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MICROECONOMETRIC EVIDENCE OF FINANCING FRICTIONS AND INNOVATIVE

ACTIVITY1

Amaresh K Tiwari2, Pierre Mohnen3, Franz C Palm4

and Sybrand Schim van der Loeff5

Using Dutch data we empirically investigate how financing and innovation

vary across firm characteristics. We find that when firms face financial con-

straints, debt financing and innovation choices are not independent of firm char-

acteristics, and R&D slows down. In the absence of financial constraints, how-

ever, as they raise debt, firms become less inclined to innovate and the change

in the propensity to innovate no longer varies with firm characteristics. We find

that financing constraints faced, propensity to innovate, and R&D intensity are

not uniform across firm characteristics. A new “Control Function” estimator to

account for heterogeneity and endogeneity has been developed.

Keywords: Innovation, R&D, Capital Structure, Financial Constraints, Firm

Characteristics, Correlated Random Effects, Control Function, Expected a Pos-

teriori.

JEL Classification: G30, O30, C30

1. INTRODUCTION

In this paper we empirically investigate how incentives to innovate interact with financing

frictions that are related to innovative activity. We show that financing and innovation

choices vary with firm characteristics such as size, age, and leverage for financially con-
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strained and unconstrained firms. This implies that the incentives to innovate and the

extent and the nature of frictions are not uniform across firm characteristics. Our results,

thus, inform theory that in modeling firm dynamics, investment in R&D along with invest-

ment in physical capital and the financing decisions of the firm must be taken into account,

especially since, given the nature of R&D activity, the associated financing frictions can

be acute.

For our empirical analysis we use a unique data set where firms report if they have

faced financial constraint due to which some of their R&D projects were hampered. To

study how financing and innovation policy vary with firm characteristics and to establish

the extent of impact due to existence of financing frictions on innovative activity, for our

empirical analysis we write a fully specified econometric model of R&D investment with

endogenous financial constraint, endogenous decision to innovate, and endogenous financial

choices. This entails estimating a system of structural equations pertaining to (a) a model

for decision to innovate, where we study the financing choices of innovative firms, (b) a

model for financial constraint, where we try to explain why certain firms report they are

financially constrained, (c) model for R&D investment, where we try to assess the impact

of financial constraint, as reported by the firms, on R&D investment, and (d) a system of

reduced form equations of financing choice and other endogenous variables.

Firstly, in our study of innovation and financing choice we find results that are in con-

gruence with the papers that provide empirical evidence that R&D intensive firms are

less leveraged than those that are not. Brown et al. (2009) (henceforth BFP) studying a

panel of R&D performing US firms draw out a financing hierarchy for R&D intensive firms,

where equity – when more easily available, as during the boom in the supply of internal

and external equity finance in the mid and late 1990’s in US – might be preferred to debt

as a means of financing R&D. Corroborating Brown et al. (2012), we find that, ceteris

paribus, innovative firms are likely to maintain higher levels of internal liquidity reserve.

We also find that firms that pay out dividends are less likely to take up innovative activity,

suggesting that external financing could be more costly for innovative firms.

Secondly, given that firms themselves report if they are financially constrained with

respect to innovative activity, in our empirical model of endogenous financing and inno-

vation choices and endogenous financial constraint we are able to assess if certain financ-
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ing choices, as reflected in the balance sheets of the firms, determine whether a firm is

financially constrained. This allows us to assess the relevance of the classification crite-

ria (see Hennessy and Whited, 2007, henceforth HW) that distinguish firms as financially

constrained or unconstrained, and which have been motivated by the theories of finan-

cial contracting. We find that small and young firms, firms that are highly levered, and

firms that pay less dividends are more likely to face financial constraint. The finding is

in line with prediction made by Albuquerque and Hopenhayn (2004) (henceforth AH) and

Clementi and Hopenhayn (2006) (henceforth CH) in models of firm growth and survival

with endogenous borrowing constraint. We also find that firms that maintain high level of

liquidity reserve and those whose asset base includes more tangible assets are less likely to

face financial constraint.

Our third and important set of findings are from the investigation of innovation and

financing choices under financial constraint and under no constraint. We find that (i) under

financial constraint, extent of which varies with firm characteristics such as age, size, and

existing leverage, the change in propensity to innovate by employing more long-term debt

also varies with the firm characteristics. However, (ii) when financial constraint do not bind

the change in propensity to innovate by increasing leverage does not, or vary little with

firm characteristics, and is uniformly lower as compared to the situation when financial

constraint bind. Some other important findings that underscore the fact that innovation

and financing decision are not uniform across firm characteristics are (iii) that large and

young firms are more likely to engage in innovative activity, (iv) that large and mature

firms are less R&D intensive, and (v) that small and younger firms are more financially

constrained. These third set of findings suggest that decisions to innovate, financing choices,

and firm dynamics are not independent.

Now, while there are models of efficient firm and industry dynamics where R&D activity

and uncertainty in innovation explain some of the stylized facts related to R&D investment,

productivity, firm dynamics, and firm size distribution (see for eg. Klette and Kortum

(2004) (henceforth KK), Klepper and Thompson (2006)), none to our knowledge has ex-

plored the interaction of financing frictions with innovative activity in shaping up firm

and industry dynamics. Some of our results, for example, that not all firms are innovative,

that under financial constraint financing and innovation policy are not independent of firm
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characteristics, and that R&D intensity is not independent of firm size are contrary to

what KK purport to explain. Our findings suggest that in modeling firm dynamics with

R&D and innovation, financial consideration too must also be taken into account.

On the other hand there are models, such as by Cooley and Quadrini (2001) (henceforth

CQ), of financial market inefficiency, where financial frictions introduced in a standard

model of firm and industry dynamics generate results that match the empirical regularities

of the financial and company level investment characteristics of firms that are related to

their size and age. AH and CH in their respective papers develop models of endogenous

borrowing constraint and study its implication for firm dynamics such as growth and

survival. However, R&D and innovation do not feature in these models. In AH and CH

borrowing constraint is hinged on the capital structure of the firm, where state contingent

equity value determines borrowing constraint, exit probability, and expansion. Our results

suggest that capital structure also matters for the exercise of growth options that are related

to R&D. While a successful completion and implementation of a R&D project enhances

firm productivity and chances of survival, given the nature of R&D and the fact that it

is affected by various kinds of uncertainties (see Berk et al., 2004), engaging in R&D will

also affect the evolution of equity, thereby affecting borrowing constraint and firm growth

and survival. Our results suggests that modeling firm dynamics with R&D and innovation

that incorporates borrowing constraint in a dynamic financial contract framework could

be an important area of research.

Fourthly, our paper contributes to the empirical literature that seeks to test for financ-

ing frictions and quantifying the extent of market failure due to existence of financing

frictions. The small number of empirical studies on testing for financing frictions for R&D

investment are documented in Hall and Lerner (2010). More recent papers such as, Whited

(2006), Bayer (2006), and Bayer (2008), studying company level investment, show how fi-

nancing frictions interact with adjustment costs to alter the timing of company level lumpy

investment. HW find that existence of costly external funds depresses the path of invest-

ment. Hajivassiliou and Savignac (2011), using a similar data set for France, find that

financial constraint do adversely affect innovation output. Our objective here is to assess

by how much R&D investment is hampered given that a firm faces financial constraint.

Empirical analysis in corporate finance, as discussed in Roberts and Whited (2010), is
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marred with issues of endogeneity. Our estimation strategy combines the method of “cor-

related random effect” and “control function” (see Blundell and Powell, 2003) to account

for unobserved heterogeneity and endogeneity of regressors in the structural equations.

We estimate the fully specified model, stated earlier, in three steps. In the first step we

estimate the system of reduced form equations, the estimates of which are then used to

construct the control functions that correct for the bias that can arise due the presence of

endogenous regressors in the structural equations. With the control functions in place, in

the second stage we jointly estimate the structural model of financial constraint faced by

the firms and the decision to innovate, and finally in the third stage, conditional on the

decision to innovate, we estimate the switching regression model of R&D investment to

assess the impact of financial constraint on R&D investment.

Typically, in a control function approach the structural parameters are estimated con-

ditional on unobserved heterogeneity and unobserved idiosyncratic errors that appear in

reduced form equations of a simultaneous triangular system of equations. In such an ap-

proach residuals obtained from the first stage reduced form estimates that proxy for the

idiosyncratic errors are used as control variables in the structural equations to account for

the endogeneity of the regressors in the structural equations. However, in panel data mod-

els, the residuals of the reduced form regression, which are defined as the observed value of

the response variable minus the expected value of the response conditional on exogenous

regressors and the individual effects, are functions of unobserved individual effects. Since

the individual effects are unobserved, the residuals remain unidentified. The novelty of our

approach lies in integrating out the unobserved individual effects. The integration is per-

formed with respect to the conditional distribution of the individual effects approximated

by the posterior distribution of the individual effects obtained from the first stage reduced

form estimation. This leaves us with the expected a posteriori (EAP) values of the indi-

vidual effects, which can then be used to get the residuals. The paper also provides the

theoretical foundations for such a procedure.

The rest of the paper is organized as follows. In Section 2 we present the economic

framework, in Section 3 we discuss the empirical strategy employed, in Section 4 the data

used and the definition of the variables are discussed, in Section 5 we present the results,

and finally in Section 6 we conclude. In Appendix A we discuss the identification of the
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structural parameters. The details of the econometric methodology are provided in appen-

dices B, C, D, and E. All the appendices, for reasons of space, have not included in the

core of the paper, but can be made available upon request.

2. FINANCING FRICTIONS AND INNOVATIVE ACTIVITY

A. Financing and Innovation Decision

Holmstrom (1989) points out that from the perspective of investment theory R&D has a

number of characteristics that make it different from ordinary investment: it is long-term

in nature, high risk in terms of the probability of failure, unpredictable in outcome, labor

intensive, and idiosyncratic. The high risk involved and unpredictability of outcomes are

potential sources of asymmetric information that give rise to agency issues in which the

inventor frequently has better information about the likelihood of success and the nature of

the contemplated innovation project than the investors. Leland and Pyle (1977) point out

that investors have more difficulty distinguishing good or low risk projects from bad ones

when they are long-term in nature. Besides, due to the ease of imitation of inventive ideas,

as pointed out by Hall and Lerner (2010), firms are reluctant to reveal their innovative

ideas to the marketplace, and there could be a substantial cost to revealing information

to their competitors. Thus the implication of asymmetric information coupled with the

costliness of mitigating the problem is that firms and inventors will face a higher cost of

external capital for R&D.

Because the knowledge asset created by R&D investment is intangible, partly embedded

in human capital, and ordinarily very specialized to the particular firm in which it resides,

the capital structure of R&D intensive firms customarily exhibits considerably less leverage

than that of other firms, see Titman and Wessels (1988). The logic is that the lack of a

secondary market for R&D and the non-collaterability of R&D activity mitigates against

debt-financed R&D activity. Aboody and Lev (2000) argue that because of the relative

uniqueness of R&D, which makes it difficult for outsiders to learn about the productivity

and value of a given firm’s R&D from the performance and products of other firms in the

industry, the extent of information asymmetry associated with R&D is larger than that

associated with investment in tangible (e.g., property, plant, and equipment) and financial
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assets. Bond holders, ceteris paribus, may be unwilling to hold the risks associated with

greater R&D activity. BFP studying a panel of R&D intensive firms, find that equity, when

more easily available, might be preferred to debt as a means of financing R&D.

Brown et al. (2012), Hall and Lerner (2010) and BFP point out that most of the R&D

spending is in the form of payments to highly skilled workers, who often require a great

deal of firm-specific knowledge and training. The effort of the skilled workers create the

knowledge base of the firm, and is therefore embedded in the human capital of the firms.

This knowledge base is lost once workers get laid off. The implication of this is that R&D

intensive firms behave as if they faced large adjustment costs and therefore chose to smooth

their R&D spending. Thus R&D intensive firms that face financing frictions, to smooth

R&D relative to transitory finance shocks, build and manage internal buffer stocks of

liquidity (e.g., cash reserves). Gamba and Triantis (2008) point out that cash balances,

which give financial flexibility to firms, are held when external finance is costly and/or

income uncertainty is high. With higher liquidity reserve firms can counter bad shocks by

draining it.

Now, given the nature of R&D activity that makes borrowing costly, internal funds may

be more preferable. Therefore, innovative firms, ceteris paribus, are less likely to distribute

cash as dividends. Both Carpenter and Petersen (2002) and Chan et al. (2001) studying

R&D intensive firms from COMPUSTAT files find that R&D intensive firms pay little or no

dividend, indicating that most firms retain essentially all of their internal funds. In our data

set we too find that, on average, innovating firms pay less dividends than non-innovating

firms.

In this paper we study a firm’s decision to innovate and the financing choices of a panel of

Dutch firms observed over three waves. While there are many studies that have explored a

firm’s choice to innovate in the Schumpeterian tradition, few have considered how financing

and innovation choices are related. We formally model the decision to innovate as

It = 1{I∗t (Long-term Debt,Liquidity Reserve, Dividend, Controls, α̃, υt) > 0},

(2.1)

where I = 1{.} is an indicator function that takes value 1 if the latent variable I∗t (.) > 0. α̃ is

the unobserved heterogeneity, υt the idiosyncratic term, and Controls being the traditional
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control variables. We term equation (2.1) as the Innovation equation. Given the above

discussion, we should expect that, ceteris paribus, firms with higher long-term debt in

their capital structure, firms that maintain low liquidity reserve, and firms that pay out

dividends to be less likely to engage in innovative activity. We do not contend that other

consideration such as taxes or issuance cost do not affect financial decisions. We also know

that financing and investment decisions are history dependent and are forward looking.

However, ceteris paribus, across time and firms one should expect the above hypothesized

relationships to hold on an average.

B. Financial Constraints and Innovation

Papers, such as CQ, AH, and CH, studying firm dynamics look at how financial con-

straint and capital structure affect firm growth and survival. These papers have shown

that financing constraint and financing and investment decisions are not uniform across

firm characteristics such as size and age. Now, it is well known that innovation too affects

growth and survival of firms (see KK), and that R&D effort is marred by various kinds

uncertainties (see Berk et al., 2004) unique to the innovation process. Hence, a firm engag-

ing in R&D will have its equity value affected, with implications for borrowing constraint,

state contingent growth trajectory and future financing and innovation decision.

Therefore, while the unconditional relation between financing and innovation, discussed

in the last subsection, could be expected to be true, under financial constraint, firms could,

depending on the extent of constraint, opt for a innovation and financing policy different

from when they are unconstrained. This could be ascertained by looking at how the decision

of a firm to engage in innovative activity changes by changing the financial policy of the

firm under varying degrees of financial constraint. To achieve this end, we start by studying

how financial constraint arise for firms that report that they are financially constrained.

To formalize, we denote by Fit, which takes value 1 if the firm i reports that it is

financially constrained in time period t. Now, see HW, a firm may be constrained both

because of high cost of external funds and/or because of high need for external funds.

Thus, when a firm reports that it is financially constrained, Fit = 1, it could be because

it is required to pay a high premium, which could be higher for firms engaging in R&D
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activity, on scarce external finance or because it is unable to access external funds. The

premium, for example, could reflect bankruptcy cost (see Gale and Hellwig, 1985) or the

cost of floating equity as in HW and CQ. In AH and CH this premium is formalized as

higher repayment schedule to lenders as a fraction of its profits during such time as when

the firm faces borrowing constraint and short-term capital advancement are low. Also, for

a given financial state of a firm, higher expectation of profits from R&D activity will drive

up the demand for R&D investment, creating a gap between desired and available funds,

which in turn will cause the firm to report itself as being financially constrained. Hence, in

our explanation of how financial constraint arise, we will need to control for future expected

profitability.

Barring a few that have been documented in Hall and Lerner (2010), most papers in

empirical corporate finance study corporate financing and firm level investment. Now,

financing frictions with respect to R&D activity, which for reasons discussed earlier, can be

acute when compared to financing investment in physical capital. Consequently, innovative

firms might find themselves more constrained than those that are not. To test this, like

Almeida and Campello (2007), we test if asset intangibility, which is higher for innovating

firms and which limits the debt capacity of firms, have a bearing on the firms reporting

financial constraint.

Formally, we model financial constraint as

Ft = 1{F ∗
t (Financial State Variables,Expected Profitability,Controls, α̃, ζt) > 0},

(2.2)

where α̃ is unobserved heterogeneity and ζt is the idiosyncratic component of the Financial

Constraint equation. As in Whited and Wu (2005) and Gomes et al. (2006), where the

shadow price of scarce external finance in the firm’s intertemporal optimization problem is

assumed to be a function of observable variables, we hypothesize that the latent variable

F ∗
t , which captures the premium on external finance and the gap in financing, to be a

function of observable and endogenously determined financial state variables. HW give a

detailed discussion on constraint proxies that reflect high cost or high need for external

finance. Our specification, discussed later, to explain financial constraint is rich enough to

capture both aspects, high cost as well as high need for external finance.
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Now, to return to the question of innovation and financing policy under financial con-

straint across firm characteristics, we look at how the propensity to innovate under financial

constraint, both of which are determined endogenously, changes with endogenous financing

policy, say an increase in long-term debt, of the firm. To put it formally, we look at how

Pr(I = 1|F = 1) and Pr(I = 1|F = 0) changes with debt policy at different level of firm

characteristics, such as size of the firm. These firm characteristics also indicate the extent

of constraint the firm faces, so in effect by studying how Pr(I = 1|F = 1) changes with

the financing policy of the firm at different level of firm characteristics, we are looking at

how Pr(I = 1|F = 1) changes with the financing policy at different level of constraint.

C. Financial Constraints and R&D Investment

Beginning with Fazzari et al. (1988) there has been a huge amount of literature that

has sought to test for financing frictions and quantifying the extent of market failure

in company level investment due to the presence of financing frictions. A survey of this

literature is beyond the scope of this paper. However, as Brown et al. (2012) point out

there aren’t many papers that have looked at financing frictions and R&D investment.

Few papers that have studied the implication of financial constraint for R&D investment

have been surveyed in Hall and Lerner (2010).

Empirical study of the effect of financing frictions on investment has broadly followed

two approaches. One approach is to ad hoc classify firms into those that are financially

constrained and those that are not, and specify a reduced form accelerator type model for

the constrained and unconstrained firms. The extent of financing frictions, controlling for

the investment opportunity, is judged by the sensitivity of investment to cash flow. Another

approach, which is more structural, is to estimate Euler equations derived from standard

intertemporal investment model augmented with financial state variables to account for

financial frictions, where external financing constraint affect the intertemporal substitution

of investment today for investment tomorrow, via the shadow value of scarce external

funds, (see Whited and Wu, 2005). The few empirical studies on financing frictions and

R&D investment, broadly speaking, follow these two approaches.

In this paper, besides studying financing and innovation decisions of firms under financial
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constraint across firm characteristic, we also study how financial constraint affect R&D

investment, which is observed conditional on firms choosing to innovate, It = 1. We posit

that the observed R&D intensity, measured as a ratio of R&D investment to total capital

asset, for a firm i, can be explained by estimating the following R&D equation:

Rt = Rt(Financial Constraint,Expected Profitability, Controls, α̃, ηt) if It = 1,

(2.3)

where α̃ is the unobserved heterogeneity, ηt the idiosyncratic component. The specification

is motivated by the fact that financing frictions, which could be either due to high cost

of external funds or due to lack of access to it, is summarized by the reported financial

constraint, Ft. Thus, given future expected profitability and other controls, we can gauge

the extent of market failure for R&D investment due the presence of financing frictions by

estimating the metric,

E[Rt(Ft = 0)|It = 1]− E[Rt(Ft = 1)|It = 1].

This metric could be construed as the difference between first best R&D investment and

optimal R&D investment under financing constraint.

Using firm’s assessment of being financially constrained avoids the need to ad hoc classify

the firms into constrained and unconstrained firms. Moreover, papers that a priori classify

firms as constrained and unconstrained assume financial constraint faced by firms to be

exogenous to investment decisions. In assessing the impact of reported financial constraint,

Fit = 1, on R&D expenditure, ours is a departure from the reduced form accelerator

type models, about which questions have been raised as to whether such a procedure can

indeed identify the extent of financing frictions, (see Kaplan and Zingales 1997; Gomes

2001; and HW). We address the issue of endogeneity of financial constraint by estimating

simultaneously the Innovation equation (2.1), the Financial Constraint equation (2.2) and

the R&D equation along with the equations for the financing choice made by the firms.

Thus, in contrast to reduced form models, ours is a more structural approach.

Our frame work for studying the effect of financing constraint on R&D in essence is a

static one. Though one could derive a dynamic empirical model for R&D investment from

a firm’s dynamic optimization problem with adjustment cost where the firm is subject to
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external financing constraints, or employ indirect inference approach as in Whited (2006)

and HW to test for financing frictions and its implication for R&D investment, we avoid

this route for two reasons. The first being, as we explain when discussing our data, that in

our data set we observe R&D investment every alternative year, which precludes us from

estimating a dynamic empirical model of R&D investment, at least in the classical regres-

sion framework. The second reason is that, since firms tend to smooth R&D investment

over time, adjustment costs, for firms that have decided to engage in R&D in the past, is

unlikely to be a substantial factor in explaining R&D investment1. We believe that, given

our comprehensive treatment of heterogeneity and endogeneity, a misspecification due to

omission of adjustment cost should be taken care of.

Also, using the binary indicator on financial constraint as reported by firms allows us

to generalize the R&D equation (2.3) to a switching regression model, where the endoge-

nous financial constraint equation sorts the firms over the two different regimes, financially

constrained and unconstrained. This allows us to investigate how firms with different char-

acteristics, such as maturity and size, invest in R&D under financial constraint and under

no constraint. In doing so we are able to underscore that financing frictions condition firm

dynamics, which are brought about through R&D investment.

3. EMPIRICAL MODEL

The usual problem faced in any empirical exercise is that of accounting for heterogene-

ity and endogeneity. For the problem at hand, we know that the decision to innovate, the

financial choices made, the financial constraint faced, and the amount to invest in R&D

are all endogenously determined. In this paper we develop a control function approach to

address the issue of heterogeneity and endogeneity. In this section we introduce our empir-

ical model, the model assumptions, and some results. Technical details on identification of

1 It is also possible that new innovators bear sunk cost of investment and that starting to innovate

involves costly learning, giving rise to non-convex adjustment cost, which can interact with financing

friction to alter the timing of R&D investment. However, estimating parameters of interest of a model that

allows for sunk cost of investment that interacts with financing frictions to affect R&D investment would

most likely involve a different econometric approach, such as in Cooper and Haltiwanger (2006) or HW,

and this is beyond the scope of our paper.
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structural parameters of interest has been discussed in the Appendix.

To study the effect of endogenous financial constraint on R&D expenditure, the endoge-

nous decision to innovate, and to account for the fact that R&D expenditure is observed

only for firms that opt to innovate, the three structural equations – Innovation, Financial

Constraint, and R&D – introduced in section 2 are

Iit = 1{I∗it = X I′
it γγγ + θα̃i + υit > 0}, (3.1)

Fit = 1{F ∗
it = X F ′

it ϕϕϕ+ λα̃i + ζit > 0}, (3.2)

Rit = Fit(βfFit + XR′
it βββ1 + µ1α̃i + η1it) + (1− Fit)(X

R′
it βββ0 + µ0α̃i + η0it) if Iit = 1

= FitR1it + (1− Fit)R0it if Iit = 1, (3.3)

where It is an indicator variable that takes value 1 if the firm i decides to innovate, Ft

takes value 1 if firm i experiences financial constraint, and Rt is the observed R&D in-

tensity, defined as the ratio of total R&D expenditure to total capital assets (tangible +

intangible), if the firm decides to innovate2. To allow for the effect of XR
t to be different

in the two regimes, financially constrained and unconstrained, we model equation (3.3) as

an endogenous switching regression model, where the Financial Constraint equation sorts

the firms over the two different regimes. That is,

Rt = R1t = βfFt + XR′
t βββ1 + µ1α̃ + η1t if Ft = 1 and It = 1

and

Rt = R0t = X r′
t βββ0 + µ0α̃ + η0t if Ft = 0 and It = 1.

In the above set of equations X I
t = {zI′t ,x

I′
t }

′, X F
t = {zF ′

t ,xF ′
t }′, and XR

t = {zR′
t ,xR′

t }′,

where conditional on unobserved heterogeneity α̃i, each of the zt is a vector of exogenous

variables. That is, υt|α̃i, z
I
t ∼ υt|α̃i; the same being true for the Financial Constraint and

R&D equation. Each of the xt, is a vector of endogenous variables, that is, E(υt|α̃,x
I
t ) 6= 0,

the same holds for the Financial Constraint and R&D equation.

Simultaneity in the decision to innovate, the financial constrained faced, and the amount

to expend in R&D investment is captured by the fact that unobserved heterogeneity that

affects the decision to innovate also affects the constraint faced and R&D investment, that

2In the rest of the paper unless otherwise needed we drop the firm script i.
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the unobserved idiosyncratic components in each of the equations are correlated with each

other, and certain observable variables are common to the structural and reduced form

equations. However, because xts are endogenous, estimating the system of equations will

give inconsistent results.

To obtain the consistent estimates for the structural equations we adopt a control func-

tion approach, which involves a multi-step procedure. In the first step we estimate

xit = Z′
itδδδ + α̃iκκκ+ ǫǫǫit, (3.4)

which is the system of ‘m’ equations written in a reduced form for the endogenous variables

xt = (x1t, . . . , xmt)
′, where every component of xI

t , x
F
t , and xR

t is also a component of xt.

Zt = diag(z1t, . . . , zmt) is the matrix of exogenous variables or instruments appearing in

each of the m reduced form equations in (3.4) and δδδ = (δδδ′1, . . . , δδδ
′
m)

′. Let zt be the union

of all exogenous variables appearing in each of zIt , z
F
t , and zRt . For every l ∈ (1, . . . , m),

zlt = Zt = (z′t, z̃
′
t)

′, where the dimension of vector of instruments, z̃, is greater than or

equal to the dimension x. This is the crucial identifying condition, see Blundell and Powell

(2003) for details. Also define Xi = {x′
i1, . . . ,x

′
iTi
}′ and Zi = (Z ′

i1 . . .Z
′
iTi
)′.

ǫǫǫt = (ǫ1t, . . . , ǫmt)
′ is the vector of idiosyncratic component and α̃, the unobserved in-

dividual effect for firm i, which we model as a random effect, is correlated with Zi. But,

conditional on α̃, Zi is assumed to be independent of η1t, η0t, ζt, υt, and ǫǫǫt. Since the

unobserved individual specific effect affects the endogenous regressors as well as the firm’s

innovation decision and it being financially constrained, to account for simultaneity that

arises due to unobserved heterogeneity, we therefore have different factor loadings, such as,

{κ1 . . . , κm}, that appear in the reduced form equations, and θ, λ, µ0, and µ1, that appear

in the structural equations.

The above structural equations – (3.1), (3.2), and (3.3) – can be succinctly written as

y∗
t = X

′
tB+ α̃k+Υt, (3.5)

where y∗
t = {I∗t , F

∗
t , ItFtR1t, It(1 − Ft)R0t, }

′. Xt = diag(X I
t , X

F
t , XR

1t , X
R
0t ), where XR

1t =

{Ft, ItFtX
R′
t }′ and XR

0t = It(1 − Ft)X
R
t . B in (3.5) is given by B = {γγγ′,ϕϕϕ′, βf ,βββ

′
1,βββ

′
0}

′.

Finally, k = {θ, λ, µ1, µ0}
′ and Υt = {υt, ζt, η1t, η0t}

′.
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Some of the distributional assumptions that will eventually allow us to construct the

control functions, which correct for the bias due to the endogeneity of xt and help us

identify the structural parameters of interest are:

A1. Υit|α̃i,Zi ∼ Υit|α̃i and ǫǫǫit|α̃i,Zi ∼ ǫǫǫit,

A2. Υit|α̃i, ǫǫǫi ∼ Υit|ǫǫǫi, where ǫǫǫi = {ǫǫǫ′i1 . . . ǫǫǫ
′
iTi
}′, and

A3. The error terms Υit and ǫǫǫit are i.i.d.3 and





Υit

ǫǫǫit



 ∼ N









0

0









ΣΥΥ ΣΥǫ

ΣǫΥ Σǫǫ







 .

According to assumption A1, conditional on α̃, Z is independent of Υt, which is a

standard assumption made in the literature. In A2 by assuming Υt to be independent of α̃

conditional on reduced form errors ǫǫǫ, we weaken the standard assumption of independence

of Υt and α̃.

As stated earlier, to estimate the structural parameters of interest in equation (3.5), a

multi-step estimation procedure has been proposed. In the first stage the parameters, Θ1,

of the system of reduced form equations, equation (3.4), is estimated. In the subsequent

stages additional correction terms or “control variables”, obtained from the first stage

reduced form estimates, correct for the bias due to endogeneity of the xt. We study the

identification and estimation of structural parameters for nonlinear response models and

show the construction of correction terms in subsection B and, in detail, in Appendix A.

