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SUMMARY 

The evolution of technology is a key driver of economic and societal change. To achieve a sound 

understanding of the process of economic development it is crucial to show how firms invent, 

learn and improve technology, and how technology and firms’ strategies co-evolve. This thesis 

analyses firms’ inventive strategies and technological catching-up in the semiconductor industry 

between the 1980s and the first half of the 2000s. Technological catching-up is intended here as 

the ability of new entrant firms to quickly reduce or revert the gap with the leaders and engage 

in research at the technological frontier, i.e. of affecting the direction of technological change. 

The Semiconductor industry is chosen as field of study because of the peculiar transformation of 

its industrial and technological ecosystem over the years. The industry was globally dominated 

by US firms until the end of the 1970s. It then witnessed the successful technological and market 

catch-up achieved by Japanese companies in the 1980s and, subsequently, by firms from South 

Korea, Taiwan and Singapore in the 1990s. In this thesis, we identify the strategies that incum-

bents and catching-up firms have followed when navigating through the technology space by 

means of statistical analysis of complex patent citations networks. We use patent data as proxies 

of inventions and patent citations as indicator of similarity in engineering challenges and prob-

lem-solving approaches.  

 This doctoral dissertation provides a new way of looking at catching-up, which departs 

from the usual focus on technological trajectories defined at the product level. We argue that 

products are not necessarily the correct unit of analysis for a study on firms’ inventive strate-

gies. The inventive process is largely an engineering problem-solving activity. Learning occurs 

by finding the right approach to tackle engineering challenges and overcome technical bottle-

necks. Consequently, we choose to study paths of solutions (i.e. engineering design trajectories) 

on the space of engineering problems, which, potentially, can affect several products at once.   

 In Chapter 2, we provide a data-driven description of industrial dynamics and catching-up 

in the Semiconductor industry and highlight similarities and differences between successful and 

unsuccessful catching-up cases. Our findings show how the local Semiconductor industries in 

S.Korea, Taiwan, Singapore, Hong Kong, China and Malaysia shared similar initial national focus 

on semiconductors and strength of technical capabilities in this industry, up to the beginning of 

the 1990s. Yet, prominent catching-up countries (S.Korea, Taiwan and Singapore) later followed 

very different inventive strategies than less successful ones, especially regarding which technol-

ogies they improved upon.  

 In Chapter 3, we analyse in more detail the peculiar inventive strategies that have been fol-

lowed by Korean, Taiwanese and Singaporean firms and how their actions affected the direction 

of technological change in the industry. We show that, up to the 1990s, firms from these coun-

tries prevalently devoted inventive effort to solving common engineering challenges by applying 

established approaches to problem solving. In other words, they followed the prevailing engi-

neering trajectories. However, from the beginning of the 2000s, some of these firms began allo-

cating more inventive effort to new engineering challenges now faced by the Semiconductor in-

dustry. This is especially true for those related to LCD monitor technologies and advances in 

metal–oxide–semiconductor field-effect transistors (MOSFETs).   

 In Chapter 4, we assess the evolution of the revealed technological advantage of incumbents 

and new entrants. To accomplish this, we develop a method to identify technology domains and 

their life cycle stage. Technology domains are defined as areas of research that share a set of 

common technological problems that are tackled by applying similar approaches. Our method is 

able to infer the life cycle stage of technology domains by analysing their engineering trajectory. 



 

We then investigate in which domains new entrants and incumbents have a revealed compara-

tive advantage. We show how new entrants from latecomer countries were able to upgrade their 

comparative advantage from relatively mature and declining technology domains to emerging 

ones in the period between the mid-1990s and mid-2000s.   

 In Chapter 5, we map firms’ technical knowledge genome along two dimensions, depth and 

breath. We do this by building on an analogy between knowledge and genetic evolution. We look 

at how much of the knowledge of technical solutions that has been generated historically in a 

given technology domain is inherited by a firm (i.e. the firm’s knowledge depth), and how a 

firm’s knowledge is distributed across domains (i.e. the firms’ knowledge breadth). We hypothe-

size that firms’ knowledge depth and breadth crucially affect their probability to persist innovat-

ing at the frontier. We show how the Semiconductor industry is characterized by a strong level 

of technical knowledge modularity. This means that what has been learned in a given domain is 

not particularly useful in other domains. Our findings show that, in this context, knowledge di-

versification is necessary to survive technological shocks that take the form of a change in the 

way semiconductor-related engineering challenges are tackled (i.e. a change in engineering tra-

jectory). Firms that have a large knowledge breadth are more likely to persist innovating at the 

frontier after a change in engineering trajectory. This is because they have better chances that at 

least some of their current knowledge will still be useful in the future. This effect is positively 

enhanced by also having a large knowledge depth.  

