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Abstract

This paper illustrates analytically the effects of cross-unit cointegration using as an

example the conventional pooled least squares estimate in the spurious panel time series
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1 Introduction

The use of non-stationary time series techniques to infer both spurious and cointegrated panel

data regressions has literally exploded during the last couple of years. The main reason for

this being the more powerful and straightforward asymptotic results that can be obtained by

pooling across a large cross-section of independent time series, henceforth denoted N . In fact,

as Phillips and Moon (1999) show, since this independence works by effectively smoothing

out the usual unit root dependency for each unit, valid inference is usually possible, even in

the so difficult spurious regression case. In particular, they show how the pooled least squares

estimator is asymptotically normal and
√

N -consistent for the so-called long-run average

regression coefficient.

However, as argued by Banerjee at al. (2006), assuming independence between cross-

sectional units in this way is usually not warranted, especially when considering macroeco-

nomic or financial time series data with strong, possibly dynamic, linkages across the units,

typically countries or regions. In particular, by using simulation methods, they show that the

presence of cross-unit cointegration via common stochastic trends, a reasonable assumption

in most applications involving this type of data, can have quite drastic effects.

The problem is that Banerjee at al. (2004) only consider the problem of testing for

cointegration, and it is unclear to what extent their results have implications for estimation

and inference. As a response to this, a number of authors, including Coakley et al. (2006)

and Fuertes (2008), have recently begun to consider the small-sample behavior of various

pooled estimators in cases when cross-sectional independence fails. One of the main findings

is that cross-unit cointegration is likely to lead to substantial bias with deceptive inference as

a result.

In this paper, we complement analytically these simulation studies, taking as an example

the pooled least squares estimator in the simple bivariate case. Results complementary to

those obtained in this paper are reported in Gengenbach et al. (2006), where the main focus

is residual-based panel cointegration tests. Here we consider two possibilities, one is when the

cointegration occurs across the whole panel, the other is when the cointegration occurs within

groups that are otherwise independent of each other, which seems like a reasonable scenario

when studying for example club convergence. In both cases, it is shown that the presence of

cross-unit cointegration leads to statistics that diverge with the size of the cross-section, N .
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On the other hand, if there is no cointegration across units, then normality is again possible,

with the center of the distribution located at the long-run average regression coefficient. For

the case with cointegration within groups, this naturally leads to the definition of a long-run

average group coefficient.

A word on notation. The symbols ⇒, →p and := will be used to signify weak convergence,

convergence in probability and definitional equality, respectively. As usual, XT = Op(T r) will

be used to signify that XT is at most order T r in probability, while XT = op(T r) will be

used in case XT is of smaller order in probability than T r. In the case of a double indexed

sequence XNT , T, N →∞ will be used to signify that the limit has been taken while passing

both indices to infinity jointly. For a square matrix A, ||A|| will denote its Euclidian norm.

For simplicity, the Brownian motion B(s) defined on the interval s ∈ [0, 1] will be written B,

with the measure of integration omitted. Integral such as
∫ 1
0 B(s)ds and

∫ 1
0 B(s)B(s)′ds will

be written as as
∫

B and
∫

BB′, respectively. Finally, bxc will be used to denote the integer

part of x.

2 Model and assumptions

We begin by considering the case when the stochastic trends are common to the whole panel.

The case with group specific stochastic trends is considered last. For simplicity and ease

of exposition, the data generating process employed for this purpose consists of two scalar

variables Xit and Yit such that
(

Xit

Yit

)
= λiFt + γiUit + Eit, (1)

where t = 1, ..., T and i = 1, ..., N indexes the time series and cross-sectional units, respec-

tively. Note that while Ft =
(

Fxt, Fxt

)′ is common across i, Uit and Eit, having a similar

partition, are not and can be viewed as idiosyncratic components. The parameter matrix λi

is written as

λi =
(

λxi λyi

)′ =

(
λ1xi λ2xi

λ1yi λ2yi

)

with an analogous partition of γi. These matrices are assumed to be independent of each

other, and randomly distributed across i. This is made explicit in Assumption 1, where

M < ∞ denotes a generic positive real number.
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Assumption 1. (i) λi and γi are i.i.d. across i with expected values λ and γ, respectively,

(ii) E(||λi||4) < M and E(||γi||4) < M .

We further assume that the vector wit :=
(

∆F ′
t , ∆U ′

it, E′
it

)′ is a stationary linear

process (see Phillips and Solo, 1992) such that

wit =




C11(L) 0 C13i(L)
0 C22i(L) C23i(L)

C31i(L) C32i(L) C33i(L)







ε1t

ε2it

ε3it




= Ci(L)εit,

where Ci(L) := I6 −
∑∞

j=1 CijL
j and L is the lag operator, with coefficient matrices

Cij =




C11j 0 C13ij

0 C22ij C23ij

C31ij C32ij C33ij


 .

The rest of the assumptions can be summarized in the following way.

Assumption 2. (i) εit ∼ i.i.d.(0, I6) with E(||εit||8) < M , (ii) εit is independent across both

i and t, (iii) F0, Ui0 and εi0 are Op(1), (iv) E(∆Uit∆U ′
it) =: Φi < M for all t.

Assumption 3. Cij is random across i and satisfy Assumptions 1 and 2 of Phillips and

Moon (1999).

Assumption 4. λi, γi and εit are mutually independent.

Assumptions 2 and 3 ensure that for all i, a functional central limit theorem holds for wit.

In other words, it holds that as T →∞
1√
T

bsT c∑

t=1

wit ⇒ Bi,

where Bi =
(

B′
1, B′

2i, B′
3i

)′ is a vector Brownian motion that is partitioned conformably

with wit. The covariance matrix of Bi is given by

Ωi := Ci(1)Ci(1)′ =




Ω11 0 Ω13i

0 Ω22i Ω23i

Ω′13i Ω′23i Ω33i


 .

Although very simple, this data generating process yields significant insight. In particular,

note how (1) nests a variety of spurious and cointegration cases, both with and without cross-

unit cointegration, depending on the values taken by λi and γi.1 Here are the four leading

examples that we will consider.
1In fact, it is not difficult to see that, under certain conditions, (1) is actually a system of two Bai and Ng

(2004) factor models, one for Xit and one for Yit.
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(a) If γi = 0, there is only the common unit roots in Ft, suggesting that both Xit and

Yit are cross-cointegrated. If in addition one of the columns of λi is zero, Xit and Yit

are not only cross-cointegrated but also cointegrated with each other. For example,

suppose that λ2yi = λ2xi = 0 so that the second column is zero, letting βi = λ1yi

λ1xi
, the

cointegrating relationship for unit i is given by

( −βi 1
)
(

Xit

Yit

)
=

( −βi 1
)
Eit,

while Xit and Xjt are cointegrated for all i 6= j, with cointegrating vector
(
−λ1xj

λ1xi
1

)

with a similar results applying to the pairs Yit and Yjt.

(b) On the other hand, if γi = 0 but λi is diagonal, although still cross-cointegrated, Xit

and Yit are no longer cointegrated with each other for each i.

(c) Another situation worth mentioning is when λi = 0 and γi is diagonal, which is the

conventional spurious regression case without cross-unit cointegration.

(d) If λi = 0 and one of the columns of γi is equal to zero, then Xit and Yit are cointegrated

with each other, but not across the different units of the panel.

Since the focus here is on spurious regression, cases (b) and (c) are of special interest.

Cases (a) and (d) are included for comparison.

3 Results

Define

β̂ :=

(
N∑

i=1

T∑

t=1

X2
it

)−1 N∑

i=1

T∑

t=1

XitYit.

The objective of this paper is to show how β̂, the conventional pooled least squares slope

estimator in a regression of Yit on Xit, behaves in this context. But before we get to our main

result, which is summarized in Theorem 1, we need to introduce some notation. We begin by

defining

Mi :=
∫

BiB
′
i =




M11 M12i M13i

M ′
12i M22i M23i

M ′
13i M ′

23i M33i


 ,
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whose expectation conditional upon F := σ(F0, ..., FT ), the sigma field generated by Ft, is

given by M := E(Mi|F). In this notation, we also have σ2 := var
(
γ′xiM22iγyi

)
and

Uxy := E
(
λ′xiM11λyi + γ′xiM22γyi|F

)

with Uxx similarly defined, but with λxi and γxi in place of λyi and γyi, respectively. Note

that unless λxi = 0 or λyi = 0, the presence of M11 makes Uxy random. Moreover, B2 will be

used to denote a Brownian motion with covariance matrix

Γ := lim
N→∞

1
N

N∑

i=1

E
(
λxiγ

′
yiΦiγyiλ

′
xi

)
.

Using this notation, we may state the main results of this paper.

Theorem 1. Under Assumptions 1 to 4, as N, T →∞

(a) β̂ →p
Uxy

Uxx

,

(b)
√

Nβ̂ −
√

N
Uxy

Uxx

⇒ 2
Uxx

∫
B′

1B2 +
σ

Uxx

·N(0, 1).

It is interesting to note how the distribution of
√

Nβ̂ depends critically on what is being

assumed regarding the common and idiosyncratic components of Xit and Xit.

(a) With cointegration both within and across units,

√
Nβ̂ −

√
N

λ1xλ1y

E(λ2
1xi)

→ 0,

where λ1x and λ2y are the elements of λ. This shows that the asymptotic distribution

of
√

Nβ̂ is degenerate, and that β̂ is inconsistent for βi := λ1yi

λ1xi
. One exception is when

λ1yi and λ1xi are equal across i, in which case

λ1xλ1y

E(λ2
1xi)

=
λ1y

λ1x
= β.

In other words, as expected, consistency of β̂ requires homogeneity of the parameters

across the cross-section. Moreover, since the remainder is Op(T−1), this suggests that
√

NT (β̂ − β) is Op(1), which is the conventional panel superconsistency result, see for

example Phillips and Moon (1999).
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(b) If case (b) holds, so that the pooled panel regression is spurious but, with cointegration

running across units, then Theorem 1 implies that

√
Nβ̂ −

√
N

λ1xλ1yM1x1y

E(λ2
1xi)M1x1x

→ 0,

where M1x1y and M1x1x are the elements of M11. Thus, since M11 is a random matrix,

this means that the mean of β̂ is no longer constant, as is usually the case. This case

leads to a situation that is similar to the usual standard time series spurious regression

case discussed in Phillips (1986).

(c) By contrast, if case (c) holds, we are facing the standard panel spurious regression case.

Theorem 1 here implies that

√
Nβ̂ −

√
N

γ1xγ2yM2x2y

E(γ2
1xi)M2x2x

⇒ σ

E(γ2
1xi)M2x2x

·N(0, 1),

with σ2 = var
(
γ1xiγ2yiM2x2yi

)
, where M2x2yi is from M22i, while γ1xi and γ2yi are from

γi. It follows that while β̂ converges to a non-standard random variable in (b), this it

not the case here. However,
√

Nβ̂ is still non-degenerate, and in fact converges to a

normal variate.

(d) The results for case (d) with cointegration within but not across units are similar to

the ones obtained for (a), but now the distribution of
√

Nβ̂ is no longer degenerate. In

fact, simple calculations reveal that if we assume that γ2yi = γ2xi = 0 so that the second

column of γi is zero,

√
Nβ̂ −

√
N

γ1xγ1y

E(γ2
1xi)

⇒ σ

E(γ2
1xi)M2x2x

·N(0, 1),

where σ2 = var
(
γ1xiγ1yiM2x2xi

)
. This result is very interesting because it suggests

that
√

NTβ̂ is divergent, even after centering, which stands in sharp contrast to the

conventional normality result in independent panels with homogenous cointegration, see

Phillips and Moon (1999). This difference originates with Assumption 1, which has an

order effect on the randomness of β̂. The impact of assuming homogeneity of γ1yi and

γ1xi, suggesting the presence of a homogenous cointegrating slope equal to β = γ1y

γ1x
, is
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most easily seen by noting that

σ

Uxx

·N(0, 1) = lim
N→∞

1√
N

∑N
i=1

(
γ1xiγ1yiM2x2xi − γ1xγ1yM2x2x

)

1
N

∑N
i=1 γ2

1xiM2x2xi

=
γ1y

γ1x
· lim

N→∞

1√
N

∑N
i=1

(
M2x2xi −M2x2x

)

1
N

∑N
i=1 M2x2xi

=
γ1y

γ1x
· lim

N→∞

√
N

(
1− M2x2x

1
N

∑N
i=1 M2x2xi

)
= 0.

We therefore get

√
Nβ̂ −

√
N

γ1xγ1y

E(γ2
1xi)

=
√

Nβ̂ −
√

Nβ → 0,

where the remainder is again Op(T−1), thus corroborating the superconsistency result

of Phillips and Moon (1999).

A few more remarks are in order.

Remark 1. It is interesting to compare Theorem 1 with the results obtained by Phillips and

Moon (1999) in the cross-sectionally independent case. In particular, note that if we are in

case (c) with no common component, then

β̂ →p

γ1xγ2yM2x2y

E(γ2
1xi)M2x2x

,

which is the long-run average regression coefficient discussed in Phillips and Moon (1999).

On the other hand, if λi 6= 0, then β̂ is no longer centered at the long-run average regression

coefficient. We also see that normality breaks down unless λxi = 0 or λyi = γyi = 0, or both,

so that the influence of M11 and
∫

B′
1B2 is wiped out. In the former situation Xit has no

common component, while in the latter Yit is completely stationary.

Remark 2. Consider σ
Uxx

·N(0, 1), the second of the two terms in the asymptotic distribution

of
√

Nβ̂. If there is no common component, then Uxx reduces to E
(
γ′xiM22γxi

)
, which is

smaller than for the case when there is a common component. In other words, the presence

of the common component will tend to reduce the variance of
√

Nβ̂. But there is also
∫

B′
1B2, which has a compensating, increasing, effect. The net outcome is therefore unclear.

One exception is when it is only Xit that has a common component, in which case
∫

B′
1B2

remains but Uxx is still equal to E
(
γ′xiM22γxi

)
, with an increase in variance as a result.

8



Remark 3. Although written in terms of standard Brownian motions, Theorem 1 holds even

if Bi is demeaned or detrended, or both. Put in another way, the assumption that there are no

deterministic components in the estimated regression is not restrictive. However, knowledge

of the exact nature of Bi means that the results can be made even more precise. For example,

if Bi is indeed a standard Brownian motion, then

M22 = E(M22i|F) =
∫

E(B2iB
′
2i) =

1
2
E(Ω22i),

while if Bi is demeaned, M22 = 1
6E(Ω22i).

4 Group specific common stochastic trends

In the remainder of this section we make a brief digression to the case with group specific

common unit roots. Specifically, suppose that there are n ⊂ N groups with K units in each,

and let Fjt be the common unit root component of group j = 1, ..., n containing the units

i = 1 + (j − 1)K, ..., jK. Let B1j be the Brownian motion associated with Fjt, and assume

that B1j is independent across j. For ease of notation, we also assume that λi and γi are

diagonal, and that their expectations do not differ across groups.

In the appendix we show that if n is fixed, as N, T →∞

β̂ →p

Qxy

Qxx

,

where

Qxy := λ1xλ2y

(
1
n

n∑

j=1

M1x1yj

)
+ γ1xγ2yM2x2y

with Qxx similarly defined, and where M1x1yj is the upper right element of M11j =
∫

B1jB
′
1j .

If we further let M1x1y be the corresponding element of M11 = E(M11j), and define

W :=
E(λ2

1xi)M1x1x

E(λ2
1xi)M1x1x + E(γ2

1xi)M2x2x

,

then we have the following result.

Corollary 1. Under the assumptions laid out in the above, as K, n, T →∞

β̂ →p W · λ1xλ2yM1x1y

E(λ2
1xi)M1x1x

+ (1−W ) · γ1xγ2yM2x2y

E(γ2
1xi)M2x2x

.
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The above result is very interesting. Specifically, suppose that λxi = 0, so that there are

no common unit roots in Xit, then W = 0 and so β̂ again converges to the long-run average

panel regression coefficient
γ1xγ2yM2x2y

E(γ2
1xi)M2x2x

,

whereas if γxi = 0, so that W = 1, then

β̂ →p
λ1xλ2yM1x1y

E(λ2
1xi)M1x1x

,

which might be thought of as a long-run average group regression coefficient. Thus, if γxi = 0,

as n →∞, we end up with something that is very similar to what we had earlier when there

were no groups and λi = 0 and in this case the groups essentially take the role of the individual

units. The constant W ∈ [0, 1] may be interpreted as a measure of the relative importance of

these groups for the variation in Xit. Note especially how W → 1 as E(γ2
1xi)M2x2x

E(λ2
1xi)M1x1x

→ 0.

5 Concluding remarks

It is now well-known that the conventional assumption of independent cross-sections is very

hard to maintain when conducting inference in non-stationary panels.

In this paper, we study the effects of cross-unit cointegration taking as an example the

pooled least squares estimator in the spurious regression case. We consider both the case

when the cointegration takes place across the panel as a whole, and when it takes place

within groups. Our findings show that the presence of cross-unit cointegration can have

dramatic effects for the usual asymptotic results based on cross-section independence, and

that the consistency and asymptotic normality of the pooled least squares estimator may

even be lost. In particular, it is shown that the presence of cross-unit cointegration leads to

statistics that diverge with N . On the other hand, if the cross-cointegration is absent, then

normality is again possible, with the center of the distribution located at the long-run average

regression coefficient.

These results have important empirical implications. In particular, it is not difficult to

see how most empirical work based on the pooled least squares estimator in non-stationary

panel data with a possible common factor structure needs to be reevaluated.

Take as an example purchasing power parity (PPP), which is usually tested by checking

whether the long-run elasticity of the nominal exchange rate with respect to the relative price
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level is equal to one, see Coakley et al. (2005) and Jacobson et al. (2008) for two recent

examples.

The problem is that since all variables are typically measured relative to the United States,

this means that the common factors are there by construction. Moreover, since both exchange

rates and relative prices are generally believed to possess unit roots, one cannot rule out the

possibility that these common factors are non-stationary. Of course, this does not mean that

all studies of PPP are wrong in their conclusions. However, it does mean that one should take

care in interpreting empirical results of this kind, as the standard asymptotic results may not

hold. Of course, the critique same applies to most, if not all, empirical macro economic and

financial problems.

But the implications of our results are not confined to applications, but extend also to

theoretical work. For example, it is not difficult to see how tests for the absence of cointe-

gration in presumably independent panels based on β̂, such as those of Kao (1999), become

invalid if the units are in fact cointegrated with each other, see for example Gengenbach et

al. (2006). It is also not difficult to see how bootstrap tests of the long-run average regres-

sion coefficient, such as the one proposed by Fuertes (2008), can become misleading if the

cross-sectional dependence is in the form of non-stationary common factors.
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Mathematical appendix

In this appendix, Theorem 1 and Corollary 1 are proven. Only necessary details are provided.