But before we discuss identification of structural parameters, we first discuss the estimation

of the parameters of the reduced form equation.

A. Estimation of the First Stage Reduced Form Equations

In the first stage we estimate the system of reduced form equations (3.4). Since α̃i and

Zi are correlated in order to estimate δδδ, Σǫǫ, and κκκ consistently, we use Mundlak’s (1978)

correlated random effects formulation. We assume that

A4. E(α̃i|Zi) = Z̄ ′
iδ̄δδ, (3.6)

3Though the i.i.d. assumption is not strictly necessary, and can be relaxed.
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where Z̄i, is the mean of time-varying variables in Zit. We also assume that

A5. α̃i|Zi ∼ N
[

E(α̃i|Zi), σ
2
α

]

, (3.7)

so that the tail, αi = α̃i−E(α̃i|Zi) = α̃i− Z̄
′
iδ̄δδ, is distributed normally with mean zero and

variance σ2
α, and is also assumed to be independent of Zi. Given the above, equation (3.4)

can now be written as

xit = Z′
itδδδ + (Z̄ ′

iδ̄δδ + αi)κκκ+ ǫǫǫit. (3.4a)

To consistently estimate the reduced form parameters, Θ1 = {δδδ′, δ̄δδ
′
, vech(Σǫǫ)

′,κκκ′, σα}
′,

we employ the technique of step-wise maximum likelihood method in Biørn (2004). How-

ever, our model differs from Biørn. While Biørn estimates the covariance matrix Σα of

αααi = {α1i, . . . , αmi}
′, where each of the αli, l ∈ {1, . . . , m}, is unrestricted, we place the

restriction αli = κlαi. This implies that

Σα = σ2
αΣκ = σ2

α















κ2
1

κ1κ2 κ2
2

...
...

κ1κm κ2κm . . . κ2
m















.

Moreover, as can be seen from the modified equation (3.4a), we also impose the restriction

that δ̄δδ remains the same across each of the m reduced form equations. In Appendix B we

provide a note on the estimation strategy employed to estimate the parameters of the

reduced form equations.

B. Identification and Estimation of the Structural Parameters

Given the above set of assumptions we have

Υt|X,Z, α̃ ∼ Υt|X− E(X|Z, α̃),Z, α̃

∼ Υt|ǫǫǫ,Z, α̃

∼ Υt|ǫǫǫ, α̃

∼ Υt|ǫǫǫ, (3.8)
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where the second equality in distribution follows from the fact that Xi−E(Xi|Zi, α̃i) = ǫǫǫi,

the third follows from A1, and the fourth from assumption A2. According to the above,

the dependence of the structural error term Υt on X, Z, and α̃ is completely characterized

by the reduced form errors ǫǫǫ. The expectation of Υt given ǫǫǫ is given by

E(Υt|ǫǫǫ) = E(Υt|ǫǫǫt) = ΣΥǫΣ
−1
ǫǫ ǫǫǫt = Σ̃ΥǫΣǫΣ

−1
ǫǫ ǫǫǫt = Σ̃ΥǫΣ̃

−1
ǫǫ ǫǫǫt, (3.9)

where the first equality follows from the assumption that conditional on ǫǫǫit, Υit is indepen-

dent of ǫǫǫi
−t
. This assumption has also been made in Papke and Wooldridge (2008), and

Semykina and Wooldridge (2010). The (4×m) matrices Σ̃Υǫ in the fourth equality is

Σ̃Υǫ =















ρη1ǫ1ση1 . . . ρη1ǫmση1

ρη0ǫ1ση0 . . . ρη0ǫmση0

ρζǫ1σζ . . . ρζǫmσζ

ρυǫ1συ . . . ρυǫmσυ















and the (m×m) matrix Σǫ is diag(σǫ1, . . . , σǫm), so that Σ̃ΥǫΣǫ = ΣΥǫ. Finally, in the last

equality Σ̃−1
ǫǫ = ΣǫΣ

−1
ǫǫ . We prefer to write the above conditional expectation as E(Υt|ǫǫǫt) =

Σ̃ΥǫΣ̃
−1
ǫǫ ǫǫǫt because the elements of Σ̃−1

ǫǫ are obtained from the estimates of the first stage

reduced form estimation of our sequential estimation procedure, and the formulation in

(3.9) helps us distinguish the parameters that are estimated in the first stage from those

that are estimated in the subsequent stages. Also, as we will see, it is the elements of Σ̃Υǫ,

which are estimated in the subsequent stages that give us the test of exogeneity of xt with

respect to Υt .

Given assumptions A4 and A5 and equations (3.8) and (3.9), we can write the expecta-

tion of y∗
t given X, Z, and α̃

E(y∗
t |X,Z, α̃) = X

′
tB+ α̃k + Σ̃ΥǫΣ̃

−1
ǫǫ ǫǫǫt

= X
′
tB+ (Z̄ ′δ̄δδ + α)k+ Σ̃ΥǫΣ̃

−1
ǫǫ ǫǫǫt = E(y∗

t |X,Z, α) (3.10)

To estimate the system of equations in (3.10) the standard technique is to replace ǫǫǫt by

the residuals from the first stage reduced form regression, here equation (3.4a). However,

the residuals xt − E(xt|Z, α) = xt − Z′
tδδδ − (Z̄ ′δ̄δδ + α)κκκ, remain unidentified because the

α’s are unobserved even though the reduced form parameters, Θ1 = {δδδ′, δ̄δδ
′
,κκκ′, σα}

′, can be
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consistently estimated for the first stage estimation. From the results on identification of

structural parameters derived in Appendix A, it can be shown that

E(y∗
t |X,Z) =

∫

E(y∗
t |X,Z, α)f(α|X,Z)dα = X

′
tB+ (Z̄ ′δ̄δδ + α̂)k+ Σ̃ΥǫΣ̃

−1
ǫǫ ǫ̂ǫǫt,

(3.11)

where α̂i(Θ1,Xi,Zi) = E(αi|Xi,Zi), as discussed in Appendix A, is the Expected a Poste-

riori (EAP) value of αi and ǫ̂ǫǫit(Θ1,Xi,Zi) = xit −E(xit|Xi,Zi) = xit −Z′
itδδδ−κκκ(Z̄ ′

iδ̄δδ + α̂i).

ˆ̃αi = Z̄ ′
iδ̄δδ+ α̂i and ǫ̂ǫǫit are the “control functions” that correct for the bias which arises due

to the correlation of xt with α and Υt. The correlation of the exogenous variables Zt with

α̃, is accounted by Z̄ ′δ̄δδ + α̂. In Appendix A we show how to construct α̂i. Given (3.11) we

can write the projection of y∗
it given Xi, Zi in error form as

It =1{I∗t = X I′
t γγγ + θ ˆ̃α + Σ̃υǫΣ̃

−1
ǫǫ ǫ̂ǫǫt + υ̃t > 0}, (3.12)

Ft =1{F ∗
t = X F ′

t ϕϕϕ + λ ˆ̃α+ Σ̃ζǫΣ̃
−1
ǫǫ ǫ̂ǫǫt + ζ̃t > 0}, (3.13)

Rt =Ft(βfFt + XR′
t βββ1 + µ1

ˆ̃α + Σ̃η1ǫΣ̃
−1
ǫǫ ǫ̂ǫǫt + η̃1t)

+ (1− Ft)(X
R′
t βββ0 + µ0

ˆ̃α + Σ̃η0ǫΣ̃
−1
ǫǫ ǫ̂ǫǫt + η̃0t) if It = 1 (3.14)

where Υ̃t = {υ̃t, ζ̃t, η̃1t, η̃0t}
′, defined in Appendix A, is normally distributed with mean 0,

variance ΣΥ̃Υ̃, and is independent of X and Z. We would like to state here that in the

modified Innovation equation (3.12),

Σ̃υǫ = {ρυǫ1συ, . . . , ρυǫmσυ}
′,

where ρυǫ1συ, for example, gives a measure of correlation between x1 and υ, thus providing

us a test of exogeneity of x1 in the Innovation equation. Similarly, the estimates of Σ̃ζǫ and

Σ̃ηǫ give us a test of exogeneity of x in the Financial Constraint and the R&D equation

respectively.

Given Z̄ ′δ̄δδ+α̂ and ǫ̂ǫǫt, it may be possible to consistently estimate the structural parameters

of interest by specifying a joint likelihood for It, Ft, and Rt. However, given the presence of

nonlinearities in the model, the likelihood function will be difficult to optimize. Given this

fact, we estimate the structural parameters of interest in equations (3.12) to (3.14) in two

steps after the first stage reduced form estimation. In the second stage, given the estimates
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of the control functions Z̄ ′δ̄δδ + α̂ and ǫ̂ǫǫt, we estimate jointly the structural parameters, Θ2,

of the Innovation equation (3.12) and the Financial Constraint equation (3.13). Then in

the third stage, given the control function and second stage estimates, we the estimate the

R&D equation (3.14).

Estimating the parameters of the second, Θ2, and third, Θ3, stage, given the first stage

consistent estimates Θ̂1, is asymptotically equivalent to estimating the subsequent stage

parameters had the true value of Θ1 been known. To obtain correct inference about the

structural parameters, Θ2 and Θ3, one has to account for the fact that instead of true

values of first stage reduced form parameters, we use their estimated value. In Appendix D

we provide analytical expression for the error adjusted covariance matrix for the estimates

of the structural parameters.

B.1. The Second Stage: Estimation of the Innovation and the Financial Constraint

Equations

Given the modified Innovation equation (3.12) and the modified Financial Constraint

equation (3.13), the conditional log likelihood function for firm i in period t given X, Z, if

the time period t corresponds to CIS3 and CIS3.54, is given by

Lt2(Θ2| ˆ̃α, ǫ̂ǫǫt) = ItFt ln(Pr(It = 1, Ft = 1)) + It(1− Ft) ln(Pr(It = 1, Ft = 0))

+ Ft(1− It) ln(Pr(It = 0, Ft = 1)) + (1− Ft)(1− It) ln(Pr(It = 0, Ft = 0)).

(3.15)

For CIS2.5, since we do not observe whether a firm is financially constrained or not for the

non-innovating firms, for time period t corresponding to CIS2.5, we have

Lt2(Θ2| ˆ̃α, ǫ̂ǫǫt) =

FtIt ln(Pr(It = 1, Ft = 1)) + (1− Ft)It ln(Pr(It = 1, Ft = 0)) + (1− It) ln(Pr(It = 0)).

(3.16)

4For our empirical analysis, as discussed in next Section on data, we use three waves of Dutch Community

Innovation Survey (CIS). For CIS3 and CIS3.5 we observe if the firm is financially constrained for both the

innovating and the non-innovating firms, but for CIS2.5 the information on financial constraint is given

for only the innovating firms.
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In the above two equations

Pr(It = 1, Ft = 1) = Φ2(ϕt, γt, ρζ̃υ̃), Pr(It = 1, Ft = 0) = Φ2(−ϕt, γt,−ρζ̃υ̃),

Pr(It = 0, Ft = 1) = Φ2(ϕt,−γt,−ρζ̃υ̃), Pr(It = 0, Ft = 0) = Φ2(−ϕt,−γt, ρζ̃υ̃),

and Pr(It = 0) = Φ(−γt),

where Φ2 is the cumulative distribution function of a standard bivariate normal, ρζ̃υ̃ is the

correlation of ζ̃t and υ̃t,

γt = (X I′
t γγγ + θ ˆ̃α + Σ̃υǫΣ̃

−1
ǫǫ ǫ̂ǫǫt)

1

συ̃

ϕt = (X F ′
t ϕϕϕ+ λ ˆ̃α + Σ̃ζǫΣ̃

−1
ǫǫ ǫ̂ǫǫt)

1

σζ̃

, (3.17)

and Θ2 = {ϕϕϕ′, λ, Σ̃ζǫ, γγγ
′, θ, Σ̃υǫ, ρζ̃υ̃}

′. The log likelihood of the second stage parameters is

given by

L2(Θ2) =

N
∑

i=1

Ti
∑

t=1

Lit2(Θ2| ˆ̃αi, ǫ̂ǫǫit). (3.18)

It should be noted that all the parameters of the structural equations (3.12) and (3.13)

can only be identified up to a scale, the scaling factor for the financial constraint equation

and selection equation being respectively σζ̃ and συ̃. In what follows, with a slight abuse

of notation, we will denote the scaled parameters of the second stage estimation by their

original notation. Computation of the standard errors of the structural parameters of this

second stage, Θ2, has been discussed in Appendix D.

Now, given the first stage estimates Θ̂1, we can obtain the estimates of the control func-

tions Z̄ ′
iδ̄δδ + α̂i and ǫ̂ǫǫit, which can then be used in the above likelihood function to obtain

consistent estimates for the second stage parameters. The true measure, however, of the

effect of a certain variable, w, on the probability of engaging in innovation or the proba-

bility of being financially constrained is the Average Partial Effect (APE) of a variable. In

Appendix A we show that

∫

∂Pr(It = 1| ˆ̃α, ǫ̂ǫǫt)

∂w
dF ˆ̃α,ǫ̂ǫǫt

and

∫

∂

∂w

(

Pr(It = 1, Ft = 1| ˆ̃α, ǫ̂ǫǫt)

Pr(Ft = 1| ˆ̃α, ǫ̂ǫǫt)

)

dF ˆ̃α,ǫ̂ǫǫt

are the true measure of the effect of w on the probability of being an innovator and the

probability of being an innovator conditional on being financially constrained. We discuss

tests for the estimates of APE in Appendix E.
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B.2. The Third Stage: Estimation of the R&D Switching Regression Model

The structural parameters of interest, Θ3, of the R&D switching regression equation in

(3.14) are estimated in the third stage, which is an extension of Heckman’s classical two

step estimation to multivariate selection problem. Here we are dealing with two kinds of

selection problems: (1) R&D investment conditional on being financially constrained or

not, and (2) R&D investment conditional on being an innovator, where being an innovator

determines if R&D expenditure needs to be declared or not. To consistently estimate the

parameters of equation (3.14), in Appendix D we derive the correction terms that correct

for the bias due to endogenous switching and the bias due to endogenous sample selection.

These correction terms are obtained for each firm-year observation. Adding these extra

correction terms, in addition to the estimates of ˆ̃α and ǫ̂ǫǫt, for each observation, we obtain

consistent estimates of Θ3.

To this effect, consider the following conditional mean:

E(Rt|F
∗
t , I

∗
t > 0, ˆ̃α, ǫ̂ǫǫt) = Ft

(

βf + XR′
t βββ1 + µ1

ˆ̃α + Σ̃η1ǫΣ̃
−1
ǫǫ ǫ̂ǫǫt + E(η̃1t|F

∗
t > 0, I∗t > 0,X,Z)

)

+(1− Ft)

(

XR′
t βββ0 + µ0

ˆ̃α + Σ̃η0ǫΣ̃
−1
ǫǫ ǫ̂ǫǫt + E(η̃0t|F

∗
t ≤ 0, I∗t > 0,X,Z)

)

.

(3.19)

Now, we know that

E(η̃1t|F
∗
t > 0, I∗t > 0, ˆ̃α, ǫ̂ǫǫt) = E[η̃1t|ζ̃t > −ϕt, υ̃t > −γt],

and

E(η̃0t|F
∗
t ≤ 0, I∗t > 0, ˆ̃α, ǫ̂ǫǫt) = E[η̃0t|ζ̃t ≤ −ϕt, υ̃t > −γt],

where ϕt and γt have been defined in (3.17). In Appendix C we show that

E[η̃1t|ζ̃t > −ϕt, υ̃t > −γt] = ση̃1ρη̃1ζ̃C11t + ση̃1ρη̃1υ̃C12t (3.20)

and

E[η̃0t|ζ̃t ≤ −ϕt, υ̃t > −γt] = ση̃0ρη̃0ζ̃C01t + ση̃0ρη̃0υ̃C02t, (3.21)
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where

C11t ≡ φ(ϕt)

Φ

(

(γt−ρ
ζ̃υ̃

ϕt)/
√

1−ρ2
ζ̃υ̃

)

Φ2(ϕt,γt,ρζ̃υ̃)
, C12t ≡ φ(γt)

Φ

(

(ϕt−ρ
ζ̃υ̃

γt)/
√

1−ρ2
ζ̃υ̃

)

Φ2(ϕt,γt,ρζ̃υ̃)
,

C01t ≡ −φ(ϕt)

Φ

(

(γt−ρ
ζ̃υ̃

ϕt)/
√

1−ρ2
ζ̃υ̃

)

Φ2(−ϕt,γt,−ρ
ζ̃υ̃

)
, and C02t ≡ φ(γt)

Φ

(

(−ϕt+ρ
ζ̃υ̃

γt)/
√

1−ρ2
ζ̃υ̃

)

Φ2(−ϕt,γt,−ρ
ζ̃υ̃

)
.

In the above φ is the standard normal density function, Φ the cumulative distribution

function of a standard normal, and Φ2 is the cumulative distribution function of a standard

bivariate normal.

Given estimates of ˆ̃α, ǫ̂ǫǫt, ϕt, γt, and ρζ̃υ̃, we can construct the above control functions,

which control for the bias that arises due to endogeneity of financial constraint faced and

the bias due to endogenous selection. With the above defined, we can now write the R&D

switching equations in (3.14), conditional on Ft, It = 1, X, Z as

Rt = Ft

(

βf + XR′
t βββ1 + µ1

ˆ̃α + Σ̃η1ǫΣ̃
−1
ǫǫ ǫ̂ǫǫt + ση̃1ρη̃1ζ̃C11t + ση̃1ρη̃1υ̃C12t + η

1t

)

+ (1− Ft)

(

X r′
it βββ0 + µ0

ˆ̃α + Σ̃η0ǫΣ̃
−1
ǫǫ ǫ̂ǫǫt + ση̃0ρη̃0ζ̃C01t + ση̃0ρη̃0υ̃C02t + η

0t

)

,

(3.22)

where η
1t

and η
0t

conditional on F ∗
t , I

∗
t , X, Z is distributed with mean zero. With the

additional correction terms – C11, C12, C01, and C02 – constructed for every firm year

observation, the parameters of the R&D switching regression model can be consistently

estimated by running a simple pooled OLS for the sample of selected/innovating firms.

Analytical expression for the error adjusted covariance matrix for the estimates of the the

third state structural parameters, Θ3, has been derived in Appendix D.

To measure the magnitude by which R&D intensity is affected due to the presence of

financial constraint we have to compute the average partial effect (APE) of Ft. For a firm,

i, in time period, t, given Xt = X̄ , where Xt is the union of elements appearing in XR
t , X F

t ,

and X I
t , the APE of financial constraint on R&D intensity is computed as the difference in

the expected R&D expenditure between the two regimes, non-financially constrained and
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financially constrained, averaged over ˆ̃α and ǫ̂ǫǫ. The APE of financial constraint on R&D

expenditure, conditional on It = 1, is given by

∆FE(Rt|X̄ ) =

∫

E(R1t|X̄ , Ft = 1, It = 1, ˆ̃α, ǫ̂ǫǫ)dF ˆ̃α,ǫ̂ǫǫ

−

∫

E(R0t|X̄ , Ft = 0, It = 1, ˆ̃α, ǫ̂ǫǫ)dF ˆ̃α,ǫ̂ǫǫ. (3.23)

In Appendix E we discuss the estimation and the testing of the above measure.

4. DATA AND DEFINITION OF VARIABLES

For our empirical analysis we had to merge two data sets, one containing information

on R&D related variables and the other on the financial status of the firms. The data on

information related to R&D is obtained from the Dutch Community Innovation Surveys

(CIS), which are conducted every two years by the Central Bureau of Statistics (CBS)

of The Netherlands. The Innovation Survey data are collected at the enterprise level.

Information on financial variables is available at the firm/company level, which could be

constituted of many enterprises consolidated within the firm. The financial data, known as

Statistiek Financiën (SF), is from the balance sheet of the individual firms.

A combination of a census and a stratified random sampling is used to collect the CIS

data. A census of large (250 or more employees) enterprises, and a stratified random sample

for small and medium sized enterprises from the frame population is used to construct the

data set for every survey. The stratum variables are the economic activity and the size

of an enterprise, where the economic activity is given by the Dutch standard industrial

classification. For our empirical analysis we use three waves of innovation survey data:

CIS2.5, CIS3, and CIS3.5 pertaining respectively to the years 1996-98, 1998-2000, and

2000-02.

However, since not all enterprises belonging to the firm have been surveyed in the CIS

data the problem when merging the SF data and the CIS data is to infer the size of the

relevant R&D variables for each firm. To do this we use the information on the sampling

design used by CBS.

For any given year, let N be the total population of R&D performing enterprises in the

Netherlands. From this population a stratified random sampling is done. These strata are
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again based on size and the activity class. Let S be the total number of strata, and each

stratum is indexed by s = 1, 2, · · · , S. Then,
∑S

s=1Ns = N , where Ns is the population

size of R&D performing enterprise belonging to stratum s. Let ns be the sample size of

each stratum and let Θs = {1, 2, · · · , i, · · · , is} be the set of enterprises for the sth stratum,

that is |Θs| = ns.

Let x be the variable of interest and xi the value of x for the ith enterprise. The average

value of x for an enterprise belonging to the sth stratum is x̄s = (
∑

i∈Θs
xi)/ns. Now

consider a firm f . Let Nfs be the total number of enterprises belonging to the firm f and

stratum s and nfs be the number of enterprises belonging to firm f and stratum s that

have been surveyed.

Then the estimated value of x for the firm f , x̂f is given by

x̂f =

S
∑

s=1

(Nfs − nfs)x̄s +

S
∑

s=1

nfs
∑

k=1

xfsk, (4.1)

where xfsk is the value of x for the kth enterprise belonging to stratum s and firm f that

has been surveyed, and Nfs − nfs is the number of enterprises of the f th firm in stratum s

that have not been surveyed. It can be shown under appropriate conditions that x̂f is an

unbiased estimator of the expected value of x for firm f 5. Table I below gives, based on

size class and 2 digit Dutch Standard Industry Classification (SBI), the number of strata

between which the enterprises surveyed in the CIS surveys were divided.

For our analysis Nf =
∑S

s=1Nfs was obtained from the Frame Population constructed by

the CBS and nf =
∑S

s=1 nfs was obtained from the CIS surveys. The exact count of firms

for which Nf = nf and for which (Nf − nf) > 0 can be found in Table III. The sample of

firms used in the estimation is, however, much smaller than shown in Table III. The sample

5Proof:

The proof is based on the assumption that the expected value of x is the same for each enterprise in a

particular stratum. Let µxf be the population mean of x for the firm f and let µxs be the population

mean of x for an enterprise belonging to stratum s. Given our assumption, we know that x̄s is an unbiased

estimator of µxs, that µxf =
∑S

s=1
Nfsµxs, and that the expected value of

∑S
s=1

∑nfs

k=1
xfsk, the second

term on the RHS of equation (4.1), is
∑S

s=1
nfsµxs. Taking expectations in (4.1) and substituting the

expected value of E(
∑S

s=1

∑nfs

k=1
xfsk) =

∑S
s=1

nfsµxs and noting that E(
∑S

s=1
nfsx̄s) =

∑S
s=1

nfsµxs,

we get E(x̂f ) = µxf =
∑S

s=1
Nfsµxs.
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TABLE I

Number of Enterprises and Number of Strata

CIS2.5 CSI3 CIS3.5

Total no. of enterprises 13465 10750 10533

Total no. of strata 240 249 280

These figures are from the original/raw data set.

of firms used for the analysis are only those for which we had financial information, that is,

those in the SF data. For these firm we required that at least one of their potentially R&D

performing enterprises be present in the innovation surveys. Enterprises in the innovation

survey belonging to firms not present in the SF data had to be dropped. The percentage of

firms in the sample for which imputation, using equation (4.1), had to be done was 18.06%

in CIS2.5, 24.62% in CIS3 and 23.75% in CIS3.5. The majority of the firms happened to be

single enterprises: 78.97%, 74.01%, and 73.87% respectively for CIS2.5, CIS3, and CIS3.5.

The two variables of interest for which the aggregating exercise in equation (4.1) was

done are the R&D expenditure and the share of innovative sales in the total sales (SINS) of

the enterprise. Here we would like to mention that we do not have any information on these

two variables for those firms that have been categorized as non-innovators. An enterprise

is considered to be an innovator if either one of the following conditions is satisfied: (a) it

has introduced a new product to the market, (b) it has introduced a new process to the

market, (c) it has some unfinished R&D project, and (d) it has begun an R&D project,

and abandoned it during the time period that the survey covers. Given that the criteria,

classifying an enterprise as an innovator, are exhaustive, we, for the purpose of aggregation,

reasonably assumed that if an enterprise meets none of the above criteria, it has no R&D

expenditure and no new products.

We consider a firm to be financially constrained as soon as any one of its enterprises de-

clares to be financially constrained. When Nf > nf , a firm is characterized as an innovator

if one the constituent enterprises surveyed has innovated or if anyone of the enterprises that

have not been surveyed is found in a stratum that is classified as an innovating stratum6,

6An example could help illustrate. Suppose there is a firm that has three enterprises: E1, E2, and E3.

Assume that of the three enterprises only E3 has been surveyed, and has been found not to innovate. Now,

we know to which stratum E1 and E2 respectively belong to. Let E2 belong to the stratum s and E1 to
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where a stratum is defined to be innovative if x̄s > 0.

The total number of employees as a measure of the size of the firm was also constructed

using information from the CIS data and the General Business Register. As far as the

number of employees in a firm is concerned, if all the enterprises belonging to a firm are

surveyed, that is if Nf = nf , then we simply add up the number employees of each of the

constituent enterprises. However, when Nf > nf , for those enterprises that have not been

surveyed we take the mid point of the size class of those enterprises that have not been

surveyed. The size class to which an enterprise belongs to is available from the General

Business Register for every year.

In Table II below we tabulate the number of innovating and non-innovating firms for

each of the three waves, and the number of firms that declare to be financially constrained

in their innovation activities. As can be seen from the table, for CIS2.5 information on

financial constraint is available only for the innovators. It can be noticed that the number

of financially constrained firms is much lower than the number of unconstrained firms.

In our sample we find that the number of financially constrained firms is larger for the

innovating firms than for the non-innovating ones.

As mentioned earlier the CIS survey is conducted every two years. The question on being

innovative or being financially constrained pertains to all the years of the survey. However,

the variables, share of innovative sales in the total sales (SINS) and R&D expenditure are

reported only for the last year. The stock variables – long-term debt, liquidity reserve, assets

of the firms, and the number of employees, indexed t – are the values of the variables as

recorded at the beginning of period t. The flow variables are the observed values as recorded

during period t. R&D expenditure and SINS are reported only for the last year of the

periods that any CIS covers.

Below we provide the definition and the list of the variables that were used in the

empirical exercise.

1. Rt: R&D intensity defined as the ratio of R&D expenditure to total (tangible+ in-

tangible) capital assets

2. Ft: Binary variable equal to one if the firm is financially constrained

stratum s′. If we find that x̄s > 0 and that x̄s′ = 0, we will still regard the firm to be an innovator, with

R&D expenditure x̄s.
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TABLE II

Innovating/Non-Innovating and Financially Constrained/Unconstrained Firms

CIS2.5 (1996-98)

Financially Financially

Constrained Unconstrained Total

Innovators 525 2,422 2,947

Non-Innovators 2,416

Total 5,363

CIS3 (1998-00)

Financially Financially

Constrained Unconstrained Total

Innovators 336 1,508 1,844

Non-Innovators 75 1,504 1,579

Total 411 3,012 3,423

CIS3.5 (2000-02)

Financially Financially

Constrained Unconstrained Total

Innovators 154 1,826 1,980

Non-Innovators 32 2,234 2,266

Total 186 4,060 4,246

These figures are for the data set used in estimation.

In CIS 2.5, non-innovating firms do not report if they are financially constrained.
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3. It: Binary variable equal to one if the firm is an innovator

4. DEBTt: Long-term debt constituted of the book value of long-term liabilities owed to

group companies, members of cooperative society and other participating interests,

plus subordinated loans and debentures

5. LQt: Liquidity reserve including cash, bills of exchange, cheques, deposit accounts,

current accounts, and other short-term receivables

6. DIVt: Dividend payments to shareholders, group companies, and cooperative societies

7. SIZEt: Logarithm of the number of people employed

8. RAINTt: Ratio of intangible assets to total (tangible+ intangible) capital assets

9. SINSt: Share of sales in the total sales of the firm which is due to newly introduced

products

10. CFt: Cash flow defined as operating profit after tax, interest payment, and preference

dividend plus the provision for depreciation of assets

11. MKSHt: Market share defined as the ratio of firms sales to the total industry sales

12. DNFCt: Dummy variable that takes value one for negative realization of cash flow

13. DMULTIt: Dummy that takes value one if a firm has multiple enterprises

14. AGEt: Age of the firm7.

15. Industry dummies

16. Year dummies

To minimize heteroscedasticity we scale long-term debt (DEBTt), cash flow (CFt), liq-

uidity reserve (LQt), and dividend payout DIVt by total capital assets. Henceforth when-

ever we refer to these variables, it would mean the scaled value of these variables.