 The theoretical framework and quantitative methods developed in this thesis open a path 

to better understand the fundamental cognitive drivers of technical change and to assess multi-

dimensional technological determinants of firms’ success. Knowing which firms are special and 

in which respect eventually makes it possible to investigate what makes them so. In the last part 

of the dissertation, we present a research agenda for unleashing the potential of this new theo-

retical and methodological approach for improving our understanding of the complex co-

evolutionary pattern of technical change and industrial dynamics. 
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1 INTRODUCTION: COMPLEXITY, 
TECHNOLOGICAL CHANGE AND 

CATCHING UP 

“More than anything else technology creates our world. It creates our wealth, our economy, our 

very way of being”  

W. Brian Arthur (2009) 

 

“...agents, organizations and technology do not steadily proceed toward a global optimum. Rather 

they are linked to one another and their interactions create (and also prohibit) pathways for their 

future development” 

Magda Fontana (2014) 

 

“While innovation has been the main source of economic progress in the West, learning has also 

been important for the catch-up of the rest of the non-Western latecomers”  

Keun Lee (2015) 

 

 

  



 

2 Introduction: Complexity, technological change and catching up 

This PhD thesis provides a micro-founded and data-driven narrative of the successful catching-

up in technical capabilities and market shares achieved by firms from latecomer countries in the 

Semiconductor industry. It does so by combining in an original way theories, concepts and sta-

tistical methods from technology dynamics, complexity, innovation, catching-up and network 

sciences.  

 Economic development can be described as a process of structural transformation and 

technological change characterized by discontinuities. There is a wide agreement in the litera-

ture on catching-up that some of the key drivers of growth rate differentials are technology and 

knowledge gaps and the presence (or the absence) of particular social and economic conditions 

that allow (or prevent) countries to absorb foreign technologies successfully (Fagerberg and 

Godinho, 2002, Fagerberg, 1994 and 1987, Abramovitz, 1994, Verspagen, 1991, Gerschenrkon, 

1962). Yet, catching-up has been mostly studied at the macro-level, despite being based on inno-

vation and learning processes, which happen at the micro-level. Plenty of work provided anec-

dotal evidence on learning strategies applied by successful catching-up firms (e.g. Lee and Lim, 

2001; Mathews and Cho, 1999, Cho et al., 1998) and related policies implemented by latecomer 

countries (e.g. Bell and Juma, 2008; Chang and Tsai, 2002; Chang et al., 1994). However, there is 

a scarcity of data-driven and firm-level studies that simultaneously analyse technology dynamics 

and firms inventive strategies, in the context of catching-up (with the notable exception of Lee 

(2014)).   This PhD thesis contributes to fill this gap. We chose to study the Semiconductor in-

dustry because of the peculiar evolution of its technological and industrial ecosystem. It is a dy-

namic high-tech industry in which catching-up prominently occurred (Langlois and 

Steinmueller, 1999). Consequently, it provides a very interesting example of co-evolution of 

technological change, inventive strategies and catching-up. We deliver a data-driven statistical 

answer to two key questions: (i) How did the technological environment evolve in the Semicon-

ductor industry at the time that firms from latecomer countries successfully catch-up with the 

leaders?  (ii) Which inventive strategies have been followed by successful catching-up firms? An-

swering the former question allows understanding if any idiosyncrasy at the technology level 

favoured the catching-up process and if the technological landscape of the industry significantly 

changed after the emergence of new players. At the same time, revealing which inventive strate-

gies have been followed by latecomer firms allow understanding how they interacted with the 

technological landscape during the catching-up process. The reader might wonder, what do we 

mean by inventive strategies? Throughout this work, we intend them as a multidimensional con-

cept. In its essence the term ‘inventive strategies’ refers to the common denominator that links 

together the following questions: which technologies do you improve upon? Are they local or for-

eign-invented? How quickly do you go through improvement cycles? Do you venture to upgrade 

your skills to emerging technology domains or you rather strengthen your comparative advantage 

in mature technologies? Do you opt to specialize in a narrow set of technologies or do you attempt 

building a broad technical knowledge base? In this thesis, we answer these questions by analys-

ing patent data, which are the largest available records of technology developments and provide 

information on firms’ inventive histories. To do that we design novel analytic tools that extract 

significant information out of noisy, complex and dynamic citation networks.  