Unreported results can be obtained from the corresponding author upon request.

Proof of Theorem 1.

Consider (a). The least squares estimator of β can be written as

√
Nβ̂ =

(
1

NT 2

N∑

i=1

T∑

t=1

X2
it

)−1
1√

NT 2

N∑

i=1

T∑

t=1

XitYit. (A1)

Consider the denominator of
√

Nβ̂. By first using the Beveridge–Nelson decomposition of

C11(L) as C11(L) = C11(1) + C∗
11(L)(1− L), and then taking the limit as T →∞, we get

1√
T

Ft = C11(1)
1√
T

t∑

s=1

εs +
1√
T

(
C∗

11(L)(εt − ε0) + F0

)

= C11(1)
1√
T

t∑

s=1

εs + Op(T−1/2) ⇒ B1,

and similarly, 1√
T

Uit ⇒ B2i. Thus, since Exit is Op(1) by Assumption 2 it follows that as

T →∞
1√
T

Xit = λ′xi

(
1√
T

Ft

)
+ γ′xi

(
1√
T

Uit

)
+ Op(T−1/2) ⇒ λ′xiB1 + γ′xiB2i =: Xi,

which, together with the continuous mapping theorem, gives

1
T 2

T∑

t=1

X2
it ⇒

∫
X2

i .

Now, conditional on F , the integral
∫

X2
i is independent across i, which gives us the

following sequential limit as T →∞ and then N →∞
1

NT 2

N∑

i=1

T∑

t=1

X2
it →p E

(∫
X2

i |F
)

. (A2)

According to Corollary 1 of Phillips and Moon (1999), since the scaling of 1
T 2

∑T
t=1 X2

it is just

unity, if we can show that this quantity is uniformly integrable in T , then (A2) is not only

a sequential but also a joint limit as N, T → ∞. But since 1
T 2

∑T
t=1 X2

it converges to
∫

X2
i ,

we have from Theorem 5.4 of Billingsley (1968) that uniform integrability of 1
T 2

∑T
t=1 X2

it is

equivalent to requiring that

E

(
1
T 2

T∑

t=1

X2
it|F

)
→ E

(∫
X2

i |F
)

,
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which holds since Xit is a scalar so (A2) is indeed a joint limit as N, T → ∞, see Appendix

C of Phillips and Moon (1999).

By definition,

Mi =
∫




B1B
′
1 B1B

′
2i B1B

′
3i

B2iB
′
1 B2iB

′
2i B2iB

′
3i

B3iB
′
1 B3iB

′
2i B3iB

′
3i


 .

Consider M12i. Since B2i is mean zero, we get E(M12i|F) =
∫

B1E(B′
2i|F) = 0. But the

same goes for all off diagonal elements of Mi involving B1. Note also that E(M11|F) = M11.

It follows that

M =




M11 0 0
0 M22 M23

0 M32 M33


 .

Now, consider

E

(∫
X2

i |F
)

= E
(
λ′xiM11λxi + λ′xiM12iγxi + γ′xiM

′
12iλxi + γ′xiM22iγxi|F

)

= E
(
λ′xiM11λxi + γ′xiM22γxi|F

)
= Uxx, (A3)

where the second equality follows from the fact that M12 = M21 = 0, while

E
(
γ′xiM22iγxi|F

)
= E

[
γ′xiE

(∫
B2iB

′
2i|F

)
γxi|F

]
= E

(
γ′xiM22γxi|F

)
.

By combining (A2) and (A3) it follows that

1
NT 2

N∑

i=1

T∑

t=1

X2
it →p Uxx. (A4)

The numerator can be written as

1√
NT 2

N∑

i=1

T∑

t=1

XitYit =
1√

NT 2

N∑

i=1

T∑

t=1

(
λ′xiFtF

′
tλyi + λxiFtU

′
itγyi + γ′xiUitF

′
tλyi

+ γ′xiUitU
′
itγyi

)
+ Op(T−1)

= I + II + III + IV + Op(T−1). (A5)

Part I is the easiest. In fact, from the above we have that as N, T →∞

1√
N

I =
1

NT 2

N∑

i=1

T∑

t=1

λ′xiFtF
′
tλyi →p E

(
λ′xiM11λyi|F

)
. (A6)
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Part II can be written as

II =
1√

NT 2

N∑

i=1

T∑

t=1

λ′xiFtU
′
itγyi =

1√
NT 2

T∑

t=1

F ′
t

t∑

s=1

N∑

i=1

λxi∆U ′
isγyi

=
1
T 2

T∑

t=1

F ′
t

t∑

s=1

φs,

where

φs :=
1√
N

N∑

i=1

λxi∆U ′
isγyi =

1√
N

N∑

i=1

φis.

The random variable φis has mean zero and is independently distributed across i. Hence,

since 1
N

∑N
i=1 φ2

is = Op(1), according to the Lindeberg cental limit theorem given in Billingsley

(1986, Theorem 7.2), if we can show that for all ε > 0,

N∑

i=1

E
(
(N−1/2φis)21(|N−1/2φis| > ε)

)
→p 0

as N →∞, then φs ⇒ N
(
0,Γ

)
for each s, where

Γ = lim
N→∞

1
N

N∑

i=1

var(φis) = lim
N→∞

1
N

N∑

i=1

E
(
λxiγ

′
yiΦiγyiλ

′
xi

)
.

But this condition holds by the same arguments used for verifying (A9) below. Moreover, by

letting T → ∞, we get 1√
T

∑t
s=1 φs ⇒ B2, where B2 is a Brownian motion with covariance

matrix Γ. It follows that as N, T →∞

II =
1
T 2

T∑

t=1

F ′
t

t∑

s=1

φs ⇒
∫

B′
1B2, (A7)

which is also true for III.

Next, consider IV . We know from before that as N, T →∞

1√
N

IV =
1

NT 2

N∑

i=1

T∑

t=1

γ′xiUitU
′
itγyi →p E

(
γ′xiM22γyi

)
. (A8)

By inserting (A6) to (A8) into (A5),

1
NT 2

N∑

i=1

T∑

t=1

XitYit →p E
(
λ′xiM11λyi + γ′xiM22γyi|F

)
= Uxy,

which in turn can be inserted together with (A4) into (A1) to obtain

β̂ →p
Uxy

Uxx

.
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This establishes (a).

Next, consider (b). Given the result in (A8) and the fact that γ′xiUitU
′
itγyi is indepen-

dent across i, we would expect a central limit theorem to apply to IV after centering by
√

NE
(
γ′xiM22γyi

)
. We now show that this is indeed the case. Let us therefore consider

Gi := γ′xiM22iγyi −E
(
γ′xiM22γyi

)
.

The above Lindeberg condition can be written in terms of Gi as

N∑

i=1

E
(
(N−1/2Gi)21(|N−1/2Gi| > ε)

)
=

1
N

N∑

i=1

E
(
G2

i 1(|Gi| >
√

Nε)
)
→p 0. (A9)

In order to verify this we make use of the Cauchy–Schwarz inequality, which yields

E
(
G2

i 1(|Gi| >
√

Nε)
)
≤

√
E(G4

i )E(1(|Gi| >
√

Nε)),

and by further application of the Markov inequality,

E(1(|Gi| >
√

Nε)) ≤ 1
Nε2

E(G2
i ).

Thus,

1
N

N∑

i=1

E
(
G2

i 1(|Gi| >
√

Nε)
)
≤ 1√

Nε

1
N

N∑

i=1

√
E(G4

i )E(G2
i ),

which is Op(N−1/2), provided that E(G4
i ) and E(G2

i ) exist. Thus, since (A9) holds, we have

that

1√
N

N∑

i=1

Gi ⇒ N
(
0, σ2

)

as N →∞, where σ2 = var(Gi). But we also have that as T →∞

GiT =
1
T 2

T∑

t=1

γ′xiUitU
′
itγyi −E

(
γ′xiM22γyi

) ⇒ Gi,

suggesting the following sequential limit as N →∞ and then T →∞,

IV −
√

NE
(
γ′xiM22γyi

)
=

1√
N

N∑

i=1

GiT ⇒ N
(
0, σ2

)
. (A10)

We now show that this result continues to hold in the joint limit as N, T → ∞, which is

accomplished by verifying conditions (i) to (iv) in Theorem 3 of Phillips and Moon (1999).
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Conditions (i), (ii) and (iv) are obviously satisfied. Thus, for this theorem to apply we only

need to verify (iii), which requires that G2
iT is uniformly integrable in T . Towards this end,

note that by the continuous mapping theorem, G2
iT ⇒ G2

i as T → ∞, which together with

E(G2
iT ) → E(G2

i ) shows that G2
iT is uniformly integrable in T .

By adding these results, and then taking the limit as N, T →∞, we obtain

1√
NT 2

N∑

i=1

T∑

t=1

XitYit −
√

N Uxy ⇒ 2
∫

B′
1B2 + N

(
0, σ2

)
,

which, together with (A1) and (A4), in turn implies that

√
Nβ̂ −

√
N

Uxy

Uxx

⇒ 2
Uxx

∫
B′

1B2 +
σ

Uxx

·N(0, 1).

This completes the proof of (b). ¥

Proof of Corollary 1.

Corollary 1 is easily established by a simple manipulation of the proof of Theorem 1 (a). In

so doing it is useful to define Fj := σ(Fj0, ..., FjT ). By the same arguments used in the proof

of Theorem 1 (a),

1√
T

Xit = λ1xi

(
1√
T

Fxjt

)
+ γ1xi

(
1√
T

Uxit

)
+ Op(T−1/2) ⇒ λ1xiB1xj + γ1xiB2xi = Xi,

as T →∞, where the index j has been suppressed in Xi, as i runs over j. This implies that

1
NT 2

N∑

i=1

T∑

t=1

X2
it ⇒ 1

N

N∑

i=1

∫
X2

i =
1

nK

n∑

j=1

jK∑

i=1+(j−1)K

∫
X2

i . (A11)

But we know from before that if K, T →∞

1
K

jK∑

i=1+(j−1)K

∫
X2

i →p E

(∫
X2

i |Fj

)
= E

(
λ2

1xiM1x1xj + γ2
1xiM2x2x|Fj

)

= E(λ2
1xi)M1x1xj + E(γ2

1xi)M2x2x = Uxxj

for each j, and where the i index in λxi and γxi can be ignored since that variation is eliminated

when taking expectations. Thus, taking the limit as n →∞,

Qxx =
1
n

n∑

j=1

Uxxj = E(λ2
1xi)

1
n

n∑

j=1

M1x1xj + E(γ2
1xi)M2x2x

→p E(λ2
1xi)M1x1x + E(γ2

1xi)M2x2x =: P xx, (A12)
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and by similar arguments,

1
NT 2

N∑

i=1

T∑

t=1

XitYit →p λ1xλ2yM1x1y + γ1xγ2yM2x2y =: P xy. (A13)

Adding (A11) to (A12) yields

β̂ →p
P xy

P xx

=
E(λ2

1xi)M1x1x

P xx

· λ1xλ2yM1x1y

E(λ2
1xi)M1x1x

+
E(γ2

1xi)M2x2x

P xx

· γ1xγ2yM2x2y

E(γ2
1xi)M2x2x

= W · λ1xλ2yM1x1y

E(λ2
1xi)M1x1x

+ (1−W ) · γ1xγ2yM2x2y

E(γ2
1xi)M2x2x

,

which establishes the proof. ¥
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