[Table IV about here]

A. Endogenous Explanatory Variables

The set of endogenous regressors, xt, that appear in the structural equations, and for

which we construct control functions to account for their endogeneity are:

1. Long-term debt (DEBTt)

7We do not the age of the firms that existed prior to 1967 as the General Business Register, from which

we calculated the age of the firms, was initiated in 1967. For such cases we assume that the firm began in

1967.
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2. Liquidity reserve (LQt)

3. Dividend payout (DIVt)

4. Logarithm of the number of people employed (SIZEt)

5. Ratio of intangible assets to total assets (RAINTt)

6. Share of innovative sales in the total sales of the firm (SINSt)

While we know that financial variables, debt, liquidity reserve, and dividends, are en-

dogenously determined, we also test whether size of the firm is endogenously determined

along with financing and innovation decisions. Both AH and CH point out that under

endogenous borrowing constraint, debt and equity value of the firm are together endoge-

nously determined with size of the firm. We take ratio of intangible assets to total assets.

RAINTt as endogenous because it could be determined by the decision to innovate and

investment in R&D.

Share of innovative sales in the total sales of the firm, SINSt, will most likely be en-

dogenous because it could be determined by current investment decision. SINSt is only

observed for innovators. For the purpose of estimating the reduced form equation we assume

that SINSt is zero for the non-innovators. Given that the classification criteria, classifying

firms as innovators, is fairly exhaustive, we believe that this is not a strong assumption.

B. Exogenous Explanatory Variables

The vector of exogenous variables, zt, that appear in the structural and reduced form

equation are:

1. Cash flow of the firm (CFt)

2. Dummy for negative realization of cash flow (DNFCt)

3. Market share of the firm (MKSHt)

4. Age of the firm (AGEt)

5. Dummy that takes value 1 if the firm consists of multiple enterprises (DMULTIt)

6. Industry dummies

7. Year dummies

Cash flow is assumed to be exogenous because cash flow, which as Moyen (2004) points

out is highly correlated with the income shock, is largely driven by exogenous shocks.
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However, it should be pointed out it is exogenous conditional on unobserved heterogeneity,

α̃i. Hence, any component of cash flow that is endogenous to the system of equations

has been accounted for by allowing it to be correlated with the unobserved heterogeneity.

Similarly, while market share, MKSHt, and dummy for multiple enterprise, DMULTIt,

may not be strictly exogenous, they are likely to be given unobserved heterogeneity8.

C. Additional Instruments

Our additional set of instruments, z̃t, needed to identify the structural parameters

through the control functions constructed from the first stage reduced estimates are:

1. Cash flow in period t− 1 (CFt−1)

2. Dummy for negative cash flow (DNFCt−1)

3. Square of cash flow in period t− 1 (CF 2
t−1)

4. Square of cash flow in period t (CF 2
t )

5. Market share in period t− 1 (MKSHt−1)

6. Dummy that takes value 1 if the firm consists of multiple enterprises in period t− 1

(DMULTIt−1)

7. Dummy if the firm existed prior to 1967 (DAGEt)

We include past realization of cash flow in the set of instruments because, as argued

earlier, cash flow is strongly correlated with exogenous revenue shocks experienced by

the firm. To the extent that financing decisions of the firms are state contingent, current

and past realizations will influence all financing decision. For example, AH have shown

that better realization of past revenue shocks imply a higher leverage and long-term debt.

Reddick and Whited (2009) show that saving and cash flow are negatively correlated be-

cause firms optimally lower liquidity reserves to invest after receiving a positive cash flow

shocks. Hence, liquidity holdings of the firm and past level of income shocks are expected to

be correlated. Similarly, a higher dividend payout could be expected with better realization

of past revenue shocks.

8Most paper studying nonlinear panel data models assume all regressors to be exogenous conditional

on unobserved heterogeneity. In this paper we have relaxed this assumption to allow certain variables, xt,

to be correlated with the idiosyncratic component even after having accounted for their correlation with

unobserved heterogeneity.
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It has found that firms with monopoly and those that are multiple enterprise firm are

more likely to engage in innovative activity. Hence, firms that have had a higher degree

of monopoly in the past or have been a multiple enterprise firm in the past could be

expected to have a higher share of innovative sales, SINSt, today, and a higher ratio of

intangible assets to total capital assets, RAINTt. Finally, given that age and size of a firm

are correlated, DAGEt of the firm has been assumed to instrument size. We interact cash

flow and market share in period t− 1 with DMULTIt−1 and DAGEt.

We stress again that variables included in Zt = {z′t, z̃
′
t}

′ may or may not be strictly

exogenous, but, conditional on unobserved individual effects, these variables are unlikely to

be correlated with idiosyncratic component in the structural equations. To the extent that

we take into account the correlation betweeen Zt and α̃i, the presence of these variables in

the specification of the structural equations or as instruments will not lead to inconsistent

results.

5. RESULTS

A. Financing and Innovation Decision

As discussed earlier, in the second stage we jointly estimate the structural parameters

of the financial constraint and the innovation equation. The results of the second stage

estimation results are shown in Table V and Table VI. While Table V has the coefficient

estimates, in Table VI the Average Partial Effects (APE) of the covariates are reported.

In Specification 2 and Specification 3 shown in Table V and VI we do not have dummies

for multiple enterprises in the financial constraint equation, and while the specification for

the innovation equation in Specification 1 and 2 are same, in Specification 3 we remove the

control function/correction term for share of innovative sales.

We begin by discussing the results of the Innovation equation9. We find that firms with

9In the innovation equation, unlike Hajivassiliou and Savignac (2011), we do not include the financial

constraint variable Ft. This is because our aim in this paper is to study innovation and financing decision of

firms unlike Hajivassiliou and Savignac (2011), who look at how financial constraints affect the innovation

of potentially innovating firms. Given their objective, they exclude firms that have no wish to innovate.

Excluding such firms helps them identify the impact of Ft on It, which takes value 1 for firms that innovate

and 0 for those who want to innovate but cannot. In our data set, as discussed earlier, for CIS2.5 we can
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higher long-term debt,DEBT , in their capital structure are less likely to take up innovative

activity. This is consistent with the theoretical prediction, as discussed earlier, that bond

holders are unwilling to hold the higher risks associated with R&D activity, and also with

the findings of empirical papers, such as BFP and others, who find that equity rather than

debt may be more suitable to finance innovative activity.

[Table V about here]

[Table VI about here]

We also find that firms that take up innovative activity maintain higher amount of

liquidity reserve, LQ. Again, as pointed out earlier, because R&D intensive firms behave

as if they faced large adjustment cost, they choose to smooth their R&D spending. This

necessitates that innovative firms maintain a higher level of cash reserve to counter periods

of negative revenue shocks.

As far as dividend pay out is concerned, in Specification 3, where we remove the correc-

tion term for SINS in the innovation equation, we find a significant negative coefficient

for dividends, DIV . We remove the correction term for SINS in the selection because

SINS, which is observed only for the innovators, is not included in the specification for

the innovation equation10. This suggests that firms that pay out dividends are less likely

to innovate. Now, given the nature of R&D activity that makes borrowing costly, internal

funds may be more preferable. Therefore, innovative firms, ceteris paribus, are less likely

to distribute cash as dividends.

We find that large firms are more likely to be ones taking up innovative activity. While the

finding is consistent with the Schumpeterian view that large firms have a higher incentive to

not distinguish between those firms that want to innovate but due to constraints cannot innovate and

those who have no wish to innovate. That is, in CIS2.5 only innovators report if they are financially

constrained. Hence in our data set we cannot identify if innovation is hampered due to the presence of

financing constraints. Moreover, our aim is to study how financing and innovation choices are related and

how Pr(I = 1|F = 1) and Pr(I = 1|F = 0) changes with the financing policy of firms with different

characteristics.
10As stated earlier, since SINS is not observed for non-innovators, we assumed SINS to be zero for the

non-innovators when estimating the system of reduced form equation. Therefore, like SINS, the correction

term for SINS will be highly correlated with I, the decision to innovate. This could be the reason for the

very high significance of correction term/control function for SINS in Specification 1 and Specification 2.
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engage in innovative activities because they can amortize the large fixed costs of investing

by selling more units of output, we also know that large firms, as shown in AH and CH,

are less likely to face constraint in accessing external capital and therefore more likely to

engage in R&D activity.

We find that younger firms are more innovative. This corroborates with the findings of

other studies that find that young firms in their bid to survive and grow take up more in-

novative activity. Entry (see Audretsch, 1995; Huergo and Jaumandreu, 2004) is envisaged

as the way in which firms explore the value of new ideas in an uncertain context. Entry,

the likelihood of survival and subsequent growth are determined by barriers to survival,

which differ by industries according to technological opportunities. In this framework entry

is innovative and increases with uncertainty. Also, firms with large market share, MKSH ,

are found to be engaging more in innovative activity. This result confirms the fact that to

prevent entry of potential rivals a firm is more incited to innovate if it enjoys a monopoly

position, as has been argued in the Schumpeterian tradition.

The ratio of intangible assets to total capital assets, RAINT , has been found to be

significantly positive in the innovation equation. Since firms that engage in innovative

activity have more intangible assets in their asset base, this should be expected. Besides,

as Raymond et al. (2010) point out, there is persistence in innovation activity of a firm, or

in other words, innovation decision exhibits a certain degree of path dependency. To the

extent that RAINT is the outcome of past innovation activity, it captures the persistence

in the innovation decision of the firm. We also find that firms that have many enterprises

consolidated within them, DMULTI, are more likely to be innovative. Cassiman et al.

(2005) argue that entreprises merged or acquired may realize economies of scale in R&D,

and therefore have bigger incentive to perform R&D than before. Also, when merged entities

are technologically complementary they realize synergies and economies of scope in the

R&D process through their merger, and become more active R&D performers after being

merged or acquired.

We also find that factor loading, θ, which is the coefficients of Z̄ ′
iδ̄δδ+ α̂i in the Innovation

equation is significant. This and the fact that the control functions to correct for the bias

in the structural equations due to the presence of endogenous regressors are all significant

suggest a strong simultaneity in the decision to innovate and the financing choices made.
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B. Financial constraint and Innovation

In this subsection we discuss the specification and the results of the Financial Constraint

equation. Here we will also discuss how financing and innovation decisions under financial

constraints vary over the distribution of firm characteristics.

To begin with, as discussed earlier, given the financial state of a firm, higher expected

profitability from R&D investment could lead to a firm being financially constrained. There-

fore we need to control for the investment opportunity of the firm. To this end, we include

cash flow of the firm in specification for Financial Constraint equation. However, the re-

alized cash flow of the firm may not be only from the firm’s R&D activity. A measure

to control for the investment opportunity for R&D related activity should be based on a

measure such as Tobin’s “q” for R&D related activity or cash flows that result from R&D

output. However, in the absence of any such measure, we use the share of innovative sales

in the total sales of the firm, SINS, which can potentially signal demand for R&D related

activity. Besides, Moyen (2004) finds that Tobin’s “q” is a poor proxy for investment op-

portunities, cash flow is an excellent proxy, and that cash flow is an increasing function

of the income shock. We find that both CF and SINS have a significant positive sign

in the Financial Constraint equation11. This suggests that both cash flow and the share

of innovative sales are correlated with the R&D investment opportunity set and, ceteris

paribus, are indicative of the financing gap that firms face. We note here that while CF ,

which is largely driven by exogenous shocks and is exogenous conditional on α̃, SINS is

an outcome of current and past R&D efforts. Therefore we endogenise SINS. The coef-

ficient of the control function for SINS suggest that financial constraints and SINS are

determined endogenously.

In our specification we also have a dummy for negative cash flow, DNCF , which is found

to have a significantly positive coefficient. It seems that variations over time from negative

11While it may be desirable to include a measure of expected profitability from R&D investment in the

Innovation equation, we do not include cash flow, CF , and share of innovative sales in the total sales,

SINS, in the Innovation equation. We do not include SINS because it is observed only for innovators.

We do not include cash flow in the Innovation equation because, as explained in section 4, in our data

the decision to innovate precedes the realization of cash flow. Hence, cash flow can not identify a firm’s

decision to innovate.
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to positive cash flow are more indicative of positive “shifts” in the supply of internal equity

finance that relax financial constraint than variation in cash flow itself.

For all the specifications we obtain a significant positive sign on debt to assets ratio,

DEBT , indicating that highly leveraged firms are more likely to be financially constrained.

This is consistent with the prediction in AH and CH, who show that firms with higher long-

term debt in their capital structure are more likely to face tighter short-term borrowing

constraint. This could also reflect the debt overhang problem studied in Myers (1977). It

is also possible that, ceteris paribus, firms with higher leverage face a threat of default and

therefore a higher premium on additional borrowing due to bankruptcy costs. Also, as can

be evinced from the APE’s in Table VI, for an average firm, the likelihood of experiencing

higher financial constraint is quite high for a firm that has higher long-term debt in its

capital structure.

We find that firms that maintain higher liquidity reserve, LQ, are less likely to be

constrained. Gamba and Triantis (2008) point out that cash balances, which give financial

flexibility to firms, are held when external finance is costly and/or income uncertainty is

high. With higher liquidity reserve firms can counter bad shocks by draining it. Hence,

when a firm is not sure about a steady supply of positive cash flow it is likely to practice

precautionary savings to reduce its risks of being financially constrained during periods of

bad shocks. Besides, R&D intensive firms behave as if they face large adjustment costs,

and therefore chose to smooth their R&D spending. Hence, the need of financing flexibility

could be important for innovation firms.

Our results suggest that dividends DIV paying firms are less likely to be financially

constrained. HW also find low dividend paying firms face high costs of external funds.

Besides, AH and CH show that when a firm faces borrowing constraint, and all profits are

reinvested or paid to the lenders so that the burden of debt is reduced and the firm grows

to its optimal size, no dividends are paid. Since the APE of dividends, as shown in Table

V, is very high, our results lend credence to papers that employ dividend pay out as a

criterion for classifying firms as financially constrained or unconstrained.

We find that large and mature firms are less likely to be financially constrained. HW

also find large differences between the cost of external funds for small and large firms.

AH and CH show that over time as the firm pays off its debt, it reduces its debt burden
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and increases its equity value. This increase in the value of equity reduces the problem

of threat of default in AH and the problem of moral hazard in CH, with the result that

the extent of borrowing constraint decreases, the advancement of working capital from the

lender increases and the firm grows in size. Consequently larger and mature firms are less

likely to face financial constraint. On the other hand, old firms having survived through

time have built a reputation over the years and are therefore less likely to face adverse

information asymmetry problems as compared to young firms.

We include the ratio of intangible assets to total capital assets, RAINT , in the specifi-

cation for financial constraint. Since secondary markets for intangible asset is fraught with

more frictions and generally does not exist, firms with a higher percentage of intangible as-

sets have a lower amount of pledgable support to borrow, and are thus expected to be more

financially constrained. Almeida and Campello (2007) also find that firms with lower lev-

els of asset tangibility are more financially constrained, and that investments in intangible

assets do not generate additional debt capacity. Our results suggest that firms that have a

higher percentage of intangible assets are indeed more likely to be financially constrained.

Since a large part of the capital of an R&D intensive firm resides in the knowledge base

of the firm, which is intangible, innovating and R&D intensive firms, as can be evinced in

Table IV, have a higher intangible asset base. Given this fact, innovating firms are thus

more likely to face financial constraint.

We do not, however, find firms with a high market share, which serves as a proxy

for monopoly power, and firms with multiple enterprises to be significantly less or more

financially constrained.

In Table V we find λ, which are the coefficients of Z̄ ′
iδ̄δδ + α̂i in the Financial Constraint

equation and all correction terms to be significant, suggesting that the share of innovative

sales, long-term debt, liquidity reserve, dividends, size, and the ratio of intangible assets

to total assets are endogenously determined.

In Figure 1 we plot the average partial effect of long-term debt on the propensity to

innovate conditional on being financially constrained

(

∫ ∂Pr(I=1|F=1, ˆ̃α,ǫ̂ǫǫ)
∂DEBT

dF ˆ̃α,ǫ̂ǫǫ

)

and con-

ditional being financially unconstrained

(

∫ ∂Pr(I=1|F=0, ˆ̃α,ǫ̂ǫǫ)
∂DEBT

dF ˆ̃α,ǫ̂ǫǫ

)

. We plot the APE of

DEBT against size, age and leverage. These plots of APE against age, size and leverage
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are based on Specification 2 of the second stage estimation. The APE plots based on other

specifications are almost exactly same.

[Figure 1 about here]

We find that conditional on not being financially constrained, the APE of DEBT on in-

novation to be negative and almost constant over the distribution of size, age and leverage.

In contrast, the APE of DEBT on innovation conditional on being financially constrained

varies widely over the distribution of age, size and leverage, and is less negative and some-

time positive when compared to the APE of DEBT on innovation conditional on not being

financially constrained. This indicates that under no financial constraint innovative firms,

regardless of size, maturity, and existing level of debt, would almost uniformly be less

inclined to innovate by financing themselves with debt. In other words, when borrowing

constraint do not bind and debt is accessible on easier terms, and if for some reason the

firm has to finance itself with debt, then it is very unlikely the debt financing will be used

for engaging in or starting an innovative activity. The following scenario can elucidate this:

suppose there is a profitable firm, that has a substantial amount of cash holdings, that it

can distribute to its shareholders. Being profitable, it is likely that it has a rather large

debt capacity and suppose its existing debt levels are such that it has not reached its debt

capacity. In such a situation, the firm can distribute cash and borrow more to finance its

investment. However, if it decides to innovate or spend more on R&D related activity, then

as our results suggests, it would be less inclined to distribute cash as dividends, be more

inclined to maintain a high cash reserves and not borrow more, in other words, finance

itself with cash flow or retained earnings. This is in congruity with the findings of BFP,

who show that in the absence of constraint, when internal and external equity are easily

available, the preferred means for financing innovation is not debt.

When financial constraints set in, innovating firms, though still averse to debt financing,

do innovate by borrowing as is reflected in the relatively higher change in propensity or

willingness to innovate by increasing DEBT as compared to when firms are unconstrained.

Now, under financial constraint, as Lambrecht and Myers (2008) explain, there can be two

possibilities: (a) postpone investment or (b) borrow more to invest. Given that most of the

firms that report being financially constrained are innovators, it is true that these firms

have not entirely abandoned innovative activity. Therefore, the fact that the change in
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propensity to innovate by increasing DEBT is relatively higher than under no financial

constraint, suggests that some projects might have been valuable enough to be pursued by

borrowing, even if that implied a higher cost.

However, under financial constraint, the change propensity to innovate by increasing

DEBT varies with size, age, and existing leverage. This is because under financial con-

straint, the relative cost of, or access to, external financing depends on firm’s age, size, and

the existing levels of debt.

Consider the plot of APE of DEBT on innovation conditional on financial constraint

against size of the firm. We see that under financial constraint large firms are more likely to

innovate by increasing their leverage as compared to small firms. This is because as firms

become large the extent of constraint weakens, and if some R&D projects are valuable

enough to be pursued, large firms have more leeway to finance their project by borrowing

than small firms. Both AH and CH show that a firm with a given need of external financing

to fund an initial investment and working capital, for a given level of growth opportunity

and profitability, over time, during which firms face borrowing constraint and dividend

payment is restricted, firms by paying off debt reduces its debt and increases its equity

value. As the firm increases its equity value, with the result that the problem of threat

of default in AH and the problem of moral hazard in CH decreases, the advancement of

working capital from the lender increases and the firm grows in size. Thus if a large firm

sees an investment opportunity in some R&D project it will be in a better position to

borrow than a small firm. Also, HW find that large firms face lower bankruptcy and equity

flotation costs as compared to small firms, which gives an advantage to large firms when

it comes to borrowing for R&D. While the above argument explains, through the role of

finance, why, for a given investment opportunity, large firms under financial constraint are

more likely to be willing to engage in innovation by borrowing more, it is also true that

large firms, by Schumpeterian argument, have a higher incentive to innovate, and, given

that large firms have a higher stock of knowledge, they are able to find more valuable R&D

investment projects.

Incentives to innovate also explain the plot of APE of DEBT on the conditional prob-

ability to innovate against age of the firms. We know that even though younger firms are

more likely to be financially constrained, it is the young firms that are more likely to take
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up innovative activity. This is because, as discussed earlier, survival and subsequent growth

of young firms, especially those that are in the high-tech sector, depend on their innova-

tion. Hence, under financial constraint young firms are more willing to finance themselves

by increasing their DEBT than matured firms. Consequently, we find the willingness to

innovate by increasing DEBT of young firms is higher compared to a matured firm. This

also makes the young firms more prone to default as discussed in CQ and more likely to

be financially constrained, which our results too suggests. However, the difference in APE

of DEBT on innovation conditional on being financially constrained for young and old is

not large as compared to the same for small and large firms. This could be due to the fact

that once conditioned on size, here at the mean value of all firm-year observations, APE

of DEBT on engaging in innovation does not vary much with age.

Lastly, under financial constraint, we find that change in propensity to innovate by

increasing DEBT declines with higher leverage, which only shows that, ceteris paribus,

for reasons stated earlier, the borrowing constraint get tighter with higher long-term debt in

the capital structure, and the firm becomes more reluctant to engage in innovative activity

by increasing long-term debt.

C. Financing Constraints and R&D Investment

In the third stage we estimate the R&D switching regression model, given in equation

(3.22), to assess the impact of financial constraint, as reported by the firms, on R&D

investment. The distinguishing feature of our R&D model is that it takes into consideration

the fact that R&D investment is determined endogenously along the decision to innovate

and other financial choices. To the extent that the latent variable, F ∗
t , underlying Ft reflects

high premium on external finance and the high financing need of firms, the switching

regression model for R&D investment allows us test whether financing frictions affect R&D

activity adversely.

[Table VII about here]

The results of the third stage switching regression estimates are presented in Table VII.

The additional correction terms – C11, C12, C01, C02 – that correct for the bias that can

arise due to endogeneity of selection, It, and financial constraint, Ft, are constructed out
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of the estimates of the Specification 2 of the second stage estimates. Results of the third

stage that are based on the other specification of the second stage estimates are almost

exactly the same, the coefficients differing at the third or fourth decimal places. The results

in Table VI has two specifications; in Specification 2 the correction term for size, not being

significant in Specification 1, has been dropped.

In order to see the effect of financial constraint, Ft, on R&D investment, we have to fix

the firm’s investment opportunity. Since we do not have any information on the market

valuation of the firms, we can not construct average “q” for our firms or any such measure

related to the firm’s R&D investment. Hence, for reasons stated in Section 5.2, where we

discussed the results of the second stage estimation, we include cash flow, CF , and share

of innovative sales, SINS, which are indicative of demand signals and are thus correlated

with the R&D investment opportunity set.

The specification for the R&D equation does not include any financial state variables

such as long-term debt or cash reserves. This is because in the structural model for R&D

investment, R&D investment is determined only by the degree of financial constraint a firm

faces and the expected profitability from R&D investment. Therefore, it seems unlikely that

leverage and cash holdings will have an independent effect, other than through the financial

constraint affecting the firm. Now, we know that conditional on control functions, ˆ̃αi and

ǫ̂ǫǫit, the financial state variables become exogenous to Innovation, Financial Constraint, and

R&D investment. Hence, excluding the financial variables from the R&D equation helps

us to identify the parameters of the R&D equation when going from the second and the

third stage. This is similar to the exclusion restriction required in the Heckman two-step

sample selection model.

Now, even though cash flow turns out to be significantly positive and larger for the set of

financially constrained firms as compared to those that are not, a test for the existence of

financial frictions in our model is not predicated on sensitivity of R&D investment to cash

flow for constrained and unconstrained firms, but through the test of the effect of reported

financial constraint on R&D investment. While sensitivity of R&D investment to cash flow

can indicate the existence of financing frictions, as BFP claim, it could be possible that

cash flow are correlated with the R&D investment opportunity set and provide information

about future investment opportunities, hence, R&D investment-cash flow sensitivity may
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equally occur because firms respond to demand signals that cash flow contain. Besides,

SINS, which we include in the specification to control for future expected profitability, may

not perfectly control for the firm’s R&D investment opportunity, giving predictive power

to cash flow. Moyen (2004) too finds that cash flow is an excellent proxy for investment

opportunity, and that cash flow is an increasing function of the income shock. HW discuss

mechanisms, that are related to costs of issuing new equity, bankruptcy costs, and curvature

of profit functions, that drive investment-cash flow sensitivity. However, it is beyond the

scope of this paper to test for exact mechanism that drives the results on R&D investment-

cash flow sensitivity across constrained and unconstrained firms.

We find that firms whose share of innovative sales, SINS, is high are more likely to be

R&D intensive. This suggests that the share of innovative sales is also indicative of demand

signals for R&D activity. This finding is in line with stylized facts studied in KK that more

innovative firms have higher R&D intensity. However, the difference, though positive, in

the size of the coefficients of SINS across constrained and unconstrained firms is not high.

We also find that SINS is endogenous, as is reflected in the significance of correction term

for SINS.

Here, we want to test whether financing frictions, as summarized by Ft, adversely affects

a firm’s R&D investment. In Specification 2, where the correction term for SIZE has been

dropped, we find that the coefficient of Ft is significantly negative. Now, while the SIZE

of the firm turns out to be endogenous to the decision to innovate, as can be evinced from

the results of the second stage regression, it seems that SIZE, as reflected in Specification

1 of Table VI, conditional on unobserved heterogeneity α̃i, is exogenous to the amount

invested in R&D. This could be either because the additional correction terms – C11, C12,

C01, C02 – that take in account the endogeneity of the decision to innovate also accounts

for the endogeneity of SIZE. It could also reflect the fact that R&D investment, which is

a fraction of total investment, affects SIZE of the firm in a predetermined way. However,

what does not turn out significant is the APE of financial constraint on R&D intensity,

∆FE(Rit|X̄ ), defined in equation (3.23).

The other variables included in the specification are SIZE,MKSH , AGE, andDMULTI

that takes value 1 if the number of enterprises consolidated within a firm is more than one.

We find that even though large firms are more likely to engage in innovative activity,
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among the innovators smaller firms invest relatively more in R&D than larger firms. This

finding is contrary to KK who model firm dynamics with R&D and where R&D intensity

is independent of firm size. This is because KK in their model do not consider the financing

aspect of R&D. The finding that smaller firms are more R&D intensive could be because,

as has been argued in CQ and Gomes (2001), of the fact that smaller firms have a higher

Tobin’s “q” than large firms, which can even be true of R&D capital. Thus smaller firms

in their bid to grow exhibit risky behavior in terms of investment in R&D. Also, for larger

firms investing as much as or proportionately more in R&D than smaller firms would imply

subjecting themselves to higher risk. This is because large firms, as argued in CQ, oper-

ating on a larger scale are more subject to exogenous shocks, and tying up more capital,

or in proportionate to size, in a risky venture as R&D can potentially make large firms

more susceptible to default. This is specially true when the price process of R&D output is

correlated with the output of the existing operation of the firm. Thus, given the fact that

R&D capital is highly intangible, which lacks second hand market, and with decreasing

returns to R&D, investing in R&D proportionate to size or more would imply making itself

more prone to default. We also find that for a given SIZE, a constrained firm will invest

less in R&D.

Young firms are found to be more R&D intensive, and as we saw earlier, are also more

likely to engage in innovative activity as compared to mature firms. We also find that for

a given age, constrained firms invest less compared to unconstrained firms. In our sample

we find that constrained firms with a large market share, MKSH , invest more in R&D,

but market share does not have any explanatory power for unconstrained firms. In another

set of regression, where we had removed DMULTI from the specification we did find a

marginally significant positive sign for market share among the unconstrained firms, but

the comparison of the size and the significance of the coefficients across the two regimes

remained the same. Similar to the result on innovation we find that firms that have a

number of enterprises consolidated within them, DMULTI, are more R&D intensive.

In our analysis we find that the correction term for long-term debt and dividends are

significant for financially constrained firms but not for the unconstrained ones, suggesting

that financing with long-term debt and dividend payout are determined endogenously with

R&D investment for constrained firms but not for the unconstrained ones. This is consistent
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with the results of the some of the papers, cited above, that model endogenous borrowing

constraint, firm investment, and firm dynamics. We find that the control function for

liquidity reserve is significant for the unconstrained firms but not for the constrained ones.

In another set of regression, where we had removed DMULTI from the specification we

found a significant sign for the control function of liquidity reserve for the constrained

firms. This finding suggests that R&D investment and cash retention along with other

financial decision are endogenous. This is in line with the findings of Gamba and Triantis

(2008) where they analyze optimal liquidity policies and their resulting effects on firm

value. In their model the decision on investment, borrowing and cash retention/distribution

represent endogenous response to costs of external financing, the level of corporate and

personal tax rates that determine the effective cost of holding cash, the firm’s growth

potential and maturity, and the reversibility of capital.

While the significance of individual control functions correcting for endogeneity of finan-

cial state variables differ across constrained and unconstrained firms we find that Z̄ ′
iδ̄δδ+ α̂i

is significant across both the regimes, suggesting overall a strong simultaneity in R&D

investment and financial choices. Besides, we find that the additional correction terms –

C11, C12, C01, C02 – that take in account the endogeneity of the decision to innovate and

the financial constraint faced are also significant.

6. CONCLUDING REMARKS

The main objective of this paper was to empirically study how incentives to innovate

interact with financing frictions, frictions that assume a special status given the risky and

idiosyncratic nature of R&D and innovative activity. We focused on (I) the firms’ decision

to innovate and the financial constraint faced given the endogenous financial choices made

by the firms. Then conditional on financial choices made, the decision to innovate, and the

constraint faced we tried to determine (II) how financial constraints affect R&D investment.

To the above mentioned end, we presented an empirical strategy to estimate a fully

specified model of endogenous R&D investment, endogenous financial constraint, endoge-

nous decision to innovate, and endogenous financial choices made. The strategy entailed

estimating in three steps (1) a system of structural equations pertaining to – (a) a model

for the decision to innovate, where we try to explain how incentives to innovate are shaped



44

(b) a model for financial constraint, where we try to explain why certain firms report they

are financially constrained, and (c) a model for R&D investment, where we try to assess

the impact of financial constraint on R&D investment – and (2) a system of reduced form

equations of financing choice and other endogenous variables. The structural part (I) of

the analysis was carried out conditional on the first stage reduced form estimation, and

part (II) was done conditional on the first and second stage estimates.

Our methodology combined the method of “correlated random effect” and “control func-

tion” to account for unobserved heterogeneity and endogeneity of regressors in the struc-

tural equations. We believe that the estimation technique is new to the literature and solves

the much discussed endogeneity problem in empirical corporate finance.

From the estimates of the second stage, where we estimated jointly the probability of

being an innovator and the probability of being financially constrained, conditional on

endogenous financial choices, we could garner that debt is not the preferred means of

external finance for firms engaging in R&D activity, and that a highly leveraged firm is

more likely to be financially constrained. We found that large and young firms, and those

enjoying a higher degree of monopoly are more likely to be innovators. Also, firms that

have many enterprises consolidated within them are more likely to be innovators. We found

that small and young firms and firms with lower collateralizable assets are more likely to

be financially constrained. Besides, the analysis also revealed that the decision to engage

in R&D activity, the various financial choices, and the financial constraint faced are all

endogenously determined.

Interestingly, we found that under no financial constraint, the marginal propensity to

innovate with respect to leverage is lower as compared to a situation in which firms find

themselves financially constrained. Also, though the marginal propensity to innovate under

no financial constraint, barely varies with firm characteristics such as maturity, size and

leverage, under financial constraint the propensity to innovate with respect to leverage

varies with the distribution of firm characteristics. The above implies that when a firm is

not financially constrained, regardless of its characteristic, it will be unwilling to engage

in innovative activity by raising debt. On the other hand under constraint, even though

on average debt it not a preferred means to finance innovative activity, firms do show a

propensity to engage in innovative activity by raising debt. However, this propensity is



45

influenced both by the incentives to innovate and the capacity to raise debt; both of which

vary with firm characteristics. These findings draw our attention to the fact that innovation

and financing policy are not independent of firms dynamics of survival, exit, and growth.

The results of the third stage R&D switching regression imply that financial constraint

do adversely affect R&D investment. We found that small, young, and firms with multiple

enterprises are more R&D intensive. However, for a given size and age, the financially con-

strained ones invest less, which again shows how financing frictions condition firm dynamics

that are brought about through R&D investment. Besides, our analysis also showed that

R&D investment and financing decisions are determined simultaneously. Finally, among

others, one of the aims of this paper has been to gauge the magnitude of the impact

of financial constraint. However, since the measure of the magnitude is not statistically

significant we can not assert this finding.

These results underscore the fact that capital-market imperfections do affect the incen-

tives to innovate, and the interaction between financing frictions and innovation is not

uniform across firm characteristics. Our results therefore, taken together, point towards

the fact that financing frictions that affect innovation and R&D activity also affect firm

dynamics. While these findings are consistent with some of the empirical and theoretical re-

sults that seek to explain the implication of financing frictions and firm dynamics, none, to

our knowledge, has explored the implications of innovation and its interaction with financ-

ing frictions in determining firm dynamics. On the other hand while models in industrial

organization do study firm and industry dynamics where R&D and the stochastic nature

of innovation drive the dynamics, the financial aspect and its interaction with innovative

activity is found lacking. Our results suggest that future work in this area is needed.

REFERENCES

Aboody, David, and Baruch Lev. 2000. Information asymmetry, R&D, and insider gains. Journal of

Finance 55:2747 – 2766.

Albuquerque, Rui, and Hugo A. Hopenhayn. 2004. Optimal lending contracts and firm dynamics. Review

of Economic Studies 71:285–315.

Almeida, Heitor, and Murillo Campello. 2007. Financial constraints, asset tangibility, and corporate in-

vestment. Review of Financial Studies 20:1429 – 1460.

Audretsch, David B. 1995. Innovation and Industry Evolution. MIT Press, Cambridge, Massachusetts.



46

Bayer, Christian. 2006. Investment dynamics with fixed capital adjustment cost and capital market im-

perfections. Journal of Monetary Economics 53:1909–1947.

—. 2008. On the interaction of financial frictions and fixed capital adjustment costs: Evidence from a

panel of german firms. Journal of Economic Dynamics and Control 32:3538–3559.

Berk, Johnathan B., Richard C. Green, and Vasant Naik. 2004. Valuation and return dynamics of new

ventures. Review of Financial Studies 17:1–35.

Biørn, Erik. 2004. Regression systems for unbalanced panel data: A stepwise maximum likelihood proce-

dure. Journal of Econometrics 122:281–291.

Blundell, Richard, and James Powell. 2003. Endogeneity in nonparametric and semiparametric regres-

sion models. In Advances in Economics and Econonometrics: Theory and Applications, Eighth World

Congress, Vol. II, edited by M. Dewatripont, L. P. Hansen, and S. J. Turnovsky. Cambridge: Cambridge

University Press.

Brown, James R., Steven M. Fazzari, , and Bruce C. Petersen. 2009. Financing innovation and growth:

Cash flow, external equity, and the 1990’s R&D boom. Journal of Finance 64:151–185.

Brown, James R., Gustav Martinsson, and Bruce C Petersen. 2012. Do financing constraints matter for

R&D? European Economic Review 58:1512–1529.

Carpenter, Robert E, and Bruce C Petersen. 2002. Capital market imperfections, high-tech investment,

and new equity financing. Economic Journal 112:F54–F72.

Cassiman, Bruno, Massimo Colombo, Paola Garrone, and Reinhilde Veugelers. 2005. The impact of M&A

on the R&D process. Research Policy 34:195–220.

Chan, Louis K. C., Josef Lakonishok, and Theodore Sougiannis. 2001. The stock market valuation of

research and development expenditures. The Journal of Finance 56:24312456.

Clementi, Gian L., and Hugo A. Hopenhayn. 2006. A theory of financing constraints and firm dynamics.

The Quarterly Journal of Economics 121:229–265.

Cooley, Thomas F., and Vincenzo Quadrini. 2001. Financial markets and firm dynamics. American

Economic Review 91:1286–1310.

Cooper, Russell W., and John C. Haltiwanger. 2006. On the nature of capital adjustment costs. Review

of Economic Studies 73:611–633.

Fazzari, Steven M., Robert G. Hubbard, and Bruce C. Petersen. 1988. Financing constraints and corporate

investment. Brookings Papers on Economic Activity 1:144–195.

Gale, Douglas, and Martin Hellwig. 1985. Incentive compatible debt contracts: The one period problem.

Review of Economic Studies 52:647–663.

Gamba, Andrea, and Alexander Triantis. 2008. The value of financial flexibility. Journal of Finance

63:2263–2296.

Gomes, Joao F. 2001. Financing investment. American Economic Review 91:1263–1285.

Gomes, Joao F., Amir Yaron, and Lu Zhang. 2006. Asset pricing implications of firms’ financing constraints.

Review of Financial Studies 19:1321–1356.



47

Hajivassiliou, Vassilis, and Frédérique Savignac. 2011. Novel approaches to coherency conditions in LDV

models with an application to interactions between financing constraints and a firm’s decision and ability

to innovate. lse discussion papers.

Hall, Bronwyn, and Josh Lerner. 2010. The financing of R&D and innovation. In Handbook of the

Economics of Innovation, edited by B. H. Hall and N. Rosenberg. Cambridge, forthcoming: Cambridge

University Press.

Hennessy, Christopher A, and Toni M. Whited. 2007. How costly is external financing? evidence from a

structural estimation. Journal of Finance 62:1705–1745.

Holmstrom, Bengt. 1989. Agency costs and innovation. Journal of Economic Behavior and Organization

12:305–327.

Huergo, Elena, and Jordi Jaumandreu. 2004. How does probability of innovation change with firm age?

Small Business Economics 22:193–207.

Kaplan, Steven N., and Luigi Zingales. 1997. Do investment-cash flow sensitivities provide useful measures

of financing constraints? Quarterly Journal of Economics 112:169–215.

Klepper, Steven, and Peter Thompson. 2006. Submarkets and the evolution of market structure. RAND

Journal of Economics 37:861–886.

Klette, Tor J., and Samuel S. Kortum. 2004. Innovating firms and aggregate innovation. Journal of

Political Economy 112:986–1018.

Lambrecht, Bart M., and Stewart C. Myers. 2008. Debt and managerial rents in a real-options model of

the firm. Journal of Financial Economics 89:209–231.

Leland, Hayne E., and David H. Pyle. 1977. Informational asymmetries, financial structure, and financial

intermediation. Journal of Finance 32:371–387.

Moyen, Nathalie. 2004. Investment-cash flow sensitivities: Constrained versus unconstrained firms. Journal

of Finance 69:2061–2092.

Myers, Stewart C. 1977. Determinants of corporate borrowing. Journal of Financial Economics 5:147–175.

Papke, Leslie E., and Jeffery M. Wooldridge. 2008. Panel data methods for fractional response variables

with an application to test pass rates. Journal of Econometrics 145:121–133.

Raymond, Wladimir, Pierre Mohnen, Franz C. Palm, and Sybrand Schim van der Loeff. 2010. Persistence

of innovation in dutch manufacturing: Is it spurious? Review of Economics and Statistics 92:495–504.

Reddick, Leigh A., and Toni M. Whited. 2009. The corporate propensity to save. Journal of Financial

Economics 64:1729–1766.

Roberts, Michael R., and Toni M. Whited. 2010. Endogeneity in empirical corporate finance. In Handbook

of the Economics of Finance, edited by George Constantinides, Milton Harris, and Rene Stulz, vol. 2.

Elsevier, Amsterdam.

Semykina, Anastasia, and Jefferey M. Wooldridge. 2010. Estimating panel data models in the presence of

endogeneity and selection. Journal of Econometrics 157:375–380.

Titman, Sheridan, and Roberto Wessels. 1988. The determinants of capital structure choice. Journal of



48

Finance 43:1–19.

Whited, Toni M. 2006. External finance constraints and the intertemporal pattern of intermittent invest-

ment. Journal of Financial Economics 81:467–502.

Whited, Toni M., and Guojun Wu. 2005. Financial constraints risk. Review of Financial Studies 19:531–

559.



49

TABLE III

Total number of enterprises, Nf , and number of enterprises surveyed within a firm, nf

The table illustrates the number of firms, in each of the three CIS waves, for which the number of

number of enterprises surveyed is equal to the number of enterprises present in the firm, Nf = nf , and

the number of firms, for which the number of enterprises present in the firm exceeds the number of

enterprises surveyed. These figures pertain to the CIS data set prior to merging with the SF data set.

Since not all the CIS firms are in the SF data set, the CIS data used for estimation after cleaning is a bit

less than half the size of the original data set.
CIS2.5 CSI3 CIS3.5

No. of firms for which No. of firms for which No. of firms for which

Nf Nf = nf Nf > nf Nf Nf = nf Nf > nf Nf Nf = nf Nf > nf

1 9400 0 1 6155 0 1 7096 0

2 151 1255 2 67 823 2 137 978

3 20 608 3 4 424 3 24 553

4 3 316 4 3 237 4 2 290

5 3 247 5 2 108 5 222

6 149 6 115 6 122

7 107 7 48 7 105

8 60 8 77 8 50

9 2 93 9 58 9 77

10 83 10 39 10 82

11 106 11 63 11 50

12 49 12 39 12 58

13 43 13 15 13 49

14 59 14 50 14 46

15 46 15 17 15 25

16 31 16 28 16 51

17 62 17 15 17 15

18 36 18 26 18 55

19 37 19 13 19 8

20 29 20 21 20 28

21 13 21 2 21 43

22 23 22 27 22 36

23 15 24 5 23 18

25 34 25 9 24 25

26 46 26 8 25 11

27 4 27 21 27 17

29 14 28 13 28 19

30 14 29 8 29 11

31 18 30 8 30 15

32 15 31 3 31 7

33 11 32 16 32 16

34 18 34 22 33 25

37 15 40 10 37 21

38 15 45 14 38 13

43 15 48 18 39 20

44 17 50 19 40 9

45 14 57 16 41 10

48 20 60 16 46 15

49 22 50 16

51 28 53 47

56 19 55 16

66 33

85 41
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TABLE IV

Means of Variables for Innovators and Non-Innovators

CIS2.5 CSI3 CIS3.5

Innovator Non-Innovator Innovator Non-Innovator Innovator Non-Innovator

R&D* 0.506 0.338 0.192

Share of Innovative Sales

in Total Sales (%) 8.532 10.944 8.025

Long-term Debt* 0.789 0.834 0.739 0.8080 1.149 0.954

Cash flow* 0.869 0.841 0.638 1.167 0.589 0.352

Dummy for

Multiple Enterprises 0.369 0.019 0.478 0.008 0.539 0.019

Liquidity Reserve* 0.913 1.837 0.840 1.689 1.152 1.532

Dividends* 0.082 0.133 0.089 0.268 0.176 0.253

Market Share (%) 0.926 0.067 1.295 0.073 1.267 0.099

Size (Log of Employed) 5.038 4.007 4.808 3.304 4.980 3.759

Age 21.696 19.489 24.817 21.978 25.131 21.109

Ratio of Intangible

to Total Assets (%) 4.284 2.771 5.254 2.230 7.773 2.702

Dummy for Negative

Cash flow 0.069 0.110 0.079 0.109 0.119 0.135

No. of Observations 2,947 2,416 1,844 1,579 1,980 2,266

* Variables normalized by total capital assets
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TABLE V

Second Stage Coefficient Estimates: Financial Constraints and Innovation

Specification 1 Specification 2 Specification 3

Variables of Financial Innovation Financial Innovation Financial Innovation

interest Constraints Constraints Constraints

Share of Innovative Sales 0.201∗∗∗ 0.206∗∗∗ 0.206∗∗∗

(0.024) (0.021) (0.021)

Long Term Debt 0.781∗∗∗ -0.366∗∗∗ 0.788∗∗∗ -0.366∗∗∗ 0.788∗∗∗ -2.292∗∗∗

(0.247) (0.108) (0.248) (0.108) (0.248) (0.133)

Cash flow 0.313∗∗∗ 0.317∗∗∗ 0.317∗∗∗

(0.041) (0.041) (0.041)

Dummy for Negative 0.99∗∗∗ 1.018∗∗∗ 1.018∗∗∗

Cash flow (0.116) (0.097) (0.097)

Liquidity Reserve -0.26∗∗∗ 0.515∗∗∗ -0.298∗∗∗ 0.515∗∗∗ -0.298∗∗∗ 1.524∗∗∗

(0.086) (0.095) (0.038) (0.095) (0.038) (0.121)

Dividends -3.624∗∗∗ 0.019 -3.677∗∗∗ 0.019 -3.677∗∗∗ -0.096∗∗∗

(0.454) (0.018) (0.452) (0.018) (0.452) (0.018)

Size -0.49∗∗∗ 0.29∗∗∗ -0.486∗∗∗ 0.29∗∗∗ -0.486 0.741∗∗∗

(0.069) (0.033) (0.067) (0.033) (0.067) (0.042)

Market Share 0.008 0.131∗∗∗ 0.004 0.131∗∗∗ 0.004 0.059∗∗∗

(0.008) (0.021) (0.004) (0.021) (0.004) (0.021)

Age -0.011∗∗ -0.012∗∗∗ -0.011∗∗∗ -0.012∗∗∗ -0.011∗∗∗ -0.017∗∗∗

(0.004) (0.002) (0.004) (0.002) (0.004) (0.002)

Ratio of Intangible 0.041 -0.259∗∗∗ 0.056∗∗∗ -0.259∗∗∗ 0.056∗∗∗ 0.175∗∗∗

Assets to Total Assets (0.029) (0.03) (0.014) (0.03) (0.014) (0.024)

Dummy for Multiple 0.082 3.177∗∗∗ 3.177∗∗∗ 2.041∗∗∗

Enterprise Firms (0.162) (0.172) (0.172) (0.155)

Control Functions† for

Share of Innovative -1.328∗∗∗ 0.549∗∗∗ -1.378∗∗∗ 0.549∗∗∗ -1.378∗∗∗

Sales (0.184) (0.031) (0.154) (0.031) (0.154)

Long-term Debt -6.209∗∗∗ 2.633∗∗∗ -6.217∗∗∗ 2.633∗∗∗ -6.217∗∗∗ 18.626∗∗∗

(2.198) (0.892) (2.199) (0.892) (2.199) (1.06)

Dividends 17.387∗∗∗ -2.105∗∗∗ 17.787∗∗∗ -2.105∗∗∗ 17.787∗∗∗ -4.964∗∗∗

(2.058) (0.369) (1.98) (0.369) (1.98) (0.443)

Liquidity Reserve 7.637∗∗∗ -5.833∗∗∗ 8.164∗∗∗ -5.833∗∗∗ 8.164∗∗∗ -15.145∗∗∗

(1.089) (1.044) (0.404) (1.044) (0.404) (1.288)

Ratio of Intangible -1.209∗∗ 5.286∗∗∗ -1.517∗∗∗ 5.286∗∗∗ -1.517∗∗∗ -2.749∗∗∗

to Total Assets (0.59) (0.609) (0.257) (0.609) (0.257) (0.476)

Size -0.871∗∗∗ 0.775∗∗∗ -0.937∗∗∗ 0.775∗∗∗ -0.937∗∗∗ 2.044∗∗∗

(0.167) (0.164) (0.111) (0.164) (0.111) (0.189)

Individual Effects -0.729∗∗∗ -0.265∗∗∗ -0.688∗∗∗ -0.265∗∗∗ -0.688∗∗∗ 1.779∗∗∗

(Z̄iδ̄δδ + α̂i) (0.187) (0.084) (0.16) (0.084) (0.16) (0.102)

ρζ̃υ̃ 0.589∗∗∗ 0.589∗∗∗ 0.589∗∗∗

(0.033) (0.033) (0.033)

Total Number of Observations: 13032

Significance levels : ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%

†The estimated coefficients of the Control Function for Share of Innovative Sales, Long-term Debt,

Dividends, Liquidity Reserve, Ratio of Intangible to total Assets, and Size are the estimated terms in

Σ̃υǫ = {ρυǫ1συ, . . . , ρυǫmσυ} of equation (3.12) and Σ̃ζǫ = {ρζǫ1σζ , . . . , ρζǫmσζ} of equation (3.13).
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TABLE VI

Average Partial Effects of Second Stage Estimates

Specification 1 Specification 2 Specification 3

Eq. (14) Eq. (15) Eq. (14) Eq. (15) Eq. (14) Eq. (15)

Financial Innovation Financial Innovation Financial Innovation

Constraints Constraints Constraints

Share of Innovative Sales 0.028∗∗∗ 0.028∗∗∗ 0.028∗∗∗

(0.004) (0.003) (0.003)

Long Term debt 0.107∗∗∗ -0.091∗∗∗ 0.108∗∗∗ -0.091∗∗∗ 0.108∗∗∗ -0.3∗∗∗

(0.034) (0.025) (0.034) (0.027) (0.034) (0.01)

Cash flow 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗

(0.006) (0.006) (0.006)

Dummy for Negative 0.163∗∗∗ 0.166∗∗∗ 0.166∗∗∗

Cash flow (0.02) (0.019) (0.019)

Liquidity Reserve -0.036∗∗∗ 0.127∗∗∗ -0.041∗∗∗ 0.127∗∗∗ -0.041∗∗∗ 0.199∗∗∗

(0.013) (0.023) (0.005) (0.024) (0.005) (0.013)

Dividends -0.497∗∗∗ 0.005 -0.502∗∗∗ 0.005 -0.502∗∗∗ -0.013∗∗∗

(0.066) (0.005) (0.062) (0.005) (0.062) (0.002)

Size -0.067∗∗∗ 0.072∗∗∗ -0.066∗∗∗ 0.072∗∗∗ -0.066∗∗∗ 0.097∗∗∗

(0.009) (0.009) (0.009) (0.008) (0.009) (0.005)

Market Share 0.001 0.032∗∗∗ 0.001 0.032∗∗∗ 0.001 0.008∗∗∗

(0.001) (0.005) (0.001) (0.005) (0.001) (0.003)

Age -0.001∗∗ -0.003∗∗∗ -0.002∗∗∗ -0.003∗∗∗ -0.002∗∗∗ -0.002∗∗∗

(0.001) (0) (0.001) (0) (0.001) (0)

Ratio of Intangible Assets 0.006 -0.064∗∗∗ 0.008∗∗∗ -0.064∗∗∗ 0.008∗∗∗ 0.023∗∗∗

to Total Assets (0.004) (0.008) (0.002) (0.008) (0.002) (0.003)

Dummy for Multiple 0.011 0.555∗∗∗ 0.621∗∗∗ 0.866∗∗∗

Enterprise Firms (0.023) (0.097) (0.013) (0)

Significance levels : ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%



53

Figure 1: Plot of APE of Long-term Debt on the Probability of Innovation conditional

on being Financially Constrained,
∫ ∂Pr(I=1|F=1, ˆ̃α,ǫ̂ǫǫ)

∂DEBT
dF ˆ̃α,ǫ̂ǫǫ, or not Financially Constrained,

∫ ∂Pr(I=1|F=0, ˆ̃α,ǫ̂ǫǫ)
∂DEBT

dF ˆ̃α,ǫ̂ǫǫ, against Age, Size, and Leverage.
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TABLE VII

Third Stage Estimates: R&D Switching Regression Model

Variables Specification 1 Specification 2 Control Functions† Specification 1 Specification 2

of Interest No Control No Control

Function for Size Function for Size

f , Binary variable for -1.049 -0.84∗∗ For Financially

Financial Constraint (0.661) (0.408) Constrained Firms

f∗ Share of 0.217∗∗∗ 0.219∗∗∗ Share of Innovative -1.559∗∗∗ -1.597∗∗∗

Innovative Sales (0.018) (0.017) Sales (0.159) (0.141)

(1− f)∗Share of 0.201∗∗∗ 0.205∗∗∗ Long-trem Debt 0.525∗∗ 0.511∗∗

Innovative Sales (0.018) (0.015) (0.213) (0.215)

f∗ Cash flow 0.07∗ 0.071∗ Dividends -1.296∗∗∗ -1.232∗∗∗

(0.041) (0.041) (0.39) (0.363)

(1− f)∗ Cash flow 0.005 0.005 Liquidity Reserve -0.395 -0.352

(0.003) (0.003) (0.291) (0.27)

f∗Dummy for 0.799∗∗∗ 0.682∗∗∗ Ratio of Intangible -0.034 -0.036

Multiple Enterprise (0.245) (0.158) to Total Assets (0.046) (0.046)

(1− f)∗ Dummy for 0.514∗∗∗ 0.429∗∗∗ Size 0.067

Multiple Enterprise (0.189) (0.078) (0.106)

f∗Market Share 0.027∗ 0.019∗∗ Financial Constraint 0.967∗∗∗ 0.83∗∗∗

(0.015) (0.009) (C11(.)t) (0.319) (0.209)

(1− f)∗Market share 0.011 0.005 Selection 0.636∗ 0.589∗

(0.012) (0.004) (C12(.)t) (0.326) (0.306)

f∗Size -0.494∗∗∗ -0.431∗∗∗ Individual effects -0.413∗ -0.297∗∗

(0.118) (0.071) (Z̄iδ̄δδ + α̂i) (0.236) (0.142)

(1− f)∗Size -0.364∗∗∗ -0.318∗∗∗ For Financially

(0.102) (0.035) Unconstrained Firms

f∗Age -0.012∗∗∗ -0.012∗∗∗ Share of Innovative -1.52∗∗∗ -1.57∗∗∗

(0.004) (0.004) Sales (0.164) (0.125)

(1− f)∗Age -0.002 -0.003∗∗ Long-trem Debt -0.029 -0.034

(0.002) (0.001) (0.084) (0.08)

Dividends 0.022 0.027

(0.053) (0.051)

Liquidity Reserve 0.18∗∗∗ 0.189∗∗∗

(0.063) (0.058)

Ratio of Intangible -0.089∗∗∗ -0.092∗∗∗

to Total Assets (0.013) (0.012)

Size 0.034

(0.074)

Financial Constraint -0.277 -0.186∗∗

(C01(.)t) (0.198) (0.065)

Selection -0.883∗∗∗ -0.745∗∗∗

(C02(.)t) (0.324) (0.114)

Individual effects 0.346∗∗∗ 0.312∗∗∗

(Z̄iδ̄δδ + α̂i) (0.091) (0.064)

Average Partial Effect -0.241 -0.175

of Financial Constraint (0.7) (0.393)

Total Number of Observations: 6771

Significance levels : ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%

†The estimated coefficients of the Control Function for Share of Innovative Sales, Long-term Debt,

Dividends, Liquidity Reserve, Ratio of Intangible to total Assets, and Size are the terms in

Σ̃η1ǫ = {ρη1ǫ1ση1
, . . . , ρη1ǫmση1

} for firms that are financially constrained and

Σ̃η0ǫ = {ρη0ǫ1ση0
, . . . , ρη0ǫmση0

} for firms that are not financially constrained of the R&D equation (3.22).
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APPENDIX A: IDENTIFICATION OF STRUCTURAL PARAMETERS WITH EXPECTED A
POSTERIORI VALUES OF INDIVIDUAL EFFECTS

We began with a set of structural equations

y∗
t = X

′
tB+ α̃k+Υt, (A-1)

and a set of reduced m form equations for the endogenous regressors in the above equation,

xt = Z′
tδδδ + α̃κκκ+ ǫǫǫt, (A-2)

The distributional assumptions that we made, which eventually will allow us to construct

the control functions that correct for the bias due to the endogeneity of xt and help us

identify the structural parameters of interest are:

A1. Υit|α̃i,Zi ∼ Υit|α̃i and ǫǫǫit|α̃i,Zi ∼ ǫǫǫit,

A2. Υit|α̃i, ǫǫǫi ∼ Υit|ǫǫǫi, where ǫǫǫi = {ǫǫǫ′i1 . . . ǫǫǫ
′
iTi
}′, and

A3. The error terms Υit and ǫǫǫit are i.i.d. and jointly distributed as





Υit

ǫǫǫit



 ∼ N









0

0









ΣΥΥ ΣΥǫ

ΣǫΥ Σǫǫ







 .

We also specified the conditional expectation and the distribution of the individual effects

α̃i.We assumed that

A4. E(α̃i|Zi) = Z̄ ′
iδ̄δδ,
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where Z̄i, is the mean of time-varying variables in Zit. We also assumed that

A5. α̃i|Zi ∼ N
[

E(α̃i|Zi), σ
2
α

]

,

so that the tail, αi = α̃i−E(α̃i|Zi) = α̃i− Z̄
′
iδ̄δδ, is distributed normally with mean zero and

variance σ2
α, and was assumed to be independent of Zi

1.

These assumptions gave us equations (3.8), where

Υt|X,Z, α̃ ∼ Υt|X− E(X|Z, α̃),Z, α̃

∼ Υt|ǫǫǫ,Z, α̃

∼ Υt|ǫǫǫ, α̃

∼ Υt|ǫǫǫ, (A-3)

where the second equality in distribution follows from the fact that Xi−E(Xi|Zi, α̃i) = ǫǫǫi,

the third follows from A1, and the fourth from assumption A2. According to the above,

the dependence of the structural error term Υt on X, Z, and α̃ is completely characterized

by the reduced form errors ǫǫǫ. The expectation of Υt given ǫǫǫ in (3.9) was given by

E(Υt|ǫǫǫ) = E(Υt|ǫǫǫt) = ΣΥǫΣ
−1
ǫǫ ǫǫǫt = Σ̃ΥǫΣǫΣ

−1
ǫǫ ǫǫǫt = Σ̃ΥǫΣ̃

−1
ǫǫ ǫǫǫt, (A-4)

where the first equality followed from the assumption that conditional on ǫǫǫit, Υit is inde-

pendent of ǫǫǫi
−t
. This assumption has also been made in Papke and Wooldridge (2008), and

Semykina and Wooldridge (2010). The (4×m) matrices Σ̃Υǫ in the fourth equality is

Σ̃Υǫ =















ρη1ǫ1ση1 . . . ρη1ǫmση1

ρη0ǫ1ση0 . . . ρη0ǫmση0

ρζǫ1σζ . . . ρζǫmσζ

ρυǫ1συ . . . ρυǫmσυ















and the (m×m) matrix Σǫ is diag(σǫ1, . . . , σǫm), so that Σ̃ΥǫΣǫ = ΣΥǫ. Finally, in the last

equality Σ̃−1
ǫǫ = ΣǫΣ

−1
ǫǫ . The assumption about the conditional distribution α̃ and equations

(A-3) and (A-4) led us the relationship in (3.10):

E(y∗
t |X,Z, α) = X

′
tB+ (Z̄ ′δ̄δδ + α)k+ Σ̃ΥǫΣ̃

−1
ǫǫ ǫǫǫt.

1In the rest of the appendix, except when needed, we will suppress the firm subscript i.
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Given the above, we can write the linear predictor of y∗
t in error form as

y∗
t = X

′
tB+ (Z̄ ′δ̄δδ + α)k+ Σ̃ΥǫΣ̃

−1
ǫǫ ǫǫǫt + Υ̃t. (A-5)

We had argued that in order to estimate the system of equations in (A-3) the standard

technique of the control function approach is to replace ǫǫǫt by the residuals from the first

stage reduced form regression. However, the residuals xt −E(xt|Z, α) = xt −Z′
tδδδ− (Z̄ ′δ̄δδ+

α)κκκ, remain unidentified because the α’s are unobserved even though the reduced form

parameters, δδδ, δ̄δδ, and κκκ, can be consistently estimated from the first stage estimation of

the modified reduced form equation given in (3.4a).

However, it can still be possible to estimate the structural parameters if we can integrate

out the α’s. But given that α’s are correlated with the endogenous regressors we have

to integrate it out with respect to its conditional distribution. Let f(αi|Xi,Zi) be the

conditional distribution of time invariant individual effect αi conditional on Xi and Zi. For

any firm, i, taking expectation of the above with respect to the conditional distribution of

α, f(α|X,Z) we obtain

E(y∗
t |X,Z) =

∫

E(y∗
t |X,Z, α)f(α|X,Z)dα

= X
′
tB+ Z̄ ′δ̄δδk+ Σ̃ΥǫΣ̃

−1
ǫǫ (xt − Z′

tδδδ − Z̄ ′δ̄δδκκκ) +

∫

(k− Σ̃ΥǫΣ̃
−1
ǫǫ κκκ)αf(α|X,Z)dα

= X
′
tB+ Z̄ ′δ̄δδk+ Σ̃ΥǫΣ̃

−1
ǫǫ (xt − Z′

tδδδ − Z̄ ′δ̄δδκκκ) +

∫

(k− Σ̃ΥǫΣ̃
−1
ǫǫ κκκ)αf(α|X)dα

= X
′
tB+ Z̄ ′δ̄δδk+ Σ̃ΥǫΣ̃

−1
ǫǫ (xt − Z′

tδδδ − Z̄ ′δ̄δδκκκ) + (k− Σ̃ΥǫΣ̃
−1
ǫǫ κκκ)α̂

= X
′
tB+ (Z̄ ′δ̄δδ + α̂)k + Σ̃ΥǫΣ̃

−1
ǫǫ (xt − Z′

tδδδ − (Z̄ ′δ̄δδ + α̂)κκκ)

= X
′
tB+ ˆ̃αk+ Σ̃ΥǫΣ̃

−1
ǫǫ ǫ̂ǫǫt, (A-6)

where the second equality follows from the fact that Z and α are independent. α̂i =

α̂i(Xi,Zi,Θ1) is the expected a posteriori (EAP) value of time invariant individual effects

αααi, and Θ1 is the set of first stage reduced form parameters.

To obtain the EAP values, α̂i, in (A-6), we use Bayes rule we can write f(α|X,Z) as

f(α|X) =
f(X|α)g(α)

h(X)
=

f(X,Z|α)g(α)

h(X,Z)
, (A-7)
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where g and h are density functions. The above can be written as

f(α|X,Z) =
f(X|Z, α)p(Z|α)g(α)

h(X|Z)p(Z)
,

By our assumption the, αs are independent of the exogenous variables Z, hence p(Z|α) =

p(Z), that is,

f(α|X,Z) =
f(X|Z, α)g(α)

h(X|Z)
=

f(X|Z, α)g(α)
∫

f(X|Z, α)g(α)dα
, (A-8)

Hence,

∫

αf(α|X,Z)d(α) =

∫

αf(X|Z, α)g(α)dα
∫

f(X|Z, α)g(α)dα

=

∫

α
∏T

t=1 f(xt|Z, α)g(α)dα
∫
∏T

t=1 f(xt|Z, α)g(α)dα

= α̂(X,Z,Θ1) (A-9)

where the second equality follow from the fact that conditional on Z and α, each of the xt,

xt ∈ {x1, . . . ,xT} are independently normally distributed with mean Z′
tδδδ+(Z̄ ′δ̄δδ+α)κκκ and

standard deviation Σǫǫ. g(α) by our assumption is normally distributed with mean zero

and variance σ2
α and a = α

σα
follows a standard normal distribution. The functional form

of α̂(X,Z,Θ1) is given by:

α̂(X,Z,Θ1) =
∫

σαa
∏T

t=1 exp(−
1
2
(xt − Z′

tδδδ − (Z̄ ′δ̄δδ + σαa)κκκ)
TΣ−1

ǫǫ (xt − Z′
tδδδ − (Z̄ ′δ̄δδ + σαa)κκκ))φ(a)da

∫
∏T

t=1 exp(−
1
2
(xt − Z′

tδδδ − (Z̄ ′δ̄δδ + σαa)κκκ)TΣ−1
ǫǫ (xt − Z′

tδδδ − (Z̄ ′δ̄δδ + σαa)κκκ))φ(a)da
.

(A-10)

The right hand side of (A-10) is the expected a posteriori (EAP) value of α. ˆ̂α(x,Z, Θ̂1)

is the estimated expected a posteriori value of α, which can be estimated by employing

numerical integration techniques, such as Gauss-Hermite quadratures, with respect to α

at the estimated Θ1 from the first stage. Also, it can be shown that

Lemma 1 ˆ̂αi(Xi,Zi, Θ̂1) converges a.s. to α̂i(Xi,Zi,Θ1), where Θ̂1 is the consistent first

stage estimates.
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Proof of Lemma 1 Given in Section A.1.

Lemma 1 implies that

X
′
tB+ (Z̄ ′δ̄δδ + ˆ̂α)k+ Σ̃ζǫΣ̃

−1
ǫǫ
ˆ̂ǫǫǫt,

a.s
→ E(y∗

t |X,Z) =

∫

E(y∗
t |X,Z, α)f(α|X,Z)d(α),

where ˆ̂ǫǫǫt = xt − Z′
tδδδ − (Z̄ ′δ̄δδ + ˆ̂α)κκκ. Therefore, if the reduced form population parameters,

Θ1, are known, the above implies that we could write the linear predictor of y∗
it, given Xi

and Zi in error form as

y∗
t = X

′
tB+ ˆ̃αk+ Σ̃ΥǫΣ̃

−1
ǫǫ ǫ̂ǫǫt + Υ̃t, (A-11)

where ˆ̃α = Z̄ ′δ̄δδ+ α̂ and conditional of X and Z, Υ̃t is i.i.d. with mean 0. For linear models,

say if all the variables in y∗
t were continuous and observed, with estimates of ˆ̃α, and the

estimates of Σ̃−1
ǫǫ ǫ̂ǫǫt the parameters of interest, B, can be consistently estimated by running

a seemingly unrelated regression (SUR) or a panel version of SUR to gain efficiency. We

note here that for any k, k ∈ {1, . . . , n}, n = 4 in our model, Σ̃ΥkǫΣ̃
−1
ǫǫ ǫ̂ǫǫt take the form

ρΥkǫ1σΥk
f1(Σǫǫ, ǫ̂1t, . . . , ǫ̂mt) + . . .+ ρΥkǫmσΥk

fm(Σǫǫ, ǫ̂1t, . . . , ǫ̂mt)

where each of the f ’s above are linear in ǫ̂ǫǫt. The estimates ρΥkǫlσΥk
, l ∈ {1, . . . , m}, provides

us with a test of exogeneity of the regressor xl with respect to Υk.

However, when response outcomes are discrete and we have to deal with nonlinear models

additional assumptions than those made above are required. Let us consider F ∗
t of y∗

t where

F ∗
t is the latent variable underlying Ft, the binary variable that takes value 1 when the

firm is financially constrained and 0 otherwise.

Ft = 1{F ∗
t > 0} = 1{X F ′

t ϕϕϕ+ λα̃ + ζt > 0} = H(X F
t , α, ζt), (A-12)

For a firm i, what we are interested is the Average Structural Function (ASF),

E(Ft|X
F
t ) = G(X F

t ) =

∫

H(X F
t , α̃, ζt)dFα̃,ζ, (A-13)

and the Average Partial Effect (APE) of changing a variable, say w, in time period t from

wt to wt +∆w,

∆E(Ft|X
F
t )

∆w
=

∆G(X F
t )

∆w
=

∫

(

H(X F
t
−w
, (wt +∆w), α̃, ζt)−H(X F

t , α̃, ζt)

)

dFα̃,ζ

∆w
,

(A-14)
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where the average is taken over the marginal distribution of the error terms α̃ and ζ .

However, the above could only be possible if the endogeneity of X F
t were absent, that is, if

the regressors X F
t could be manipulated independently of the errors, α̃ and ζt. To obtain

the ASF, G(X F
t ), consider E(Ft|X

F
t ,X,Z) = E(Ft|X,Z). For a firm i, we have

E(Ft|X,Z) = E(H(X F
t , α̃, ζt)|X,Z)

= E(E(H(X F
t , α̃, ζt)|X,Z, α̃)|X,Z)

= E(E(H(X F
t , α̃, ζt)|α̃, ǫǫǫ)|X,Z)

= E(E(H(X F
t , α̃, ζt)|ǫǫǫ)|X,Z)

= E(E(H(X F
t , α̃, ζt)|ǫǫǫt)|X,Z)

= E(H∗(X F
t , α̃, ǫǫǫt)|X,Z) =

∫

H∗(Xt, α̃, ǫǫǫt)dFα̃|X,Z

= H∗(X F
t , ˆ̃α, ǫ̂ǫǫt) = E(Ft|X,Z, ˆ̃α, ǫ̂ǫǫt) = E(Ft|X

F
t , ˆ̃α, ǫ̂ǫǫt). (A-15)

The second equality above is obtained by the Law of Iterated Expectation, the fourth

follows from the fact that ǫǫǫi = Xi − E(Xi|Zi, α̃i), where ǫǫǫi = {ǫǫǫ′i1, . . . , ǫǫǫ
′
iT}

′. The third

follows from equation (A-3), according to which the dependence of α̃i and ζit on the vector

of regressors Xi, Zi, and α̃i is completely characterized by the reduced form error vectors

ǫǫǫi and α̃i. The fourth equality follows from dFα̃,ζt|α̃,ǫǫǫ = dFζt|α̃,ǫǫǫ = dFζt|ǫǫǫ
2. The fifth equality

follows from the assumption that conditional on ǫǫǫit, ζit is independent of ǫǫǫi
−t
.

In the fifth equality the intermediate regression function, H∗(Xt, α̃, ǫǫǫt), is the conditional

CDF of ζt given ǫǫǫt evaluated at X F ′
t ϕϕϕ+ λα̃. That is

H∗(Xt, α̃, ǫǫǫt) = Fζt|ǫǫǫt(X
′
tϕϕϕ+ λα̃|ǫǫǫt).

Had we observed α̃ and ǫǫǫt we could have made some suitable assumption about the con-

ditional distribution of ζt and obtained H∗(Xt, α̃, ǫǫǫt), but we do not observe α̃ and ǫǫǫt. We,

however, have shown that

E(λα̃|X,Z) = λ ˆ̃α and E(ζt|X,Z) = E(E(ζt|α̃,X,Z)|X,Z) = Σ̃ζǫΣ̃
−1
ǫǫ ǫ̂ǫǫt.

To obtain the regression function, H∗(Xt, ˆ̃α, ǫ̂ǫǫt), the conditional CDF of ζt given X and

2The last equality here follows from assumption A2.
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Z, we, like Chamberlain (1984), assume that

ζt|X,Z ∼ N
[

E(ζt|X,Z), σ2
ζ̄

]

and λα̃|X,Z ∼ N
[

E(λα̃|X,Z), σ2
αλ

]

(A-16)

and that the tail, ζ̄t = ζt−E(ζt|X,Z) = ζt−Σ̃ζǫΣ̃
−1
ǫǫ ǫ̂ǫǫt, and the tail, α

λ
= λα̃−E(λα̃|X,Z) =

λα̃− λ ˆ̃α, are distributed normally with mean 0 and some variance.

Having assumed the conditional distribution of λα̃ and ζt, we can write the linear pro-

jection of F ∗
t in error form as

F ∗
t = X F ′

t ϕϕϕ+ λ ˆ̃α+ Σ̃ζǫΣ̃
−1
ǫǫ ǫ̂ǫǫt + α

λ
+ ζ̄t, (A-17)

With the assumptions in (A-16) and the fact that in probit models the parameters are

identified only up to a scale3, the probability of Ft = 1, given X and Z, is given by

H∗(X F
t , ˆ̃α, ǫ̂ǫǫt) =

∫

Pr(Ft = 1|X F
t , ˆ̃α, ǫ̂ǫǫt, αλ)dFαλ

= Φ

(

{X F ′
t ϕϕϕ+ λ ˆ̃α + Σ̃ζǫΣ̃

−1
ǫǫ ǫ̂ǫǫt}σ̃

−1
ζ

)

,

where the σ̃ζ is the variance of ζ̃t = αλ + ζ̄t. Thus, we see that once we have the estimates

of ˆ̃αi and ǫ̂ǫǫit, we can simply pool the data and run a ordinary probit to get the structural

estimates of the Financial constraint equation.

Having obtain H∗(X F
t , ˆ̃α, ǫ̂ǫǫt), the measure ASF, G(X F

t ), can be obtained by averaging

over ˆ̃α and ǫ̂ǫǫt.

G(X F
t ) = Pr(Ft = 1|X F

t ) =

∫

H∗(X F
t , ˆ̃α, ǫ̂ǫǫt)dF ˆ̃α,ǫ̂ǫǫt

=

∫

Φ(X F ′
t ϕϕϕ+ λ ˆ̃α + Σ̃ζǫΣ̃

−1
ǫǫ ǫ̂ǫǫt)dF ˆ̃α,ǫ̂ǫǫt

(A-18)

To see that the above indeed gives the ASF, consider the following:

∫
[
∫

Pr(Ft = 1|X F
t , ˆ̃α, ǫ̂ǫǫt, αλ)dFαλ

]

dF ˆ̃α,ǫ̂ǫǫt
=

∫

H∗(X F
t , ˆ̃α, ǫ̂ǫǫt)dF ˆ̃α,ǫ̂ǫǫt

=

∫
[
∫

H∗(X F
t , α̃, ǫǫǫt)dFα̃,ǫǫǫ| ˆ̃α,ǫ̂ǫǫt

]

dF ˆ̃α,ǫ̂ǫǫt
=

∫

H∗(X F
t , α̃, ǫǫǫt)dFα̃,ǫǫǫt

=

∫
[
∫

H(X F
t , α̃, ζt)dFα̃,ζt|α̃,ǫǫǫt

]

dFα̃,ǫǫǫt =

∫

H(X F
t , α̃, ζt)dFα̃,ζt = G(X F

t ).

3In the rest of the appendix, with a slight abuse of notations, we will denote the scaled parameters by

their original notation.
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The sample analog of ASF, G(X F
it ), for any fixed X F

it = X̄ F can be computed as

Ĝ(X̄ F ) =
1

∑N
i=1 Ti

N
∑

i=1

Ti
∑

t=1

Φ(X̄ F ′ϕ̂ϕϕ+ λ̂ ˆ̃̂αi +
ˆ̃Σζǫ

ˆ̃Σ−1
ǫǫ
ˆ̂ǫǫǫit), (A-19)

where
ˆ̂
α̃i and ˆ̂ǫǫǫit are the estimated values of ˆ̃αi and ǫ̂ǫǫit.

The APE,
∆G(XF

t )

∆w
in (A-14), of changing a variable, say wt, from wt to wt +∆w can be

obtained by taking the difference of ASF at wt and wt + ∆w and dividing the difference

by ∆w. In our case, since the integrand is a smooth function of its arguments, in the limit

when ∆w tends to zero we can change the order of differentiation and integration in (A-14)

to get

∂G(X F
t )

∂w
=
∂ Pr(Ft = 1|X F

t )

∂w
=

∫

ϕwφ(X̄
F ′ϕϕϕ+ λ ˆ̃α + Σ̃ζǫΣ̃

−1
ǫǫ ǫ̂ǫǫt)dFǫ̂ǫǫt, ˆ̃α

, (A-20)

where φ is the density function of a standard normal and ϕw is the coefficient of w. If w is

dummy variable taking values 0 and 1, then the APE of change of wit from 0 to 1 on the

probability of yit = 1, given other covariates, is given by

∫
[

Φ(X̄ F ′
−wϕϕϕ−w + ϕw + λ ˆ̃α + Σ̃ζǫΣ̃

−1
ǫǫ ǫ̂ǫǫt)− Φ(X̄ F ′

−wϕϕϕ−w + λα̂αα + Σ̃ζǫΣ̃
−1
ǫǫ ǫ̂ǫǫt)

]

dFǫ̂ǫǫt,α̂αα.

(A-21)

The sample analog of the APE’s in equation (A-20) and (A-21) can be computed in exactly

the same way as was done for the ASF in (A-19).

A similar equation as (A-17) also holds for the Innovation and R&D equations. That is

Υ̃t in equations (3.12) to (3.14) in the main text is Υ̃t = {υ̃t, ζ̃t, η̃1t, η̃0t}
′ = {αθ + ῡt, αλ +

ζ̄t, αµ1 + η̄1t, αµ0 + η̄0t}
′, where αθ + ῡt, αµ1 + η̄1t, and αµ0 + η̄0t are defined in the same way

as αλ + ζ̄t is defined in (A-17).

A.1. Proof of Lemma 1

Proof: Let Θ∗
1 be true value of first stage reduced form parameters. Now, for a firm i

α̂(X,Z,Θ1) =

∫

α exp(−1
2
r(Θ1, α))φ(α)dα

∫

exp(−1
2
r(Θ1, α))φ(α)dα

,

where r(Θ1, α) =
∑T

t=1(xt − Z′
tδδδ − (Z̄ ′

tδ̄δδ + α)κκκ)′Σ−1
ǫǫ (xt − Z′

tδδδ − (Z̄ ′
tδ̄δδ + α)κκκ).
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First consider the expression in the numerator
∫

α exp(−1
2
r(Θ1, α))φ(α)dα. Now, |α|, |.|

being the absolute value of its argument, is continuous in α and |α| ≥ α exp(−1
2
r(Θ1, α))

∀Θ1 ∈ Θ1Θ1Θ1. We also know that Θ̂1
a.s.
−→ Θ∗

1, and since α exp(−1
2
r(Θ1, α)), is continuous in Θ1

and α, α exp(−1
2
r(Θ̂1, α))

a.s.
−→ α exp(−1

2
r(Θ∗

1, α)) for any given α. Thus by an application

of Lebesque Dominated Convergence Theorem we can conclude that

∫

α exp(−
1

2
r(Θ̂1, α))φ(α)dα

a.s.
−→

∫

α exp(−
1

2
r(Θ∗

1, α))φ(α)dα.

Also, since 1 ≥ exp(−1
2
r(Θ1, α)), again by an application of Lebesque Dominated Conver-

gence Theorem we can conclude that

∫

exp(−
1

2
r(Θ̂1, α))φ(α)dα

a.s.
−→

∫

exp(−
1

2
r(Θ∗

1, α))φ(α)dα.

Given that both the numerator and the denominator in (A-9) defined at Θ̂1 converge almost

surly to the same defined at Θ∗
1, it can now be easily shown that

ˆ̂α(X,Z, Θ̂1)
a.s.
−→ α̂(X,Z,Θ∗

1).

APPENDIX B: MAXIMUM LIKELIHOOD ESTIMATION OF THE REDUCED FORM
EQUATIONS

Let N be the total number of firms. The firms are observed in at least one and at most

P periods. Let Np denote the number of firms observed in p periods, that is N =
∑P

p=1Np.

Let N be the total number of observations, i.e., N =
∑P

p=1Npp. Assume that the firms

are ordered in P groups such that the N1 firms observed once come first, the N2 firms

observed twice come second, etc. Let Mp =
∑p

k=1Nk be the cumulated number of firms

observed up to p times, so that the index sets of the firms observed p times can be written

as I(p) = (Mp−1 + 1, . . . ,Mp)(p = 1, . . . , P ;M0 = 0). We may, formally, consider I1 as a

cross section and Ip(p = 2, . . . , P ) as a balanced panel with p observations of each firm.

The system of m reduced form equations in equation (3.4a) is given by

xit = Z′
itδδδ + Z̄ ′

iδ̄δδκκκ + αiκκκ+ ǫǫǫit = Z′
itδδδ + Z̄ ′

iδ̄δδκκκ+ uuuit, (B-1)

where xit = (x1it, . . . , xmit)
′ and Zit = diag(z1it, . . . , zmit) is the matrix of exogenous

variables appearing in each of the m reduced form equation in (B-1). δδδ = (δδδ′1, . . . , δδδ
′
m)

′,



10

κκκ = (κ1, . . . , κm)
′, and ǫǫǫit = (ǫ1it, . . . , ǫmit)

′. σ2
α is the variance of αi, which is normally

distributed with mean 0.We employ a step-wise maximum likelihood method developed

by Biørn (2004) to obtain consistent estimates of parameters, δδδ,Σǫǫ,κκκ, and σ
2
α. Given the

distribution of αi, κκκαi is normally distributed with mean zero and variance Σα, given by:

Σα = σ2
αΣκ = σ2

α















κ21

κ1κ2 κ22
...

...

κ1κm κ2κm . . . κ2m















.

ǫǫǫit is normally distributed with mean zero and variance Σǫǫ. We assume that αi and ǫit are

mutually uncorrelated and given that Z′
it is exogenous, αi and ǫit are uncorrelated with

Z′
it. Let xxxi(p) = {xxx′i1, . . .xxx

′
ip}

′, ZZZ i(p) = {ZZZ ′
i1, . . .ZZZ

′
ip}

′ and ǫǫǫi(p) = {ǫǫǫ′i1, . . . ǫǫǫ
′
ip}

′ and write the

model as

xi(p) = Z′
i(p)δδδ + (ep ⊗ Z̄ ′

iδ̄δδκκκ) + (ep ⊗ αiκκκ) + ǫǫǫi(p) = Z′
i(p)δδδ + (ep ⊗ Z̄ ′

iδ̄δδκκκ) + uuui(p),

(B-2)

E(uuui(p)uuu
′
i(p)) = Ip ⊗ Σǫǫ + Ep ⊗ Σα = Kp ⊗ Σǫǫ + Jp ⊗ Σ(p) = Ωu(p) (B-3)

where

Σ(p) = Σǫǫ + pΣα, p = 1, . . . , P (B-4)

and Ip is the p dimensional identity matrix, ep is the (p × 1) vector of ones, Ep = epe
′
p,

Jp = (1/p)Ep, and Kp = Ip − Jp. The latter two matrices are symmetric and idempotent

and have orthogonal columns, which facilitates inversion of Ωu(p).

B.1. GMM estimation

Before addressing the maximum likelihood problem, we consider the GMM problem for

δ̃δδ = {δδδ′, δ̄δδ
′
}′ when κκκ, σα (hence Σα), and Σǫǫ are known. Define Qi(p) = uuu′i(p)Ω

−1
u(p)uuui(p), then
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GMM estimation is the problem of minimizing Q =
∑P

p=1

∑

i∈I(p)
Qi(p) with respect to δ̃δδ.

Since Ω−1
u(p) = Kp ⊗ Σ−1

ǫǫ + Jp ⊗ (Σǫǫ + pΣα)
−1, we can rewrite Q as

Q =
P
∑

p=1

∑

i∈I(p)

Qi(p)(δδδ,Σǫǫ,κκκ, σ
2
α) =

P
∑

p=1

∑

i∈I(p)

uuu′i(p)[Kp ⊗ Σ−1
ǫǫ + Jp ⊗ (Σǫǫ + pΣα)

−1]uuui(p),

(B-5)

with uuui(p) = xi(p) − Z′
i(p)δδδ − (ep ⊗ Z̄ ′

iδ̄δδκκκ). Had we not imposed the restriction that δ̄δδ be

the same for each of the m equations we could have estimated δδδ and δ̄δδ by employing GLS

estimation as in Biørn.

B.2. Maximum Likelihood Estimation

We now consider ML estimation of Θ1 = {δ̃δδ,Σǫǫ,κκκ, σ
2
α}. Assuming normality of αi and

the disturbances ǫǫǫit, i.e., αiκκκ ∼ IIN(0, σ2
αΣκ) and ǫit ∼ IIN(0,Σǫǫ), then uuui(p) = (ep ⊗

αiκκκ)+ǫǫǫi(p) ∼ IIN(0mp,1,Ωu(p)). The log-likelihood function of all x’s conditional on all Z’s

for a firm in group p and for all firms then become, respectively,

Li(p)1(Θ1) =
−mp

2
ln(2π)−

1

2
ln |Ωu(p)| −

1

2
Qi(p)(δ̃δδ,Σǫǫ,κκκ, σ

2
α) (B-6)

L1(Θ1) =
P
∑

p=1

∑

i∈I(p)

Li(p)1 =
−mN

2
ln(2π)−

1

2

P
∑

p=1

Np ln |Ωu(p)| −
1

2

P
∑

p=1

∑

i∈I(p)

Qi(p)(δ̃δδ,Σǫǫ,κκκ, σ
2
α),

(B-7)

where |Ωu(p)| = |Σ(p)||Σǫǫ|
p−1.

We split the problem into: (A) Maximization of L with respect to δ̃δδ for given (Σǫǫ,κκκ, σ
2
α)

and (B) Maximization of L1(Θ1) with respect to (Σǫǫ,κκκ, σ
2
α) for given δ̃δδ. Subproblem (A)

is identical with the GMM problem, since maximization of L1(Θ1) with respect to δ̃δδ for

given (Σǫǫ,κκκ, σ
2
α) is equivalent to minimization of

∑P
p=1

∑

i∈I(p)
Qi(p)(δ̃δδ,Σǫǫ,κκκ, σ

2
α).

The first order conditions with respect to Σǫǫ, κκκ, and σ
2
α, which we derive in Appendix E

does not have a closed form solution. To obtain estimates of Σǫǫ, κκκ, and σ
2
α, we numerically

maximize L1(Θ1) with respect to Σǫǫ, κκκ, and σ2
α for a given δ̃δδ and use the first order

conditions as vector of gradients in the maximization routine.
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The complete stepwise algorithm for solving jointly subproblems (A) and (B) then con-

sists in switching between minimizing (B-5) with respect to δ̃δδ and (B-7) with respect to

Σǫǫ, κκκ, and σ
2
α and iterating until convergence. Biørn and the reference there in have mono-

tonicity properties of such a sequential procedure which ensure that its solution converges

to the ML estimator even if the likelihood function is not globally concave.

APPENDIX C: DERIVATION OF THE CORRECTION TERMS FOR THE THIRD STAGE
SWITCHING REGRESSION MODEL

To avoid complicating the notations, we denote the idiosyncratic error components – υ̃,

ζ̃, η̃1, and η̃0 – in equations (3.12) to (3.14), that were defined in appendix A, respectively

as υ, ζ , η1, and η0. We know that the conditional expectation of η, where η is either η1 or

η0, given ζ and υ, E[η|ζ, υ], is given by

E[η|ζ, υ] = µη +
ση(ρηζ − ρηυρζυ)(ζ − µζ)

σζ(1− ρ2ζυ)
+
ση(ρηυ − ρηζρζυ)(υ − µυ)

συ(1− ρ2ζυ)
.

Since, µη = µζ = µυ = 0 we have,

E[η|ζ, υ] =
ση(ρηζ − ρηυρζυ)(ζ)

σζ(1− ρ2ζυ)
+
ση(ρηυ − ρηζρζυ)(υ)

συ(1− ρ2ζυ)
.

Define, ζ̄ = ζ
σζ

and ῡ = υ
συ
, then

E[η|ζ, υ] =
ση(ρηζ − ρηυρζυ)ζ̄

(1− ρ2ζυ)
+
ση(ρηυ − ρηζρζυ)ῡ

(1− ρ2ζυ)
,

which can be written as

E[η|ζ, υ] =
σηρηζ

(1− ρ2ζυ)
(ζ̄ − ρζυῡ) +

σηρηυ
(1− ρ2ζυ)

(ῡ − ρζυζ̄). (C-1)

Hence,

E[η|ζ > −a, υ > −b] = E[η|ζ̄ >
−a

σζ
, ῡ >

−b

συ
] =

∫∞
−b
συ

∫∞
−a
σζ

E[η|ζ̄ , ῡ]φ2(ζ̄ , ῡ, ρζυ)dζ̄dῡ

Φ2

(

a
σζ
, b
συ
, ρζυ

)

=
1

Φ2

(

a
σζ
, b
συ
, ρζυ

)

σηρηζ
(1− ρ2ζυ)

∫ ∞

−b
συ

∫ ∞

−a
σζ

(ζ̄ − ρζυῡ)φ2(ζ̄ , ῡ, ρζυ)dζ̄dῡ

+
1

Φ2

(

a
σζ
, b
συ
, ρζυ

)

σηρηυ
(1− ρ2ζυ)

∫ ∞

−b
συ

∫ ∞

−a
σζ

(ῡ − ρζυζ̄)φ2(ζ̄ , ῡ, ρζυ)dζ̄dῡ, (C-2)
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where, φ2 and Φ2 denote respectively the density and cumulative density function function

of a standard bivariate normal. Now, consider the expression
∫∞

−b
συ

∫∞
−a
σζ

(ζ̄−ρζυῡ)φ2(ζ̄ , ῡ, ρζυ)dζ̄dῡ,

of the RHS in (C-2). Given that φ2(ζ̄ , ῡ, ρζυ) = φ(ζ̄) 1√
(1−ρ2

ζυ
)
φ

(

ῡ−ρζυ ζ̄√
(1−ρ2

ζυ
)

)

, the concerned

expression can be written as

∫ ∞

−b
συ

∫ ∞

−a
σζ

(ζ̄ − ρζυῡ)φ(ζ̄)
1

√

(1− ρ2ζυ)
φ

(

ῡ − ρζυ ζ̄
√

(1− ρ2ζυ)

)

dζ̄dῡ =

∫ ∞

−a
σζ

ζ̄φ(ζ̄)

(

1− Φ

( −b
συ

− ρζυ ζ̄
√

(1− ρ2ζυ)

))

dζ̄ − ρζυ

∫ ∞

−b
συ

∫ ∞

−a
σζ

ῡφ(ζ̄)
1

√

(1− ρ2ζυ)
φ

(

ῡ − ρζυ ζ̄
√

(1− ρ2ζυ)

)

dζ̄dῡ.

(C-3)

Now, let y =
ῡ−ρζυ ζ̄√
(1−ρ2

ζυ
)
, then dy = dῡ√

(1−ρ2
ζυ

)
. Having defined y, the right hand side of (C-3)

can now be written as
∫ ∞

−a
σζ

ζ̄φ(ζ̄)

(

1− Φ

( −b
συ

− ρζυ ζ̄
√

(1− ρ2ζυ)

))

dζ̄ − ρζυ

∫ ∞

−b
συ

−ρζυζ̄√
(1−ρ2

ζυ
)

∫ ∞

−a
σζ

(y
√

(1− ρ2ζυ) + ρζυζ̄)φ(ζ̄)φ(y)dζ̄dy

=

∫ ∞

−a
σζ

ζ̄φ(ζ̄)

(

1− Φ

( −b
συ

− ρζυ ζ̄
√

(1− ρ2ζυ)

))

dζ̄

−ρζυ

∫ ∞

−b
συ

−ρζυζ̄√
(1−ρ2

ζυ
)

∫ ∞

−a
σζ

y
√

(1− ρ2ζυ)φ(ζ̄)φ(y)dζ̄dy − ρ2ζυ

∫ ∞

−b
συ

−ρζυζ̄√
(1−ρ2

ζυ
)

∫ ∞

−a
σζ

ζ̄φ(ζ̄)φ(y)dζ̄dy

(C-4)

= (1− ρ2ζυ)

∫ ∞

−a
σζ

ζ̄φ(ζ̄)

(

1− Φ

( −b
συ

− ρζυζ̄
√

(1− ρ2ζυ)

))

dζ̄

−ρζυ

√

(1− ρ2ζυ)

∫ ∞

−b
συ

−ρζυζ̄√
(1−ρ2

ζυ
)

∫ ∞

−a
σζ

yφ(ζ̄)φ(y)dζ̄dy

= (1− ρ2ζυ)

∫ ∞

−a
σζ

ζ̄φ(ζ̄)Φ

( b
συ

+ ρζυ ζ̄
√

(1− ρ2ζυ)

)

dζ̄ − ρζυ

√

(1− ρ2ζυ)

∫ ∞

−b
συ

−ρζυζ̄√
(1−ρ2

ζυ
)

∫ ∞

−a
σζ

yφ(ζ̄)φ(y)dζ̄dy.

(C-5)
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Now, note that ζ̄φ(ζ̄)dζ̄ = −dφ(ζ̄) and φ(ζ̄) = φ(−ζ̄), hence using integration by parts,

the first part of the last equation of (C-5) can now be written as

(1− ρ2ζυ)

∫ ∞

−a
σζ

ζ̄φ(ζ̄)Φ

( b
συ

+ ρζυ ζ̄
√

(1− ρ2ζυ)

)

dζ̄ = (1− ρ2ζυ)

∫ ∞

−a
σζ

−dφ(ζ̄)Φ

( b
συ

+ ρζυ ζ̄
√

(1− ρ2ζυ)

)

= −(1 − ρ2ζυ)φ(ζ̄)Φ

( b
συ

+ ρζυζ̄
√

(1− ρ2ζυ)

)∣

∣

∣

∣

∞

−a
σζ

+ ρζυ

√

(1− ρ2ζυ)

∫ ∞

−a
σζ

φ(ζ̄)φ

( b
συ

+ ρζυ ζ̄
√

(1− ρ2ζυ)

)

dζ̄

= (1− ρ2ζυ)φ(
a

σζ
)Φ

( b
συ

− ρζυ
a
σζ

√

(1− ρ2ζυ)

)

+ ρζυ

√

(1− ρ2ζυ)

∫ ∞

−a
σζ

φ(ζ̄)φ

( b
συ

+ ρζυ ζ̄
√

(1− ρ2ζυ)

)

dζ̄.

(C-6)

The second expression of the last line in equation (C-5) can be written as

−ρζυ

√

(1− ρ2ζυ)

∫ ∞

−b
συ

−ρζυζ̄√
(1−ρ2

ζυ
)

∫ ∞

−a
σζ

yφ(ζ̄)φ(y)dζ̄dy = ρζυ

√

(1− ρ2ζυ)

∫ ∞

−a
σζ

∫ ∞

−b
συ

−ρζυζ̄√
(1−ρ2

ζυ
)

dφ(y)φ(ζ̄)dζ̄

= ρζυ

√

(1− ρ2ζυ)

∫ ∞

−a
σζ

φ(y)

∣

∣

∣

∣

∞

−b
συ

−ρζυζ̄√
(1−ρ2

ζυ
)

φ(ζ̄)dζ̄ = −ρζυ

√

(1− ρ2ζυ)

∫ ∞

−a
σζ

φ

( b
συ

+ ρζυ ζ̄
√

(1− ρ2ζυ)

)

φ(ζ̄)dζ̄.

(C-7)

Plugging the results obtained in (C-6) and (C-7) into (C-4), we obtain

∫ ∞

−b
συ

∫ ∞

−a
σζ

(ζ̄ − ρζυῡ)φ2(ζ̄ , ῡ, ρζυ)dζ̄dῡ = (1− ρ2ζυ)φ(
a

σζ
)Φ

( b
συ

− ρζυ
a
σζ

√

(1− ρ2ζυ)

)

.

Similarly, it can be shown that

∫ ∞

−b
συ

∫ ∞

−a
σζ

(ῡ − ρζυ ζ̄)φ2(ζ̄ , ῡ, ρζυ)dζ̄dῡ = (1− ρ2ζυ)φ(
b

συ
)Φ

( a
σζ

− ρζυ
b
συ

√

(1− ρ2ζυ)

)

.

Hence,

E[η|ζ̄ >
−a

σζ
, ῡ >

−b

συ
] =

σηρηζφ(
a
σζ
)

Φ2

(

a
σζ
, b
συ
, ρζυ

)Φ

( b
συ

− ρζυ
a
σζ

√

(1− ρ2ζυ)

)

+
σηρηυφ(

b
συ
)

Φ2

(

a
σζ
, b
συ
, ρζυ

)Φ

( a
σζ

− ρζυ
b
συ

√

(1− ρ2ζυ)

)

.

(C-8)
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Now, consider

E[η|ζ ≤ −a, υ > −b] = E[η|ζ̄ ≤
−a

σζ
, ῡ >

−b

συ
] =

∫∞
−b
συ

∫

−a
σζ

−∞ E[η|ζ̄ , ῡ]φ2(ζ̄ , ῡ, ρζυ)dζ̄dῡ

Φ2

(

−a
σζ
, b
συ
,−ρζυ

)

=
1

Φ2

(

−a
σζ
, b
συ
,−ρζυ

)

σηρηζ
(1− ρ2ζυ)

∫ ∞

−b
συ

∫ −a
σζ

−∞

(ζ̄ − ρζυῡ)φ2(ζ̄ , ῡ, ρζυ)dζ̄dῡ

+
1

Φ2

(

−a
σζ
, b
συ
,−ρζυ

)

σηρηυ
(1− ρ2ζυ)

∫ ∞

−b
συ

∫ −a
σζ

−∞

(ῡ − ρζυζ̄)φ2(ζ̄ , ῡ, ρζυ)dζ̄dῡ. (C-9)

By a method analogous to that used in deriving (C-8), it can be shown that

E[η|ζ̄ ≤
−a

σζ
, ῡ >

−b

συ
] =

−σηρηζφ(
a
σζ
)

Φ2

(

−a
σζ
, b
συ
,−ρζυ

)Φ

( b
συ

− ρζυ
a
σζ

√

(1− ρ2ζυ)

)

+
σηρηυφ(

b
συ
)

Φ2

(

−a
σζ
, b
συ
,−ρζυ

)Φ

( −a
σζ

+ ρζυ
b
συ

√

(1− ρ2ζυ)

)

. (C-10)

APPENDIX D: ASYMPTOTIC COVARIANCE MATRIX OF THE SECOND AND THIRD STAGE
ESTIMATES

In this section we give the asymptotic covariance matrix of the coefficients of the second

stage and third stage R&D switching regression model. Newey (1984) has shown that

sequential estimators can be interpreted as members of a class of Method of Moments

(MM) estimators and that this interpretation facilitates derivation of asymptotic covariance

matrices for multi-step estimators. Let Θ = {Θ′
1,Θ

′
2,Θ

′
3}

′, where Θ1, Θ2, and Θ3 are

respectively the parameters to be estimated in the first, second and third step estimation

of the sequential estimator. Following Newey (1984) we write the first, second, and third

step estimation as an MM estimation based on the following population moment conditions:

E(Li(p)1Θ1
) = E

∂ lnLi(p)1(Θ1)

∂Θ1
= 0 (D-1)

E(Li(p)2Θ2) = E
∂ lnLi(p)2(Θ1,Θ2)

∂Θ2
= 0 (D-2)
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and

E(Li(p)3Θ3) = E[

p
∑

t=1

IitX
R
it(Rit − X

R′
it Θ3)] = 0 (D-3)

where Li(p)1(Θ1) is the likelihood function for firm i belonging to the group p, p ∈ {1, . . . , P},

for the first step system of reduced form equations. The notation p was introduced in Ap-

pendix B. p is the number of time period a firm is observed in an unbalanced panel; the

minimum being 1 and maximum P . Hence
∑N

i=1

∑Ti

t=1 =
∑P

p=1

∑

i∈I(p)

∑p
t=1, where I(p)

has been defined in Appendix B. Li(p)2(Θ1,Θ2) is the likelihood function for the second

step estimation in which the joint probability of a firm being an innovator and the firm

being financially constrained is estimated. Equation (D-3) is the first order condition for

minimizing the sum of squared error for the pooled OLS regression of XR
it on Rit for those

firms, that have been selected, Iit = 1, where

Rit = FitRit

X
R
it = Fit{Fit,X

R′
it , ˆ̃αi(Θ1), (Σ

−1
ǫǫ ǫ̂ǫǫit(Θ1))

′, C11it(Θ1,Θ2), C12it(Θ1,Θ2)}
′

if Fit = 1, else

Rit = (1− Fit)Rit

X
R
it = (1− Fit){Fit,X

R′
it , α̂i(Θ1), (Σ

−1
ǫǫ ǫ̂ǫǫit(Θ1))

′, C01it(Θ1,Θ2), C02it(Θ1,Θ2)}
′

if Fit = 0.

The estimates for Θ1, Θ2, and Θ3 are obtained by solving the sample analog of the above

population moment conditions. The sample analog of moment conditions for the first step

estimation is given by

1

N
L1Θ1(Θ̂1) =

1

N

P
∑

p=1

∑

i∈I(p)

∂ lnLi(p)1(Θ̂1)

∂Θ1

(D-4)

where Li(p)1 = lnLi(p)1(Θ1) is given by equation (B-6) in Appendix B. Θ1 = {δδδ′, δ̄δδ
′

vech(Σǫǫ)
′,κκκ′, σ2

α}
′ and N is the total number of firms. The first order moment conditions

for solving Θ̂1 are derived in Subsection D.1.
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Since in the second stage we pool all data to estimate the parameters of the financial

constraint and innovation equation, the sample analog of population moment condition for

the second step estimation is given by

1

N
L2Θ2(Θ̂1, Θ̂2) =

1

N

P
∑

p=1

∑

i∈I(p)

∂Li(p)2(Θ̂1, Θ̂2)

∂Θ2
=

1

N

P
∑

p=1

∑

i∈I(p)

p
∑

t=1

∂Lit2(Θ̂1, Θ̂2)

∂Θ2

(D-5)

where Lit2(Θ1,Θ2) is given by equations (3.15) and (3.17) in the main text and Θ2 =

{ϕϕϕ′, γγγ′, ρζ̃υ̃}
′ was defined in Appendix D. Finally, the sample analog of the population for

the third step estimation is given by

1

N
L3Θ3(Θ̂1, Θ̂2, Θ̂3) =

1

N

P
∑

p=1

∑

i∈I(p)

p
∑

t=1

IitX
R
it(Rit − X

R′
it Θ̂3) (D-6)

In Appendix A, we had shown that with ˆ̃αi(Xi,Zi,Θ1) substituted for α̃i still leads to

the identification of Θ2 and Θ3. Let Θ
∗
1, Θ

∗
2, and Θ∗

3 respectively be the true values of Θ1,

Θ2 and Θ3. Under the assumptions we make, maximizing Li(p)2(Θ̂1,Θ2) is asymptotically

equivalent to maximizing Li(p)2(Θ
∗
1,Θ2), where Θ̂1 is a consistent first step estimate of Θ1.

Hence Θ̂2 obtained by solving 1
N
L2Θ2(Θ̂1, Θ̂2) = 0 is a consistent estimate of Θ2. By the

same logic Θ̂3 obtained by solving 1
N
L3Θ3(Θ̂1, Θ̂2, Θ̂3) = 0 in the third step gives consistent

estimate of the third stage parameters. Newey gives a general formulation of the asymptotic

distribution of the subsequent step estimates for a sequential step sequential estimator.

To derive the asymptotic distribution of the second and third step estimates Θ̂2 and Θ̂3

respectively, consider the stacked up sample moment conditions

1

N









L1Θ1(Θ̂1)

L2Θ2(Θ̂1, Θ̂2)

L3Θ3(Θ̂1, Θ̂2, Θ̂3)









= 0. (D-7)

A series of Taylor’s expansion of L1Θ1(Θ̂1), L2Θ2(Θ̂1, Θ̂2) and LΘ3(Θ̂1, Θ̂2, Θ̂3) around Θ∗

gives

1

N









L1Θ1Θ1 0 0

L2Θ2Θ1 L2Θ2Θ2 0

L3Θ3Θ1 L3Θ3Θ2 L3Θ3Θ3

















√
N(Θ̂1 −Θ∗

1)
√
N(Θ̂2 −Θ∗

2)
√
N(Θ̂3 −Θ∗

3)









= −
1

√
N









L1Θ1

L2Θ2

L3Θ3








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In matrix notation the above can be written as

BΘΘN

√
N(Θ̂−Θ) = −

1
√
N
ΛΘN

, (D-8)

where ΛΘN
is evaluated at Θ∗ and BΘΘN

is evaluated at points somewhere between Θ̂

and Θ∗. Under the standard regularity conditions for Generalized Method of Moments

(GMM), (see Newey, 1984), BΘΘN
converges in probability to the lower block triangular

matrix B∗ = limEBΘΘN
. B∗ is given by

B∗ =









L1Θ1Θ1 0 0

L2Θ2Θ1 L2Θ2Θ2 0

L3Θ3Θ1 L3Θ3Θ2 L3Θ3Θ3









,

where a typical element, say, L2Θ2Θ1 = E(Li(p)2Θ2Θ1
). 1√

N
ΛN in (D-8) converges in distribu-

tion to an asymptotically normal random variable with mean zero and a covariance matrix

A∗ = limE 1
N
ΛNΛ

′
N , where A∗ is given by

A∗ =









VL1L1 VL1L2 VL1L3

VL2L1 VL2L2 VL2L3

VL3L1 VL3L2 VL3L3









,

where a typical element ofA∗, say VL1L2 is given by VL1L2 = E[Li(p)1Θ1
(Θ1)Li(p)2Θ2

(Θ1,Θ2)
′].

Under the regularity conditions
√
N(Θ̂−Θ∗) is asymptotically normal with zero mean and

covariance matrix4 given by B−1
∗ A∗B

−1′
∗ .

√
N(Θ̂−Θ∗)

a
∼ N[(0), (B−1

∗ A∗B
−1′
∗ )] (D-9)

The moment conditions for every firm, at the estimates of Θ1, Θ2, and Θ3, of the three

stages can be employed to obtain the sample analog of every element in A∗. For example, to

get an estimate of VL1L2 we have to estimate 1
N

∑P
p=1

∑

i∈I(p)
[Li(p)1Θ1(Θ̂1)Li(p)2Θ2(Θ̂1, Θ̂2)

′].

Consider now the elements of B∗. Since in the first and the second stage we employ

4The covariance matrices V ∗

2F in equation (E-5), V ∗

2 in equation (E-7), and V ∗

s in equation (E-12) can

obtained by selecting the appropriate submatrix of 1
N
B−1

∗
A∗B

−1′
∗

.
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MLE, at Θ∗
1 and Θ∗

2 to which Θ̂1 and Θ̂2 converge, we have

L1Θ1Θ1 = E

[

∂Li(p)1(Θ1)

∂Θ1Θ
′
1

]

= −E

[

∂Li(p)1(Θ1)

∂Θ1

∂Li(p)1(Θ1)

∂Θ′
1

]

= −VL1L1 and

L2Θ2Θ2 = E

[

∂Li(p)2(Θ2)

∂Θ2Θ′
2

]

= −E

[

∂Li(p)2(Θ2)

∂Θ2

∂Li(p)2(Θ2)

∂Θ′
1

]

= −VL2L2.

We can employ the derivative Li(p)1(Θ1) of with respect to Θ1 and of Li(p)2(Θ1,Θ2) with

respect to Θ2 to compute Li(p)1Θ1Θ1
and Li(p)2Θ2Θ2

for all firms, which can then be used

to compute the sample analog of L1Θ1Θ1 and L2Θ2Θ2. This leaves us with the problem of

constructing sample analogs of L2Θ2Θ1, L3Θ3Θ1 , L3Θ3Θ2, and L3Θ3Θ3 . While it is straight-

forward to compute sample analog of L3Θ3Θ3 , computation of sample analogs of L2Θ2Θ1 ,

L3Θ3Θ1 , and L3Θ3Θ2 can be challenging. In the next subsections we derive the deriva-

tive of Li(p)2Θ2(Θ1,Θ2) and Li(p)3Θ3(Θ1,Θ2,Θ2) with respect to Θ1 and the derivative of

Li(p)3Θ3
(Θ1,Θ2,Θ2) with respect to Θ2. But first we begin by deriving the first order con-

ditions of the log likelihood function of the first stage.

D.1. Derivation of the First Order Conditions for First Stage Reduced Form Likelihood

Function

To derive the first order conditions it is convenient to arrange the disturbances, uuuit,

given in (B-1), for a firm i, i ∈ Ip, in the (m × p) matrix Ẽi(p) = [uuui1, . . . ,uuuip], write

uuui(p) = vec(Ei(p)), where ‘vec()’ is the vectorization operator, and define

Wui(p) = Ẽi(p)KpẼ
′
i(p) and Bui(p) = Ẽi(p)JpẼ

′
i(p), (D-10)

where Jp and Kp defined earlier in Appendix B are Jp = (1/p)Ep, and Kp = Ip−Jp, where

Ip is the p dimensional identity matrix, ep is the (p× 1) vector of ones, Ep = epe
′
p.

Below we show that

∂Li(p)

∂δδδ
= 2ZZZ i(p)Ω

−1
u(p)uuui(p),

∂Li(p)

∂δ̄δδ
= −2Z̄iκκκ

′

[

Σ−1
(p)Ẽi(p)Jp + Σ−1

ǫǫ Ẽi(p)Kp

]

ep,

∂Li(p)

∂vech(Σǫǫ)
= −

1

2
vech

(

Σ−1
(p) + (p− 1)Σ−1

ǫǫ − Σ−1
(p)Bui(p)Σ

−1
(p) − Σ−1

ǫǫ Wui(p)Σ
−1
ǫǫ

)

,
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∂Li(p)

∂κκκ
= −pσ2

α[Σ
−1
(p) − Σ−1

(p)Bui(p)Σ
−1
(p)]κκκ+ Z̄ ′

iδ̄δδ

[

Σ−1
(p)Ẽi(p)Jp + Σ−1

ǫǫ Ẽi(p)Kp

]

ep,

and

∂Li(p)

∂σ2
α

= −
1

2
p[vec(Σ−1

(p))
′ − vec(Σ−1

(p)Bui(p)Σ
−1
(p))

′]vec(Σκ), (D-11)

where ‘vech()’ operator is column-wise vectorization of the lower triangle of the symmetric

matrix Σǫǫ
5.

To derive the above we utilize the following matrix results:

1. |Jp ⊗ C +Kp ⊗D| = |C||D|p−1, since Jp and Kp have ranks 1 and p− 1,

2. ∂ ln |A|
∂A

= (A′)−1,

3. tr(ABCD) = tr(CDAB) = vec(A′)′(D′ ⊗B)vec(C) = vec(C ′)′(B′ ⊗D)vec(A),

4. ∂tr(CB−1)
∂B

= −(B−1CB−1)′,

5. ∂xx′

∂x
= x⊗ In + In⊗ x, where x is a (n× 1) matrix and In is a n dimensional identity

matrix

and

6. vec(ABC) = (C ′ ⊗ A)vec(B).

The log-likelihood for a firm i belonging to group p is given by

Li(p) =
−mp

2
ln(2π)−

1

2
ln |Ωu(p)| −

1

2
Qi(p)(δδδ, δ̄δδ,Σǫǫ,κκκ, σ

2
α).

Then

∂Li(p)

∂Σǫǫ

= −
1

2

∂ ln |Ωu(p)|

∂Σǫǫ

−
1

2

∂Qi(p)(δδδ, δ̄δδ,Σǫǫ,κκκ, σ
2
α)

∂Σǫǫ

.

Now from (a) we have |Ωu(p)| = |Kp⊗Σǫǫ+Jp⊗Σ(p)| = |Σǫǫ|
p−1|Σ(p)| and from (b) we have

∂ ln |Ωu(p)|

∂Σǫǫ

=
∂ ln |Σ(p)|

∂Σǫǫ

+ (p− 1)
∂ ln |Σǫǫ|

∂Σǫǫ

= Σ−1
(p) + (p− 1)Σ−1

ǫǫ (D-12)

For any given δδδ and δ̄δδ we have

Qi(p)() = uuu′i(p)[Kp ⊗ Σ−1
ǫǫ ]uuui(p) + uuu′i(p)[Jp ⊗ Σ−1

(p)]uuui(p)

= vec(Ei(p))
′[Kp ⊗ Σ−1

ǫǫ ]vec(Ei(p)) + vec(Ei(p))
′[Jp ⊗ Σ−1

(p)]vec(Ei(p))

5Because Σǫǫ is symmetric we only need to optimize with respect to m(m+1)
2 elements of the lower

triangle of the Σǫǫ.
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From (c) we get

Qi(p)() = tr[Ei(p)Σ
−1
(p)E

′
i(p)Jp] + tr[Ei(p)Σ

−1
ǫǫ E

′
i(p)Kp] = tr[Ei(p)JpE

′
i(p)Σ

−1
(p)] + tr[Ei(p)KpE

′
i(p)Σ

−1
ǫǫ ].

Using (D-10) we obtain

Qi(p)() = tr[Bui(p)Σ
−1
(p)] + tr[Wui(p)Σ

−1
ǫǫ ],

and from (d) we get

∂Qi(p)()

∂Σǫǫ

= −[Σ−1
(p)Bui(p)Σ

−1
(p) + Σ−1

ǫǫ Wui(p)Σ
−1
ǫǫ ]. (D-13)

Combining (D-12) and (D-13) we obtain

∂Li(p)

∂vech(Σǫǫ)
= −

1

2
vech

(

Σ−1
(p) + (p− 1)Σ−1

ǫǫ − Σ−1
(p)Bui(p)Σ

−1
(p) − Σ−1

ǫǫ Wui(p)Σ
−1
ǫǫ

)

.

(D-14)

To find expressions for the first order condition with respect to κκκ and σ2
α, consider the

total differential d(ln |Ωu(p)|) and d(Qi(p)()) for given Σǫǫ, δδδ, and δ̄δδ.

d(ln |Ωu(p)|) = d(ln(|Σǫǫ|
p−1|Σ(p)|)) = d(ln(|Σ(p)|)) = vec[Σ−1

(p)]
′vec[d(Σ(p))]

= vec[Σ−1
(p)]

′vec[pd(σ2
α)Σκ + pσ2

αd(Σκ)]

= vec[Σ−1
(p)]

′vec[pd(σ2
α)Σκ + pσ2

α(κκκ⊗ Im + Im ⊗ κκκ)d(κκκ)], (D-15)

where the third equality follows from employing (b). Since Σǫǫ is given, dΣ(p) = d(Σǫǫ +

pσ2
αΣκ) = pd(σ2

αΣκ) = pd(σ2
α)Σκ + pσ2

αd(Σκ), hence the fourth equality. Also, since Σκ =

κκκκκκ′, the last equality follows using (e).
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The total differential, d(Qi(p)()), is given by

d(Qi(p)()) =d(tr[Bui(p)Σ
−1
(p)] + tr[Wui(p)Σ

−1
ǫǫ ])

=− vec(Σ−1
(p)Bui(p)Σ

−1
(p))

′vec(pd(σ2
α)Σκ + pσ2

αd(Σκ))

+ vec(Σ−1
(p))

′vec(d(Bui(p))) + vec(Σ−1
ǫǫ )

′vec(d(Wui(p)))

=− vec(Σ−1
(p)Bui(p)Σ

−1
(p))

′vec

(

pd(σ2
α)Σκ + pσ2

α(κκκ⊗ Im + Im ⊗ κκκ)dκκκ

)

+ vec(Σ−1
(p))

′

[

(Im ⊗ Ẽi(p)Jp)vec(d(Ẽ
′
i(p))) + (Ẽi(p)J

′
p ⊗ Im)vec(d(Ẽi(p)))

]

+ vec(Σ−1
ǫǫ )

′

[

(Im ⊗ Ẽi(p)Kp)vec(d(Ẽ
′
i(p))) + (Ẽi(p)K

′
p ⊗ Im)vec(d(Ẽi(p)))

]

=− vec(Σ−1
(p)Bui(p)Σ

−1
(p))

′vec

(

pd(σ2
α)Σκ + pσ2

α(κκκ⊗ Im + Im ⊗ κκκ)dκκκ

)

− vec(Σ−1
(p))

′

[

(Im ⊗ Ẽi(p)Jp)(Z̄
′
iδ̄δδdκκκ⊗ ep) + (Ẽi(p)J

′
p ⊗ Im)(ep ⊗ Z̄ ′

iδ̄δδdκκκ)

]

− vec(Σ−1
ǫǫ )

′

[

(Im ⊗ Ẽi(p)Kp)(Z̄
′
iδ̄δδdκκκ⊗ ep) + (Ẽi(p)K

′
p ⊗ Im)(ep ⊗ Z̄ ′

iδ̄δδdκκκ)

]

=− pvec(Σ−1
(p)Bui(p)Σ

−1
(p))

′vec(Σκ)d(σ
2
α)− pσ2

αvec(Σ
−1
(p)Bui(p)Σ

−1
(p))

′(κκκ⊗ Im + Im ⊗ κκκ)dκκκ

−

[

vec(J ′
pẼ

′
i(p)Σ

−1
(p))

′(Z̄ ′
iδ̄δδdκκκ⊗ ep) + vec(Σ−1

(p)Ẽi(p)J
′
p)

′(ep ⊗ Z̄ ′
iδ̄δδdκκκ)

]

−

[

vec(K ′
pẼ

′
i(p)Σ

−1
ǫǫ )

′(Z̄ ′
iδ̄δδdκκκ⊗ ep) + vec(Σ−1

ǫǫ Ẽi(p)K
′
p)

′(ep ⊗ Z̄ ′
iδ̄δδdκκκ)

]

=− pvec(Σ−1
(p)Bui(p)Σ

−1
(p))

′vec(Σκ)d(σ
2
α)− 2pσ2

αvec([Σ
−1
(p)Bui(p)Σ

−1
(p)]κκκ)

′dκκκ

− 2e′p

[

J ′
pẼ

′
i(p)Σ

−1
(p) +K ′

pẼ
′
i(p)Σ

−1
ǫǫ

]

Z̄ ′
iδ̄δδdκκκ, (D-16)

where the second equality follows from employing (d), and the fact that Σǫǫ being given,

dΣ(p) = d(Σǫǫ + pσ2
αΣκ) = pd(σ2

αΣκ). Since Σκ = κκκκκκ′, the third equality follows using (e)

and taking the differential of Bui(p) and Wui(p). The fourth equality follows from taking

the differential of Ẽi(p), and finally in the fifth and sixth we have used matrix algebra to

rearrange terms. Given (D-16) we can conclude that

∂Qi(p)()

∂κκκ
= −2pσ2

α[Σ
−1
(p)Bui(p)Σ

−1
(p)]κκκ− 2Z̄ ′

iδ̄δδ

[

Σ−1
(p)Ẽi(p)Jp + Σ−1

ǫǫ Ẽi(p)Kp

]

ep. (D-17)

Similarly, from (D-15) we obtain

∂ ln |Ωu(p)|

∂κκκ
= 2pσ2

α[Σ
−1
(p)]κκκ. (D-18)
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Combining (D-17) and (D-18) we get the expression in (D-11) for
∂Li(p)

∂κκκ
.

Again, from (D-15) and (D-16) respectively we obtain
∂ ln |Ωu(p)|

∂σ2
α

= pvec[Σ−1
(p)]

′vec(Σκ) and
∂Qi(p)()

∂σ2
α

= −pvec[Σ−1
(p)Bui(p)Σ

−1
(p)]

′vec(Σκ), which when combined yields the expression for
∂Li(p)

∂σ2
α

in (D-11). By a similar derivation as in (D-16), we can conclude that

∂Li(p)

∂δ̄δδ
= −2Z̄iκκκ

′

[

Σ−1
(p)Ẽi(p)Jp + Σ−1

ǫǫ Ẽi(p)Kp

]

ep. (D-19)

D.2. Derivative of Li(p)2Θ2
with respect to Θ1

Let us begin by deriving the derivative of score functions, Li(p)2Θ2 , of second stage like-

lihood with respect to Θ1. Since the second step is essentially a combination of probit and

bivariate probit, we have to take the derivative of the score functions of the probit and

bivariate probit with respect to Θ1. Now, we know that Θ1 enters the second stage of the

sequential estimator through z̄′iδ̄δδ+ α̂i(Θ1) and Σ̃−1
ǫǫ ǫ̂ǫǫit(Θ1), and that Li(p)2Θ2 =

∑p
t=1 Lit2Θ2 .

Hence in order to compute the derivative of Li(p)2Θ2 with respect to Θ1 we have to com-

pute
∂Lit2Θ2

(Θ1,Θ2)

∂Θ′

1
. To do so let us first separate the coefficients of the second stage into

coefficients of the Financial Constraint equation, Θ2F , coefficients of the Innovation equa-

tion Θ2I and ρζ̃υ̃, the correlation between the idiosyncratic components of the Financial

Constraint and the Innovation equation. In matrix form we can write

Li(p)2Θ2Θ1
=
∂Li(p)2Θ2

∂Θ′
1

=

p
∑

t=1

∂Lit2Θ2

∂Θ′
1

=

p
∑

t=1











∂Lit2Θ2F

∂Θ′

1

∂Lit2Θ2I

∂Θ′

1
∂Lit2ρ

ζ̃υ̃

∂Θ′

1











,

where the score functions, Lit2Θ2F
, Lit2Θ2I

, and Lit2Θ2ρ
ζ̃υ̃
, above are the score functions of

the log likelihood function for bivariate probit when it belongs to CIS3 and CIS3.5, and

are given by

Lit2Θ2F
(Θ1,Θ2) =

qitF gitF
Φ2

X
F
it , Lit2Θ2I

(Θ1,Θ2) =
qitIgitI
Φ2

X
I
it, and Lit2ρ

ζ̃υ̃
(Θ1,Θ2) =

qitIqitIφ2

Φ2

(D-20)
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where X
F
it = {X F ′

it , Z̄
′
iδ̄δδ + α̂i, (Σ̃

−1
ǫǫ ǫ̂ǫǫit)

′}′, XI
it = {X I′

it , Z̄
′
iδ̄δδ + α̂i, (Σ̃

−1
ǫǫ ǫ̂ǫǫit)

′}′, qitF = 2Fit − 1,

qitI = 2Iit − 1. gitF and gitI in (D-20) are defined as

gitF = φ(ϕit)Φ(
γit − ρ∗

ζ̃υ̃
ϕit

√
(1− ρ∗2

ζ̃υ̃
)
), and gitI = φ(γit)Φ(

ϕit − ρ∗
ζ̃υ̃
γit

√
(1− ρ∗2

ζ̃υ̃
)
),

where ρ∗
ζ̃υ̃

= qitF qitIρζ̃υ̃, ϕit = X
F ′
it Θ2F , and γit = X

I′
itΘ2I . However, for CIS2.5 we do not

observe Fit when Iit = 0. So, while the score functions remain the same as in (D-20) when

Iit = 1, the functions are

Lit2Θ2F
(Θ1,Θ2) = 0Θ2F

, Lit2Θ2I
(Θ1,Θ2) = −

φ(−X
I′
itΘ2I)

Φ(−XI′
itΘ2I)

X
I
it, and Lit2ρ

ζ̃υ̃
(Θ1,Θ2) = 0

(D-21)

when Iit = 0, where 0Θ2F
is a vector of zeros.

To ease notations we now suppress firm and time subscript except when necessary. Given

the above, we have

∂L2Θ2j
(Θ1,Θ2)

∂Θ′
1

= qj

{

∂

∂Θ′
1

(

gj
Φ2

)

X
j +

gj
Φ2

∂Xj

∂Θ′
1

}

= qj

{(

∂(gj/Φ2)

∂ϕit

∂ϕit

∂Θ′
1

+
∂(gj/Φ2)

∂γit

∂γit
∂Θ′

1

)

X
j +

gj
Φ2

∂Xj

∂Θ′
1

}

= qj

{(

∂(gj/Φ2)

∂ϕit

∂XF ′
it

∂Θ′
1

Θ2F +
∂(gj/Φ2)

∂γit

∂XI′
it

∂Θ′
1

Θ2I

)

X
j +

gj
Φ2

∂Xj

∂Θ′
1

}

.

(D-22)

where j ∈ {F, I} and

∂L2ρ
ζ̃υ̃
(Θ1,Θ2)

∂Θ′
1

= qF qI

{

∂

∂Θ′
1

(

φ2

Φ2

)}

= qF qI

{

∂(φ2/Φ2)

∂ϕit

∂XF ′
it

∂Θ′
1

Θ2F +
∂(φ2/Φ2)

∂γit

∂XI′
it

∂Θ′
1

Θ2I

}

(D-23)

when the firm year observation, it, is such that it belongs to CIS3 and CIS3.5, and CIS2.5

when Iit = 1. When Iit = 0, for CIS2.5 we have
∂L2Θ2F

(Θ1,Θ2)

∂Θ′

1
= 0Θ2F

,
∂L2ρ

ζ̃υ̃
(Θ1,Θ2)

∂Θ′

1
= 0, and

∂L2Θ2I
(Θ1,Θ2)

∂Θ′
1

= −

{

∂

∂Θ′
1

(

φ(−γit)

Φ(−γit)

)

X
I
it +

φ(−γit)

Φ(−γit)

∂XI
it

∂Θ′
1

}

= −

{

∂

∂γit

(

φ(−γit)

Φ(−γit)

)

∂XI′
it

∂Θ′
1

Θ2IX
I
it +

φ(−γit)

Φ(−γit)

∂XI
it

∂Θ′
1

}

(D-24)
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To obtain expressions for (D-22), (D-23), and (D-24) we need the derivative of
gj
Φ2
,

j ∈ {F, I}, with respect to ϕit and γit, the derivative of
φ2

Φ2
with respect to ϕit and γit, and

the derivative of φ(−γit)
Φ(−γit)

with respect to γit. While these can be easily obtained and can be

found in Greene (2002), what is challenging to obtain is the derivative of XF
it and X

I
it with

respect to Θ1.

∂Xj
it

∂Θ′
1

=











∂X j
it

∂δδδ′
∂X j

it

∂δ̄δδ
′

∂X j
it

∂κκκ′

∂X j
it

∂vech(Σǫǫ)′
∂X j

it

∂σ2
α

∂(Z̄ ′

iδ̄δδ+α̂i)
∂δδδ′

∂(Z̄ ′

iδ̄δδ+α̂i)

∂δ̄δδ
′

∂(Z̄ ′

iδ̄δδ+α̂i)
∂κκκ′

∂(Z̄ ′

iδ̄δδ+α̂i)
∂vech(Σǫǫ)′

∂(Z̄ ′

iδ̄δδ+α̂i)
∂σ2

α

∂Σ̃−1
ǫǫ ǫ̂ǫǫit
∂δδδ′

∂Σ̃−1
ǫǫ ǫ̂ǫǫit

∂δ̄δδ
′

∂Σ̃−1
ǫǫ ǫ̂ǫǫit
∂κκκ′

∂Σ̃−1
ǫǫ ǫ̂ǫǫit

∂vech(Σǫǫ)′
∂Σ̃−1

ǫǫ ǫ̂ǫǫit
∂σ2

α











,

where j ∈ {F, I}. While
∂X j

it

∂Θ′

1
= 0, below we show that

∂(Z̄ ′
iδ̄δδ + α̂i)

∂δδδ′
= −

1

U2
dr

p
∑

t=1

[

U2
nr − UdrFdr

]

κκκ′Σ−1
ǫǫ Z

′
it

∂(Z̄ ′
iδ̄δδ + α̂i)

∂δ̄δδ
′ = Z̄ ′

i −
p

U2
dr

[

U2
nr − UdrFdr

]

κκκ′Σ−1
ǫǫ κκκZ̄

′
i

∂(Z̄ ′
iδ̄δδ + α̂i)

∂κκκ′
= −

1

U2
dr

p
∑

t=1

{[

U2
nr − UdrFdr

]

(Z̄ ′
iδ̄δδκκκ

′ − r′it)Σ
−1
ǫǫ +

[

UnrFdr − UdrFnr

]

κκκ′Σ−1
ǫǫ

}

∂(Z̄ ′
iδ̄δδ + α̂i)

∂vech(Σǫǫ)′
=

1

2U2
dr

p
∑

t=1

[

(U2
nr − UdrFdr)vec(κκκr

′
it + ritκκκ

′)′

+ (UdrFnr − UnrFdr)vec(Σκ)
′

]

(Σ−1
ǫǫ ⊗ Σ−1

ǫǫ )
′L′

m

∂(Z̄ ′
iδ̄δδ + α̂i)

∂σ2
α

=
1

2σ4
αU

2
dr

(UdrFnr − UnrFdr) (D-25)
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∂Σ̃−1
ǫǫ ǫ̂ǫǫit
∂δδδ′

= −Σ̃−1
ǫǫ Z

′
it +

Σ̃−1
ǫǫ κκκ

U2
dr

p
∑

t=1

[

U2
nr − UdrFdr

]

κκκ′Σ−1
ǫǫ Z

′
it

∂Σ̃−1
ǫǫ ǫ̂ǫǫit

∂δ̄δδ
′ = −Σ̃−1

ǫǫ κκκZ̄
′
i +

pΣ̃−1
ǫǫ κκκ

U2
dr

[

U2
nr − UdrFdr

]

κκκ′Σ−1
ǫǫ κκκZ̄

′
i

∂Σ̃−1
ǫǫ ǫ̂ǫǫit
∂κκκ′

= −Σ̃−1
ǫǫ Z̄

′
iδ̄δδ − Σ̃−1

ǫǫ α̂i +
Σ̃−1

ǫǫ κκκ

U2
dr

p
∑

t=1

{[

U2
nr − UdrFdr

]

(Z̄ ′
iδ̄δδκκκ

′ − r′it)Σ
−1
ǫǫ

+

[

UnrFdr − UdrFnr

]

κκκ′Σ−1
ǫǫ

}

∂Σ̃−1
ǫǫ ǫ̂ǫǫit

∂vech(Σǫǫ)′
=

[

(ǫǫǫ′itΣ
−1
ǫǫ ⊗ Im)vec((dg(Σǫǫ))

−1/2)′ − (ǫǫǫit ⊗ Σ′
ǫ)

′(Σ−1
ǫǫ ⊗ Σ−1

ǫǫ )
′

]

L′
m

−
Σ̃−1

ǫǫ κκκ

2(Udr)2

p
∑

t=1

[

(U2
nr − UdrFdr)vec(κκκr

′
it + ritκκκ

′)′

+ (UdrFnr − UnrFdr)vec(Σκ)
′

]

(Σ−1
ǫǫ ⊗ Σ−1

ǫǫ )
′L′

m

∂Σ̃−1
ǫǫ ǫ̂ǫǫit
∂σ2

α

= −
Σ̃−1

ǫǫ κκκ

2σ4
αU

2
dr

(UdrFnr − UnrFdr), (D-26)

where

Unr =

∫

α exp(−
1

2

p
∑

t=1

ǫǫǫ′itΣ
−1
ǫǫ ǫǫǫit)φ(α)dα, Fnr =

∫

α3 exp(−
1

2

p
∑

t=1

ǫǫǫ′itΣ
−1
ǫǫ ǫǫǫit)φ(α)dα,

Udr =

∫

exp(−
1

2

p
∑

t=1

ǫǫǫ′itΣ
−1
ǫǫ ǫǫǫit)φ(α)dα, Fdr =

∫

α2 exp(−
1

2

p
∑

t=1

ǫǫǫ′itΣ
−1
ǫǫ ǫǫǫit)φ(α)dα,

and Lm in the set of equations in (D-25) and (D-26) is the elimination matrix and rit =

xit − Zitδδδ − κκκZ̄iδ̄δδ. Unr, Udr, Fnr, and Fdr needed to estimate the covariance matrix of the

structural parameters are obtained using Gauss Hermit quadrature rules.

D.2.1. Derivation of the derivative of Z̄ ′
iδ̄δδ + α̂i and Σ̃−1

ǫǫ ǫ̂ǫǫit and with respect to Θ1

Let us first consider the derivative of Z̄ ′
iδ̄δδ +αααi and Σ̃−1

ǫǫ ǫ̂ǫǫit with respect to δδδ′. We have

∂(Z̄ ′
iδ̄δδ + α̂i)

∂δδδ′
=
∂Z̄ ′

iδ̄δδ

∂δδδ′
+
∂α̂i

∂δδδ′
= 0 +

∂

∂δδδ′

[

∫

α exp(−1
2

∑p
t=1 ǫǫǫ

′
itΣ

−1
ǫǫ ǫǫǫit)φ(α)dα

∫

exp(−1
2

∑p
t=1 ǫǫǫ

′
itΣ

−1
ǫǫ ǫǫǫit)φ(α)dα

]

= 0−
1

(
∫

exp(.)φ(α)dα)2

p
∑

t=1

[
∫

α exp(.)ǫǫǫ′itΣ
−1
ǫǫ Z

′
itφ(α)dα

∫

exp(.)φ(α)dα

−

∫

α exp(.)φ(α)dα

∫

exp(.)ǫǫǫ′itΣ
−1
ǫǫ Z

′
itφ(α)dα

]

, (D-27)
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To derive the above result in (D-27) we used the fact that

∂(ǫǫǫ′itΣ
−1
ǫǫ ǫǫǫit)

∂δδδ′
= 2ǫǫǫ′itΣ

−1
ǫǫ

∂(ǫǫǫit)

∂δδδ′
= −2ǫǫǫ′itΣ

−1
ǫǫ Z

′
it.

Taking into account the fact that ǫǫǫit = xit−Z′
itδδδ− (Z̄ ′

iδ̄δδ+αi)κκκ, after some rearrangements

it can be shown that

∂α̂i

∂δδδ′
= −

1

U2
dr

T
∑

t=1

[

U2
nr − UdrFdr

]

κκκ′Σ−1
ǫǫ Z

′
it,

where

Unr =

∫

α exp(−
1

2

p
∑

t=1

ǫǫǫ′itΣ
−1
ǫǫ ǫǫǫit)φ(α)dα, Fnr =

∫

α3 exp(−
1

2

p
∑

t=1

ǫǫǫ′itΣ
−1
ǫǫ ǫǫǫit)φ(α)dα

Udr =

∫

exp(−
1

2

p
∑

t=1

ǫǫǫ′itΣ
−1
ǫǫ ǫǫǫit)φ(α)dα, Fdr =

∫

α2 exp(−
1

2

p
∑

t=1

ǫǫǫ′itΣ
−1
ǫǫ ǫǫǫit)φ(α)dα.

(D-28)

Hence we have

∂(Z̄ ′
iδ̄δδ + α̂i)

∂δδδ′
= −

1

U2
dr

p
∑

t=1

[

U2
nr − UdrFdr

]

κκκ′Σ−1
ǫǫ Z

′
it, (D-29)

and

∂Σ̃−1
ǫǫ ǫ̂ǫǫit
∂δδδ′

=
∂Σ̃−1

ǫǫ (xit − Z′
itδδδ − Z̄ ′

iδ̄δδκκκ)

∂δδδ′
−
∂Σ̃−1

ǫǫ α̂iκκκ

∂δδδ′

= −Σ̃−1
ǫǫ Z

′
it +

Σ̃−1
ǫǫ κκκ

U2
dr

p
∑

t=1

[

U2
nr − UdrFdr

]

κκκ′Σ−1
ǫǫ Z

′
it. (D-30)

From (D-29) and (D-30) we can see that while ∂(Z̄′δ̄δδ+α̂ααi)
∂δδδ′

for a firm i remains the same for

all time periods, ∂Σ̃−1
ǫǫ ǫ̂ǫǫit
∂δδδ′

varies with time. Similarly it can be shown that

∂(Z̄ ′
iδ̄δδ + α̂i)

∂δ̄δδ
′ = Z̄ ′

i −
1

U2
dr

p
∑

t=1

[

U2
nr − UdrFdr

]

κκκ′Σ−1
ǫǫ κκκZ̄

′
i = Z̄ ′

i −
p

U2
dr

[

U2
nr − UdrFdr

]

κκκ′Σ−1
ǫǫ κκκZ̄

′
i,

(D-31)

and

∂Σ̃−1
ǫǫ ǫ̂ǫǫit
∂δδδ′

=
∂Σ̃−1

ǫǫ (xit − Z′
itδδδ − Z̄ ′

iδ̄δδκκκ)

∂δδδ′
−
∂Σ̃−1

ǫǫ α̂iκκκ

∂δδδ′

= −Σ̃−1
ǫǫ κκκZ̄

′
i +

pΣ̃−1
ǫǫ κκκ

U2
dr

[

U2
nr − UdrFdr

]

κκκ′Σ−1
ǫǫ κκκZ̄

′
i. (D-32)
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Let us now consider the derivative of Z̄ ′
iδ̄δδ + α̂i with respect to κκκ. We have

∂(Z̄ ′
iδ̄δδ + α̂i)

∂κκκ′
=

∂

∂κκκ′

[

∫

α exp(−1
2

∑p
t=1 ǫǫǫ

′
itΣ

−1
ǫǫ ǫǫǫit)φ(α)dα

∫

exp(−1
2

∑p
t=1 ǫǫǫ

′
itΣ

−1
ǫǫ ǫǫǫit)φ(α)dα

]

= −
1

(
∫

exp(.)φ(α)dα)2

p
∑

t=1

[
∫

α exp(.)ǫǫǫ′itΣ
−1
ǫǫ (Z̄

′
iδδδ + αi)φ(α)dα

∫

exp(.)φ(α)dα

−

∫

α exp(.)φ(α)dα

∫

exp(.)ǫǫǫ′itΣ
−1
ǫǫ (Z̄

′
iδδδ + αi)

′φ(α)dα

]

, (D-33)

which after simplification can be written as

∂(Z̄ ′
iδ̄δδ + α̂i)

∂κκκ′
= −

1

U2
dr

p
∑

t=1

{[

U2
nr − UdrFdr

]

(Z̄ ′
iδ̄δδκκκ

′ − r′it)Σ
−1
ǫǫ +

[

UnrFdr − UdrFnr

]

κκκ′Σ−1
ǫǫ

}

,

(D-34)

where rit = xit − Z′
itδδδ − Z̄ ′

iδ̄δδκκκ and Unr, Udr, Fnr, and Fdr are given in (D-28). Also, it can

be shown that

∂Σ̃−1
ǫǫ ǫ̂ǫǫit
∂κκκ′

=
∂Σ̃−1

ǫǫ (xit − Z′
itδδδ − Z̄ ′

iδ̄δδκκκ)

∂κκκ′
−
∂Σ̃−1

ǫǫ α̂iκκκ

∂κκκ′

= −Σ̃−1
ǫǫ Z̄

′
iδ̄δδ − Σ̃−1

ǫǫ α̂i +
Σ̃−1

ǫǫ κκκ

U2
dr

p
∑

t=1

{[

U2
nr − UdrFdr

]

(Z̄ ′
iδ̄δδκκκ

′ − r′it)Σ
−1
ǫǫ

+

[

UnrFdr − UdrFnr

]

κκκ′Σ−1
ǫǫ

}

. (D-35)

Now consider the derivative of Z̄ ′
iδ̄δδ + α̂i with respect to vech(Σǫǫ). We have

∂(Z̄ ′
iδ̄δδ + α̂i)

∂vech(Σǫǫ)′
=

∂α̂i

∂vech(Σǫǫ)′
=

∂

∂vech(Σǫǫ)′

[

∫

α exp(−1
2

∑p
t=1 ǫǫǫ

′
itΣ

−1
ǫǫ ǫǫǫit)φ(α)dα

∫

exp(−1
2

∑p
t=1 ǫǫǫ

′
itΣ

−1
ǫǫ ǫǫǫit)φ(α)dα

]

= −
1

2

[

∫

αψ(α)
∂
∑p

t=1 ǫǫǫ
′

itΣ
−1
ǫǫ ǫǫǫit

∂vech(Σǫǫ)′
dα

∫

ψ(α)dα−
∫

αψ(α)dα
∫

ψ(α)
∂
∑p

t=1 ǫǫǫ
′

itΣ
−1
ǫǫ ǫǫǫit

∂vech(Σǫǫ)′
dα

(
∫

ψ(α)dα)2

]

,

where ψ(α) = exp(−1
2

∑p
t=1 ǫǫǫ

′
itΣ

−1
ǫǫ ǫǫǫit)φ(α). With

∂
∑p

t=1 ǫǫǫ
′

itΣ
−1
ǫǫ ǫǫǫit

∂vech(Σǫǫ)′
=

∑p
t=1 vec(−(Σ−1

ǫǫ )
′ǫǫǫitǫǫǫ

′
it(Σ

−1
ǫǫ )

′)′L′
m
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the above can be written as

∂α̂i

∂vech(Σǫǫ)′
=

1

2(
∫

ψ(α)dα)2

p
∑

t=1

[
∫

αψ(α)vec((Σ−1
ǫǫ )

′ǫǫǫitǫǫǫ
′
it(Σ

−1
ǫǫ )

′)′L′
mdα

∫

ψ(α)dα

−

∫

ψ(α)vec((Σ−1
ǫǫ )

′ǫǫǫitǫǫǫ
′
it(Σ

−1
ǫǫ )

′)′L′
mdα

∫

αψ(α)dα

]

=
1

2U2
dr

T
∑

t=1

[
∫

αψ(α)vec(ǫǫǫitǫǫǫ
′
it)

′(Σ−1
ǫǫ ⊗ Σ−1

ǫǫ )
′L′

mdαUdr

− Unr

∫

ψ(α)vec(ǫǫǫitǫǫǫ
′
it)

′(Σ−1
ǫǫ ⊗ Σ−1

ǫǫ )
′L′

mdα

]

=
1

2U2
dr

p
∑

t=1

[
∫

(Udrαvec(ǫǫǫitǫǫǫ
′
it)

′ − Unrvec(ǫǫǫitǫǫǫ
′
it)

′)ψ(ααα)dα

]

(Σ−1
ǫǫ ⊗ Σ−1

ǫǫ )
′L′

m,

(D-36)

where Lm is an elimination matrix. To simply further, write ǫǫǫit as ǫǫǫit = xit−Zitδδδ−κκκZ̄iδ̄δδ−

κκκα = rit − κκκα, where rit = xit − Zitδδδ − κκκZ̄iδ̄δδ. Then ǫǫǫitǫǫǫ
′
it = ritr

′
it − κκκr′itα− ritκκκ

′α + κκκκκκ′α2,

then (D-36) after some simplification can be written as

∂α̂i

∂vech(Σǫǫ)′
=

1

2U2
dr

p
∑

t=1

[

(U2
nr − UdrFdr)vec(κκκr

′
it + ritκκκ

′)′

+ (UdrFnr − UnrFdr)vec(Σκ)
′

]

(Σ−1
ǫǫ ⊗ Σ−1

ǫǫ )
′L′

m. (D-37)

where Unr, Udr, Fnr, and Fdr have been defined in (D-28) and Σκ = κκκκκκ′. Let us now consider

the derivative ∂Σ̃−1
ǫǫ ǫ̂ǫǫit

∂vech(Σǫǫ)′
= ∂(ΣǫΣ

−1
ǫǫ ǫ̂ǫǫit)

∂vech(Σǫǫ)′
= ∂(ΣǫΣ

−1
ǫǫ rit)

∂vech(Σǫǫ)′
− ∂(ΣǫΣ

−1
ǫǫ κκκα̂i)

∂vech(Σǫǫ)′
. The total differential of

ΣǫΣ
−1
ǫǫ κκκα̂i is given by:

d(ΣǫΣ
−1
ǫǫ κκκα̂i) = d(Σǫ)Σ

−1
ǫǫ κκκα̂i + Σǫd(Σ

−1
ǫǫ )κκκα̂i + ΣǫΣ

−1
ǫǫ κκκd(α̂i). (D-38)

Now, as defined earlier, Σǫ = (dg(Σǫǫ))
1/2, hence

∂(Σǫ)Σ
−1
ǫǫ κκκα̂i

∂vech(Σǫǫ)′
=

1

2
(κκκ′α̂iΣ

−1
ǫǫ ⊗ Im)vec((dg(Σǫǫ))

−1/2)
∂vec(Σǫǫ)

∂vech(Σǫǫ)′

=
1

2
(κκκ′α̂iΣ

−1
ǫǫ ⊗ Im)vec((dg(Σǫǫ))

−1/2)′L′
m. (D-39)

Now, consider the second term of the differential given in (D-38). It can be shown that

Σǫ∂(Σ
−1
ǫǫ )κκκα̂i

∂vech(Σǫǫ)′
= −(κκκα̂i ⊗ Σ′

ǫ)
′(Σ−1

ǫǫ ⊗ Σ−1
ǫǫ )

∂vec(Σǫǫ)

∂vech(Σǫǫ)′
= −(κκκα̂i ⊗ Σ′

ǫ)
′(Σ−1

ǫǫ ⊗ Σ−1
ǫǫ )L

′
m.

(D-40)
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Now consider the third term in the total differential in (D-38). From (D-37) we can conclude

that

ΣǫΣ
−1
ǫǫ κκκ∂(α̂i)

∂vech(Σǫǫ)′
=

ΣǫΣ
−1
ǫǫ κκκ

2U2
dr

p
∑

t=1

[

(U2
nr − UdrFdr)vec(κκκr

′
it + ritκκκ

′)′

+ (UdrFnr − UnrFdr)vec(Σκ)
′

]

(Σ−1
ǫǫ ⊗ Σ−1

ǫǫ )
′L′

m.

(D-41)

Combining (D-39), (D-40), and (D-41) we obtain

∂Σ̃−1
ǫǫ ǫ̂ǫǫit

∂vech(Σǫǫ)′
=

[

(ǫǫǫ′itΣ
−1
ǫǫ ⊗ Im)vec((dg(Σǫǫ))

−1/2)′ − (ǫǫǫit ⊗ Σ′
ǫ)

′(Σ−1
ǫǫ ⊗ Σ−1

ǫǫ )
′

]

L′
m

−
Σ̃−1

ǫǫ κκκ

2(Udr)2

p
∑

t=1

[

(U2
nr − UdrFdr)vec(κκκr

′
it + ritκκκ

′)′ + (UdrFnr − UnrFdr)vec(Σκ)
′

]

(Σ−1
ǫǫ ⊗ Σ−1

ǫǫ )
′L′

m.

(D-42)

Finally, let consider the derivative of Z̄ ′
iδ̄δδ + α̂i with respect to σ2

α. We have

∂(Z̄ ′
iδ̄δδ + α̂i)

∂σ2
α

=
∂α̂i

∂σ2
α

=
∂

∂σ2
α

[
∫

α exp(.)φ(α)dα
∫

exp(.)φ(α)dα

]

=

=
[
∫

α exp(.)∂φ(α)
∂σ2

α
dα][

∫

exp(.)φ(α)dα]− [
∫

α exp(.)φ(α)dα][
∫

exp(.)∂φ(α)
∂σ2

α
dα]

[
∫

exp(.)φ(α)dα]2
.

Given that ∂φ(α)
∂σ2

α
= − 1

2σ2
α
φ(α) + α2

2σ4
α
φ(α), the above after simplification reduces to

∂(Z̄ ′
iδ̄δδ + α̂i)

∂σ2
α

=
1

2σ4
αU

2
dr

(UdrFnr − UnrFdr), (D-43)

and we can write ∂Σ̃−1
ǫǫ ǫǫǫit
σ2
α

as

∂Σ̃−1
ǫǫ ǫ̂ǫǫit

∂vech(Σǫǫ)′
= −

Σ̃−1
ǫǫ κκκ∂(α̂i)

∂σ2
α

= −
Σ̃−1

ǫǫ κκκ

2σ4
αU

2
dr

(UdrFnr − UnrFdr). (D-44)

D.3. Derivative of Li(p)3Θ3
with respect to Θ1 and Θ2

As stated earlier in order to construct error corrected standard errors of the structural

parameters we also need sample analogs of L3Θ3Θ1 , L3Θ3Θ2 , and L3Θ3Θ3 to construct B∗

in (D-9). While it is straightforward to compute sample analog of L3Θ3Θ3 , computation of
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sample analogs of L3Θ3Θ1 and L3Θ3Θ2 needs some work. Here we derive the derivative of

Li(p)3Θ3
(Θ1,Θ2,Θ2) with respect to Θ1 and Θ2. Now, we know that

∂Li(p)3Θ3

∂Θ′
j

=

p
∑

t=1

∂Lit3Θ3

∂Θ′
j

=

p
∑

t=1

∂

∂Θ′
j

Iit[X
R
it(Θ1, Θ̂2)(Rit − X

R
it(.)

′Θ3)]

=

p
∑

t=1

Iit

[

X
R
it(.)

∂Θ′
j

(Rit − X
R
it(.)

′Θ̂3) + X
R
it(Θ̂1, Θ̂2)

X
R
it(.)

′

∂Θ′
j

Θ̂3

]

j ∈ {1, 2},

(D-45)

where

X
R
it(Θ̂1, Θ̂2) =











































XR
it

Fit(Z̄
′
iδ̄δδ + α̂i)

(1− Fit)(Z̄
′
iδ̄δδ + α̂i)

FitΣ
−1
ǫǫ ǫ̂ǫǫit

(1− Fit)Σ
−1
ǫǫ ǫ̂ǫǫit

FitC11(Θ1,Θ2)it

(1− Fit)C01(Θ1,Θ2)it

FitC12(Θ1,Θ2)it

(1− Fit)C02(Θ1,Θ2)it











































.

And XR
it = {XR′

1it,X
R′
0it}

′ where XR
1it and XR

0it have been defined in equation (3.5) in the main

text.

We know that
XR

it

Θ′

1
=

XR
it

Θ′

2
= 0, that

Z̄′

iδ̄δδ+α̂i

Θ′

2
= Σ−1

ǫǫ ǫ̂ǫǫit
Θ′

2
= 0 and

Z̄′

iδ̄δδ+α̂i

Θ′

1
and Σ−1

ǫǫ ǫ̂ǫǫit
Θ′

1
have been

derived above. Here we derive the derivatives of the remaining correction terms, C11, C12,

C01, and C02 with respect to Θ1 and Θ2. We have

∂Cjk(Θ1,Θ2)it
∂Θ′

1

=
∂Cjk(Θ1,Θ2)it

∂ϕit

∂XF ′
it Θ2F

∂Θ′
1

+
∂Cjk(Θ1,Θ2)it

∂γit

∂XI′
itΘ2I

∂Θ′
1

, j ∈ {0, 1}, k ∈ {1, 2}.

(D-46)

Given the functional form of Cjk(Θ1,Θ2) in equations (3.20) and (3.21), its derivative

with respect to ϕit and γit can be easily obtained. The partial derivatives
∂XF ′

it

∂Θ′

1
and

∂XI′
it

∂Θ′

1

have been worked out above. Now consider the derivative of Cjk(Θ1,Θ2) with respect to
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Θ2 = {Θ′
2F ,Θ

′
2I , ρζ̃υ̃}

′.

∂Cjk(Θ1,Θ2)it
∂Θ′

2

=











∂Cjk(Θ1,Θ2)it
∂ϕit

∂XF ′

it Θ2F

∂Θ2F

∂Cjk(Θ1,Θ2)it
∂γit

∂XI′
itΘ2I

∂Θ2I

∂Cjk(Θ1,Θ2)it
∂ρζ̃υ̃











′

=











∂Cjk(Θ1,Θ2)it
∂ϕit

X
F
it

∂Cjk(Θ1,Θ2)it
∂γit

X
I
it

∂Cjk(Θ1,Θ2)it
∂ρζ̃υ̃











′

(D-47)

Again, given the functional form of Cjk(Θ1,Θ2),
∂Cjk(Θ1,Θ2)it

∂ϕit
and

∂Cjk(Θ1,Θ2)it
∂γit

can be easily

computed. We note that, depending on the particular combination of j and k, the deriva-

tives stated above involve taking derivatives of Pr(Fit = 1, Iit = 1) and Pr(Fit = 0, Iit = 1)

with respect to ϕit, γit and ρζ̃υ̃, and these are stated in Greene (2002).

APPENDIX E: ESTIMATION OF AVERAGE PARTIAL EFFECTS

In this section we discuss estimation of Average Partial Effects (APE) and testing hy-

pothesis about the APEs for the structural equations.

E.1. Average Partial Effects for the Second Stage

E.1.1. Estimation

In the second stage, as discussed earlier, we jointly estimate the parameters of Innovation

and Financial Constraint equations,

It = 1{I∗t > 0} = 1{X I′
t γγγ + θ ˆ̃α + Σ̃υǫΣ̃

−1
ǫǫ ǫ̂ǫǫt + υ̃t > 0}

Ft = 1{F ∗
t > 0} = 1{X F ′

t ϕϕϕ+ λ ˆ̃α + Σ̃ζǫΣ̃
−1
ǫǫ ǫ̂ǫǫt + ζ̃t > 0},

given in equations (3.12) and (3.13) in the main text above. In our discussion of the

identification of structural parameters of interest and the APE for nonlinear model in

Appendix A, we had shown how to estimate the APE of covariates for the unconditional

probability of being financially constrained or being an innovator.

We may also be interested in the APE of a variable on the conditional probability of an

event, or compare the APE of a variable on the probability of an event conditional on two

mutually exclusive events. For example, we may be interested in the marginal effect of w,

say long-term debt to asset ratio, on the probability of a firm being an innovator, It = 1,
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conditional on it being financially constrained, Ft = 1, as compared to the APE of w, on

the probability of It = 1, conditional on Ft = 0. We know that for a firm i in time period t

Pr(It = 1|Ft = 1, ˆ̃α, ǫ̂ǫǫt) =
Pr(It = 1, Ft = 1| ˆ̃α, ǫ̂ǫǫt)

Pr(Ft = 1| ˆ̃α, ǫ̂ǫǫt)
=

Φ2(ϕt( ˆ̃α, ǫ̂ǫǫt), γt( ˆ̃α, ǫ̂ǫǫt), ρζ̃υ̃)

Φ(ϕt( ˆ̃α, ǫ̂ǫǫt))
,

Pr(It = 1|Ft = 0, ˆ̃α, ǫ̂ǫǫt) =
Pr(It = 1, Ft = 0| ˆ̃α, ǫ̂ǫǫt)

Pr(Ft = 0| ˆ̃α, ǫ̂ǫǫt)
=

Φ2(ϕt( ˆ̃α, ǫ̂ǫǫt),−γt( ˆ̃α, ǫ̂ǫǫt),−ρζ̃υ̃)

1− Φ(ϕt( ˆ̃α, ǫ̂ǫǫt))
,

where Φ2 is the cumulative distribution function of a standard bivariate normal and

ϕt( ˆ̃α, ǫ̂ǫǫt) = X F ′
t ϕϕϕ+ λ ˆ̃α + Σ̃ζǫΣ̃

−1
ǫǫ ǫ̂ǫǫt, and γt( ˆ̃α, ǫ̂ǫǫt) = X I′

t γγγ + θ ˆ̃α + Σ̃υǫΣ̃
−1
ǫǫ ǫ̂ǫǫt.

Hence, for a firm i we have

∂ Pr(It = 1|Ft = 1)

∂w
=

∫

∂

∂w

(

Φ2(ϕt, γt, ρζ̃υ̃)

Φ(ϕt)

)

dF ˆ̃α,ǫ̂ǫǫ. (E-1)

If w belongs to both the specifications, ϕt and γt, then the above involves taking derivative

of CDF of a standard bivariate normal with respect to ϕt and γt. It can be shown that

∂

∂w

(

Φ2(ϕt, γt, ρζ̃υ̃)

Φ(ϕt)

)

=
1

Φ(ϕt)

[

gIγw+

(

gF − Φ2(ϕt, γt, ρζ̃υ̃)
φ(ϕt)

Φ(ϕt)

)

ϕw

]

, (E-2)

where

gF = φ(ϕt)Φ

(

γt − ρζ̃υ̃ϕt
√

1− ρ2
ζ̃υ̃

)

and gI = φ(γt)Φ

(

ϕt − ρζ̃υ̃γt
√

1− ρ2
ζ̃υ̃

)

. (E-3)

The derivatives of the other conditional probabilities with respect to ϕt and γt can be found

in Greene (2002). Once the integrand in (E-1) is estimated at X F
t = X̄ F and X I

t = X̄ I ,

given the estimates
ˆ̂
α̃i and ˆ̂ǫǫǫit, the APE of w on the conditional probabilities are estimated

by taking an average over all firm-year observations.

E.1.2. Hypothesis Testing

To test various hypothesis in order to draw inferences about the APE’s we need to

compute the standard errors of their estimates. From (A-20) in Appendix A we know that

estimated APE of w on the unconditional probability of being, say, financially constrained

for firm i in time period t is given by

∂̂Pr(Ft = 1)

∂w
=

1
∑N

i=1 Ti

N
∑

i=1

Ti
∑

t=1

ϕ̂wφ(X̄
F ′
it ϕ̂ϕϕ),
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where X̄
F
it = {X̄ F ′,

ˆ̂
α̃i, (Σ̃

−1
ǫǫ
ˆ̂ǫǫǫit)

′}′ and ϕ̂ϕϕ = {ϕ̂ϕϕ′, λ̂, ˆ̃Σ′
ζǫ}

′. Since each of the ϕ̂wφ(X̄
F ′
it ϕ̂ϕϕ) is a

function of ϕ̂ϕϕ the variance of ∂̂Pr(Ft=1)
∂w

will be a function of the variance of the estimate of ϕϕϕ.

Now, we know that by the linear approximation approach (delta method), the asymptotic

covariance matrix of ∂̂Pr(Ft=1)
∂w

is given by

Asy. Var[
∂̂Pr(Ft = 1)

∂w
] =

[

1
∑N

i=1 Ti

N
∑

i=1

Ti
∑

t=1

∂ϕ̂wφ(X̄
F ′
it ϕ̂ϕϕ)

∂ϕ̂ϕϕ′

]

V ∗
2F

[

1
∑N

i=1 Ti

N
∑

i=1

Ti
∑

t=1

∂ϕ̂wφ(X̄
F ′
it ϕ̂ϕϕ)

∂ϕ̂ϕϕ′

]′

,

(E-4)

where V ∗
2F is the second stage error adjusted covariance matrix, shown in appendix D, of

ϕ̂ϕϕ. In the RHS of (E-4)

∂ϕ̂wφ(X̄
F ′
it ϕ̂ϕϕ)

∂ϕ̂ϕϕ′ = φ(X̄F ′
it ϕ̂ϕϕ)[ew − (ϕ̂ϕϕ′

X̄
F
it)ϕ̂wX̄

F ′
it ], (E-5)

where and ew is a row vector having the dimension of ϕϕϕ′ and with 1 at the position of ϕw

in ϕϕϕ and zeros elsewhere.

If w is a dummy variable then from (A-21) we know that the estimated APE of w on

the probability of being financially constrained in time period t, given X F
t = X̄ F is given

by

∆w Pr(Ft = 1) =
1

∑N
i=1 Ti

N
∑

i=1

Ti
∑

t=1

Φ(X̄ F
−w, w = 1,

ˆ̂
α̃i, ˆ̂ǫǫǫit)− Φ(X̄ F

−w, w = 0,
ˆ̂
α̃i, ˆ̂ǫǫǫit)

=
1

∑N
i=1 Ti

N
∑

i=1

Ti
∑

t=1

∆wΦit(.).

To obtain the variance of the above, again by the delta method we have

Asy. Var∆w Pr(Ft = 1) =

[

1
∑N

i=1 Ti

N
∑

i=1

Ti
∑

t=1

∂∆Φit(.)

∂ϕ̂ϕϕ

]′

V ∗
2f

[

1
∑N

i=1 Ti

N
∑

i=1

Ti
∑

t=1

∂∆Φit(.)

∂ϕ̂ϕϕ

]

,

(E-6)

where

∂∆Φit(.)

∂ϕ̂ϕϕ
=
∂Φ̂it(., w = 1)

∂ϕ̂ϕϕ
−
∂Φit(., w = 0)

∂ϕ̂ϕϕ
= φit(., w = 1)





X̄
F
it
−w

1



− φit(., w = 0)





X̄
F
it
−w

0



 .

Substituting the above in (E-6) gives the asymptotic variance of the APE of the dummy

variable w.
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Delta method can also be applied for to obtain the asymptotic variance of the APE’s of

the continuous or dummy variable on the conditional probability of say being an innovator

given the firm is financially constrained or not financially constrained. Let X̄2it = {X̄F ′
it , X̄

I′
it}

′

and Θ2 = {ϕϕϕ′, γγγ′, ρζ̃υ̃}
′, where X̄

I′
it = {X̄ I′, ˆ̃̂αi, (Σ̃

−1
ǫǫ
ˆ̂ǫǫǫit)

′}′ and γγγ = {γγγ′, θ, Σ̃′
υǫ}

′, and denote

the right hand side of (E-2) as Λ(I=1|F=1),w(X̄2it,Θ2). Then the APE of w on the conditional

probability of being an innovator given that the firm is financially constrained is given by

∂̂Pr(It = 1|Ft = 1)

∂w
=

1
∑N

i=1 Ti

N
∑

i=1

Ti
∑

t=1

Λ(I=1|F=1),w(X̄2it, Θ̂2)

By the delta method we know that the asymptotic variance of ∂̂Pr(It=1|Ft=1)
∂w

is given by

[

1
∑N

i=1 Ti

N
∑

i=1

Ti
∑

t=1

∂Λ(I=1|F=1),w(X̄2it, Θ̂2)

∂Θ′
2

]

V ∗
2

[

1
∑N

i=1 Ti

N
∑

i=1

Ti
∑

t=1

∂Λ(I=1|F=1),w(X̄2it, Θ̂2)

∂Θ′
2

]′

,

(E-7)

where V ∗
2 is second stage error corrected covariance matrix of Θ̂2. The derivative of Λ(s=1|f=1),w(X̄2it, Θ̂2)

with respect to the second stage parameters, Θ2, can easily obtained, even though the al-

gebra is a bit messy.

E.2. Average Partial Effects for the Third Stage

One of the purposes of this exercise is to measure the effect of financial constraints,

Ft = 1, on R&D expenditure. For a firm i in time period t, given Xt = X̄ , where Xt is the

union of elements appearing in XR
t , X F

t , and X I
t , the APE of financial constraint on R&D

intensity is computed as the difference in the expected R&D expenditure between the two

regimes, financially constrained and non-financially constrained, averaged over ˆ̃α and ǫ̂ǫǫ.

The conditional, conditional on being an innovator (sit = 1), APE of financial constraint

on R&D expenditure is given by

∆FE(Rt|X̄ ) =

∫

E(R1t|X̄ , Ft = 1, It = 1, ˆ̃α, ǫ̂ǫǫ)dF ˆ̃α,ǫ̂ǫǫ

−

∫

E(R0t|X̄ , Ft = 0, It = 1, ˆ̃α, ǫ̂ǫǫ)dF ˆ̃α,ǫ̂ǫǫ. (E-8)
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From the discussion of the third stage estimation we know that for a firm i

E(R1t|X̄ , Ft = 1, It = 1, ˆ̃α, ǫ̂ǫǫt) =

βf + X̄R′βββ1 + µ1
ˆ̃α + Σ̃η1ǫΣ̃

−1
ǫǫ ǫ̂ǫǫt + ση̃1ρη̃1ζ̃C11( ˆ̃α, ǫ̂ǫǫt) + ση̃1ρη̃1υ̃C12( ˆ̃α, ǫ̂ǫǫt) (E-9)

if F ∗
t > 0, and

E(R0t|X̄ , Ft = 0, It = 1, ˆ̃α, ǫ̂ǫǫt) =

X̄R′
t βββ0 + µ0

ˆ̃α+ Ση0ǫΣ
−1
ǫǫ ǫ̂ǫǫt + ση̃0ρη̃0ζ̃C01( ˆ̃α, ǫ̂ǫǫt) + ση̃0ρη̃0υ̃C02( ˆ̃α, ǫ̂ǫǫt) (E-10)

if F ∗
t ≤ 0, and where the correction terms – C11(X̄

I , X̄ F , ˆ̃α, ǫ̂ǫǫt), C12(X̄
F , X̄ F , ˆ̃α, ǫ̂ǫǫt), C01(X̄

I , X̄ F , ˆ̃α, ǫ̂ǫǫt),

and C02(X̄
I , X̄ F , ˆ̃α, ǫ̂ǫǫt) – are defined at the given X I

t = X̄ I and X F
t = X̄ F . Given the above,

an estimate of the APE of financial constraint on R&D intensity, can be obtained by taking

the average of the difference in (E-9) and (E-10) over all firm-year observations for which

It = 1.

The unconditional APE’s of all other variables in the specification are simply the coef-

ficient estimates of the two regimes of the switching regression model.

E.2.1. Hypothesis Testing

Since the APE of being financially constrained in the third stage switching regression

model is a function of the correction terms constructed from the estimates of the seconds

stage, the variance of the APE will be a function of the variances of the correction terms.

Since the correction terms are in turn functions of the estimated coefficients in the second

stage, the variance of the estimated APE be a function of the variance of the estimated

second stage coefficients.

To see this, consider the the conditional APE of the financial constraint on the R&D

expenditure, which is given by

∆F Ê(Rt|X̄ ) =
1

∑N
i=1 Ti

N
∑

i=1

Ti
∑

t=1

[

It

(

β̂f + X̄R′(β̂ββ1 − β̂ββ0) + (µ̂1 − µ̂0)
ˆ̃̂α + (ˆ̃Ση1ǫk −

ˆ̃Ση0ǫk)
ˆ̃Σ−1
ǫǫ
ˆ̂ǫǫǫt

+ σ̂η̃1ρη̃1ζ̃C11(
ˆ̃̂α, ˆ̂ǫǫǫt) + σ̂η̃1ρη̃1υ̃C12(

ˆ̃̂α, ˆ̂ǫǫǫt)− σ̂η̃0ρη̃0ζ̃C01(
ˆ̃̂α, ˆ̂ǫǫǫt)− σ̂η̃0ρη̃0υ̃C02(

ˆ̃̂α, ˆ̂ǫǫǫt)

)]

(E-11)
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Let us denote the structural coefficients of our model as Θs = {Θ′
2,Θ

′
3}

′ where Θ′
2 and Θ′

3

are the vector of structural coefficients estimated in the third stage respectively. Again, by

the application of the delta method we know that

Asy. Var[∆F Ê(Rt|X̄ )] =

[

∂∆F Ê(Rt|X̄ )

∂Θs

]′

V ∗
s

[

∂∆F Ê(Rt|X̄ )

∂Θs

]

, (E-12)

where V ∗
s , the error corrected asymptotic covariance matrix of Θ̂s, has been derived in

appendix D. Since only the correction terms are functions of the second stage parameters

Θ2, the above involves taking the derivative of the correction terms with respect to the

second stage parameters Θ2.

REFERENCES

Biørn, Erik. 2004. Regression systems for unbalanced panel data: A stepwise maximum likelihood proce-

dure. Journal of Econometrics 122:281–291.

Blundell, Richard, and James Powell. 2003. Endogeneity in nonparametric and semiparametric regres-

sion models. In Advances in Economics and Econonometrics: Theory and Applications, Eighth World

Congress, Vol. II, edited by M. Dewatripont, L. P. Hansen, and S. J. Turnovsky. Cambridge: Cambridge

University Press.

Chamberlain, Gary. 1984. Panel data. In Handbook of Econometrics, edited by Z. Griliches and M. D.

Intriligator, vol. 2. Elsevier.

Greene, William H. 2002. Econometric Analysis. 4th ed. Prentice Hall, Upper Saddle River.

Lutkepohl, Helmut. 1996. Handbook of Matrices. Chichester: Wiley.

Magnus, Jan R., and Heinz Neudecker. 1988. Matrix Differential Calculus with Applications in Statistics

and Econometrics. Chichester: Wiley.

Newey, Whitney K. 1984. A method of moment interpretation of sequential estimators. Economics Letters

14:201–206.

Papke, Leslie E., and Jeffery M. Wooldridge. 2008. Panel data methods for fractional response variables

with an application to test pass rates. Journal of Econometrics 145:121–133.

Semykina, Anastasia, and Jefferey M. Wooldridge. 2010. Estimating panel data models in the presence of

endogeneity and selection. Journal of Econometrics 157:375–380.



The UNU‐MERIT WORKING Paper Series 
 
2013-01 Effects  of  innovation  on  employment  in  Latin  America  by  Gustavo  Crespi  and 

Ezequiel Tacsir 
2013-02 Revisiting the porter hypothesis: An empirical analysis of green  innovation for the 

Netherlands George van Leeuwen and Pierre Mohnen 
2013-03 Impact of external knowledge acquisition strategies on innovation ‐ A comparative 

study  based  on  Dutch  and  Swiss  panel  data  by  Spyros  Arvanitis,  Boris  Lokshin, 
Pierre Mohnen and Martin Wörter  

2013-04 Interactive  knowledge  exchanges  under  complex  social  relations:  A  simulation 
modelRobin  by Cowan  and Anant Kamath 

2013-05 Innovation systems  framework: still useful  in  the new global context? by Michiko 
Iizuka 

2013-06 The  importance  of  intrinsic  and  extrinsic  motivation  for  measuring  IQ  by  Lex 
Borghans, Huub Meijers and Bas ter Weel 

2013-07 Firms'  innovation capability‐building paths and  the nature of changes  in  learning 
mechanisms: Multiple case‐study evidence from an emerging economy by Paulo N. 
Figueiredo , Marcela Cohen  and Saulo Gomes 

2013-08 A set of time series data labour market stocks and flows for the Netherlands 1980 
to 2010 by Manuel Müllers, Joan Muysken and Erik de Regt 

2013-09 Designing  an  optimal  'tech  fix'  path  to  global  climate  stability:  R&D  in  a multi‐
phase climate policy framework by Adriaan van Zon and Paul A. David 

2013-10 Complementarity  between  internal  knowledge  creation  and  external  knowledge 
sourcing in developing countries by Jun Hou and Pierre Mohnen 

2013-11 Summarizing  large  spatial  datasets:  Spatial  principal  components  and  spatial 
canonical  correlation  by  Samyukta  Bhupathiraju,  Bart  Verspagen  and  Thomas 
Ziesemer 

2013-12 Regional systems of innovation in the Arab region by Samia Satti Osman Mohamed 
Nour   

2013-13 Development and social  justice: Education, training and health  in Sudan by Samia 
Satti Osman Mohamed Nour   

2013-14 The  economic  importance  and  impacts  of  intellectual  property  rights  (IPRs)  in 
Sudan by Samia Satti Osman Mohamed Nour   

2013-15 Overview  of  knowledge  economy  in  the  Arab  region  by  Samia  Satti  Osman 
Mohamed Nour   

2013-16 The importance (impacts) of knowledge at the macro‐micro levels in the Arab Gulf 
countries by Samia Satti Osman Mohamed Nour   

2013-17 Political  determinants  and  impact  analysis  of  using  a  cable  system  as  a 
complement  to  an  urban  transport  system  by  Diego  Escobar‐García,  Francisco 
García‐Orozco and Carlos Cadena‐Gaitán 

2013-18 Women entrepreneurs  in the  informal economy:  Is formalization the only solution 
for  business  sustainability?  By  Shyama  V.  Ramani,  Ajay  Thutupalli,  Tamas 
Medovarszki, Sutapa Chattopadhyay, Veena Ravichandran 

2013-19 Heterogeneity in innovation strategies, evolving consumer preferences and market 
structure:  An  evolutionary  multi‐agent  based  modelling  approach  by  Salih 
Çevikarslan 



2013-20 Optimal patent  length and patent breadth  in an R&D driven market with evolving 
consumer preferences: An evolutionary multi‐agent based modelling approach by 
Salih Çevikarslan 

2013-21 Innovation and productivity: An update by Pierre Mohnen and Bronwyn H. Hall 
2013-22 Fathers' use of parental leave. What do we know?  by Nevena Zhelyazkova 
2013-23 Eliciting  Illegal migration rates through list randomization by David McKenzie and 

Melissa Siegel 
2013-24 How  do  ICT  firms  in  Turkey  manage  innovation?  Diversity  in  expertise  versus 

diversity in markets by Semih Akçomak, Erdal Akdeve and Derya Fındık 
2013-25 Dynamic models  of  R&D,  innovation  and  productivity:  Panel  data  evidence  for 

Dutch and French manufacturing by Wladimir Raymond, Jacques Mairesse, Pierre 
Mohnen and Franz Palm 

2013-26 Centre‐based versus home‐based childcare  by Robert Bauchmüller 
2013-27 Microeconometric  evidence  of  financing  frictions  and  innovative  activity  by 

Amaresh K Tiwari, Pierre Mohnen, Franz C Palm and Sybrand Schim van der Loeff 


	pierre.pdf
	Empirical Paper v8
	Introduction
	Financing Frictions and Innovative Activity
	Financing and Innovation Decision
	Financial Constraints and Innovation
	Financial Constraints and R&D Investment

	Empirical Model
	Estimation of the First Stage Reduced Form Equations
	Identification and Estimation of the Structural Parameters
	The Second Stage: Estimation of the Innovation and the Financial Constraint Equations
	The Third Stage: Estimation of the R&D Switching Regression Model


	Data and Definition of Variables
	Endogenous Explanatory Variables 
	Exogenous Explanatory Variables
	Additional Instruments

	Results
	Financing and Innovation Decision
	Financial constraint and Innovation
	Financing Constraints and R&D Investment 

	Concluding Remarks

	Supplement to v8 Draft
	Identification of Structural Parameters with Expected a Posteriori Values of Individual Effects
	Proof of Lemma 1

	Maximum Likelihood Estimation of the Reduced Form Equations
	GMM estimation
	Maximum Likelihood Estimation

	Derivation of the Correction Terms for the Third Stage Switching Regression Model
	Asymptotic Covariance Matrix of the Second and Third Stage Estimates
	Derivation of the First Order Conditions for First Stage Reduced Form Likelihood Function
	Derivative of Li(p)22 with respect to 1 
	Derivation of the derivative of i+i and -1it and with respect to 1 

	Derivative of Li(p)33 with respect to 1 and 2 

	Estimation of Average Partial Effects
	Average Partial Effects for the Second Stage
	Estimation
	Hypothesis Testing

	Average Partial Effects for the Third Stage
	Hypothesis Testing


	References