 Since, in this work, we focus our analysis on inventive strategies and catching-up, we need 

to ask ourselves an additional crucial question: Are there universally valid and replicable catch-

ing-up recipes? It is very tempting to search for generalizable lessons for rapid economic devel-

opment. This exercise is, however, prone to oversimplifying the problem. This is due to the na-

ture of the co-evolution of the technological landscape, the industrial ecosystem, the strategic 

decisions made by the actors that populate them and their capabilities. Long run market success 
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is ultimately based on the development of frontier technological capabilities (Lee and Lim, 

2001). Technological capabilities are defined as the knowledge and skills that an agent needs to 

create, use, adapt and improve technology (Lall, 1993)1. Technological capabilities are necessary 

to adapt to changes in the technology environment. At the same time, their development is also a 

direct source of technological change. Consequently, any meaningful theory, explanation or dis-

cussion of industrial dynamics and catching-up needs to be tied to the discussion of how the 

technical system underlying the industry or products of interest evolves and how inventive 

agents interact with the technology landscape. Thinking in terms of complexity and evolution 

helps improving our understanding of these interconnected phenomena (Frenken, 2006). It is 

also crucial to understand whether general catching-up recipes may exist. 

 There are at least three key features of technological change that make it a complex phe-

nomenon: uncertainty, interactions and path-dependence. Neglecting these features might lead to 

misleading conclusions about the existence of catching-up recipes. The process of technological 

innovation can be seen as searching for better technical solutions in a technology space (Silver-

berg and Verspagen, 2003, Fleming and Sorenson, 2001). As such, the outcome of technological 

progress, for instance which features of existing technologies are improved or which new tech-

nologies are developed, is characterized by uncertainty. Depending on the magnitude of tech-

nical change and the level of heterogeneity of players’ inventive strategies, this outcome can also 

be unpredictable. In its mildest form, technical progress is a stochastic process in which players 

do not know the best inventive strategies to follow at a given point in time, but they are able to 

associate probabilities to the different future directions of improvements. In this case, if we 

could observe several realizations of the same system starting from the same initial conditions, 

we would converge to an expected direction of improvements, even though individual runs 

might look very different. This would mean that the same inventive trajectories and catching-up 

pathways would be replicable in the same context. However, the arrival of radical innovations 

that revolutionize a technology domain or create an entirely new one, is usually characterized by 

Knightian uncertainty.  This makes it impossible to even define the probabilities of the different 

outcomes. To some extent, innovations of such a large scale are idiosyncratic strokes of individ-

ual genius sometimes with a strong component of luck, like the discovery of Penicillin by Alex-

ander Fleming. Even when they are the results of a collective process, radical innovations need a 

particular combination of talented researchers and engineers, forward-looking managers and 

risk-taking investors that make their realization a process that is highly sensible to small per-

turbations and, therefore, chaotic in nature. In this case, even rewinding the system and running 

it again might lead to different outcomes. In a Knightian kind of world, replicable catching-up 

recipes cannot exist. However, radical innovations and paradigm shifts are rare events (Fleming, 

2007, Silverberg and Verspagen, 2005 and 2007) and a lot of novelty is cumulated through in-

cremental improvements whose trajectory can be subject to educated guesses. The most famous 

of them is perhaps Gordon Moore’s law. Moore, one of Intel’s founder, predicted in a 1965 paper 

that the number of transistors on a chip would have duplicate every 18 months (Moore, 1965), 

as it indeed happened since then. 

 A lot of the uncertainty intrinsic in the process of technological change comes from the in-

teractions between players’ inventive strategies, the technological structure of a given industry 

                                                             
1 They are also known as technology-based design capabilities or engineering design capabilities (Luo et al., 2012; 

Dym et al., 2005). 
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and the technology and industrial policies that different governments overlay on the system 

(Malerba and Orsenigo, 1997). These interactions make the trajectory of technology improve-

ments and catching-up pathways context specific. