by (Yll). Taking the unrestricted

first-order condition of the reduced profit function in (Yhh), (Ylh) and (Yll)

and solving for qi results in qhh
i

, qlh
i

, and qll
i

given by

qhh
i =

1

2
−

1

2
q j,

qlh
i =

1− q j −
1
2
δ+δSi

2+δ
,

qll
i =

1− q j +2δSi −δ+δT j

2+2δ
.

It holds that qhh
i

∈ [0,Si −
1
3
) if and only if 5

6
− 1

2
q j < Si. Similarly, it holds

that qlh
i
∈ [max{0,Si −

1
3
},2T j −1+Si) if and only if Slh

i < Si ≤ S̄lh
i

, where

Slh
i =

3

2
+

1

4
δ−

1

2
q j − (2+δ)T j,

S̄lh
i =

5

6
−

1

12
δ−

1

2
q j.

The requirement qlh
i
≥ 0 is not binding, since q j ≤

1
2

implies qlh
i

is positive. It

holds that qll
i
∈ [max{0,2T j−1+Si},Si] if and only if max{Slla

i
,Sllb

i
}≤ Si ≤ S̄ll

i
,

where

Slla
i =

1

2δ
(q j −1+δ−δT j),

Sllb
i =

1

2
(1−δ− q j +δT j),

S̄ll
i =

3

2
+

1

2
δ−

1

2
q j − (2+

3

2
δ)T j.

Since S j − q j ≥ 1/3, it holds that max{S̄lh
i

, S̄ll
i
} ≤ 5/6− q j/2. The intervals

[Slh
i , S̄lh

i
] and [max{Slla

i
,Sllb

i
}, S̄ll

i
] are overlapping. In particular, since q j ≤

1/2, T j = S j − q j ≤ 1/2, and δ≤ 1, it holds that max{Slla
i

,Sllb
i

}≤ Slh
i ≤ S̄ll

i
.

The reduced profit function of firm i has two local maxima if Slh
i ≤ Si ≤

min{S̄ll
i
, S̄lh

i
}. Since S̄lh

i
≤ S̄ll

i
if and only if q j ≥ S j−

8+7δ
24+18δ

, the profit function

has two local maxima if

S j −
1

2
≤ q j ≤ S j −

8+7δ

24+18δ
and Slh

i ≤ Si ≤ S̄ll
i
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or

S j −
8+7δ

24+18δ
≤ q j ≤ S j −

1

3
and Slh

i ≤ Si ≤ S̄lh
i .

To find the global maximum, we compare the profits in both local maxima.

The profits corresponding to qlh
i

and qll
i

are respectively

Π
lh
i =

4+4q2
j
−4δ+16δSi +8δS2

i
+δ2 +−8q j +4δq j −8Siδq j

16+8δ
,

Π
ll
i =

1-2δ+δ2-2q j+2δ2q j+q2
j
+2δq2

j
+δ2q2

j
+8δSi-4δS2

i
+2δS j-2δ

2S j-2δq jS j-2δ
2q jS j-4δSiS j+δ

2S2
j

4+4δ
.

It holds that Πlh
i
≥Π

ll
i

if and only if Si ≥ S̃i, where

S̃i = 1−
1

2
q j − (1+

1

2
δ)T j + (

1

2
−T j)

√

(1+δ)(1+
1

2
δ).

Since S̃i > Slh
i whenever q j ≥ S j −

1
2
, qlh

i
maximizes profits for S̃i ≤ Si ≤ S̄lh

i
.

Since max{Slla
i

,Sllb
i

} ≤ S̃i ≤ S̄ll
i
, qll

i
maximizes profits for max{Slla

i
,Sllb

i
} ≤

Si ≤ S̃i.

When max{S̄ll
i
(q j), S̄

lh
i

(q j)} < Si ≤
5
6
− 1

2
q j we have a boundary solution,

and profit maximizing sales are given by q∗
i
= Si −

1
3
.

One possibility remains: max{S̄lh
i

, S̃i} < Si ≤ S̄ll
i
. In this case, the profit

maximizing choice is either qll
i

or q∗
i
. We argue that qll

i
maximizes profits, so

for S̄lh
i
≤ Si ≤ S̄ll

i
, the best response of firm i is qll

i
.

It holds that

Π
ll
i ≥Π

∗
i = (Si −

1

3
)(

4

3
−Si − q j)+

1

9
δ

if and only if

Si ∈ [
5

6
−

1

6
δ−

1

2
q j +

1

2
δT j ±

1

3

√

δ(1+δ)(3T j −1)].

Since

[S̄lh
i , S̄ll

i ]⊂ [
5

6
−

1

6
δ−

1

2
q j +

1

2
δT j ±

1

3

√

δ(1+δ)(3T j −1)]

for

q j < S j −
4+5δ−4

√

(1+δ)(1+ 1
2
δ)

6δ
,

we have our desired conclusion.

48



2.A. The Reduced Best Response Correspondence

Summarizing, the reduced best response q∗
i

of player i against q j for

S j −
1
2
≤ q j < S j −

1
3

is given by

q∗
i =























































0, if 0≤ Si < Slla
i

,

Si, if 0≤ Si < Sllb
i

,
(1−q j+2δSi−δ+δT j)

2+2δ
, if max{Slla

i
,Sllb

i
}≤ Si ≤ S̃i,

1−q j−
1
2
δ+δSi

2+δ
, if S̃i ≤ Si ≤ S

lh

i ,
(1−q j+2δSi−δ+δT j)

2+2δ
, if max{S̃i,S

lh

i }< Si ≤ S
ll

i ,

Si −
1
3

if max{S
lh

i ,S
ll

i }< Si ≤
5
6
− 1

2
q j,

1
2
− 1

2
q j, if 5

6
− 1

2
q j < Si,

where

S̃i = 1−
1

2
q j − (1+

1

2
δ)T j + (

1

2
−T j)

√

(1+δ)(1+
1

2
δ),

Slh
i =

3

2
+

1

4
δ−

1

2
q j − (2+δ)T j,

S̄lh
i =

5

6
−

1

12
δ−

1

2
q j,

Slla
i =

1

2δ
(q j −1+δ−δT j),

Sllb
i =

1

2
(1−δ− q j +δT j),

S̄ll
i =

3

2
+

1

2
δ−

1

2
q j − (2+

3

2
δ)T j.

(C) S j −
1
3
≤ q j ≤ S j

It follows from the reduced profit function (2.2) that, for 0≤ qi < Si−
1
2
+ 1

2
T j,

profit is given by (Yhl), and for Si −
1
2
+ 1

2
T j ≤ qi ≤ Si, profit is given by (Yll).

Taking the unrestricted first-order condition of the profit function in (Yhl)

and (Yll) and solving for qi results in qhl
i

and qll
i

given by

qhl
i =

1

2
−

1

2
q j,

qll
i =

1− q j +2δSi −δ+δT j

2+2δ
.

It holds that qhl
i
∈ [0,Si −

1
2
+ 1

2
T j) if and only if 1− 1

2
S j < Si. Similarly, it

holds that qll
i
∈ [Si−

1
2
+ 1

2
T j,Si] if and only if max{1

2
(1−δ−q j+δT j),

1
2δ

(−1+
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Chapter 2. Dynamic Duopoly with Intertemporal Capacity Constraints

δ+q j−δT j)}≤ Si ≤ 1− 1
2

S j. We therefore find that the reduced best response

q∗
i

of player 1 to q j is given by

q∗
i
=



























Si, if 0≤ Si <
1
2
(1−δ− q j +δT j),

0, if 0≤ Si <
1

2δ
(−1+δ+ q j −δT j),

1−q j+2δSi−δ+δT j

2+2δ
, if max{1

2
(1−δ− q j +δT j),

1
2δ

(−1+δ+ q j −δT j)}

≤ Si ≤ 1− 1
2

S j,
1
2
− 1

2
q j, if 1− 1

2
S j < Si.

Overview of the Reduced Best Response Correspondence

Table 2.4 now follows immediately.

2.B Subgame Perfect Equilibria

We define the sets A j(1), . . . , A j(4), B j(1), . . . ,B j(7), C j(1), . . . ,C j(4) as the sets

of quantities q j satisfying the constraints as presented in Table 2.4. Notice

that each of these sets is a subset of [0,1/2]. Moreover, we define A j(k1, . . . ,kℓ)=

A j(k1)∪·· ·∪A j(kℓ), and similarly for sets B j(k1, . . . ,kℓ) and C j(k1, . . . ,kℓ). In

the proofs we will make use of Table 2.4. That table presents the reduced

best response of firm i to a first-period sales quantity of firm j with the use of

coefficients α1, . . . ,α8. In the sequel we will need the reduced best response of

firm j to a first-period sales quantity of firm i, which follows from Table 2.4

by reversing the roles of firm i and j. The corresponding coefficients are de-

noted by β1, . . . ,β8.

Proposition B.1 If (q∗
i
, q∗

j
) is a Nash equilibrium of the reduced game and

q∗
j
∈ A j(1,2,3)∪B j(1,2,3,4,5,6)∪C j(1), then Si−q∗

i
≤ 1

3
, so q∗

i
∈ Ci(1,2,3,4).

Proof For q∗
j
∈ A j(1,3)∪B j(1,6)∪C j(1) it follows immediately from Table 2.4

that Si − q∗
i
≤ 1

3
. For q∗

j
∈ A j(2)∪B j(4),

Si − q∗
i =

2Si −1+ q∗
j
+ 1

2
δ

2+δ
≤

2
3
+ 1

3
δ

2+δ
=

1

3
,

where the inequality follows from q∗
j
≤α2. For q∗

j
∈ B j(2),

Si − q∗
i <

3

4
−

1

4δ
−

1

2
S j <

1

3
,
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2.B. Subgame Perfect Equilibria

A j (q j < S j −
1
2
) q∗

i
r∗

i

1) 0≤ q j <α1 Si 0

2) α1 ≤ q j ≤α2
1−q j−

1
2
δ+δSi

2+δ

2Si−1+q j+
1
2
δ

2+δ

3) α2 < q j ≤α3 Si −
1
3

1
3

4) q j > α3
1
2
− 1

2
q j

1
3

B j (S j −
1
2
≤ q j < S j −

1
3
) q∗

i
r∗

i

1) 0≤ q j <α4 Si 0

2) q j >α5 0 Si

3) max{α4,α6}≤ q j ≤α5
1−q j+2δSi−δ+δT j

2+2δ

2Si−1+q j+δ−δT j

2+2δ

4) q j ≤α6, q j ≤α2
1−q j−

1
2
δ+δSi

2+δ

2Si−1+q j+
1
2
δ

2+δ

5) α2 < q j <α6, q j ≥α7
1−q j+2δSi−δ+δT j

2+2δ

2Si−1+q j+δ−δT j

2+2δ

6) α2 < q j ≤α3, q j <α7 Si −
1
3

1
3

7) q j > α3
1
2
− 1

2
q j

1
3

C j ( q j ≥ S j −
1
3
) q∗

i
r∗

i

1) 0≤ q j <α4 Si 0

2) q j >α5 0 Si

3) α4 ≤ q j ≤α5,Si ≤α8
1−q j+2δSi−δ+δT j

2+2δ

2Si−1+q j+δ−δT j

2+2δ

4) Si >α8
1
2
− 1

2
q j

1
2
− 1

2
S j +

1
2

q j

Explanation of the symbols

α1 1− 1
2
δ−2Si

α2
5
3
− 1

6
δ−2Si

α3
5
3
−2Si

α4
1−δ+δS j−2Si

1+δ

α5
1−δ+δS j+2δSi

1+δ

α6

2Si−2+2S j+δS j−(1−2S j)
√

(1+δ)(1+ 1
2
δ)

1+δ+2
√

(1+δ)(1+ 1
2
δ)

α7
2Si−3−δ+4S j+3δS j

3+3δ

α8 1− 1
2

S j

Table 2.4: Reduced best response correspondence σR∗
i

(q j) for 0≤ q j ≤
1
2
.
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Chapter 2. Dynamic Duopoly with Intertemporal Capacity Constraints

where the first inequality follows from α5 < q∗
j
≤ 1

2
and the second one from

δ≤ 1 and S j > q∗
j
+ 1

3
≥ 1

3
. For q∗

j
∈ B j(3),

Si − q∗
i =

2Si −1+ q∗
j
+δ−δT j

2(1+δ)
≤

(1+δ+
√

(1+δ)(1+ 1
2
δ))(1−2T j)

2(1+δ)

≤
1+δ+

√

(1+δ)(1+ 1
2
δ)

6(1+δ)
≤

1

3
,

where the first inequality follows from q∗
j
≥α6 (i.e. Si ≤ Sc

i
), the second from

1
3
< T j ≤

1
2

and the third one from δ ∈ (0,1]. For q∗
j
∈ B j(5),

Si − q∗
i =

2Si −1+ q∗
j
+δ−δT j

2(1+δ)
≤ 1−2T j ≤

1

3
,

where the first inequality follows from q∗
j
≤ α7, i.e. Si ≤ S

ll

i , and the second

one from 1
3
< T j ≤

1
2
. �

Proposition B.2 If (q∗
i
, q∗

j
) is a Nash equilibrium of the reduced game and

q∗
j
∈ A j(4)∪B j(7)∪C j(4), then Si−q∗

i
> 1

3
, so q∗

i
∈ A i(1,2,3,4)∪Bi(1,2,3,4,5,6,7).

Proof If q∗
j
∈ A j(4)∪B j(7), then since q∗

j
> α3, we have Si >

5
6
− 1

2
q∗

j
, and

q∗
i
= 1

2
− 1

2
q∗

j
. Therefore, Si − q∗

i
> 1

3
. If q∗

j
∈ C j(4), then S j − q∗

j
≤ 1

3
, Si >

1− 1
2

S j, and q∗
i
= 1

2
− 1

2
q∗

j
. This implies Si − q∗

i
> 1

3
. �

We continue by solving for all Nash equilibria (q∗
i
, q∗

j
) of the reduced game

where q∗
j
∈ A j(1). Next we consider Nash equilibria (q∗

i
, q∗

j
) with q∗

j
∈ A j(2).

We restrict attention to the case with q∗
i
∉ A i(1), since using the symmetry

of the firms such equilibria follow already from the first case. We continue

with q∗
j
∈ A j(3), and so on.
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2.B. Subgame Perfect Equilibria

q∗
j
∈Aj(1)

It holds that

q∗
j < S j −

1

2
, (2.3)

q∗
j < 1−

1

2
δ−2Si, (2.4)

q∗
i =σR

i (q∗
j )= Si. (2.5)

By Proposition B.1, q∗
i
∈ Ci(1,2,3,4). This gives the following possibilities:

q∗
i ∈ Ci(1) : q∗

j = S j,

q∗
i ∈ Ci(2) : q∗

j = 0,

q∗
i ∈ Ci(3) : q∗

j =
1−Si +2δS j −δ

2+2δ
, (2.6)

q∗
i ∈ Ci(4) : q∗

j =
1

2
−

1

2
Si. (2.7)

If q∗
i
∈ Ci(2), then q∗

i
> β5 implies S j <

1
2
− 1

2δ
+ 1

2δ
Si <

1
2

by (2.5) and

Lemma 2.4.1, so (2.3) leads to a contradiction.

Next, (2.3) and (2.6) imply S j > 1− 1
2

Si, whereas q∗
i
∈ Ci(3) implies q∗

i
≤

β8, so S j ≤ 1− 1
2

Si, a contradiction.

When q∗
i
∈ Ci(4), then q∗

i
≥ Si −

1
3

and S j > β8. These inequalities to-

gether with the inequalities (2.3) and (2.4) lead to the conclusion that (q∗
j
, q∗

i
)

is a Nash equilibrium with q∗
j
∈ A j(1) if and only if q∗

j
= 1

2
− 1

2
Si, q∗

i
= Si,

S j > 1− 1
2

Si, and Si <
1
3
− 1

3
δ.

q∗
j
∈Aj(2)

It holds that

q∗
j < S j −

1

2
, (2.8)

1−
1

2
δ−2Si ≤ q∗

j ≤
5

3
−

1

6
δ−2Si, (2.9)

q∗
i =σR

i (q∗
j )=

1− q∗
j
− 1

2
δ+δSi

2+δ
≤

1

2
.
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By Proposition B.1, q∗
i
∈ Ci(2,3,4).7 This gives the following possibilities:

q∗
i ∈ Ci(2) : q∗

i =
1− 1

2
δ+δSi

2+δ
, q∗

j = 0, (2.10)

q∗
i ∈ Ci(3) : q∗

i =
1+2δ−δ2 +δSi +2δ2Si −2δS j

3+5δ+2δ2
, (2.11)

q∗
j =

2−3δ−δ2 +8δS j +4δ2S j +2δSi

6+10δ+4δ2
,

q∗
i ∈ Ci(4) : q∗

i =
1−δ+2δSi

3+2δ
, q∗

j =
2+3δ−2δSi

6+4δ
. (2.12)

Consider q∗
i
∈ Ci(2). Then q∗

i
> β5, so S j <

−2+3δ+δ2−2δSi

8δ+4δ2 < 1
2
, and (2.8)

leads to a contradiction.

Consider q∗
i
∈ Ci(3). It holds that

5+2δ+δ2 +2δSi

6+2δ
< S j ≤ 1−

1

2
Si, (2.13)

where the first inequality follows from (2.8) and (2.11), and the second in-

equality from S j ≤ β8. By rewriting the expression in (2.13), it follows that

Si <
1
3
− 1

3
δ.

However, this is contradicted by

Si ≥
1+2δ−δ2 −2δS j

3+4δ
≥

1

3
−

1

3
δ,

where the first inequality follows from (2.9) and (2.11), and the second in-

equality from S j ≤β8.

Consider q∗
i
∈ Ci(4). It is implied by (2.9) and (2.12) that

1

3
(1−δ)≤ Si ≤

1

3
(2−

1

3
δ).

From (2.8) and (2.12) it follows that S j >
5+5δ−2δSi

6+4δ
. In conclusion, (q∗

j
, q∗

i
)

is a Nash equilibrium with q∗
j
∈ A j(2) if and only if q∗

j
=

2+3δ−2δSi

6+4δ
, q∗

i
=

1−δ+2δSi

3+2δ
, 1

3
(1−δ)≤ Si ≤

1
3
(2− 1

3
δ), and S j >

5+5δ−2δSi

6+4δ
.

7Note that, by Proposition B.1, q∗
i
∉ Ci(1). By Proposition B.1, if q∗

i
∈ Ci(1), then q∗

j
∈

C j(1,2,3,4).
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2.B. Subgame Perfect Equilibria

q∗
j
∈Aj(3)

It holds that

q∗
j < S j −

1

2
, (2.14)

5

3
−

1

6
δ−2Si < q∗

j ≤
5

3
−2Si, (2.15)

q∗
i =σR

i (q∗
j )= Si −

1

3
.

By Proposition B.1, q∗
i
∈ Ci(2,3,4). This gives the following possibilities:

q∗
i ∈ Ci(2) : q∗

j = 0,

q∗
i ∈ Ci(3) : q∗

j =

4
3
− 2

3
δ+2δS j −Si

2+2δ
,

q∗
i ∈ Ci(4) : q∗

j =
2

3
−

1

2
Si.

Consider q∗
i
∈ Ci(2). Since q∗

j
= 0, the second inequality in (2.15) implies

Si ≤
5
6
. We have that

1

2
< S j <

Si −
4
3
+ 2

3
δ

2δ
, (2.16)

where the first inequality follows from (2.14) and the second from q∗
i
> β5.

By rewriting the expression (2.16), we find that Si >
4
3
+ 1

3
δ, contradicting

Si ≤ 5/6.

Consider q∗
i
∈ Ci(3). By (2.14), it should hold that

S j > 1
1

6
+

1

6
δ−

1

2
Si,

which contradicts with S j ≤β8.

Consider q∗
i
∈ Ci(4). It holds that

2

3
−

1

9
δ< Si ≤

2

3
,

where both inequalities follow from (2.15). From (2.14), it follows that

S j >
7

6
−

1

2
Si.

The other constraints are redundant. In conclusion, q∗
j
∈ A j(3) if and

only if q∗
i
∈ Ci(4),S j >

7
6
− 1

2
Si and 2

3
− 1

9
δ< Si ≤

2
3
.
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q∗
j
∈Aj(4)

It holds that

q∗
j < S j −

1

2
, (2.17)

q∗
j >

5

3
−2Si.

We have

q∗
i =σR

i (q∗
j )=

1

2
−

1

2
q j ≤

1

2
.

By Proposition B.1 and Proposition B.2, q∗
i
∈ A i(4)∪Bi(7).8 This gives

the following possibilities:

q∗
i ∈ A i(4) : q∗

i = q∗
j =

1

3
,

q∗
i ∈ Bi(7) : q∗

i = q∗
j =

1

3
,

Consider q∗
i
∈ A i(4)∪Bi(7). It follows from (2.17) that

S j >
5

6
.

For q∗
i
∈ A i(4), it follows from q∗

i
< Si −

1
2

that Si >
5
6
. Next, if q∗

i
∈ Bi(7), it

follows from

Si −
1

2
≤ q∗

i < S j −
1

3

that
2

3
< Si ≤

5

6
.

The other constraints are redundant. In conclusion, q∗
j
∈ A j(4) if and

only if q∗
i
∈ A i(4)∪Bi(7) and S j >

5
6
, Si >

2
3
.

q∗
j
∈Bj(1)

It holds that

S j −
1

2
≤ q∗

j < S j −
1

3
, (2.18)

q∗
j <

1−δ+δS j −2Si

1+δ
. (2.19)

8Note that Proposition B.1 excludes that q∗
i
∈ A i(1,2,3)∪Bi(1,2,3,4,5,6) and q∗

j
∈ A j(4).
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2.B. Subgame Perfect Equilibria

We have

q∗
i =σR

i (q∗
j )= Si ≤

1

2
.

By Proposition B.1, q∗
i
∈ Ci(2,3,4). This gives the following possibilities:

q∗
i ∈ Ci(2) : q∗

j = 0,

q∗
i ∈ Ci(3) : q∗

j =
1−Si +2δS j −δ

2+2δ
,

q∗
i ∈ Ci(4) : q∗

j =
1

2
−

1

2
Si.

For q∗
i
∈ Ci(2), it can be found that

S j <
1

2δ
(Si −1+δ)<

1

3δ
(−1+δ)≤ 0,

where the first inequality follows from q∗
i
> β5, the second one from (2.19)

and the last one from δ≤ 1.

For q∗
i
∈ Ci(3), (2.18) implies 5

6
− 1

6
δ− 1

2
Si < S j ≤ 1− 1

2
Si. By (2.19), Si <

1
3
− 1

3
δ. The other constraints are redundant.

Next, q∗
i
∈ Ci(4) implies S j > 1− 1

2
Si, whereas (2.18) implies S j ≤ 1− 1

2
Si,

a contradiction.

In conclusion, q∗
j
∈ B j(1) if and only if q∗

i
∈ Ci(3) and 5

6
− 1

6
δ− 1

2
Si < S j ≤

1− 1
2

Si,Si <
1
3
− 1

3
δ.

q∗
j
∈Bj(2)

It holds that

S j −
1

2
≤ q∗

j < S j −
1

3
, (2.20)

q∗
j >

1−δ+δS j +2δSi

1+δ
. (2.21)

We have

q∗
i =σR

i (q∗
j )= 0.

By Proposition B.1, q∗
i
∈ Ci(2,3,4). This gives the following possibilities:

q∗
i ∈ Ci(2) : q∗

j = 0,

q∗
i ∈ Ci(3) : q∗

j =
1+2δS j −δ+δSi

2+2δ
,

q∗
i ∈ Ci(4) : q∗

j =
1

2
.
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For q∗
i
∈ Ci(2), from q∗

i
>β5 it follows that S j <

1
2δ

(−1+δ−δSi)≤ 0.

Consider q∗
i
∈ Ci(3). Inequality (2.20) implies Si <

1
3δ

(−1+δ)≤ 0.

If q∗
i
∈ Ci(4), it holds again that

Si <
1

4δ
(−1+3δ−2δS j)<

1

3δ
(−1+δ)≤ 0,

where the first inequality follows from (2.21) and the second one from S j >

β8.

In conclusion, q∗
j
∉ B j(2).

q∗
j
∈Bj(3)

It holds that

S j −
1

2
≤ q∗

j < S j −
1

3
, (2.22)

q j ≥ max{
1-δ+δS j-2Si

1+δ
,
2Si-2+2S j+δS j-(1-2S j)

√

(1+δ)(1+1
2
δ)

1+δ+2
√

(1+δ)(1+ 1
2
δ)

},(2.23)

q j ≤
1−δ+δS j +2δSi

1+δ
. (2.24)

We have

q∗
i =σR

i (q∗
j )=

1− q j +2δSi −δ+δS j −δq j

2+2δ
.

By Proposition B.1, q∗
i
∈ Ci(2,3,4). This gives the following possibilities:

q∗
i ∈ Ci(2) : q∗

i =
1+2δSi −δ+δS j

2+2δ
, q∗

j = 0,

q∗
i ∈ Ci(3) : q∗

i =
1−δ+3δSi

3+3δ
, q∗

j =
1−δ+3δS j

3+3δ
,

q∗
i ∈ Ci(4) : q∗

i =
1−3δ+4δSi +2δS j

3+3δ
,

q∗
j =

1+3δ−2δSi −δS j

3+3δ
.

For q∗
i
∈ Ci(2), it follows from q∗

i
>β5 that S j <

1
3δ

(−1+δ)≤ 0.

If q∗
i
∈ Ci(3), it is implied by (2.23) that 1

3
(1− δ) ≤ Si ≤

7
6
− S j −

1
6
δ+

√

(1+δ)(1+ 1
2
δ)

1+δ
(5

6
+ 1

6
δ−S j). It follows from (2.22) that S j >

2
3
. The remaining

constraints are redundant.
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Consider q∗
i
∈ Ci(4). By S j > β8 and (2.23) it follows that 2−2S j < Si ≤

7+10δ+3δ2−6S j−10δS j−4δ2S j+(5+9δ−6S j−8δS j)
√

(1+δ)(1+ 1
2
δ)

6+8δ+2δ2+4δ
√

(1+δ)(1+ 1
2
δ)

. Such an Si only exists

if S j >
5+δ

6
. From (2.22) it follows that Si ≤

5+9δ−6S j−8δS j

4δ
. Now, there only

exists an Si such that 2−2S j < Si ≤
5+9δ−6S j−8δS j

4δ
, if S j <

5+δ
6

, a contradic-

tion.

In conclusion, q∗
j
∈ B j(3) if and only if q∗

i
∈ Ci(3) and 1

3
(1− δ) ≤ Si ≤

7
6
−S j −

1
6
δ+

√

(1+δ)(1+ 1
2
δ)

1+δ
(5

6
+ 1

6
δ−S j),S j >

2
3
.

q∗
j
∈Bj(4)

It holds that

S j −
1

2
≤ q∗

j < S j −
1

3
, (2.25)

q j <
2Si −2+2S j +δS j − (1−2S j)

√

(1+δ)(1+ 1
2
δ)

1+δ+2
√

(1+δ)(1+ 1
2
δ)

, (2.26)

q j ≤
5

3
−

1

6
δ−2Si. (2.27)

We have

q∗
i =σR

i (q∗
j )=

1− q j −
1
2
δ+δSi

2+δ
.

By Proposition B.1, q∗
i
∈ Ci(2,3,4). This gives the following possibilities:

q∗
i ∈ Ci(2) : q∗

i =
1− 1

2
δ+δSi

2+δ
, q∗

j = 0,

q∗
i ∈ Ci(3) : q∗

i =
1+2δ−δ2 +δSi +2δ2Si −2δS j

3+5δ+2δ2
,

q∗
j =

2−3δ−δ2 +8δS j +4δ2S j +2δSi

6+10δ+4δ2
,

q∗
i ∈ Ci(4) : q∗

i =
1−δ+2δSi

3+2δ
, q∗

j =
2+3δ−2δSi

6+4δ
.

For q∗
i
∈ Ci(2), qi > β5 and inequality (2.25) imply respectively that 1

3
<

S j <
−1+ 3

2
δ+ 1

2
δ2−δSi

2δ(2+δ)
. However, no such S j exists, since this would imply that

Si <
1
δ
(−1+ 1

6
δ− 1

6
δ2)≤ 0.
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Consider q∗
i
∈ Ci(3). It follows from (2.26) and qi <β5 that

7+91
2
δ+2δ2-1

2
δ3-6S j-9δS j-3δ

2S j+(5+2δ+δ2-6S j-2δS j)
√

(1+δ)(1+1
2
δ)

6+9δ+3δ2 −2δ
√

(1+δ)(1+ 1
2
δ)

< Si ≤ 2−2S j (2.28)

and from (2.25) and qi <β5 that

6S j +2δS j −5−2δ−δ2

2δ
≤ Si ≤ 2−2S j. (2.29)

There exists an Si such that (2.28) if and only if S j >
5+δ

6
and there exists

an Si such that (2.29) holds if and only if S j ≤
5+δ

6
, a contradiction.

If q∗
i
∈ Ci(4), inequality (2.27) implies Si ≤

1
3
(2−1

3
δ). It follows from (2.26)

and (2.25) respectively that S j >
7+6 1

2
δ+ 3

2
δ2−6Si−5δSi−δ

2Si+(5+5δ−2δSi)
√

(1+δ)(1+ 1
2
δ)

6+7δ+2δ2+(6+4δ)
√

(1+δ)(1+ 1
2
δ)

and S j ≤
5+5δ−2δSi

6+4δ
. The other constraints are redundant.

In conclusion, q∗
j
∈ B j(4) if and only if q∗

i
∈ Ci(4) and Si ≤

1
3
(2− 1

3
δ),

7+6 1
2
δ+ 3

2
δ2−6Si−5δSi−δ

2Si+(5+5δ−2δSi)
√

(1+δ)(1+ 1
2
δ)

6+7δ+2δ2+(6+4δ)
√

(1+δ)(1+ 1
2
δ)

< S j ≤
5+5δ−2δSi

6+4δ)
.

q∗
j
∈Bj(5)

It holds that

S j −
1

2
≤ q∗

j < S j −
1

3
, (2.30)

5

3
−

1

6
δ−2Si < q j <

2Si −2+2S j +δS j − (1−2S j)
√

(1+δ)(1+ 1
2
δ)

1+δ+2
√

(1+δ)(1+ 1
2
δ)

,(2.31)

q j ≥
2Si −3−δ+4S j +3δS j

3+3δ
. (2.32)

We have

q∗
i =σR

i (q∗
j )=

1− q j +2δSi −δ+δS j −δq j

2+2δ
.
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By Proposition B.1, q∗
i
∈ Ci(2,3,4). This gives the following possibilities:

q∗
i ∈ Ci(2) : q∗

i =
1+2δSi −δ+δS j

2+2δ
, q∗

j = 0,

q∗
i ∈ Ci(3) : q∗

i =
1−δ+3δSi

3+3δ
, q∗

j =
1−δ+3δS j

3+3δ
,

q∗
i ∈ Ci(4) : q∗

i =
1−3δ+4δSi +2δS j

3+3δ
,

q∗
j =

1+3δ−2δSi −δS j

3+3δ
.

For q∗
i
∈ Ci(2), it follows from qi >β6 that S j <

1
3δ

(−1+δ)≤ 0.

For q∗
i
∈ Ci(3), it holds that S j ≤ 1− 1

2
Si. It is implied by (2.31) that

Si >max{
4+5 1

2
δ− 1

2
δ2−3δS j

6+6δ
, 7

6
− 1

6
δ−S j +

√

(1+δ)(1+ 1
2
δ)

1+δ
(5

6
+ 1

6
δ−S j)}. From (2.30)

it follows that S j >
2
3
. The other constraints are redundant.

If q∗
i
∈ Ci(4), it holds that S j > 1− 1

2
Si. From (2.32) it follows that S j ≤

1− 1
2

Si, a contradiction.

In conclusion, q∗
j
∈ B j(5) if and only if q∗

i
∈ Ci(3) and Si >max{

4+5 1
2
δ− 1

2
δ2−3δS j

6+6δ
, 7

6
−

1
6
δ−S j +

√

(1+δ)(1+ 1
2
δ)

1+δ
(5

6
+ 1

6
δ−S j)},

2
3
< S j ≤ 1− 1

2
Si.

q∗
j
∈Bj(6)

It holds that

S j −
1

2
≤ q∗

j < S j −
1

3
, (2.33)

5

3
−

1

6
δ−2Si < q j ≤

5

3
−2Si, (2.34)

q j <
2Si −3−δ+4S j +3δS j

3+3δ
. (2.35)

We have

q∗
i =σR

i (q∗
j )= Si −

1

3
.
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By Proposition B.1, q∗
i
∈ Ci(2,3,4). This gives the following possibilities:

q∗
i ∈ Ci(2) : q∗

j = 0, (2.36)

q∗
i ∈ Ci(3) : q∗

j =

4
3
− 2

3
δ+2δS j −Si

2+2δ
,

q∗
i ∈ Ci(4) : q∗

j =
2

3
−

1

2
Si.

For q∗
i
∈ Ci(2). It holds that

S j ≤
1

2δ
(Si −

4

3
+

2

3
δ)≤

1

2δ
(−

1

2
+

2

3
δ)≤

1

3
,

where the first inequality follows from (2.36) and the second one from (2.34).

This contradicts with (2.33).

Consider q∗
i
∈ Ci(3).It holds that S j ≤ 1− 1

2
Si. From (2.33) it follows that

S j > 1− 1
2

Si, a contradiction.

Next, if q∗
i
∈ Ci(4), it follows from (2.33) that S j ≤

7
6
− 1

2
Si. By (2.34)

and by (2.35) it is implied respectively that 1
3
(2− 1

3
δ) < Si ≤

2
3

and S j >
10+6δ−7Si−3δSi

8+6δ
. The other constraints are redundant.

In conclusion, q∗
j
∈ B j(6) if and only if q∗

i
∈ Ci(4) and 1

3
(2− 1

3
δ) < Si ≤

2
3
,

10+6δ−7Si−3δSi

8+6δ
< S j ≤

7
6
− 1

2
Si.

q∗
j
∈Bj(7)

It holds that

S j −
1

2
≤ q∗

j < S j −
1

3
, (2.37)

q∗
j >

5

3
−2Si.

We have

q∗
i =σR

i (q∗
j )=

1

2
−

1

2
q j ≤

1

2
.

By Proposition B.1 and Proposition B.2, q∗
i
∈ Bi(7). This gives the follow-

ing possibilities:

q∗
i ∈ Bi(7) : q∗

i = q∗
j =

1

3
.

For q∗
i
∈ B j(7), it follows from Si −

1
2
≤ q∗

i
< S j −

1
2

that 2
3
< Si ≤

5
6
. From

(2.37) it follows that 2
3
< S j ≤

5
6
. The rest of the constraints is redundant.

Therefore, q∗
j
∈ B j(7) if q∗

i
∈ Bi(7) and 2

3
< Si ≤

5
6
, 2

3
< S j ≤

5
6
.
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q∗
j
∈Cj(1)

It holds that

q∗
j ≥ S j −

1

3
, (2.38)

q∗
j <

1−δ+δS j −2Si

1+δ
. (2.39)

We have

q∗
i =σR

i (q∗
j )= Si ≤

1

2
.

By Proposition B.1 and Proposition B.2, q∗
i
∈ Ci(1,2,3). This gives the fol-

lowing possibilities:

q∗
i ∈ Ci(1) : q∗

j = S j,

q∗
i ∈ Ci(2) : q∗

j = 0,

q∗
i ∈ Ci(3) : q∗

j =
1−Si +2δS j −δ

2+2δ
.

If q∗
i
∈ Ci(1), then, by qi <β4, it holds that S j <

1
2
− 1

2
δ− 1

2
Si. From (2.39),

it follows that Si <
1
2
− 1

2
δ− 1

2
S j.

Consider q∗
i
∈ Ci(2). It holds that

S j <
1

2δ
(Si −1+δ)<

1

3δ
(−1+δ)≤ 0,

where the first inequality follows from qi > β5 and the second one from

(2.39).

For q∗
i
∈ Ci(3), it follows from q∗

i
≥ β4 that S j ≥

1
2
− 1

2
δ− 1

2
Si. By (2.39),

it is implied that Si <
1
3
− 1

3
δ. From (2.38), it follows that S j ≤

5
6
− 1

6
δ− 1

2
Si.

The rest of the constraints is redundant.

In conclusion, q∗
j
∈ C j(1) if and only if q∗

i
∈ Ci(1) and Si < 1

2
− 1

2
δ−

1
2

S j,S j <
1
2
− 1

2
δ− 1

2
Si or q∗

i
∈ Ci(3) and Si <

1
3
− 1

3
δ, 1

2
− 1

2
δ− 1

2
Si ≤ S j ≤

5
6
− 1

6
δ− 1

2
Si.

q∗
j
∈Cj(2)

It holds that

q∗
j ≥ S j −

1

3
,

q∗
j >

1−δ+δS j +2δSi

1+δ
. (2.40)
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We have

q∗
i =σR

i (q∗
j )= 0.

By Proposition B.2, q∗
i
∈ Ci(2,3). This gives the following possibilities:

q∗
i ∈ Ci(2) : q∗

j = 0,

q∗
i ∈ Ci(3) : q∗

j =
1+2δS j −δ+δSi

2+2δ
.

For q∗
i
∈ Ci(2), it follows from (2.40) that Si <

1
2δ

(−1+δ−δS j)≤ 0.

For q∗
i
∈ Ci(3), it is implied by (2.40) that Si <

1
3δ

(−1+δ)≤ 0.

In conclusion, q∗
j
∉ C j(2) if q∗

i
∈ Ci(2,3).

q∗
j
∈Cj(3)

It holds that

q∗
j ≥ S j −

1

3
, (2.41)

1−δ+δS j −2Si

1+δ
≤ q∗

j ≤
1−δ+δS j +2δSi

1+δ
, (2.42)

Si ≤ 1−
1

2
S j. (2.43)

We have

q∗
i =σR

i (q∗
j )=

1− q j +2δSi −δ+δS j −δq j

1+δ
.

By Proposition B.2, q∗
i
∈ Ci(3). This gives the following possibility:

q∗
i ∈ Ci(3) : q∗

i =
1−δ+3δSi

3+3δ
, q∗

j =
1−δ+3δS j

3+3δ
.

For q∗
i
∈ Ci(3), it follows from q∗

i
≥ Si −

1
3

and (2.41) respectively that

Si ≤
2
3

and S j ≤
2
3
.

Since q∗
i
∈ Ci(3) and by (2.41), Si ≤

2
3

and S j ≤
2
3
. Next, it follows from

q∗
i
≥ β4 that S j ≥

1
3
− 1

3
δ. By (2.42), Si ≥

1
3
− 1

3
δ. The remaining constraints

are redundant.

In conclusion, q∗
j
∈ C j(3) if q∗

i
∈ Ci(3) and 1

3
(1−δ)≤ Si ≤

2
3
, 1

3
(1−δ)≤ S j ≤

2
3
.
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q∗
j
∈Cj(4)

This case does not need to be calculated here, since, by proposition B.2, it

can only be combined with the situations A i and Bi, and all these situations

are already calculated.
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Chapter 3

The Impact of Bulk-Supply

on a Dealer’s Sales Strategy

3.1 Introduction

Consider a dealer that buys its product in bulks from a manufacturer or

wholesaler. On the market where it operates, the dealer has some monop-

olistic power. This gives the dealer the opportunity to influence its instan-

taneous revenue by the quantity it offers to the market. In an attempt to

maximize its profit stream, it faces the following questions: Is it best to

always offer the same quantity, or is there another scheme of selling the

product that will increase profits? What is the best moment to order new

stock? Should it try to sell many products right now and reorder quickly, or

could it better postpone its reorder moment and thereby create an “artificial

scarcity” to drive up price? And how does its own level of patience influence

its optimal path? In this chapter, we try to answer these and some other

related questions.1, 2

Examples of situations where these questions may rise are the following.

The webstore that has a fixed consumer base and sells catalog books and/or

cd’s, i.e. products that have been on the market for a while. A dealer or

webstore which offers specialized goods that are only manufactured far away

1Other papers discussing related issued, like the dealer-wholesaler arrangements and

vertical integration are, among others, Bresnahan and Reiss (1985), Waterson (1982) and

Greenhut and Ohta (1979).
2This chapter is based on the paper van den Berg et al. (2011b).



Chapter 3. The Impact of Bulk-Supply on a Dealer’s Sales Strategy

or sold in large bulks.

In our model, a dealer tries to maximize its profit stream over an infinite

horizon, in which future profits are discounted. It sells a product that it

can only buy in bulks from the manufacturer. For each bulk, it pays a fixed

price. It then resells the product to the consumers, where its instantaneous

revenue is a concave function of the quantity it puts on the market.

We find that there exists a unique optimal order-sales strategy. When

the dealer sticks to this strategy, it reorders always after the same amount

of time has elapsed. The refill of stock is done exactly the moment it runs out

of its current inventory. The dealer does not supply the same quantity every

instant in time. Instead, it offers the largest quantity to the market right

after it has refilled its stock. Then, it keeps on continuously decreasing its

quantity-output, until it hits its lowest point right before reordering. When

stock is refilled again, it offers the same amount of quantity to the market,

as it did the first time it ordered a bulk. This pattern keeps on repeating

itself. If the level of patience of the dealer decreases, its response is not to

automatically increase its current sales and thereby its current instanta-

neous revenue. Instead, situations exists in which it actually will respond

by lowering its sales-level and postponing its reordering moment.

One could also note some similarities between the topic of this chapter

and the literature on inventory. However, one of the major differences be-

tween this chapter and the inventory literature is that we do not use inven-

tory costs in our model, as we already find these results without having to

implement any costs for inventory. We conjecture that inventory costs will

only magnify our findings. Readers interested in literature on inventory-

models somewhat related to our model are referred to, for instance, El-

maghraby and Kescinocak (2003), Transchel and Minner (2009), Chen and

Simchi-Levi (2006) and Amihud and Mendelson (1983).

This chapter is organized as follows. In Section 3.2, we build up the

model. Section 3.3 is divided into two main parts. In the first part, we de-

termine the dealer’s optimal quantity-stream if the moment of reordering

is fixed. In the second part, we apply the results found in the first part to

determine the best reorder moment. In Section 3.4, we analyze the compar-

ative statics. A discussion and ideas for possible extensions are given in the

last section.
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3.2 The model

We search for the profit-maximizing strategy of a single dealer that sells a

nonperishable good. The manufacturer delivers the good in batches of size

S for a cost of K > 0 per batch. The size of the batches S is constant and

exogenously determined by the manufacturer. The dealer’s inventory-level

can never become negative. That is, backlogging is not allowed. It can choose

when to order new stock and how much it is willing to sell from its stock

every moment in time. Newly ordered stock is delivered instantly.3 Time is

continuous and infinite and revenue streams and costs are discounted with

a rate of r > 0.

The variable q(t) ≥ 0, i.e. the quantity the dealer sells at moment t,

is the control variable. It is assumed that q(t) is a piecewise continuous

function of t on any finite interval of [0,∞) and does not have any removable

discontinuities. A function q(t) is said to be piecewise continuous on an

interval if the interval can be broken into a finite number of subintervals

on which the function is continuous on each open subinterval and has a

finite limit at the endpoints of each subinterval. A removable discontinuity

is a point x at which limt↑x q(t) = limt↓x q(t) 6= q(x). Define Q as the set of

functions that satisfy these assumptions.

The instantaneous revenue the dealer receives for selling a quantity of

q is given by the general revenue function R. The function R is assumed to

be strictly positive on some interval (0, A), on which it is twice-continuously

differentiable, has a unique maximum at qm, such that 0 < qm < A, and is

strictly concave. For q = 0 and q ≥ A, R(q)= 0.

Let X (t) be the inventory-level of the dealer at time t ∈ R+, q(t) is the

amount of stock the dealer sells at t ∈ [0,∞) and T1,T2,T3, ... are the reorder-

moments. We assume that at t = 0, the dealer starts with exactly S in stock.

Without loss of generality, we assume that 0= T0 < Ti < Ti+1 for all i ∈N.

Under the assumptions given above, let w∗ be the maximum discounted

revenue stream that the dealer can receive for selling a single batch of size

S. We assume that K < w∗.

The dealer’s objective is to maximize its discounted profit stream over

an infinite horizon. It does so by choosing q(t) and its reorder moments

optimally, subject to some restrictions. It is not possible to sell a negative

quantity. Its initial stock is equal to S and the decrease in stock at moment

3This model can easily be extended to a model in which it takes x time to deliver the good.

This will have no major effect on the results.
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t is equal to the amount sold q(t). Stock can never become negative and stock

increases with S the moment the dealer reorders. This makes the optimal

control problem of the dealer the following.

max
q∈Q,T1,T2,...∈R+,

T1<T2<...

∞
∑

i=0

(

∫Ti+1

Ti

e−rtR(q(t))dt− e−rTi K),

subject to q(t)≥ 0,

X (0)= S,

Ẋ (t)=−q(t),

X (t)≥ 0,

X (Ti)= lim
t↑Ti

X (t)+S, for all i ≥ 1.

A feasible strategy is a tuple (q,T1,T2, ...) such that q ∈ Q, 0 < T1 < T2 <

... ∈ R, such that X (t) ≥ 0 for all t ≥ 0. By Σ we denote the set of all feasible

strategies.

3.3 The control problem

Before we start analyzing the specifics of this optimal control problem, we

can reduce the set of possible optimal strategies with the help of the follow-

ing lemma. This lemma shows that a dealer will never reorder before it has

sold all of its inventory. And, the moment the dealer runs out of inventory,

it reorders.

The amount of stock the dealer owns at t ∈ [0,∞) when it plays strategy

σ ∈Σ is defined by S(σ, t). The profit a dealer receives when it plays accord-

ing to σ ∈Σ is denoted by π(σ). In an optimal strategy, the dealer will reorder

exactly the moment it runs out of stock, but never before that.

Lemma 3.3.1. In an optimal strategy σ, for every i = 0,1,2, ...,

(a) S(σ, t)> 0 for all t ≥ 0,

(b) limt↑Ti+1
S(σ, t)= 0.

Proof First, we will show that the dealer will not reorder before it is out

of stock. Let σ = (q,T1,T2, ...) ∈ Σ be a strategy of the dealer, in which

for some Tk, k ∈ N, limt↑Tk
S(σ, t) > 0. This implies that here is an ε ∈ R

such that S(σ,Tk + ε) > S and Tk + ε < Tk+1. Let T̃k = Tk + ε and define

σ̃= (q,T1,T2, ...,Tk−1, T̃k,Tk+1, ...). This new strategy σ̃ is feasible, since the

dealer has positive stock at every t ∈ R. And since the dealer in both σ and
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σ̃ sells its stock according to the same function q, discounted revenue is the

same for both strategies. Cost are also the same for every order, except for

the k’th one. That is,

π(σ̃)=π(σ)+ (e−rTk − e−rT̃k )K .

Since, by definition, T̃k > Tk, it holds that π(σ̃) > π(σ) and the dealer there-

fore strictly prefers σ̃ over σ.

Secondly, the dealer will reorder immediately the moment it runs out of

stock. Let there be a period of length x in which the dealer is out of stock and

does not reorder. After that period, the dealer orders new stock and makes

from that period onwards a discounted profit of R. This means that at the

beginning of period x, the future profit of the dealer is e−rxR. This would

have been R > e−rxR, if the dealer would not have waited for a length of x to

reorder. �

This lemma is a direct result of the effect of the discount factor r. That

the dealer does not reorder when it still has stock, is because it is more ex-

pensive to order now than to order later. If a dealer can postpone ordering

stock without having to change its output, i.e. without decreasing its rev-

enue, this will always increase profits. The dealer has to stop sales when

it runs out of stock, since backlogging is not allowed. By assumption, we

know that the revenue the dealer makes on the new stock exceeds the costs

of buying it. Therefore, the longer it waits with ordering new stock, the

longer it takes before it can make profit on the new batch. And because of

the discounting of future profits, the less profit it will get for the new stock.

Revenue maximization in between ordering moments

Lemma 3.3.1 makes it possible to break the main problem up into parts and

to first analyze the optimal sales strategy in between ordering moments.

W.l.o.g. let T be the moment at which the dealer reorders for the first time.

At this point, we analyze the problem for a given T that is a candidate for

a possible maximizing strategy, but is not necessarily optimally chosen yet.

We can already say the following about this T. Note that in a strategy that

maximizes total profit, q(t) ≤ qm for all t ∈ [0,T). The reason for this is that

selling more than qm instead of selling qm during an interval of length x will

decrease revenues for that interval, while at the same time the dealer runs

out of stock more quickly, i.e., discounted costs for buying new stock increase.
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Therefore, it must hold that the minimum time between reordering in the

optimal sales strategy is Tm = S/qm and we can restrict the set of times

between consecutive ordering moments from here onwards to T ≥ Tm.

The dealer faces the following problem. Note that it faces a similar opti-

mization problem in between any two, consecutive ordering moments.

max
q∈Q

∫T

0
e−rtR(q(t)) dt (3.1)

subject to

Ẋ (t) = −q(t), (3.2)

q(t) ≥ 0, (3.3)

X (0) = S, (3.4)

X (T) = 0. (3.5)

The first restriction, (3.2), expresses the change in inventory at period

t when the dealer sells q(t) of its inventory. Equation (3.3) states that the

dealer can only put a nonnegative quantity on the market every moment in

time. That a dealer only reorders when it is out of stock, is expressed by

(3.4) and (3.5). At the reordering moment, the dealer has S in stock. As time

approaches the next ordering moment, the remaining stock approaches zero.

Condition (3.5) has been stated as X (T) = 0 instead of limt↑T X (t) = 0, since

there is no reordering in the subproblem.

To find the solution to this problem, we take the Hamiltonian. The

Hamiltonian of this problem is:

H = e−rtR(q(t))−π(t)q(t)

and, since the control variable q(t) is restricted by (3.3), the Lagrangian is

L = e−rtR(q(t))−π(t)q(t)+λ(t)q(t). (3.6)

Given that the revenue function is concave in q, solving the following equa-
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tions is necessary and sufficient to find the maximum:

∂L

∂q(t)
= e−rtR′(q(t))−π(t)+λ(t)= 0, (3.7)

∂L

∂π(t)
= Ẋ (t)=−q(t), (3.8)

∂L

∂X (t)
= −π̇(t)= 0, (3.9)

λ(t)q(t) = 0, (3.10)

λ(t) ≥ 0, (3.11)

q(t) ≥ 0, (3.12)

X (0) = S, (3.13)

X (T) = 0. (3.14)

From (3.9) we can easily see that there is a constant c such that

π(t)= c for all t ∈ [0,T).

Combining this with (3.7), we find that

e−rtR′(q(t))+λ(t)=π(t)= c. (3.15)

In the following lemma, we will show that (3.15) implies that the dealers

sells its stock continuously, until it is out of it.

Lemma 3.3.2. Let q(t1)> 0 for some t1 ∈ [0,T), then q(t)> 0 for all t ∈ [0, t1].

Proof Let q(t)= 0 for some t ∈ [0, t1). Since q(t1)> 0, (3.10) and (3.15) imply

that

c = e−rt1 R′(q(t1))

≤ e−rt1 R′(0)

< e−rtR′(0)

< e−rtR′(0)+λ(t)

= c.

This is a contradiction. �

Lemma 3.3.2 implies that there is a unique 0 < t̂ ≤ T such that q(t) > 0

for t < t̂ and q(t) = 0 for t ≥ t̂. Since q(t) = 0 for t ≥ t̂, the dealer does not sell

73



Chapter 3. The Impact of Bulk-Supply on a Dealer’s Sales Strategy

any of its stock from t̂ till T and as a result, X (t̂) = X (T). By (3.5), X (T) = 0

and thus X (t̂) = 0. That is, the moment the dealer stops selling should be

the moment it runs out of stock.

By (3.10) and q(t) > 0 for all t ∈ [0, t̂), it must hold that λ(t) = 0 for all

t ∈ [0, t̂).

Lemma 3.3.3. The control variable q(t) is continuous for t ∈ [0,T].

Proof From Lemma 3.3.2, we know that there is a unique t̂ such that q(t)>

0 for all t < t̂. For q(t)> 0, by (3.15), c = e−rtR′(q(t)). Since R′(q) and e−rt are

continuous functions, q(t) must be continuous for all t < t̂. For t > t̂, q(t) = 0

and automatically continuous. All is left to show that q(t) is continuous at

t = t̂. For t ↑ t̂, e−rtR′(q(t))= c and at t̂, e−rtR′(0)+λ(t̂)= c. By (3.11), λ(t̂)≥ 0.

This implies

c = lim
t↑t̂

e−rtR′(q(t))

≤ lim
t↑t̂

e−rtR′(0)

= e−rt̂R′(0)

≤ e−rt̂R′(0)+λ(t̂)

= c.

For this to hold true, no inequality can be strict and λ(t̂) = 0. This implies

that limt↑t̂ e−rtR′(q(t)) = e−rt̂R′(0) and therefore, q(t) must be continuous at

t = t̂. �

With the help of Lemmas 3.3.2 and 3.3.3, the function q that maximizes

(3.1), subject to (3.2)-(3.5), satisfies the following conditions.

Proposition 3.3.4. a) Let q be a solution of (3.1)-(3.5). Then there are c ∈ R

and t̂ ∈ [Tm,T] such that

R′(q(t))= cert, for t ≤ t̂, (3.16)

∫t̂

0
q(t)dt = S, (3.17)

and

q(t)= 0 for t ≥ t̂. (3.18)

b) The solution to the system in a) is unique.
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Proof a) Follows directly from (3.7)-(3.14) and Lemmas 3.3.2 and 3.3.3.

b) Let c, t̂ and q∗ be a solution to the system in a). While keeping the t̂

fixed, a strict increase (decrease) in c will strictly decrease (increase) q∗(t)

for all t ∈ [0, t̂] and this violates (3.17). Vice versa, while keeping this t̂ fixed,

a strict increase (decrease) in q∗(t) for some t ∈ [0, t̂] violates (3.16), unless

c is strictly decreased (increased). However, then q∗(t) must be increased

(decreased) for all t ∈ [0, t̂] to not violate (3.16), thereby automatically vio-

lating (3.17). That is, every t̂ that is a solution to the system in Proposition

3.3.4, is accompanied by a uniquely determined c and q∗. Left to show is

that t̂ itself is uniquely determined. If t̂ < T, then by the continuity of q∗(t),

q(t̂)= 0. A strict increase (decrease) in t̂ results in a strict decrease (increase

) of q(t̂) and q is no longer continuous at t̂. If t̂ = T, q(t) > 0 for all t ∈ [0,T].

A strict decrease4 of t̂ results in a strict increase of q∗(t̂) and q∗ is no longer

continuous at t̂. Ergo, for every combination of r,S and T ≥ Tm, the system

gives a unique solution for c, t̂ and q∗. �

From now on, given T, the unique q and c in Proposition 3.3.4 are de-

noted by qT and cT .

Note that, if t̂ < T, a further increase in T will not change qT , cT and

t̂ anymore. And the dealer is out of stock before it reorders. From Lemma

3.3.1 we know this will not happen if the dealer can choose its own reorder

moment. This makes it possible to not only have a lower bound for T, but

also set an upper bound on it. We already know that the moment the dealer

is out of stock, t̂, is uniquely defined by T. We define T̂ to be the maximal

T ∈ R+ for which the associated t̂ is equal to T. So, if the dealer were to

choose the time between ordering moments, T̂ is its upper bound. From

here onwards, we assume that T ∈ [Tm, T̂]. This makes it possible to restate

Proposition 3.3.4 as:

Proposition 3.3.5. If T ∈ [Tm, T̂], there are unique cT and qT such that

R′(qT (t))= cT ert, for t ≤ T, (3.19)

∫T

0
qT (t)dt = S (3.20)

Given what is now known about qT and cT , we argue next that cT ≥ 0.

We will also show how a change in t or T affects qT and cT . Note that, since

cT ert is differentiable to t, by equation (3.19) so is qT (t) for t ≤ T.

4Note that increasing t̃ is not possible here.
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Proposition 3.3.6. a) cT ≥ 0.

b)
∂qT (t)

∂t
≤ 0,

∂qT (t)

∂T
≤ 0

and
∂cT

∂T
≥ 0.

Proof a) As mentioned in the beginning of this section, qT (t) ≤ qm for all

t ∈ [0,T]. For qT (t) ≤ qm it holds that R′(qT (t)) ≥ 0. Since ert > 0 for all

t ∈ [0,Tm], from (3.19) it follows directly that cT ≥ 0.

b) See appendix. �

That is, the derivatives learn us the following. In between two arbitrary

consecutive ordering moments, the dealer sells relatively the largest part

of its stock in the beginning and continuously sells less and less, until it

reorders. If the dealer increases the time it will take before it has sold all

of its stock, the amount it sells at every instant in time decreases and cT

goes up. Note that, even though the dealer’s quantity output continuously

decreases until it reorders, this does not imply that its sales right before

reordering are equal to zero in the limit.

Example 3.3.7. Let R(q)= q(1− q). Then, from (3.19) it follows that qT (t)=
1
2
(1− cT ert). Substituting qT (t) in (3.20), we get

S =

∫T

0

1

2
(1− cT ert)dt (3.21)

=
1

2
[t−

1

r
cT ert]T

0

=
1

2
(T −

1

r
cT erT

+
1

r
cT ).

This gives

cT
=

r(2S−T)

1− erT
(3.22)

and

qT (t)=
1

2
(1−

ertr(2S−T)

1− erT
). (3.23)
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Figure 3.1: Output at any moment t for a linear demand function with S = 10, r =

0.05 and K = 2.

Figure 3.1 shows how output depends on time for a linear demand function.

The lower and upper bound for T are calculated as follows. The monopoly

output is qm = 1
2
, which gives Tm = 2S. The upper bound for T should equate

qT (T̂) =
1

2
(1−

erT̂ r(2S− T̂)

1− erT̂
) (3.24)

= 0.

This implies that T̂ can be found by solving for

e−rT̂
−1= r(2S− T̂). (3.25)

In the model, we have assumed that K < w∗, where w∗ is the maximal

discounted revenue the dealer can make on a single batch. With the help of

what we have analyzed so far, we can now calculate w∗.

Lemma 3.3.8. The maximum discounted revenue a dealer can earn on a

batch of size S is w∗ =
∫T̂

0 e−rtR(qT̂ (t))dt.

Proof The maximum revenue a dealer can make is given by

max
t̄

V (t̄)= max
t̄∈[Tm,T̂]

∫t̄

0
e−rtR(q t̄(t))dt
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Differentiating this, we get

dV (t̄)

dt̄
= e−rt̄R(q t̄(t̄))+

∫t̄

0
e−rtR′(q t̄(t))

dq t̄(t)

dt̄
dt

= e−rt̄R(q t̄(t̄))+

∫t̄

0
c t̄ dq t̄(t)

dt̄
dt

= e−rt̄R(q t̄(t̄))− c t̄q t̄(t̄). (3.26)

These equalities follow from (3.19) and (2.22). Again using (3.19) to substi-

tute, this gives
dV (t̄)

dt̄
= e−rt̄(R(q t̄(t̄))−R′(q t̄(t̄))q t̄(t̄)). (3.27)

Note that ∂
∂t̄

(R(q t̄(t̄))−R′(q t̄(t̄))q t̄(t̄))=−
∂q

∂t̄
R′′(q t̄(t̄))q t̄(t̄)< 0. So, the right-

hand-side (3.27) strictly decreases as t̄ increases. Note that, by definition,

(3.27) is 0 when q t̄(t̄) = 0. This must be the t̄ that maximizes (3.27), since

(3.27) strictly decreases in t̄. Therefore, the t̄ that maximizes the revenue on

a specific batch S is found by solving q t̄(t̄) = 0. This implies that t̄ = T̂ and

the dealer will only reorder if

K ≤

∫T̂

0
e−rtR(qT̂ (t))dt.

�

This lemma implies that the assumption K < w∗ is equivalent to K <
∫T̂

0 e−rtR(qT̂ (t))dt.

The best moment to order

So far, we have analyzed the best sales strategy of the dealer when its order-

ing moments are fixed. In this section we will analyze how it can best choose

those ordering moments. Let T∗ be the optimal time after which the dealer

wants to reorder. We already know that T∗ ∈ [Tm, T̂]. We will now demon-

strate in a few steps that, if there exists an optimal strategy, there exists an

optimal strategy that is stationary.5 Let Σ∗ ⊂Σ be the set of strategies that

maximize profits and let π∗ be the maximal discounted sum of profits the

dealer can make over all its future sales. First, we will show that there is an

5See definition below.
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optimal strategy in which the dealer always reorders after the same amount

of time has elapsed.

Lemma 3.3.9. Let σ= (q,T1,T2,...) ∈Σ
∗. Then there exists an optimal strat-

egy σ′ = (q′
1,T ′

1,T ′
2, ...) ∈Σ

∗ such that T ′
n = nT1 for all n ∈N.

Proof Let σ1 =σ(q∗,T∗
1 ,T∗

2 , ...) ∈Σ
∗ and let σ2 =σ(q∗(t+T∗

1 ),T∗
2 −T∗

1 ,T∗
3 −

T∗
1 , ...). Since σ1 is an optimal strategy and σ2 is exactly σ1, but then begin-

ning at moment T∗
1 , it should hold as well that σ2 ∈ Σ

∗. If not, playing σ1

implies the dealer can strictly improve its profits from T∗
1 onwards by devi-

ating from σ1 and σ1 would not be an optimum strategy. Let v1(σ) be the

profit the dealer makes up to the first ordering moment, if it plays according

to strategy σ. Since σ2 ∈Σ
∗, we know the following:

π∗
= π(σ1)

= v1(σ1)+ e−rT∗
1 π(σ2)

= v1(σ1)+ e−rT∗
1 π∗.

Rewriting this last expression, we get the following.

π∗
= v1(σ1)∗

1

1− e−rT∗
1

= (
∞
∑

i=0

e−irT∗
1 )∗v1(σ1)

= π(σ(q̃(t),T∗
1 ,2T∗

1 ,3T∗
1 , ...)),

where

q̃(t)=

{

q∗(t) for t < T∗
1

q∗(t− iT∗
1 ) for iT∗

1 ≤ t < (i+1)T∗
1

.

This implies that repeatedly playing q∗(t) as it is defined between 0 and T1,

results into the dealer receiving the maximum discounted sum of profits. �

We have shown so far that, if there exists an optimal strategy, there

exists an optimal strategy in which the dealer always orders after the same

amount of time. We can now show that there exists an optimal strategy

that is stationary. A stationary strategy is a strategy in which the dealer

bases its choice of action only on the state variable X (t), such that, when

X (t1) = X (t2), then q(t1) = q(t2) and O(X (t1)) = O(X (t2)) for all t1, t2 ∈ R
+.

The variable O(x) is binary and takes on the values 1 or 0, respectively,

when the dealer reorders or does not reorder, given that the remaining stock
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is equal to x. It is already known from Lemma 3.3.1 that the dealer reorders

exactly at the moment it runs out of stock. That means that in any optimal

strategy, O(0) = 1 and O(x) = 0 for all x 6= 0. Therefore, to prove that there

exists an optimal strategy that is stationary, it is sufficient to show that,

when X (t1)= X (t2), then q(t1)= q(t2) for all t1, t2 ∈R
+.

Theorem 3.3.10. There exists an optimal strategy that is stationary.

Proof If the dealer never reorders, this is true by definition. If the dealer

reorders, it is an optimal strategy to keep the time in between ordering mo-

ments fixed for some optimally chosen T∗, as is shown in Lemma 3.3.9. Take

two optimal, arbitrary chosen, reordering moments Ti = iT∗ and T j = jT∗,

where i 6= j and i, j ∈ N, from an optimally chosen strategy in which the

time between ordering moments is fixed. Note that X (Ti) = X (T j). For this

strategy it should hold that

∫Ti+T∗

Ti

e−r(t−Ti)R(q(t))dt =

∫T j+T∗

T j

e−r(t−T j)R(q(t))dt. (3.28)

Let q̃(t) maximize the revenues in between Ti and Ti+T∗. Then q̃(Ti−T j+t)

should also maximize revenues for t ∈ [T j,T j +T∗) and (3.28) holds. Define

q(t)= q̃(Ti−T j+ t) for all j ∈N. This strategy maximizes revenue in between

any two ordering moments, and since the ordering moments are chosen op-

timally, this must be a profit maximizing strategy. For this strategy it holds

that whenever X (t1) = X (t2) it must be that q(t1) = q(t2) and therefore, this

strategy is stationary. �

We have shown that, if there exist an optimal strategy, there exist an

optimal strategy that is stationary. The following theorem shows that there

exists an optimal strategy. Furthermore, there is an explicit equation to find

the best moment to order and thereby an explicit way of how to determine

the optimal strategy.

Theorem 3.3.11. There exists a unique stationary strategy that maximizes

total profits. In this strategy, new inventory is ordered after T∗ periods, where

T∗ can be found by solving

(1−e−rT∗

)(e−rT∗

R(qT∗

(T∗))−cT∗

qT∗

(T∗))+re−rT∗

(K−

∫T∗

0
e−rtR(qT∗

(t))dt)= 0.

(3.29)
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Proof See appendix. �

Since T∗ is unique, we know that there is only one stationary strategy

that maximizes total profit. This is also the only optimal strategy. If there is

a strategy σ̃ that is not stationary, but optimal, then there must be periods

where the time between ordering is not equal to T∗, but to some T̃ 6= T∗. This

implies that there must exist a non-stationary optimal strategy in which the

first reordering moment comes after T̃ time. By Lemma 3.3.2, this means

there must be an optimal strategy that is stationary and in which reordering

is done every time after T̃ time. This is a contradiction. Given that T∗ is

the unique optimal reordering time, qT∗

is also unique by Proposition 3.3.4.

Therefore, there is a unique optimal strategy; this strategy is stationary and

reordering is done after T∗ time has elapsed.

We have found that there is a unique optimal strategy, and that this

strategy is stationary. The dealer always reorders after T∗ time has elapsed

and its sales strategy in between any two arbitrary, consecutive reordering-

moments is always the same. Note that this implies that, even though the

dealer keeps its discounted instantaneous revenue constant in between or-

dering moments, its discounted instantaneous revenue decreases every time

it starts selling a new batch.

3.4 Comparative statics

In this section, it is analyzed how T∗ changes, when S, r or K changes. The

discounted profit of the dealer when it plays according to its optimal strategy

and K = 50 is shown in Figure 3.2. As T∗ changes, so do qT and cT , by Propo-

sition 3.3.5. Besides that, qT and cT are influenced directly by a change of

either S or r. That is, if S, r and K are no longer constants, but taken as

variables, T∗ becomes a function of S, r and K , or formally, T∗(S, r,K). And

qT∗

(t) and cT∗

become functions of S, r and K as well, given respectively by

qT∗(S,r,K)(S, r, t) and cT∗(S,r,K)(S, r). However, to avoid lengthy expression in

this section, we often omit the arguments, if no confusion can arise. There-

fore, qT∗(S,r,K)(S, r, t) is denoted as q(t) and cT∗(S,r,K)(S, r) is denoted as c.

The partial derivatives are given by ∂c
∂T

, ∂c
∂r

, ∂c
∂S

,
∂q
∂T

,
∂q
∂r

and
∂q
∂S

.

Proposition 3.4.1. If the dealer plays according to its optimal strategy, an

increase in the costs K of buying new stock will increase the time in between

ordering moments.

81



Chapter 3. The Impact of Bulk-Supply on a Dealer’s Sales Strategy

Proof In the appendix it is shown that

T∗′
K =

re−rT∗

(1− e−rT∗
)q(T∗)(rc+ ∂c

∂T
)

(3.30)

≥ 0.

�

The previous proposition shows that an increase in the costs of buying

inventory will increase the time in between reordering. This makes intu-

itive sense, since the earlier a dealer buys new stock, the less time it uses

for selling its current stock. And, as can be seen in the proof of Lemma 3.3.8,

the lesser time it takes for selling the current stock, the lower its total dis-

counted revenue it receives for will be. So, if costs increase, it will be more

fruitful to use some extra time to sell the current stock and, because of the

discount factor, pay relatively less for the ordering of new stock.

Proposition 3.4.2. If the dealer plays according to its optimal strategy, an

increase in r will change T∗ as follows:

T∗′
r =

T∗R(q(T∗))e−2rT∗

−T∗cq(T∗)− 1
r
(1− e−rT∗

)(e−rT∗

R(q(T∗))− cq(T∗))

(1− e−rT∗
)(rc+ ∂c

∂T
)q(T∗)

(3.31)

+
−(1− e−rT∗

)∂c
∂r

q(T∗)+ re−rT∗ ∫T∗

0 te−rtR(q(t))dt− re−rT
∫T

0 e−rt dR
dq

∂q(t)
∂r

dt

(1− e−rT∗
)(rc+ ∂c

∂T
)q(T∗)

.

Proof See appendix. �

The complexity of this expression makes it difficult to assess its sign in

general. However, with this expression we are able to determine the sign of

the derivative T∗′
r for a specific demand function and variables K , r and S.

This is shown in Figure 3.3, for the linear demand function of D(p)= 1− p.

As can be seen in the picture, T∗ increases when r increases. Hereby is

the relative size of S of bigger influence than the relative size of r. When

r increases, less revenue can be made on each batch, but also, the costs

of buying a new batch decreases. Intuition might suggest that, since an

increase in r makes future profits less valuable, the dealer wants to increase

its current revenue by increasing its current sales. The disadvantage of this

strategy is that speeding its sales decreases its total discounted revenue on

the current stock, as is shown in Lemma 3.3.8. And, the earlier it has to buy

new stock, the relatively more it pays for ordering new. Apparently, in some
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Figure 3.2: The discounted profit of the firm for different interest rates and stock

levels, with K = 50.
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Figure 3.3: The derivative of T∗ to r, when K = 50.
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situations (and maybe even all), these two factors way heavier on the total

discounted sum of profits than the increase in instantaneous revenues does.

Proposition 3.4.3. If the dealer plays according to its optimal strategy, an

increase in the stock size will change T∗ as follows:

T∗′
S =

−(1− e−rT∗

) ∂c
∂S

q(T∗)− re−rT∗

c

(1− e−rT∗
)q(T∗)( ∂c

∂T
+ rc)

. (3.32)

Proof See appendix. �

Just as with the derivative of T∗ to r, we are unable to determine the

sign of the derivative of T∗ to S for all demand functions. Even though the

expression in Proposition 3.4.3 might not look that complex, even for a linear

demand function determining the sign is an open problem, if K , r and S are

not specified. This is shown in the following example.

Example 3.4.4. Equation (3.29) looks for linear demand of D(q) = 1− q as

follows:

1

4
(2S−T∗)(r(2S−T∗)+2)+

re−rT∗

(2S−T∗)2

2(1− e−rT∗
)

+K = 0.

From this expression, although it determines T∗ uniquely, it is hard to get

an explicit expression for T∗. To see now if T∗ increases when S increases,

we need to check whether the numerator of (3.32) is strictly bigger than zero,

that is, −(1− e−rT∗

) ∂c
∂S

q(T∗)− re−rT∗

c ≥ 0. Substituting R(q) for q(1− q) and

rewriting, this equation is true iff

(1+ erT∗

)
r(2S−T∗)

1− erT∗ ≤ 1. (3.33)

Unfortunately, since we cannot substitute T∗, we need another way to check

whether this holds. Even though we do know that erT∗
r(2S−T∗)

1−erT∗ ≤ 1, from (3.22)

and cT ≥ 0, this is not sufficient to prove (3.33) and we ran out of other useful

options to substitute.

An increase of S implies that the dealer has to sell more before it is out

of stock. An intuitive consequence of that would be that it takes the dealer

longer to sell its stock. We are able to determine, for a specific demand

function and variables K , r and S, the derivative T∗′
S

. The values for T∗′
S

are shown in Figure 3.4, for the linear demand function of D(p) = 1− p. As

can be seen in the picture in this specific setting, as suspected, T∗ increases

when S increases.
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Figure 3.4: The derivative of T∗ to S, when K = 50.

3.5 Discussion

In this chapter, we have shown that there exists a unique strategy that maxi-

mizes the total sum of discounted profits. In this strategy, the dealer always

reorders after the same amount of time has elapsed. It puts the largest

quantity on the market the moment it starts selling its new stock. This

quantity continuously decreases until it is at its lowest point right before it

runs out of its current stock. This whole cycle repeats itself when it buys

new stock again.

A possible way to extend this model would be to add inventory costs to it.

Since the size of the batch is fixed, this will not change the amount ordered

by the dealer. Making holding inventory costly, will most likely result into

the dealer trying to get rid of its stock more quickly. This effect will probably

be the strongest right after it has received the new batch, since inventory

costs are the highest at that point. Therefore, we conjecture that such an

addition will magnify the difference in the quantity setting we have found

in this chapter, but will not drastically influence the patterns we have found.

In this chapter it is assumed that the costs of buying new stock are fixed.

The production costs of the manufacturer, however, might change over time.

For instance, the price of the raw materials might change, or the production
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process itself could become more efficient. If the manufacturer bases its

batch price (partly) on these production costs, the dealer needs to take this

into account when deciding upon the best moment to reorder. A possible way

to extend this model in that direction would be using a trend to predict K .
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3.A Appendix

Proof of Proposition 3.3.6 b:

∂qT (t)
∂t

:

To find out how qT (t) changes when t changes, we derive (3.19) to t.

d

dt
R′(qT (t)) = R′′(qT (t))

dqT (t)

dt
(3.34)

= rcT ert.

Since R(q) is a concave function and c∗ is positive, this implies that

dqT (t)

dt
≤ 0.

Note that
dqT (t)

dt
=

∂qT (t)
∂t

.

∂qT (t)
∂T

:

To see how qT (t) changes when T changes, we derive (3.20) to T. Note

that S is a constant and therefore

0 =
d

dT

∫T

0
qT (t)dt (3.35)

= qT (T)+

∫T

0

dqT (t)

dT
dt.

Since qT (T) > 0, it must hold that
∫T

0
dqT (t)

dT
dt ≤ 0. However, we don’t know

yet whether this implies that
dqT (t)

dT
≤ 0 for all t ∈ [0,T]. Note that

∂qT (t)
∂T

=

∂qT (t)
∂T

. Further information about how q changes with T we get from analyz-

ing how cT changes with T.

∂c∗

∂T
:

To see how c∗ changes with T, we derive (3.19) to T.

d

dT
R′(qT (t)) =

dqT (t)

dT
R′′(qT (t)) (3.36)

= ert dcT

dT
.
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Note that, since dcT

dT
is independent of t and ert > 0 for all t ∈ [0,T], ert dcT

dT

must have the same sign for all t ∈ [0,T]. This implies that
dqT

dT
R′′(qT (t))

must have the same sign for all t ∈ [0,T] as well. R′′(qT (t))< 0 and
dqT (t)

dT
≤ 0

for some t by (3.35). Since
dqT

dT
R′′(qT (t)) has the same sign for all t ∈ [0,T],

it must hold that
dqT (t)

dT
≤ 0 for all t ∈ [0,T]. This automatically implies that

dcT

dT
≥ 0. Note that dcT

dT
= ∂cT

∂T
.

Proof of Theorem 3.3.11:

This theorem is proven with the help of the following two lemmas.

Lemma 3.A.1. There exists at most one T∗ that maximizes total discounted

profit.

Proof Define

V (T)=

∫T

0
e−rtR(qT (t))dt for T ∈ [Tm, T̂]

The best ordering moment can be found by maximizing the following func-

tion:

Π(T∗) =
∞
∑

i=0

e−rT∗ i(V (T∗)−K)

=
V (T∗)−K

(1− e−rT∗
)
.

We get

dΠ(T∗)

dT
=

V ′(T∗)(1− e−rT∗

)− re−rT∗

(V (T∗)−K)

(1− e−rT∗
)2

(3.37)

=
(1− e−rT∗

)(e−rT∗

R(qT∗

(T∗))− cT∗

qT∗

(T∗))+ re−rT∗

(K −
∫T∗

0 e−rtR(qT∗

(t))dt)

(1− e−rT∗
)2

(3.38)

= 0.

The second equality follows from the first by (3.26). The second derivative of
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Π(T∗) is:

d2
Π(T∗)

dT2
=

( re−rT∗

(e−rT∗

R(qT∗

(T∗))− cT∗

qT∗

(T∗))

(1− e−rT∗
)4

+
(1− e−rT∗

)(−re−rT∗

R(qT∗

(T∗))+ e−rT∗ dR
dq

dqT∗
(T∗)

dT
)

(1− e−rT∗
)4

(1− e−rT∗

)(− dcT∗

dT
qT∗

(T∗)− cT∗ dqT∗
(T∗)

dT
)

(1− e−rT∗
)4

+
−r2e−rT∗

(K −
∫T∗

0 e−rtR(qT∗

(t))dt)

(1− e−rT∗
)4

−re−rT∗ ∫T∗

0 e−rt dR
dq

dqT∗
(t)

dT
dt− re−2rT∗

R(qT∗

(T∗))

(1− e−rT∗
)4

)

(1− e−rT∗

)2

−2(1− e−rT∗

)re−rT∗
( (1− e−rT∗

)(e−rT∗

R(qT∗

(T∗))− cT∗

qT∗

(T∗))

(1− e−rT∗
)4

+
re−rT∗

(K −
∫T∗

0 e−rtR(qT∗

(t))dt)

(1− e−rT∗
)4

)

.

To see whether we have a local maximum or minimum at dΠ(T∗)
dT

= 0, we

substitute the expression for dΠ(T∗)
dT

in the expression for d2
Π(T∗)
dT2 . Since we

only want to know the sign of this expression, and the denominator is always

positive, we can leave the dominator out. So, the sign of d2
Π(T∗)
dT2 at dΠ(T∗)

dT
= 0

is

re−rT∗

(e−rT∗

R(qT∗

(T∗))− cT∗

qT∗

(T∗))+ (1− e−rT∗

)(−re−rT∗

R(qT∗

(T∗))

+e−rT∗ dR

dq

dqT∗

(T∗)

dT
−

dcT∗

dT
qT∗

(T∗)− cT∗ dqT∗

(T∗)

dT
)

−r2e−rT∗

(K −

∫T∗

0
e−rtR(qT∗

(t))dt)− re−2rT∗

R(qT∗

(T∗))

−re−rT∗

∫T∗

0
e−rt dR

dq

dqT∗

(t)

dT
dt

(3.39)
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= re−rT∗

(e−rT∗

R(qT∗

(T∗))− cT∗

qT∗

(T∗))+ (1− e−rT∗

)(−re−rT∗

R(qT∗

(T∗))

+e−rT∗ dR

dq

dqT∗

(T∗)

dT
−

dcT∗

dT
qT∗

(T∗)− cT∗ dqT∗

(T∗)

dT
)

+r(1− e−rT∗

)(e−rT∗

R(qT∗

(T∗))− cT∗

qT∗

(T∗))

−re−2rT∗

R(qT∗

(T∗))− re−rT∗

∫T∗

0
e−rt dR

dq

dqT∗

(t)

dT
dt (3.40)

= re−rT∗

(e−rT∗

R(qT∗

(T∗))− cT∗

qT∗

(T∗))

+(1− e−rT∗

)(−re−rT∗

R(qT∗

(T∗))−
dcT∗

dT
qT∗

(T∗))

+r(1− e−rT∗

)(e−rT∗

R(qT∗

(T∗))− cT∗

qT∗

(T∗))

−re−2rT∗

R(qT∗

(T∗))− re−rT∗

∫T∗

0
e−rt dR

dq

∂q

∂T
dt (3.41)

= −(1− e−rT∗

)(re−rT∗

R(qT∗

(T∗))+
dcT∗

dT
qT∗

(T∗))

+r(e−rT∗

R(qT∗

(T∗))− cT∗

qT∗

(T∗))

−re−2rT∗

R(qT∗

(T∗))− re−rT∗

∫T∗

0
e−rt dR

dq

dqT∗

(t)

dT
dt (3.42)

= −(1− e−rT∗

)(re−rT∗

R(qT∗

(T∗))+
dcT∗

dT
qT∗

(T∗))

+r(e−rT∗

R(qT∗

(T∗))− cT∗

qT∗

(T∗))

−re−2rT∗

R(qT∗

(T∗))− re−rT∗

∫T∗

0
cT∗ dqT∗

(t)

dT
dt (3.43)

= −(1− e−rT∗

)(re−rT∗

R(qT∗

(T∗))+
dcT∗

dT
qT∗

(T∗))

+r(e−rT∗

R(qT∗

(T∗))− cT∗

qT∗

(T∗))

−re−2rT∗

R(qT∗

(T∗))+ re−rT∗

cT∗

qT∗

(T∗) (3.44)

= −(1− e−rT∗

)qT∗

(T∗)
dcT∗

dT
− rqT∗

(T∗)cT∗

+ re−rT∗

cT∗

qT∗

(T∗) (3.45)

= −(1− e−rT∗

)qT∗

(T∗)(
dcT∗

dT
+ rcT∗

) (3.46)

≤ 0.

Here, the first equality follows from (3.38), the second from (3.19), the third

from rewriting, the fourth from (3.19) again, the fifth from (3.36), and the re-
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maining follow from rewriting again. Since dcT∗

dT∗ and rcT∗

are both positive,

the inequality follows.

Given that the second derivative is always negative for a stationary

point, we know that there can only be on such a point. �

Lemma 3.A.2. There exists at least one T∗ that maximizes total discounted

profit.

Proof If we can show that the first derivative is positive for small T∗ and

negative for large T∗, a local maximum exists and is also the global maxi-

mum.

The minimum number of time it will take for a dealer to sell its batch S

is Tm = S/qm, and in this situation, cT∗

= 0 and qT∗

(t)= qm for every t ∈R
+.

At this point,

dΠ(Tm)

dT
=

(1− e−rTm

)R(qm)e−rTm

+ re−rTm

(K −
∫Tm

0 e−rtR(qm)dt)

(1− e−rTm
)2

=
(1− e−rTm

)R(qm)e−rTm

+ re−rTm

K − re−rTm

[−1
r
e−rtR(qm)]Tm

0

(1− e−rTm
)2

=
re−rTm

K

(1− e−rTm
)2

≥ 0.

So, for small T∗, profit is increasing with T∗. We know that the largest T∗

can be is where qT∗

(T∗)= 0, this gives:

dΠ(T∗)

dT
=

(1− e−rT∗

)e−rT∗

R(0)+ re−rT∗

(K −
∫T∗

0 e−rtR(qT∗

(t))dt)

(1− e−rT∗
)2

=
re−rT∗

(K −
∫T∗

0 e−rtR(qT∗

(t))dt)

(1− e−rT∗
)2

≤ 0.

From our assumption that K < max
∫T∗

0 e−rtR(qT∗

(t))dt it follows that this

derivative is negative. �

In Lemma 3.A.1 and 3.A.2, it is shown that there is at most one T∗ and at

least one T∗ that maximizes total discounted profit. Ergo, there is a unique

T∗ that maximizes total discounted profit. This T∗ is found by solving the

first derivative of Π(T) (equation (3.38)) to zero. That is, T∗ solves
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(1− e−rT∗

)(e−rT∗

R(qT∗

(T∗))− cT∗

qT∗

(T∗))+ re−rT∗

(K −
∫T∗

0 e−rtR(qT∗

(t))dt)

(1− e−rT∗
)2

= 0.

Proof of Proposition 3.4.1:

Proof To see how T∗ changes when K changes, we first need to make T∗ a

function of K and derive to K . We now that

dΠ(T∗)

dT
=

(1− e−rT∗

)(e−rT∗

R(q(T∗))− cq(T∗))+ re−rT∗

(K −
∫T∗

0 e−rtR(q(t))dt)

(1− e−rT∗
)2

= 0.

Note that q is influenced by a change in K , directly via T and even more if

also t = T. Therefore, the optimum T∗ always has to solve

M(K) = (1− e−rT∗

)(e−rT∗

R(q(T∗))− cq(T∗))

+re−rT∗

(K −

∫T∗

0
e−rtR(q(t))dt)

= 0.

The derivative to K of M(K) should still be equal to zero and is the following.

dM(K)

dK
= −T∗′

K (1− e−rT∗

)q(T∗)(rc+
∂c

∂T
)+ re−rT∗

= 0.

Here, the equality follows directly from (3.46) and deriving M(K) to the sep-

arate variable K . Therefore,

T∗′
K =

re−rT∗

(1− e−rT∗
)q(T∗)(rc+ ∂c

∂T
)

≥ 0.

�
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Proof of Proposition 3.4.2:

Proof To see how T∗ changes when r changes, we first have to note that

T∗ is not only directly influenced by r, but also via c and q, as can be seen

in Proposition 3.3.4. So, if r is no longer a constant, but a variable, then c, q

and T∗ all become functions of r. Now, (3.29) becomes

M(r) = (1− e−rT∗

)(e−rT∗

R(q(T∗))− cq(T∗))

+re−rT∗

(K −

∫T∗

0
e−rtR(q(t))dt)

= 0.

When deriving this function to r, we get the following.

dM(r)

dr
= −T∗′

r (1− e−rT∗

)q(T∗)(rc+
∂c

∂T
)+T∗R(q(T∗))e−2rT∗

−T∗cq(T∗)

−
1

r
(1− e−rT∗

)(e−rT∗

R(q(T∗))− cq(T∗))− (1− e−rT∗

)
∂c

∂r
q(T∗)

+re−rT∗

∫T∗

0
te−rtR(q(t))dt− re−rT

∫T

0
e−rt dR

dq

∂q(t)

∂r
dt

= 0.

Therefore,

T∗′
r =

T∗R(q(T∗))e−2rT∗

−T∗cq(T∗)− 1
r
(1− e−rT∗

)(e−rT∗

R(q(T∗))− cq(T∗))

(1− e−rT∗
)(rc+ ∂c

∂T
)q(T∗)

+
−(1− e−rT∗

)∂c
∂r

q(T∗)+ re−rT∗ ∫T∗

0 te−rtR(q(t))dt− re−rT
∫T

0 e−rt dR
dq

∂q(t)
∂r

dt

(1− e−rT∗
)(rc+ ∂c

∂T
)q(T∗)

.

�

Proof of Proposition 3.4.3:

Proof To see how T∗ changes when S changes, observe that S is not di-

rectly part of equation (3.29). However, a change in S will change (3.20) and

therefore (3.19). Since T is constant here, the influence of a change in S will

be captured by a change of q(t) in (3.20). Because q(t) changes with S, it

93



Chapter 3. The Impact of Bulk-Supply on a Dealer’s Sales Strategy

can be seen in (3.19) that therefore also c changes with S. These equations

change as follows when S changes:

d

dS

∫T

0
q(t)dt =

∫T

0

∂q(t)

∂S
dt (3.47)

= 1

and

d

dS
R′(q(t)) = R′′(q(t))

∂q(t)

∂S
(3.48)

=
∂c

∂S
ert. (3.49)

Since c doesn’t depend on t, the sign of (3.49) must be the same for all t ∈

[0,T]. Therefore, the sign of (3.48) must be the same for all t ∈ [0,T] as

well. Equation (3.47) tells us that there must be some t ∈ [0,T] for which

it holds that
∂q(t)
∂S

> 0. This implies that
∂q(t)
∂S

≥ 0 for all t ∈ [0,T] and since

R′′(q(t))< 0, ∂c
∂S

≤ 0.

To see now how T∗ actually changes with S, we need the expression for

the optimal T∗ again. Let

M(S) = (1− e−rT∗

)(e−rT∗

R(q(T∗))− cq(T∗))

+re−rT∗

(K −

∫T∗

0
e−rtR(q(t))dt)

= 0.

94



3.A. Appendix

Then

∂M

∂S
= −T∗′

S [(1− e−rT∗

)(rc+
∂c

∂T
)q(T∗)]+

(1− e−rT∗

)(e−rT∗

R′(q(T∗))
∂q(T∗)

∂S
−

∂c

∂S
q(T∗)− c

∂q(T∗)

∂S
)

−re−rT∗

∫T∗

0
e−rt ∂q(t)

∂S
R′(q(t))dt

= −T∗′
S (1− e−rT∗

)q(T∗)(
∂c

∂T
+ rc)+ (1− e−rT∗

)(c
∂q(T∗)

∂S

−
∂c

∂S
q(T∗)− c

∂q(T∗)

∂S
)− re−rT∗

∫T∗

0

∂q(t)

∂S
cdt

= −T∗′
S (1− e−rT∗

)q(T∗)(
∂c

∂T
+ rc)− (1− e−rT∗

)
∂c

∂S
q(T∗)

−re−rT∗

c

∫T∗

0

∂q(t)

∂S
dt

= −T∗′
S (1− e−rT∗

)q(T∗)(
∂c

∂T
+ rc)− (1− e−rT∗

)
∂c

∂S
q(T∗)− re−rT∗

c

= 0.

Here, the second equality sign follows from (3.19), the third from moving the

constant c out of the integral and the fourth from (3.47). Therefore,

T∗′
S =

−(1− e−rT∗

) ∂c
∂S

q(T∗)− re−rT∗

c

(1− e−rT∗
)q(T∗)( ∂c

∂T
+ rc)

.

�
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Chapter 4

Collusion in a Price-Quantity

Oligopoly

4.1 Introduction

“The Cournot story concerns producers who simultaneously

and independently make production quantity decisions, and who

then bring what they have produced to the market, with the

market price being the price that equates the total supply with

demand. The Bertrand story, on the other hand, concerns pro-

ducers who simultaneously and independently name prices. De-

mand is allocated to the low-price producer(s), who then produce

(up to) the demand they encounter . . . There are two differ-

ences in these stories: how price is determined (by an auctioneer

in Cournot and by price “competition” in Bertrand), and when

production is supposed to take place.” (Kreps and Scheinkman

(1983), p. 326)

Both the Cournot and the Bertrand story have significantly enhanced our

understanding of strategic firm behavior in oligopolies. Yet, both have also

been subject to severe criticism. For instance, Cournot’s model requires an

auctioneer to determine the market price, whereas in practice prices are typ-

ically set by suppliers themselves. In this respect, Bertrand’s story is more

satisfactory. However, this model assumes that production follows the re-

alization of demand, whereas in a great many industries production takes

place in advance of sale. More generally, and independent of the timing of
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production, it seems more reasonable to assume that firms choose both their

prices and production levels. This is true when producers compete, but no

different when they collude.

The objective of this chapter is to study (optimal) collusion among firms

that have both price and quantity as a strategic choice variable.1 Towards

that end, we analyze an infinitely repeated oligopoly game in which firms si-

multaneously make both price and production decisions in each period. This

mode of production we will call production in advance. With production in

advance, production costs are incurred before a firm learns how much it will

actually sell. At the end of this chapter, we also shortly analyze what hap-

pens when firms produce to order. When production is to order, producers

choose a price and produce after their private demand is known. Thus, the

key difference between both settings lies in whether or not firms commit to

a particular production level before the realization of demand. We therefore

incorporate the Cournot and Bertrand story regarding the timing of produc-

tion, but price decisions are made by the producers themselves (i.e., there is

no auctioneer).

In attempting to combine the more plausible elements of both stories,

existing literature has primarily focused on settings in which firms first

choose production capacities and then engage in price competition. The

reason for analyzing price competition given capacities is that prices can

presumably be adjusted more quickly than quantity-related variables. For

example, Kreps and Scheinkman (1983) find that Bertrand competition may

yield Cournot outcomes when suppliers first choose a scale of operation. As

to collusion, Fershtman and Muller (1986) explore the impact of long-run

competition in capital investments on collusion on prices and market shares

and show, among other things, that competition in capacities has no desta-

bilizing effect on collusion. Benoit and Krishna (1987) show that when firms

are allowed to collude on both price and capacity then all collusive equi-

libria have firms holding excess capacity. Davidson and Deneckere (1990)

establish that more collusion requires higher levels of excess capacity. Hold-

ing excess capacity is required to enforce a collusive scheme as it allows to

punish a deviator by increasing production. In the current chapter, we as-

sume that firms adopt grim-trigger strategies to sustain collusion and that

there is sufficient production capacity to implement this punishment strat-

egy. Consequently, our focus is on the actual quantity decisions and not on

the maximum amount of products a firm can offer each period. Our model

1This chapter is based on the paper van den Berg and Bos (2011).
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of production in advance falls in the class of games described by Maskin

(1986). He claims that an equilibrium exists in the static game, but refrains

from verifying the conditions as given by Dasgupta and Maskin (1986) for

the oligopolistic setting. Next to this, collusion is not a part of the paper.

To our knowledge, we are the first to study collusion in a price-quantity

oligopoly while taking account of different timing of production.2 As suppli-

ers have control over both price and quantity, one question of interest is what

choice variables they will optimally collude on. Will they choose to collude

on either price or quantity (semicollusion) or both (full collusion)?3 In this

chapter, we restrict attention to price collusion and price-quantity collusion.

Put differently, firms are given the possibility to either form a price-fixing

cartel or a price-quota cartel.4 Obviously, since firms can imitate semicol-

lusion by colluding in full, full collusion always gives the suppliers at least

as much profit as colluding on only one variable will. However, there are at

least three reasons why firms may prefer to collude on one variable only after

all. First, reaching consensus on coordination of an additional variable com-

plicates the bargaining process and there is plenty of evidence from practice

that bargaining issues should not be take too lightly. For example, Leven-

stein and Suslow (2004) state that "Bargaining problems were much more

likely to undermine collusion than was secret cheating. About one quarter

of the cartel episodes ended because of bargaining problems. Bargaining

issues affected virtually every industry studied." Second, coordinating on

more variables may complicate enforcement as more monitoring is required

to ensure compliance. Third, more complete cartel contracts leave additional

traces of evidence and therefore, ceteris paribus, increase the probability of

a conviction. In short, whenever a price cartel is more or less equally suc-

cessful as a price-quota cartel, firms will arguably prefer not to install an

additional quota agreement. For both modes of production, we first analyze

optimal price collusion and then evaluate the potential additional value of a

quota agreement.

The analysis in this study thus sheds some light on one particular type of

cartel heterogeneity: why do some cartels entail an agreement on both prices

and quantities, whereas others include only an arrangement on prices? For

2Contributions that consider competition in price-quantity oligopolies include, for exam-

ple, Kreps and Scheinkman (1983), Friedman (1988), Dixon (1992) and Tasnádi (2006).
3For a recent survey of literature on semicollusion, see Steen and Sørgard (2009).
4In this study, whenever we use the term (sales) quota(s), we mean an allocation of quan-

tities or market shares.
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example, in Carbonless Paper members agreed on the timing and magnitude

of price increases for each EEA country.5 However, these price-fixing agree-

ments were only sometimes accompanied by quota agreements (e.g., in Spain

and France). In Elevators and Escalators members coordinated prices and

allocated projects on the basis of a pre-arranged market share scheme.6 In

particular, a compensation mechanism was adopted to ensure alignment of

overall project value with the allocated shares. Yet, in the Netherlands the

cartel operated on a project by project basis seemingly without a clear com-

pensation scheme. In Methionine parties fixed minimum and target prices

and agreed on concerted price increases.7 One of the members proposed a

volume control scheme including a compensation mechanism, but sales quo-

tas were never implemented. There are many more real-world examples of

price and price-quota cartels.8

We find that firms almost always prefer to install a price-quota cartel

when production is in advance of sales. However, the reasons for adopting a

market sharing scheme in addition to a price-fixing agreement differ. When

market demand is relatively elastic, firms will optimally set the monopoly

price. In this case, an arrangement on outputs allows firms to deal with both

coordination and incentive problems.9 The coordination problem concerns

the fact that in equilibrium every member should have a sufficiently high

level of sales, while ensuring that the market clears. The incentive prob-

lem prescribes the cartel to allocate a sufficiently large part of total sales

to the smallest members as they appear to have the strongest incentive to

defect from the agreement. Therefore, given that the size distribution of

members is sufficiently heterogeneous, a price-quota cartel is ceteris paribus

more likely than a price-fixing cartel. If market demand is relatively inelas-

tic, then the coordination problem is absent. The reason being that in this

case all members optimally produce identical amounts. Yet, sustainability of

collusion requires the cartel to set a price below the monopoly price in order

to mitigate incentives to defect. In this case, a price-quota cartel is found to

be always more profitable than a price-fixing cartel. Specifically, installing

5Case COMP/E-1/36.212 - Carbonless paper.
6Case COMP/E-1/38.823 - PO/Elevators and Escalators.
7Case C.37.519 - Methionine.
8See, for instance, Russo et al. (2010). This book provides a complete overview and de-

scription of all European cartel cases between 1962 and 2009.
9Osborne (1976) identifies four internal problems a cartel may be confronted with. The

cartel has to locate the contract surface and choose a point on that surface (the coordination

problem). Additionally, it has to detect and deter cheating (the incentive problem).
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an optimal market sharing scheme allows firms to avoid overproduction and

to sustain the monopoly price.

By contrast, overproduction does not occur in equilibrium when produc-

tion follows the realization of demand. Moreover, for both price collusion and

price-quantity collusion the profit-maximizing cartel price is the monopoly

price. In this case, an additional quota agreement is made solely when a

price cartel alone is not sustainable. As with production in advance, the

smallest members have the strongest incentive to deviate from the cartel

agreement. Hence, sustainability of collusion may require a redistribution

of sales from the larger to the smaller cartel participants. Overall, our study

suggests that a price-quota cartel is likely to be the rule rather than the

exception. An additional quota agreement may not have added value when

firms produce to order and are more or less of equal size.

We believe one should be reluctant to bring up evidence from antitrust

practice to support general theoretical predictions of cartel behavior like

ours. One reason for this is that known cartels differed in many respects.

Moreover, they have been operating in a wide variety of industries and had

to deal with specific problems. As a result, there are potentially many expla-

nations for observed collusive conduct. Apart from this, relevant information

that is required to confidently match a general theoretical framework with a

specific cartel case is often lacking. However, in this respect the lysine cartel

forms a notable exception. This cartel is one of the most well-documented

cases in antitrust history and of particular interest to our study as it had

two “lives”.10 During its first life, members fixed prices but no market shar-

ing scheme was adopted. During its second life, members also agreed on a

market share allocation. The market for lysine is characterized by homoge-

neous products, approximately constant unit production costs and relatively

inelastic market demand. In this case, our model would predict firms to

prefer a price-quota cartel as it allows them to sustain higher prices. This is

indeed what happened. That is, the cartel set prices at a significantly higher

level during its second life, which was generally more successful. Therefore,

there exists some support for our theoretical findings in antitrust practice.

This chapter proceeds as follows. The next section introduces the model.

Section 4.3 describes the stationary equilibria in markets with production

in advance. In the next section, Section 4.4, the conditions are analyzed

under which a firm prefers collusion over competition. Section 4.5 provides

an analysis of price- and price-quantity collusion. Section 4.6 describes the

10See, for instance, Connor (2001) and De Roos (2006).
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stationary equilibria and an analysis of price- and price-quantity collusion

when firms produce to order. Section 4.7 relates our main findings to exist-

ing literature that considers private information and demand uncertainty.

Section 4.8 concludes. All proofs are relegated to the Appendix.

4.2 Model

We consider a homogeneous good industry in which a fixed and finite set of

firms, denoted by N = {1, . . . ,n}, interact. In this section, we will describe our

assumptions for the static setting. In Section 4.4, to analyze the possibilities

to collude, we extend this model to be repeated an infinite amount of times.

Firms simultaneously make price and production decisions so as to max-

imize their expected profit. We define A ≡ [0,a]× [0,b] as the common action

set and price and quantity choices are respectively denoted by the vectors

p ≡ (p1, . . . , pn) and q ≡ (q1, . . . , qn), where pi ∈ [0,a] and qi ∈ [0,b] for all i ∈

N. Define p−i ≡ (p1, ..., pi−1, pi+1, ..., pn) and q−i ≡ (q1, ..., qi−1, qi+1, ..., qn)

as the vector of respectively prices and quantities of all firms other than i.

Firms have identical unit production costs c ∈ (0,a) and sufficient production

capacity available (i.e., there are no capacity constraints, b is high enough

not to influence the quantity-decision of the firms).

Market demand is given by D(p), which is a continuous, strictly decreas-

ing and concave function of price in the range [0,a]. Additionally, we assume

that this function is identically zero on [a,∞), twice continuously differen-

tiable on (0,a) and D(0) < b.11 The monopoly price and output are respec-

tively indicated by pm and qm: D(pm)+ (pm − c)D′(pm)= 0 and qm = D(pm).

Firm i’s individual demand depends on p and q. Consumers buy first from

a supplier charging the lowest price. In case of a tie, demand is shared ac-

cording to ratio. In specifying firm i’s demand, define ∆(pi)≡ { j ∈ N : p j < pi}

and Ω(pi) ≡ { j ∈ N : p j = pi} as the set of firms that respectively price below

and at pi.
12

With production in advance, production takes place before the realiza-

11We let b > D(0), since - as is described below - demand is shared proportionally when at

least one other firm sets the same price. This could give a firm the incentive to produce more

than D(0). It can easily be verified that there always exists an upperbound on how much a

firm is willing to produce.
12Officially, it is ∆(pi ,p−i) and Ω(pi ,p−i). From the context, it will be clear what p−i is.

Therefore, we use shorthand notation here to stress which value of pi these sets are based

on.
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tion of demand.13 We suppose that in this case demand is established ac-

cording to a proportional demand allocation rule. Thus, if two or more firms

charge the same price and total supply exceeds total demand at that price,

then sales are assumed proportional to individual levels of production. The

proportion that firm i receives of the (residual) demand at that price, is de-

noted by λi.
14

Assumption 4.2.1. Assume production in advance. Then λi =
qi

∑

j∈Ω(pi ) q j
, for

all i ∈ N.

Consequently, suppliers with more products available receive a larger

share of market demand, all else unchanged.15

Demand for the products of firm i is denoted D i(pi, qi,p−i,q−i). For any

price-quantity configuration, its profit is thus given by

πi(pi, qi,p−i,q−i)= piD i(pi, qi,p−i,q−i)− cqi. (4.1)

Firm i’s demand is then of the following general structure:

D i(pi, qi,p−i,q−i)=min{qi,λi(D(pi)−
∑

k∈∆(pi) qk)+}.

4.3 Static Nash Equilibrium

In this section, we characterize the single-shot Nash equilibrium of the model

described above. When production is in advance of sales, there is no pure-

strategy Nash equilibrium. However, there does exist a symmetric mixed-

strategy Nash equilibrium for which it can be shown that expected profits

amount to zero.

Suppose that production is in advance of sales. The next result estab-

lishes that in this case there exists no pure-strategy Nash equilibrium. Yet,

we can apply Corollary 5.3 of Reny (1999) to establish the existence of a

symmetric mixed-strategy Nash equilibrium.

13That is, a firm only learns about the production levels and prices of its competitors áfter

it has produced and fixed the price for its products.
14We use λi instead of λi(p,q), since p and q follow directly from the context.
15Assumption 4.2.1 is primarily made for ease of analysis. The findings in this chapter

are robust against alternative allocation rules as long as the game is symmetric and a firm’s

share of demand depends positively on its own level of production.
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Theorem 4.3.1. Assume production in advance.

(i) There exists no pure-strategy Nash equilibrium.

(ii) There exists a symmetric mixed-strategy Nash equilibrium.

Unfortunately, in the current setting it is difficult if not impossible to

determine this mixed-strategy equilibrium explicitly. However, we are able

to prove that (expected) equilibrium profits are zero. Below, we provide a

generalized version of the analysis presented in Tasnádi (2004), who obtains

a similar result for a duopoly.

For all the analyses in this section it can be easily verified that firms will

never find it optimal to price below c or above pm and supply strictly positive

quantity. We therefore focus on the case where suppliers choose their actions

simultaneously from S = [c, pm]× [0,b]. In the following, let the space of all

(Borel) probability measures on S be given by P(S) and let µi ∈ P(S) denote a

mixed strategy of firm i ∈ N. With µ−i we denote the mixed strategies of all

firms other then firm i, i.e., µ−i = (µ1, ...,µi−1,µi+1, ...,µn) and µ = (µi,µ−i).

The profit of firm i, when µ is the joint strategy, is represented by πi(µ). A

mixed-strategy equilibrium µ
∗ is then defined by the following condition:

πi(µi,µ
∗
−i)≤πi(µ

∗
i ,µ∗

−i) for all i ∈ N and µi ∈ P(S).

As we consider a symmetric situation and search for a symmetric equi-

librium, we indicate a mixed-strategy Nash equilibrium and corresponding

equilibrium profits of a single firm respectively by µ and π∗ for ease of no-

tation. The support of µ is denoted by supp(µ) and, for any price p ∈ [c, pm],

s(p)⊆ [0,b] is the set of quantities q ∈ [0,b] for which (p, q) ∈ supp(µ). More-

over, let µp be the projection of probability measure µ to the set of prices, i.e.,

µp(B)=µ(B× [0,b]) for any Borel set B ⊆ [c, pm]. Finally, let sup{p ∈ [c, pm] |

µp([p, pm]) = 1} and inf{p ∈ [c, pm] | µp([c, p]) = 1} be respectively denoted by

p̌ and p̂.

Clearly, if p̌ = c, then π∗ = 0. In the next two lemmas, we consider the

case where p̌ > c.

Lemma 4.3.2. If p̌ > c, then s(p̌)= {D(p̌)} and µp({p̌})= 0.

That is, a firm that sets p̌ > c optimally produces to meet demand at this

price. The next lemma shows that producing to serve the entire market may

also be optimal for prices that are above p̌.

Lemma 4.3.3. If p̌ > c, then there exists a price p′ ∈ (p̌, pm] such that, for all

p ∈ [p̌, p′], s(p)= {D(p)} and µp({p})= 0.
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Finally, we use this result to establish that the infimum of all prices

in the support cannot be strictly above c. As a result, all firms make zero

expected profits in equilibrium.

Theorem 4.3.4. Assume production in advance. Then,p̌ = c and π∗ = 0.

4.4 Cartel Problem

In this section, we analyze the incentives of firms to establish a particular

cartel contract. To do so, the game described in Section 2 is repeated an

infinite number of times. In every period t ∈N, firms simultaneously make

price and production decisions so as to maximize the expected discounted

sum of their profit stream, where δ ∈ (0,1) is the common discount factor.

In any period t, the price and quantity choices of all firms up to t− 1 are

common knowledge.

We assume that holding inventories is sufficiently costly so that firms do

not find it in their interest to store unsold products.

Assumption 4.4.1. Firms do not build inventories.

Supply may exceed demand in equilibrium when production is in ad-

vance of sale. Therefore, this assumption clearly comes with a price in terms

of generality. However, it is required to keep the analysis tractable. Conse-

quently, our findings related to collusion with production in advance primar-

ily apply to industries selling perishable or fashionable goods.

In the previous section, we found an equilibrium in the stationary set-

ting. If we talk about competition in the infinitely repeated stage game, we

refer to a situation in which all firms use strategies in which they do not

use past-play or timing of current play to decide upon their current actions.

Therefore, the only subgame perfect equilibrium in competition is the equi-

librium in which the (symmetric) stationary outcome prevails every period.

To prevent that from happening, firms can form a collusive agreement. In

forming a collusive agreement, firms can choose between two types of car-

tels: a price cartel and a price-quota cartel. In a price cartel, the strategies

of all firms take into account past choices of price only, i.e. previous quantity

choices of competitors are ignored. Therefore, deviations in the past in price

can be punished, but quantity can be freely chosen every moment in time

without further consequences. If the firms form a price-quota cartel, in the

strategies of all firms, both history of price and quantity choices matters, and

any deviations of the collusive agreement will be responded to accordingly.

105



Chapter 4. Collusion in a Price-Quantity Oligopoly

For both cases, we consider an all-inclusive cartel in which all suppliers

agree on a common cartel price pc ∈ (c, pm]. The key difference between the

two types of contracts is that with a price cartel firms are free to choose

their level of production, whereas a price-quota cartel additionally specifies

the level and allocation of outputs. The agreed upon quota in a price-quota

cartel for firm i is expressed by qc
i
. We require collusive arrangements to be

a subgame perfect equilibrium outcome of the game and it is assumed that

firms adopt grim-trigger strategies to sustain collusion.16

This results in the following formal definitions of a price cartel strategy and

a price-quota cartel strategy. Define qi(t) as the quantity that firm i ∈ N

chooses in period t. Let

Q= {arg max
q∈[0,b]

πi(p
c, (q,q−i)) for some q−i ∈ [0,b]n−1}.

A strategy profile is a price cartel if there is a price pc ∈ [0,a] and for each

firm i a sequence qi(1), qi(2), ... with qi(t) ∈Q for all t, such that each firm i

plays as follows:

- At period 1: set price pc and quantity qi(1);

- At each period T > 1: set price pc and quantity qi(T) if all firms have

set prices equal to pc at all t < T, and play according to the static

equilibrium strategy µ∗
i

otherwise.

A strategy profile is a price-quota cartel if there is a price pc ∈ [0,a] and for

each firm i an individual quantity qc
i
∈ [0,b], such that each firm i plays as

follows:

- At period 1: set price pc and quantity qc
i
;

- At each period T > 1: set price pc and quantity qc
i

if all firms j ∈ N have

set prices equal to pc and quantities equal to their individual quantity

qc
j

at all t < T, and play according to the static equilibrium strategy µ∗
i

otherwise.

To begin, let us focus on a price cartel. If, given a certain collusive price,

the firms always choose the same quantity level, we call this a price-cartel

16Notice that this is the most severe punishment strategy in our setting, i.e. profits in

competition are zero. Therefore, if collusion is not sustainable by adopting this strategy,

then collusion will not occur in any subgame perfect equilibrium.
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with a constant output configuration. If this is the case, the collusive value

for firm i is recursively defined by

Vi(pc,q)= pcD i(pc,q)− cqi +δVi(pc,q). (4.2)

Rearranging gives,

Vi(pc,q)=
pcD i(pc,q)− cqi

1−δ
. (4.3)

As customers buy first from the cheapest supplier, maximum profit that can

be earned by defecting from the cartel agreement is obtained by undercut-

ting the cartel price slightly and producing to meet market demand at that

price. Notice that this holds for all members of a price- or a price-quota car-

tel. Consequently, given a particular cartel price pc, the optimal defection

profit always amounts to (pc − c)D(pc). Whether all price-cartel really have

constant output configurations will be analyzed in the next sections.

As shown in the previous section, competitive behavior yields zero (ex-

pected) profits. The incentive compatibility constraint of firm i is therefore

given by
pcD i(pc,q)− cqi

1−δ
≥ (pc

− c)D(pc), (4.4)

or

δ≥ δ∗i = 1−
pcD i(pc,q)− cqi

(pc − c)D(pc)
, for all i ∈ N. (4.5)

As is well-known, there may exist a plethora of sustainable cartel contracts.

Yet, as we require collusion to be subgame perfect and pc > c, all these col-

lusive arrangements have in common that total cartel supply will not fall

short of market demand. If it did, then there would be at least one firm that

would benefit from increasing its production. As a result, firm demand is

given by D i(pc,q)=
qi

∑

j∈Ω(pc ) q j
D(pc). In turn, this implies that all firms agree

to set a cartel price that maximizes total cartel value.

A price cartel thus faces the following constraint optimization problem:

max
p

V (p,q)=max
p

pD(p)− c
∑

j∈N q j

1−δ
,

subject to

pD i(p,q)− cqi − (1−δ)(p− c)D(p) ≥ 0, for all i ∈ N,
∑

j∈N

q j ≥ D(p).
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The key question is then if and how firms can benefit from an additional

quota agreement. In the following, we analyze this issue in more detail for

markets that are characterized by production in advance.

4.5 Collusion with Production in Advance

4.5.1 Price Cartel

Suppose that the cartel prices at pc ∈ (c, pm] and that production is in ad-

vance of sale. In the following, we start by considering a price cartel and

then analyze if and under which conditions firms would prefer to establish a

price-quota cartel instead. As a price cartel does not include an agreement

on sales, all members are unrestricted in their choice of output. That is to

say, every firm can individually decide on its production level without having

to fear retaliation from its rivals. Consequently, a cartel member produces

to maximize current profit given the output choices of its fellow members.

The production level that maximizes firm i’s current profit, given the output

choices of its fellow members, we will call the best reply production choice

q∗
i
(pc,q−i).

The next result specifies the optimal production decision at a given cartel

price.

Lemma 4.5.1. Assume production in advance and a price cartel with com-

mon cartel price pc ∈ (c, pm]. For all i ∈ N, the best reply production choice

q∗
i
(pc,q−i) is given by:

q∗
i
(pc,q−i)=















D(pc)−
∑

j∈N\{i} q j if
∑

j∈N\{i} q j ≤ D(pc)c/pc

√

pcD(pc)(
∑

j∈N\{i} q j)

c
−

∑

j∈N\{i} q j if D(pc)c/pc <
∑

j∈N\{i} q j ≤ D(pc)pc/c

0 if
∑

j∈N\{i} q j > D(pc)pc/c.

Observe that the first in combination with the second or the third opti-

mal response cannot occur in equilibrium. Likewise, we can exclude the pos-

sibility that in equilibrium some firms adopt the middle best response and

some firms produce nothing. To see this, notice that in this case it must hold

that
∑

i∈N qi =

√

pcD(pc)(
∑

j∈N\{i} q j)

c
and

∑

j∈N\{i} q j ≤ D(pc)pc/c. This implies
∑

i∈N qi ≤

√

pcD(pc)(D(pc)pc/c)
c

= D(pc)pc/c. If a firm would produce nothing,

then
∑

j∈N\{i} q j ≤ D(pc)pc/c. Yet, zero production is only a best response

when
∑

j∈N\{i} q j > D(pc)pc/c; a contradiction. This leaves two possibilities

that can occur in equilibrium. Either, all firms produce according to the first
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best response (i.e.,
∑

i∈N qi = D(pc)), or all firms set their outputs such that
∑

i∈N qi =

√

pcD(pc)(
∑

j∈N\{i} q j)

c
. In the latter case, total supply exceeds market

demand.

The next result shows that, in the event of overproduction, all firms pro-

duce the same quantity.

Lemma 4.5.2. If q∗
v (pc,q−v)=

√

pcD(pc)(
∑

j∈N\{v} q j)

c
−

∑

j∈N\{v} q j and q∗
w(pc,q−w)=

√

pcD(pc)(
∑

j∈N\{w} q j)

c
−

∑

j∈N\{w} q j, then q∗
v (pc,q−v) = q∗

w(pc,q−w) for all v,w ∈

N.

The previous two findings are useful in characterizing the set of subgame

perfect equilibria. It appears that equilibrium production decisions in part

depend on the level of the cartel price.

Theorem 4.5.3. Assume production in advance. If a price cartel (pc,q∗) is a

subgame perfect Nash equilibrium, then for all i ∈ N,

(i) pc ≤ cn
n−1

, q∗
i
(pc,q−i)= D(pc)−

∑

j∈N\{i} q∗
j
(pc,q−j) and q∗

i
(pc,q−i)≥ (

pc−c
pc )D(pc),

(ii) pc > cn
n−1

and q∗
i
(pc,q−i)=

(n−1)pcD(pc)

cn2 .

Thus, in equilibrium, the collusive value for firm i is given by

Vi(pc,q∗)=























(pc−c)(D(pc)−
∑

j∈N\{i} q∗
j
(pc,q−j))

1−δ
for pc ≤ cn

n−1
and q∗

i
(pc,q−i)≥

(
pc−c

pc )D(pc) for all i ∈ N,or
pcD(pc)

(1−δ)n2 for pc > cn
n−1

and q∗
i
(pc,q−i)=

(n−1)pcD(pc)

cn2 for all i ∈ N.

The next issue is to find the price that maximizes the total cartel value.

Following Theorem 4.5.3, we can distinguish two cases. First, if the cartel

sets a price p ≤ cn
n−1

, then q∗
i
(p,q−i) = D(p)−

∑

j∈N\{i} q∗
j
(p,q−j) for all i ∈ N.

Therefore, the incentive compatibility constraint as given by (4.5) reduces to

δ≥ δ̂∗
i
= 1−

q∗
i
(p,q−i)

∑

j∈N q∗
j
(p,q−j)

, for all i ∈ N, (4.6)

which does not directly depend on the cartel price. As a result, if pm ≤
cn

n−1
, then the cartel optimally sets the monopoly price. Note that, since

maxi∈N δ̂∗
i
≥ 1− 1

n
, this can only occur if δ≥ 1− 1

n
.

Second, all cartel participants optimally produce q∗(p) =
(n−1)pD(p)

cn2 at
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any price p > cn
n−1

. In this case, the incentive compatibility constraint as

given by (4.5) is therefore given by

δ≥ δ̃∗(p)= 1−
p

n2(p− c)
, (4.7)

which is the same for all firms and directly depends on price. In fact, δ̃∗(p)

is an increasing and concave function of p and, since δ̃∗( cn
n−1

) = 1− 1
n

, also

this incentive compatibility constraint can only hold as long as δ≥ 1− 1
n

.

Given that the cartel price exceeds cn
n−1

, define p∗ as the unconstrained so-

lution of the cartel problem:

dV (p,q∗(p))

dp
=

pD′(p)+D(p)

(1−δ)n2
= 0. (4.8)

Thus, p∗ solves p∗D′(p∗)+D(p∗) = 0 and therefore pm > p∗. Additionally,

define p̃ as the constrained solution, i.e., δ= 1−
p̃

n2( p̃−c)
.

Using the foregoing analysis, the next Proposition summarizes the opti-

mal pricing decision of a price-fixing cartel.

Proposition 4.5.4. Assume production in advance and δ≥ 1− 1
n

. The opti-

mal cartel price pc is specified as follows:

1. Suppose pm ≤ cn
n−1

.

(a) If δ≥ δ̂∗
i

for all i ∈ N, then pc = pm.

2. Suppose pm > cn
n−1

.

(a) If p∗ < cn
n−1

, then pc = cn
n−1

.

(b) If δ< δ̃∗(p∗) and p∗ ≥ cn
n−1

, then pc = p̃.

(c) If δ≥ δ̃∗(p∗) and p∗ ≥ cn
n−1

, then pc = p∗.

4.5.2 Price-Quota Cartel

Above, we have characterized the optimal collusive strategy of a price-fixing

cartel. The remaining issue is to analyze if and how suppliers could benefit

from an additional quota agreement. In the following, we show that there

are at least three arguments in favor of a price-quota cartel when production

is in advance of sales.

First, if pc ≤ cn
n−1

, then by Theorem 4.5.3 production levels must be such
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that q∗
i
(pc,q−i) = D(pc)−

∑

j∈N\{i} q∗
j

and q∗
i
(pc,q−i) ≥ (

pc−c
pc )D(pc). Thus,

the market should clear while ensuring that every cartel participant has a

sufficiently high level of sales. Combining both these requirements yields

the following rather striking result.

Corollary 4.5.5. Assume production in advance and pc ≤ cn
n−1

. The market

share of every cartel member must (weakly) exceed the Lerner index for a price

cartel to be stable.17

A price cartel therefore faces a coordination problem when it prices at

pc < cn
n−1

.18 This is the case when pm < cn
n−1

. As in this case there seems to

be no natural division of outputs, an explicit arrangement on market shares

may be required to solve this coordination problem.

In addition, a quota agreement may also be needed to solve the incentive

problem when pm ≤ cn
n−1

. Observe that the minimum critical discount factor

is always weakly larger than 1− 1
n

, which is obtained with an equal division

of sales. We therefore conclude that there exists no viable cartel when δ <

1− 1
n

. Yet, given that δ≥ 1− 1
n

, viability of a cartel may still require a market

sharing scheme to prevent the smallest member(s) from leaving the ring.

Theorem 4.5.6. Assume production in advance, δ≥ 1− 1
n

and pm ≤ cn
n−1

.

(i) If 1− 1
n
≤ δ< 1−

q∗
i
(pc,q−i)

∑

j∈N q∗
j
(pc,q−j)

for some firm i ∈ N, then there exists only a

viable price-quota cartel, not a viable price cartel, and

(ii) If 1−
q∗

i
(pc,q−i)

∑

j∈N q∗
j
(pc,q−j)

≤ δ for all i ∈ N, then there exists both a viable price

cartel and a price-quota cartel.

Finally, if pm > cn
n−1

, then Proposition 4.5.4 reveals that a price-fixing

cartel is feasible. Moreover, in this case firms have no coordination problem

as they optimally produce the same amount of products at any cartel price

pc ≥ cn
n−1

. Here, the only reason for suppliers to establish a price-quota cartel

is that it generates more profits than a price cartel. In particular, we know

by Proposition 4.5.4 that the profit-maximizing price of a price cartel is below

the monopoly price. Implementing an optimal quota scheme allows firms

to avoid excessive production and to sustain the monopoly price, thereby

increasing the collusive value.

17The Lerner index describes the relative profit margin, i.e.
p−c

p , of a firm.
18This coordination problem is absent for pc = cn

n−1 as then all members find it optimal to

produce the same amount of products.
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Theorem 4.5.7. Assume production in advance, δ ≥ 1− 1
n

and pm > cn
n−1

.

There exists a price-quota cartel for which Vi(pc,qc) > Vi(pc,q∗(pc)) for all

i ∈ N. An optimal price-quota cartel contract has all firms pricing at pm and

a total production of D(pm).

In conclusion, if market demand is sufficiently elastic (pm ≤ cn
n−1

), then a

quota agreement may be required to solve a coordination and an incentive

problem. If a price-quota cartel is necessary to overcome incentive problems,

all else unchanged, the cartel leads to a convergence of market shares. By

contrast, when market demand is sufficiently inelastic (pm > cn
n−1

), the sole

reason for establishing an additional quota agreement is that it allows the

cartel to sustain a higher price while reducing costs due to overproduction.

As cn
n−1

is decreasing in n, the latter situation is more likely the larger the

number of firms in the industry. Contrary to conventional wisdom, this im-

plies that the coordination problem may be more pronounced the fewer the

number of cartel participants, all else equal.

4.6 Production to Order

In this chapter, next to production in advance, we consider another mode of

production: production to order. Many of the assumptions made for produc-

tion in advance are the same as those for production to order. Therefore, in

this section, we will only explicitly define the assumptions that differ from

those in the previous sections.

The fundamental difference between both settings lies in the way in which

a firms’ demand is determined. When firms produce to order, each firm only

sets its price, not its production level. The consumers first buy from a sup-

plier charging the lowest price. In case the cheapest supplier(s) choose(s)

not to produce up to demand, consumers go to have their residual demand

fulfilled at the second cheapest supplier(s), etcetera. We will assume that,

as long as there are no agreements made between firms about allocation of

demand, each firm always supplies the demand it faces.

Since realization of demand is known before production takes place, the al-

location of customers when two or more firms charge the same price does not

depend on firms’ actual production levels. In this case, we use α to describe

a firm’s share of market demand. Particularly, if all suppliers charge the

same price and total supply does not fall short of market demand at that

price, then αi is the (exogenously given) market share of firm i.
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Firm i’s demand, when there are no agreements made between firms about

allocation of demand, is therefore of the following structure:

D i(pi,p−i)=

{ αi
∑

j∈Ω(pi )α j
if pi ≤ p j for all j ∈ N\{i}

0 otherwise

Consequently, the profit of firm i is given by

πi(pi,p−i)= (pi − c)D i.

4.6.1 Static Nash Equilibrium

Firms in this setting basically compete in price. Therefore, the static Nash

Equilibrium here is the same as in the Bertrand Paradox. That is, there ex-

ists a pure-strategy Nash equilibrium with all firms (or at least two) pricing

at c and producing to meet demand. There is no other Nash equilibrium in

which one or more suppliers make a positive profit. Consequently, it can be

concluded that stationary profits are zero. This provides a strong incentive

for firms to engage in a cartel. But what (type of) cartel contract is most

likely to be formed? It is this issue that we address in the next section.

4.6.2 Collusion

If the firms form a price cartel, then firm i faces a demand of αiD(pc). The

collusive value of this price cartel for firm i is recursively defined by

Vi(pc)= (pc
− c)αiD(pc)+δVi(pc),

which can be rewritten as

Vi(pc)=
(pc − c)αiD(pc)

1−δ
.

The incentive compatibility constraint of firm i is therefore given by

δ≥ δ∗i = 1−αi, for all i ∈ N.

As before, sustainability of collusion requires δ ≥ 1− 1
n

, which is obtained

with an equal division of sales. Yet, unlike with production in advance, a

price cartel will not face a coordination problem. Also, the incentive con-

straint is independent of the elasticity of market demand. In fact, given
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that δ≥ 1− 1
n

, whether or not price collusion is viable solely depends on the

size distribution of cartel participants. Specifically, feasibility of collusion

requires the market share of the smallest cartel member(s) to be sufficiently

large. As the critical discount factor is independent of the cartel price, the

cartel will optimally set the monopoly price, i.e., pc = pm. The next result

therefore closely resembles Theorem 4.5.6 above.

Theorem 4.6.1. Assume production to order and δ≥ 1− 1
n

.

(i) If 1− 1
n
≤ δ< 1−

αi
∑

j∈N α j
for some firm i ∈ N, then there exists only a viable

price-quota cartel, not a viable price cartel, and

(ii) If δ ≥ 1−
αi

∑

j∈N α j
for all i ∈ N, then there exists both a viable price cartel

and a price-quota cartel.

When firms produce to order, a price cartel and a price-quota cartel are

equally profitable as in both cases the cartel mimics a multi-plant monop-

olist. Consequently, the only reason for firms to adopt a market sharing

scheme is that without such an arrangement collusion may not be sustain-

able. In particular, the cartel may have to agree on a redistribution of sales

from the larger to the smaller members.19 There are several ways in which

firms can arrange a more equal division of sales. For example, larger firms

may simply refuse to serve part of their demand so as to increase the resid-

ual demand for the products of smaller members. Alternatively, the car-

tel may adopt a more sophisticated system of end-of-the-year buy backs to

ensure that every member meets its pre-arranged output level. It is note-

worthy that such agreements have been observed several times in antitrust

practice.20

4.7 Discussion

The above analysis has been conducted under several assumptions, some of

which we believe warrant some discussion. In the following, we relate our

work to literature that considers settings with cost heterogeneity, demand

uncertainty and private information.

By studying collusion in a price-quantity oligopoly, our analysis sheds some

19In this chapter, we derive results for a given cartel size. Alternatively, when cartel for-

mation is assumed endogenous, it may be more optimal for the larger firms to form a less

than all-inclusive cartel leaving out the smaller firms. This possibility is analyzed in Bos

and Harrington (2010).
20See, for example, Harrington (2006).
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light on what type of cartel we may expect in particular type of industries.

Our findings suggest that we often may expect firms to agree on both prices

and quantities, albeit for various reasons. We have derived results in a set-

ting where both prices and quantities are public information and firms have

accurate knowledge about cost and demand functions. Clearly, relaxing one

or more of these assumptions may provide alternative explanations for when

to expect firms to establish a price-quota cartel. Existing literature has of-

fered various rationales for full collusion in the presence of cost and demand

shocks and in case strategic choice variables are private information. Here,

we briefly discuss this related literature.

Let us first discuss the possibility of cost heterogeneity. In our setting,

differences in firm size are unrelated to differences in unit costs. Conse-

quently, a market-sharing scheme when implemented is also not driven by

efficiency considerations. This is unlikely to hold in general as differences in

unit costs may give rise to asymmetric incentive schemes. For instance, one

may conjecture a cartel to allocate a relatively large market share to more

efficient members as these have more to gain from defection and less to fear

from retaliation.21 In this respect, Harrington (1991) shows that whether

or not an optimal market sharing rule is sensitive to cost differences in part

depends on the level of the discount factor. Specifically, the market sharing

rule is independent of firms’ unit costs when the discount factor is relatively

low, but not when firms are sufficiently patient.

The potential impact of cost heterogeneity on collusion has also been

analyzed in a setting of fluctuating demand conditions. Choi et al. (1985),

for example, consider a static framework in which firms negotiate price and

market shares to establish an efficient cartel agreement. Assuming cost

heterogeneity and demand uncertainty, the prediction is that the cartel ar-

rangement includes averaging of unit production costs. Moreover, this study

predicts a convergence of market shares when market demand declines. The

reason being that the small firms (i.e., high cost firms) must earn sufficient

profits for the cartel to remain effective. Alternatively, firms may engage in

involuntary periodic price wars to sustain collusion. Indeed, as Green and

Porter (1984) predicts, a temporary breakdown in prices may be required to

maintain a collusive scheme when demand conditions are fluctuating and

firms’ quantities are private information.

Market share schemes potentially also play an important role when pro-

21Note that sustainability of collusion with differences in unit costs may also require a

more equal division of sales, because efficient firms have more to gain from a cartel.
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duction costs are not publicly known. As Athey and Bagwell (2001) points

out, market share agreements may allow producers to collude perfectly when

they experience privately observed cost shocks in each period. By exchang-

ing future market share favors efficiently, first-best profits can be attained

when firms are sufficiently patient. Such a rather sophisticated price-quota

cartel is preferred as it induces a high cost firm to reveal its identity, thereby

allowing the cartel to produce efficiently. In a comparable setting, Athey

et al. (2004) shows that optimal collusion may induce firms to fix both prices

and market shares. In particular, this implies that the cartel forgoes produc-

tive efficiency as low cost firms produce relatively too little and high costs

firms produce relatively too much. Yet, it is also found that when firms are

sufficiently impatient, effectiveness of collusion may require low cost firms

to set a lower price in order to gain more market share.

A couple of recent studies has considered collusion in a setting where

prices or quantities are private information. Harrington and Skrzypacz

(2007) shows that when prices are not publicly observable (but firms’ quanti-

ties are), then the mere threat of (symmetric) price wars may be insufficient

to sustain collusion. Yet, collusion may be sustainable through an asym-

metric punishment scheme that prescribes firms that sold in excess of their

quota to compensate those members that sold under quota. In a similar

fashion, Harrington and Skrzypacz (2010) shows that firms with high sales

may have an incentive to compensate members with low sales to sustain

collusion in an environment where both prices and quantities are private

information. That firms do not need much information to collude effectively

has been recently confirmed by Hörner and Jamison (2007). This study finds

that firms require hardly any information to collude almost perfectly. How-

ever, to obtain this result, firms need to agree on both prices and market

shares.

The studies mentioned above reveal that there are distinct possibilities

for price-fixing firms to benefit from a market sharing scheme. In this re-

spect, our findings are complementary and suggest that price-quota cartels

are likely to be the rule. Put differently, even in a world where cost and de-

mand are known and stable and actions are publicly observable, firms often

benefit from a market sharing agreement.
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4.8 Concluding Remarks

Why do we observe various types of cartel contracts in antitrust practice?

In this study, we have sought to shed some light on one specific sort of car-

tel heterogeneity: price versus price-quota cartels. Existing literature has

shown that an additional agreement on production levels may be needed to

overcome incentive problems that arise due to imperfect information and de-

mand uncertainty. This chapter provides an alternative explanation. In the

context of an infinitely repeated game with complete information, sustain-

ability of collusion may still require an agreement on sales levels. Specifi-

cally, the market share of the smallest cartel member must be sufficiently

large, which may induce firms to arrange a more equal division of outputs.

This holds when firms produce to order and when production is in advance of

sale and market demand is sufficiently elastic. As to the latter, an arrange-

ment on outputs may additionally help firms to solve a coordination problem.

Moreover, with production in advance, establishing an output ceiling is al-

ways profitable when market demand is sufficiently inelastic. Consequently,

there are several rationales for the existence of both price and price-quota

cartels, even in a world of certainty and perfect information.

These results have potentially important implications in light of an-

titrust enforcement. For instance, industries with price increases in conjunc-

tion with a decline in sales volume and converging market shares should,

ceteris paribus, be considered suspect of anti-competitive practices. Also,

refusals to deal at relatively high prices in combination with relatively low

capacity utilization may indicate the presence of a cartel. However, such

observations should always be judged while taking account of the idiosyn-

crasies of a particular industry. Indeed, our analysis suggests that market

characteristics may play a vital role in the design of a cartel contract. In par-

ticular, knowing when and where to expect a price-quota cartel is likely to

increase the effectiveness of antitrust enforcement as the chance of discover-

ing physical evidence is higher, all else equal. The reason being that, unlike

with price collusion, it is difficult to see how firms can coordinate their sales

levels without communicating explicitly. Yet, to what extent our theoretical

findings are helpful in detecting cartels is ultimately an empirical question.

We leave this issue for future research.

117



Chapter 4. Collusion in a Price-Quantity Oligopoly

4.A Appendix

Proof of Theorem 4.3.1.

(i) If all firms price above c, then there is at least one firm that finds it

optimal to undercut the lowest price slightly and serve market demand at

that price. Therefore, let M = {i ∈ N | pi = c} the set of firms that price at c,

where | M |≥ 1. In this case, for all i ∈ M, qi > D i(c, qi,p−i,q−i) gives πi < 0,

whereas qi = D i(c, qi,p−i,q−i) gives πi = 0. Thus, a firm pricing at c will not

produce in excess of its demand. This implies that there exists a firm j ∈ M

for which it holds that D(c)−
∑

i∈M\{ j} qi > 0. As a result, this firm j can do

better by charging a higher price and produce to meet its residual demand

at that price. Hence, there exists no pure-strategy Nash equilibrium.

(ii) In our setting, the strategy space A is compact and the game is sym-

metric. Therefore we can apply Corollary 5.3 of Reny (1999). According to

this corollary, there exists a symmetric mixed strategy equilibrium in our

game if its mixed extension is diagonally payoff secure and each πi(µ, ...,µ)

is upper semicontinuous as a function of µ on P(A). Here, P(A) is the space

of all (Borel) probability measures on A endowed with the weak topology.

• Upper semicontinuity: To proof that each πi(µ, ...,µ) is upper semicon-

tinuous as a function of µ on P(A), we have to show that limsupπi(µ
t, ...,µt)≤

πi(µ, ...,µ) whenever limt→∞µt = µ. This is equivalent to showing that

every converging subsequence has a limit that is smaller or equal to

πi(µ, ...,µ). Therefore, assume w.l.o.g. that limt→∞πi(µ
t, ...,µt) = y and

let x = πi(µ, ...,µ). Since
∑

i∈N πi is continuous and all firms play the

same strategy in a symmetric game, it holds that ny= limt→∞

∑

i∈N πi(µ
t, ...,µt)=

∑

i∈N πi(µ, ...,µ)= nx. Therefore, x = y and limt→∞πi(µ
t, ...,µt)=πi(µ, ...,µ).

This implies that each πi(µ, ...,µ) is not only upper semicontinuous as

a function of µ on P(A), but continuous as well.

• Diagonally payoff secure: To proof that our setting is diagonally payoff

secure, we have to show that for every µ ∈ P(A) and every ε > 0, each

firm i can secure a payoff πi(µ, ...,µ)−ε along the diagonal at (µ, ...,µ).

Firm i can secure a payoff of πi(µ, ...,µ)−ε along the diagonal at (µ, ...,µ)

if there exists a µ̄ ∈ P(A) such that πi(µ
′, ..., µ̄, ...,µ′) ≥ πi(µ, ...,µ)−ε for

all µ′ in some open neighborhood of µ ∈ P(A).

Now, for every δ> 0 and every Borel subset B of A define

Bδ := {(p′, q) ∈ A | there is (p, q) ∈ B such that p′ = p+δ}.
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For a mixed strategy µ on A define the mixed strategy µδ by

µδ(B) :=µ(Bδ)+µ({(p, q) ∈ B | p < δ})

for every Borel set B. Finally, let ε > 0 and let µ be a mixed strat-

egy on A. Then there is a δ > 0 such that ui(µ
′, . . . ,µ′,µδ,µ′, . . . ,µ′) ≥

ui(µ, . . . ,µ)− ε for all µ′ close enough to µ. This last line follows be-

cause, given that the other firms do not change their mixed strategies

too much, if firm i slightly lowers its price, this at most slightly reduces

its profit. ä

Proof of Lemma 4.3.2. We prove that s(p̌) = {D(p̌)} by deriving a contra-

diction. In our game, the support is compact and therefore s(p̌) 6= ;.

First, we will show that for all p ∈ [p̌, pm], for all q ∈ s(p) it holds that q ≤

D(p). Define Bε(p, q) as the open ε-ball centered at (p, q). Assume q > D(p)

and let ε> 0 be small enough, such that for all (pi, qi) ∈ Bε(p, q) it holds that

qi > D(pi). Let (p̃, q̃) be an arbitrary element in Bε(p, q). Then, given any

(p−i, q−i), the actions chosen by the other n−1 firms, firm i’s profit is

πi(p̃, q̃, p−i, q−i)= p̃
q̃

∑

j∈Ω( p̃) q j
(D(p̃)−

∑

k∈∆( p̃)

qk)+− cq̃.

Instead, if firm i would choose the action (p̃ − δ,D(p̃ − δ)), where δ > 0 is

chosen such that D(p̃−δ)< q̃ and δD(p̃)< c(q̃−D(p̃−δ)), its profit is

πi(p̃−δ,D(p̃−δ), p−i, q−i)= (p̃−δ)
q̃

∑

j∈Ω( p̃−δ) q j
(D(p̃−δ)−

∑

k∈∆( p̃−δ)

qk)+−cD(p̃−δ).

Note that since D(p̃ − δ) < q̃, it holds that if (D(p̃)−
∑

k∈∆( p̃) qk)+ = 0,

then (p̃ − δ,D(p̃ − δ)) is a strict improvement over (p̃, q̃). Now, if (D(p̃)−
∑

k∈∆( p̃) qk)+ > 0, then

πi(p̃−δ,D(p̃−δ), p−i, q−i) > (p̃−δ)(D(p̃)−
∑

k∈∆( p̃)

qk)− cD(p̃−δ)

> (p̃−δ)(D(p̃)−
∑

k∈∆( p̃)

qk)+δD(p̃)− cq̃

= p̃(D(p̃)−
∑

k∈∆( p̃)

qk)− cq̃+δ
∑

k∈∆( p̃)

qk

≥ p̃(D(p̃)−
∑

k∈∆( p̃)

qk)− cq̃

≥ p̃
q̃

∑

j∈Ω( p̃) q j
(D(p̃)−

∑

k∈∆( p̃)

qk)− cq̃

= πi(p̃, q̃, p−i, q−i).
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Here, the first inequality holds because of the following. First, note that

Ω(p̃−δ)\{i}∪∆(p̃−δ)⊆∆(p̃), Ω(p̃−δ)\{i}∩∆(p̃−δ)=; and D(p̃−δ)> D(p̃).

This gives

D(p̃)−
∑

k∈∆( p̃)

qk < D(p̃−δ)−
∑

k∈∆( p̃−δ)

qk −
∑

j∈Ω( p̃−δ)\{i}

q j

≤
q̃

∑

j∈Ω( p̃−δ) q j
(D(p̃−δ)−

∑

k∈∆( p̃−δ)

qk).

The second inequality follows from δD(p̃)< c(q̃−D(p̃−δ)). So, also when

the residual demand is strictly positive, the action (p̃−δ,D(p̃−δ)) gives a

strictly higher profit than (p̃, q̃). This implies that, for any (p̃, q̃) ∈ Bε(p, q),

there exists a δ such that it holds that (p̃−δ,D(p̃−δ)) gives a strictly higher

payoff and therefore q ∉ s(p).

Next, assume that q ∈ s(p̌) and q < D(p̌). The maximum profit that a

firm can make in any point in an open ε-ball centered at (p̌, q) is strictly

smaller than (p̌+ ε− c)(q+ ε). Since (p̌− c)D(p̌) > (p̌− c)q, as ε → 0, there

always exists a η> 0 such that

(p̌−η− c)D(p̌−η)> (p̌+ε− c)(q+ε).

That is, there always exists a price-quantity combination (p̌ − η,D(p̌ − η))

that gives a strictly higher profit than any point in Bε(p̌, q). This contradicts

q ∈ s(p̌). Thus, we conclude s(p̌)= {D(p̌)}.

Suppose there is an atom at price p̌. In that case, πi((p̌,D(p̌)),µ−i) < (p̌−

c)D(p̌). This implies that there exists a small enough δ> 0 such that

πi((p̌−δ,D(p̌−δ)),µ−i) = (p̌−δ− c)D(p̌−δ)

> πi((p̌,D(p̌)),µ−i).

This implies that µp does not have an atom at p̌. ä

Proof of Lemma 4.3.3. First observe that Lemma 4.3.2 implies p̌ < pm,

because otherwise p̌ = pm = p̂ and µ({p̌}) > 0. Next, we will show that there

exists a price p′ ∈ (p̌, pm] for which s(p′) = {D(p′)}. In the proof of Lemma

4.3.2, it is shown that for any p ∈ [p̌, pm], it holds for all q > D(p) that q ∉

s(p). Therefore, given that all n−1 rivals stick to their equilibrium strategy,

firm i’s profit of choosing (p, q) ∈ supp(µ), is as follows. The expected residual

demand of firm i, when m ≥ 1 firms price below, l firms price at the same
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price and n−m− l−1 price above the price of firm i, is given by

A((p, q),µ−i) =

( n−1
∑

m=1

n−1−m
∑

l=0

∫

([ p̌,p)×[0,D(c)])m×({p}×[0,D(c)])l

min{q,
q

∑

j∈Ω(p) q j
(D(p)−

∑

k∈∆(p)

qk)+}d(
m+l
∏

j=1

µ(p j, q j))

×
(n−1)!

(n−1−m)!m!
×

(n−1−m)!

(n−1−m− l)!l!

)

× (µp((p, p̂]))n−m−l−1.

The expected residual demand of firm i, when l ≥ 1 firms price at the same

price and n− l−1 firms price above the price of firm i, is given by

B((p, q),µ−i) =

(n−1
∑

l=1

∫

({p}×[0,D(c)]l
min{q,

q
∑

j∈Ω(p) q j
D(p)}d(

l
∏

j=1

µ(p j, q j))

×
(n−1)!

(n−1− l)!l!

)

× (µp((p, p̂]))n−l−1.

Therefore, firm i’s expected profit of choosing (p, q) ∈ supp(µ) is

πi((p, q),µ−i) = p× A((p, q),µ−i)+ p×B((p, q),µ−i) (4.9)

+pq(µp((p, p̂]))n−1
− cq.

Both A((p, q),µ−i) and B((p, q),µ−i) are increasing in q for q ≤ D(p). Hence,

πi((p, q),µ−i) is strictly increasing in q when p(µp((p, p̂]))n−1 − c > 0.

Since there are at most countably many atoms in µp, p̌ > c and µp({p̌}) = 0

(Lemma 4.3.2), there exists a p′ ∈ (p̌, pm] such that p(µp((p, p̂]))n−1 − c > 0

for all p ∈ (p̌, p′] and s(p′) 6= ;. We now show that s(p)= {D(p)} or s(p)=; for

all p ∈ (p̌, p′]. Assume p ∈ (p̌, p′], q ∈ s(p) and q < D(p). Define Bε(p, q) as the

open ε-ball centered at (p, q) and let ε> 0 be small enough, such that for all

(pi, qi) ∈ Bε(p, q) it holds that qi < D(pi), pi(µp((pi, p̂]))n−1−c > 0 and pi > p̌.

Let (p̃, q̃) be an arbitrary element in Bε(p, q). Then, since the profit of firm i

is increasing in q for q ≤ D(p), firm i strictly improves its profits by choosing

(p̃,D(p̃)). Therefore, for any (p̃, q̃) ∈ Bε(p, q) there is another combination

of price and quantity that will give a strictly higher payoff and therefore

q ∉ s(p). In the proof of Lemma 4.3.2, it is shown that for all q ∈ s(p) it holds

that q ≤ D(p). This gives s(p) = {D(p)} or s(p) = ; for all p ∈ (p̌, p′]. Since

s(p′) 6= ;, it holds that s(p′)= {D(p′)}.

Now suppose that µp has an atom at some price p ∈ (p̌, p′]. The measure

µp has at most countably many atoms, which implies that there exists a
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small enough δ> 0 such that p−δ> p̌, µp({p−δ})= 0 and

πi((p−δ,D(p−δ)),µ−i) = (p−δ)D(p−δ)µp((p−δ, p̂]))n−1
− cD(p−δ)

≥ (p−δ)D(p−δ)µp([p, p̂]))n−1
− cD(p−δ)

> pD(p)
(n−1

∑

l=0

1

n− l
µp({p})n−1−lµ((p, p̂])l

×
(n−1)!

(n−1− l)!l!

)

− cD(p)

= πi((p,D(p)),µ−i).

In the third line, l represents the number of firms that price at the same

level as firm i. Since there is an atom at p, the probability of l being strictly

positive is strictly bigger than 0, hence the inequality before the third line.

Consequently, µp cannot have an atom at any price p ∈ (p̌, p′].

Finally, we show that s(p) = {D(p)} for all p ∈ (p̌, p′]. Assume that s(p) =

; for all p in some interval (α,β)⊆ (p̌, p′). This implies that, for p ∈ (α,β),

πi((p,D(p)),µ−i) = pD(p)(µp([β, p̂]))n−1
− cD(p).

It follows from β ≤ pm and D′(p)(p − c)+ D(p) > 0 for all p ∈ (α,β), that

πi((p,D(p)),µ−i) is strictly increasing for all p ∈ (α,β).

Now, the maximum profit that a firm can make in any point in an open ε-

ball centered at (α,D(α)) is strictly smaller than (α+ε)D(α+ε)µp((α−ε, p̌])−

cD(α+ε). Since πi((p,D(p)),µ−i) is strictly increasing for all p ∈ (α,β) and

µp does not have an atom at any price p ∈ (p̌, p′], as ε → 0, there always

exists γ ∈ (α,β) such that

πi((γ,D(γ)),µ−i)> (α+ε)D(α+ε)µp((α−ε, p̌])− cD(α+ε).

That is, there always exists a price-quantity combination (γ,D(γ)) that gives

a strictly higher profit than any point in Bε(α,D(α)). This contradicts (α,D(α)) ∈

supp(µ). Thus, we conclude that s(p)= {D(p)} for all p ∈ (p̌, p′]. ä

Proof of Theorem 4.3.4. Suppose p̌ > c and let pu = sup{p′ ∈ [p̌, pm] |

∀p ∈ [p̌, p′) : s(p)= {D(p)} and µp({p})= 0}. From Lemma 4.3.3 it follows that

pu > p̌. Moreover, since the support of a measure is closed, D(pu) ∈ s(pu).

Since µp({p}) = 0 for all p ∈ [p̌, pu), it follows directly from the proof of

Lemma 4.3.3 that π∗ = D(p)[p(µp((p, p̂]))n−1− c] for all p ∈ [p̌, pu). As π∗ ≥ 0,

it follows that

pu(µp([pu, p̂]))n−1
− c = lim

p↑pu
p(µp((p, p̂]))n−1

− c

≥ 0.
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Hence, there are two possibilities. Either pu(µp([pu, p̂]))n−1−c = 0 or pu(µp([pu, p̂]))n−1−

c > 0.

Suppose that pu(µp([pu, p̂]))n−1− c = 0. Then it follows from µ({p})= 0 for all

p ∈ [p̌, pu) that

π∗
= lim

p↑pu
D(p)[p(µp((p, p̂]))n−1

− c]

= D(pu)[pu(µp([pu, p̂]))n−1
− c]

= 0.

This implies that p(µp((p, p̂]))n−1 − c = 0 for all p ∈ [p̌, pu). Since µ({p̌}) = 0,

it follows that (µp((p̌, p̂]))n−1 = 1 and therefore p̌ = c.

Now suppose that pu(µp([pu, p̂]))n−1 − c > 0. If this is the case, it must

hold that µp({pu}) > 0. Suppose the contrary, i.e. µp({pu}) = 0. Then there

exists a p̃ > pu for which it holds that p̃(µp((p̃, p̂]))n−1 − c > 0. From the

proof of Lemma 4.3.3 it follows that s(p) = {D(p)} and µp({p}) = 0 for all

p ∈ [p̌, p̃). This contradicts the definition of pu. Hence, µp({pu}) > 0. Given

that µp({pu})> 0, for every q < D(pu), there exists a δ> 0 such that

πi((pu, q),µ−i) ≤ q[pu(µp([pu, p̂]))n−1
− c]

< D(pu
−δ)[(pu

−δ)(µp((pu
−δ, p̂]))n−1

− c]

= πi((pu
−δ,D(pu

−δ)),µ−i)

= π∗.

The first inequality follows since firm i sells at most q. Since q < D(pu) and

limp↑pu D(p)[p(µp((p, p̂]))n−1 − c] = D(pu)[pu(µp([pu, p̂]))n−1 − c], the second

inequality is strict for a small enough δ.

Now, for q = D(pu) it holds for all 0< δ≤ pu − p̌ that

πi((pu,D(pu)),µ−i) < D(pu)[pu(µp([pu, p̂]))n−1
− c]

= lim
p↑pu

D(p)[p(µp((p, p̂]))n−1
− c]

= D(pu
−δ)[(pu

−δ)(µp((pu
−δ, p̂]))n−1

− c]

= π∗.

Since there is an atom at pu, firm i expects to sell strictly less than D(pu)

when it sets a price of pu. Hence, the first inequality is strict and the equal-

ities follow immediately.

So, given that µp({pu}) > 0, for any combination (pu, q) there exists a δ > 0
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such that it holds that (pu−δ,D(pu−δ)) gives a strictly higher payoff. There-

fore, this second situation cannot occur. Thus, we conclude that p̌ = c and

π∗ = 0. ä

Proof of Lemma 4.5.1. As we consider a price cartel, firms are free in

choosing their production levels. Therefore, it is sufficient to analyze the

impact of output decisions on per-period profits. Given a fixed cartel price

pc ∈ (c, pm], per-period profit for every firm i ∈ N is

πc
i (pc,q)= pcD i(pc,q)− cqi,

where firm demand is given by

D i(pc,q)=

{

qi if
∑

j∈N q j ≤ D(pc)
qi

∑

j∈N q j
D(pc) if

∑

j∈N q j > D(pc).

The following first-order condition specifies the impact of a change in the

level of individual production on per-period profit.

dπc
i
(pc,q)

dqi
=







pc − c if qi ≤ D(pc)−
∑

j∈N\{i} q j

pc
∑

j∈N\{i} q j

(
∑

j∈N q j)2 D(pc)− c if qi > D(pc)−
∑

j∈N\{i} q j.

Hence, as pc > c, the profit of firm i is increasing in its production level

as long as qi ≤ D(pc)−
∑

j∈N\{i} q j. Yet, profits may increase even more for

output levels that make aggregate supply exceed market demand. This re-

quires

pc

∑

j∈N\{i} q j

(
∑

j∈N q j)2
D(pc)− c ≥ 0,

or

qi ≤

√

pcD(pc)(
∑

j∈N\{i} q j)

c
−

∑

j∈N\{i}

q j.

Therefore, this case applies when there exists a production level qi for which

the following condition is satisfied

D(pc)−
∑

j∈N\{i}

q j < qi ≤

√

pcD(pc)(
∑

j∈N\{i} q j)

c
−

∑

j∈N\{i}

q j.
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This is possible if and only if

∑

j∈N\{i}

q j >
D(pc)c

pc
.

Thus, we can conclude that q∗
i
(pc,q−i) = D(pc)−

∑

j∈N\{i} q j if
∑

j∈N\{i} q j ≤

D(pc)c
pc . Moreover, if

∑

j∈N\{i} q j >
D(pc)c

pc , then q∗
i
(pc,q−i)=

√

pcD(pc)(
∑

j∈N\{i} q j)

c
−

∑

j∈N\{i} q j provided that this yields more profit than with zero production.

Producing nothing is strictly preferred when the following two equations

hold simultaneously:

D(pc)−
∑

j∈N\{i}

q j < 0, (4.10)

and

pc

∑

j∈N\{i} q j

(
∑

j∈N q j)2
D(pc)− c < 0. (4.11)

If qi = 0, then
∑

j∈N q j =
∑

j∈N\{i} q j. Substituting in (4.11) and rearranging

gives
∑

j∈N\{i}

q j >
D(pc)pc

c
. (4.12)

Notice that (4.12) implies (4.10). Hence, (4.12) is a sufficient condition under

which firm i finds it optimal to produce nothing. We therefore conclude that

q∗
i
(pc,q−i) =

√

pcD(pc)(
∑

j∈N\{i} q j)

c
−

∑

j∈N\{i} q j if
D(pc)c

pc <
∑

j∈N\{i} q j ≤
D(pc)pc

c

and q∗
i
(pc,q−i)= 0 if

∑

j∈N\{i} q j >
D(pc)pc

c
. ä

Proof of Lemma 4.5.2. Let m =
∑

k∈N\{v,w} qk. Hence,

q∗
v =

√

pcD(pc)(m+ q∗
w)

c
− (m+ q∗

w),

and

q∗
w =

√

pcD(pc)(m+ q∗
v )

c
− (m+ q∗

v ).

Substituting q∗
w in q∗

v yields

4q∗2
v + (4m−

pcD(pc)

c
)q∗

v −m(
pcD(pc)

c
−m)= 0.
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Solving for q∗
v gives

q∗
v =

−(4m−
pcD(pc )

c
)±

√

pcD(pc )

c
(8m+

pcD(pc )

c
)

8
.

There is a unique solution for which q∗
v > 0. As we have a similar expression

for q∗
w, we conclude q∗

v = q∗
w. ä

Proof of Theorem 4.5.3. For a given cartel price pc, a cartel contract

(pc,q) is a subgame perfect Nash equilibrium when none of the firms has

an incentive to change its production level given the output of rivals. There

are two possibilities. For all i ∈ N, either (i)
∑

j∈N\{i} q j ≤ D(pc)c/pc, or (ii)

D(pc)c/pc <
∑

j∈N\{i} q j ≤ D(pc)pc/c.

(i) By Lemma 4.5.1, it holds that q∗
i
(pc,q−i) = D(pc)−

∑

j∈N\{i} q j for all

i ∈ N. As D(pc)−
∑

j∈N\{i} q j ≥ D(pc)−
D(pc)c

pc , it follows that q∗
i
(pc,q−i) ≥

pc−c
pc D(pc).

In turn, this implies

n
pc − c

pc
D(pc)≤ D(pc).

Rearranging gives

pc
≤

cn

n−1
.

(ii) By Lemma 4.5.1, it holds that q∗
i
(pc,q−i)=

√

pcD(pc)(
∑

j∈N\{i} q j)

c
−

∑

j∈N\{i} q j

for all i ∈ N. In this case, we know by Lemma 4.5.2 that all firms produce

the same quantity. Therefore,

q∗
i (pc,q−i)=

√

pcD(pc)(
∑

j∈N\{i} q j)

c
−

∑

j∈N\{i}

q j =

√

pcD(pc)(n−1)q∗
i
(pc,q−i)

c
−(n−1)q∗

i (pc,q−i).

Rearranging gives

q∗
i (pc,q−i)=

pcD(pc)(n−1)

cn2
.

As D(pc)c/pc <
∑

j∈N\{i} q j, it follows that (n−1)q∗
i
=

pc(n−1)2D(pc)

cn2 > D(pc)c/pc.

Rearranging gives

pc
>

cn

n−1
.

Finally, it should also hold that (n−1)q∗
i
≤ D(pc)pc/c, which is true as (n−1)2

n2 <

1. ä
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Proof of Theorem 4.5.6. If pm ≤ cn
n−1

, then pc ≤ cn
n−1

. By Theorem 4.5.3,

q∗
i
= D(pc)−

∑

j∈N/i q∗
j
. In this case, the incentive compatibility constraint is

given by

δ≥ δ∗i = 1−
q∗

i
∑

j∈N q∗
j

, for all i ∈ N.

Hence, the critical discount factor is highest for the firm(s) with the lowest

level of sales. Clearly, if δ ≥ δ∗
i

for all i ∈ N, then there exists both a viable

price cartel and a price-quota cartel. If 1− 1
n
≤ δ < 1−

q∗
i

∑

j∈N q∗
j

for some firm

i ∈ N, then a price cartel is not viable. In this case, the cartel is only viable

when a sufficiently large share of market demand is allocated to the smallest

cartel member(s). There exists an allocation of sales for which the price-

quota cartel is viable, because δ≥ 1− 1
n

. ä

Proof of Theorem 4.5.7. If pm > cn
n−1

, then pc < pm and q∗
i
=

(n−1)pcD(pc)

cn2

for all i ∈ N. Moreover,
∑

i∈N q∗
i
≥ D(pc). The collusive value of every mem-

ber of a price cartel is then given by Vi(pc,q∗)=

q∗
i

∑

i∈N q∗
i

(pcD(pc)−c
∑

i∈N q∗
i
)

1−δ
. Clearly,

keeping the cartel price and market shares fixed, eliminating all excess sup-

ply increases the collusive value of every member. This would yield a situ-

ation in which all firms produce
D(pc)

n
and the market clears. In this case,

firms optimally set the monopoly price, which is sustainable as δ≥ 1− 1
n

by

assumption. ä

Proof of Theorem 4.6.1. See proof of Theorem 4.5.6. ä
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Dat de schaarste van een product of dienst van invloed is op de marktprijs

van dat specifieke goed, kan als algemeen bekend verondersteld worden.

De beschikbaarheid van een goed is van verschillende factoren afhankelijk.

Ten eerste zijn de grondstoffen die gebruikt worden om het goed te produ-

ceren en de beschikbaarheid van deze grondstoffen van belang. Daarnaast

is er de tijd die het kost om van deze grondstoffen het uiteindelijke product

te maken. Dit wordt onder andere beïnvloed door de benodigde arbeid, de

stappen in het productieproces en de benodigde machines en kapitaal voor

bewerking. De laatste factor van invloed is het aantal schakels in het lever-

ingsproces voordat het product binnen handbereik van de consument is.

In dit proefschrift worden de strategische keuzes van de bedrijven in

de laatste schakel geanalyseerd, de bedrijven die het product rechtstreeks

aan de consument leveren. Deze bedrijven zijn in verschillende typen mark-

ten en sectoren actief. De overeenkomst tussen de bedrijven is dat ze alle-

maal beperkt zijn in de hoeveelheid goederen die ter plekke kunnen wor-

den geleverd in een bepaalde periode. Daarnaast moeten productie/inkoop

beslissingen van te voren worden genomen. Alle bedrijven hebben als doel

hun winst te maximaliseren. Wanneer bedrijven met elkaar in concurrentie

zijn, is de winst van een bedrijf mede afhankelijk van de strategieën van

concurrenten. In dit geval tracht elk bedrijf zijn winst te maximimaliseren,

gegéven de strategieën van zijn concurrenten. Als tegelijkertijd voor alle be-

drijven geldt dat ze een strategie hanteren die - gegeven de strategieën van

concurrenten - de winst maximaliseert, spreken we van een evenwicht. De

technieken die worden gebruikt om het gedrag van de bedrijven te analy-

seren, zijn onder andere afkomstig uit de speltheorie en de systeemtheorie.
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In Hoofdstuk 2 analyseren we het strategisch gedrag van twee bedrij-

ven, die hetzelfde (homogene) goed verkopen. De inkoop/productie beslis-

sing is al voor aanvang van het spel genomen en kan dus niet meer wor-

den aangepast. De bedrijven concurreren een beperkt aantal perioden met

elkaar via de verkoop van dit product - in onze analyse is dit twee perio-

den - waarna de vraag naar het product acuut stopt. Elke periode maken

de bedrijven de keuze hoeveel van hun voorraad ze gaan verkopen, wetende

dat alles wat ze nu verkopen niet meer tot hun beschikking staat in de vol-

gende periode. Een voorbeeld van dit type concurrentie kan worden gevon-

den bij handelaren in toegangskaarten voor een (uitverkochte) wedstrijd of

concert. Nadat de wedstrijd of het concert heeft plaatsgevonden, zijn de toe-

gangskaarten waardeloos. Tot die tijd kan de handelaar elke dag beslissen

hoeveel van de toegangskaarten hij verkoopt en tegen welke prijs. Hierbij

kan de handelaar zijn concurrentie niet uit het oog verliezen. Het aanbod

van de concurrent bepaalt mede de vraag voor zijn toegangskaarten, nu en

in de toekomst. Andere voorbeelden zijn de verkoop van zitplaatsen op een

vlucht, hotelkamers, limited edition goederen en modieuze goederen.

Zoals reeds genoemd in het voorbeeld, dient het bedrijf bij het nemen

van zijn verkoopbeslissing niet alleen rekening te houden met hoe dit zijn

toekomstige voorraad en verkoopmogelijkheden beïnvloedt, maar ook met

de verkoopbeslissing van zijn concurrent en de invloed van beide beslissin-

gen op toekomstige verkoop. Het bedrijf kan zich committeren aan zijn

verkoopbeslissing, dat wil zeggen, het bepaalt voor aanvang van het spel

welk deel van de voorraad het in elke specifieke periode gaat verkopen en

wijkt daar niet vanaf. Of het legt zich niet vast en laat elke periode de

verkoopbeslissing afhangen van zijn resterende voorraad en van wat het

inmiddels heeft geleerd over de strategie van de concurrent. Beide situ-

aties analyseren we, de situatie waarin beide bedrijven committeren en de

situatie waarin geen van beiden dat doet. Wanneer beide bedrijven zich

committeren aan hun verkoopstrategie blijkt dat er altijd een uniek zuiver

evenwicht bestaat waarvoor geldt dat de prijs voor het product stijgt in de

tijd. Daarnaast blijkt dat, wanneer het verschil in beginvoorraad tussen

de twee bedrijven toeneemt, het consumenten surplus en het totale surplus

afnemen. In de tweede situatie, wanneer beide bedrijven zich niet commit-

teren aan hun verkoopbeslissing, bestaat er niet altijd een zuiver evenwicht.

Als er in deze situatie wel een zuiver evenwicht bestaat, dan hangt het van
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de beginvoorraden van beide bedrijven af of de prijs voor het product stijgt

of daalt in de tijd.

In Hoofdstuk 3 analyseren we de situatie van een monopolist die zijn

winst, verkregen uit de verkoop van een product, over de tijd wil maxi-

maliseren. De monopolist koopt zijn voorraden (of een belangrijk onderdeel

noodzakelijk voor de productie van het goed) in bij een groothandel, die

het product of onderdeel alleen in grote partijen verkoopt. De monopolist

bepaalt zelf wanneer hij bijbestelt en welke prijs hij vraagt voor het product.

De prijs van het goed kan elk moment worden aangepast. Voorbeelden van

dit type monopolie zijn te vinden bij bedrijven die specialistische goederen

verkopen. Daarbij kan onder andere worden gedacht aan een webwinkel die

cd’s verkoopt met daarop niet-commerciële muziek.

We nemen aan dat het bedrijf zo vaak kan bij bestellen als het wil en

een vaste prijs betaalt voor het bij te bestellen product. De vraag van de

consument naar het product blijft constant over de tijd. Onderzocht is wat

het beste bestelmoment is en hoe de monopolist zijn winst tussen bestel-

momenten maximaliseert. We vinden dat de monopolist altijd na een vaste

tijd bij bestelt. De nieuwe voorraad arriveert zodra de oude voorraad op

is. Meteen na het arriveren van de nieuwe voorraad is de prijs van het

product het laagst, ergo, het bedrijf verkoopt het meest. De prijs van het

product neemt continu toe over de tijd. Dit verkooppatroon herhaalt zich

telkens tussen twee opeenvolgende bestelmomenten. Wanneer toekomstige

winsten minder waardevol worden zal in sommige gevallen, in tegenstelling

tot wat men misschien verwacht, de tijd tussen twee opeenvolgende bestel-

momenten toenemen.

In het laatste hoofdstuk, Hoofdstuk 4, analyseren we het strategische

gedrag van een aantal bedrijven dat concurreert over de verkoop van het-

zelfde product. Iedere periode beslist elk bedrijf hoeveel het inkoopt/ produ-

ceert van het goed en welke prijs het vraagt voor de verkoop van het betref-

fende goed. Het goed is beperkt houdbaar, dat wil zeggen, een overgebleven

voorraad kan niet mee worden genomen naar de volgende periode. We be-

kijken twee mogelijke situaties, één waar de bedrijven hun inkoop/productie

beslissing nemen vóórdat en één waarin bedrijven pas produceren/inkopen

nádat hun indivuele vraag bekend is. Voorbeelden van dit specifieke type

concurrentie kunnen worden gevonden in de voedselindustrie, maar zijn ook

van toepassing op andere industrieën.
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We vinden dat in concurrentie, ongeacht de productie situatie, alle be-

drijven een verwachte winst van nul hebben. Om de winst te verhogen,

kunnen de bedrijven besluiten afspraken te maken over prijs en/of produc-

tie/verkoop hoeveelheden. Doorgaans zijn deze afspraken echter illegaal.

Een prijs-hoeveelheidsafspraak biedt meer mogelijkheden voor collusie dan

een prijsafspraak alleen, maar vereist ook meer coördinatie tussen bedrijven

en daarbij de kans om betrapt te worden. Daarom zullen bedrijven alleen

bereid zijn om naast een afspraak op prijs ook een hoeveelheidsafspraak te

maken, als dit een strict hogere verwachte winst oplevert. In het geval dat

de bedrijven van te voren hun productie/verkoop beslissing moeten nemen,

vinden we de volgende resultaten. Wanneer de vraag relatief elastisch is,

is een prijsafspraak alleen niet altijd mogelijk. Om coördinatie en intentie

problemen op te lossen, kan een extra afspraak op hoeveelheid noodzakelijk

zijn. Wanneer de consumentenvraag relatief inelastisch is, is een hoeveel-

heidsafspraak niet nodig om coördinatie en intentie problemen te verhelpen.

De enige redenen om, naast prijs, een afspraak op hoeveelheid te maken is

de mogelijkheid om een hogere prijs te kunnen vragen en tegelijkertijd over-

productie te voorkomen. Wanneer bedrijven pas hun inkoop/productie be-

slissing hoeven te nemen nadat hun individuele vraag bekend is, blijkt dat

soms een afspraak op hoeveelheid, naast een prijsafspraak, noodzakelijk is

om samenwerking mogelijk te maken.
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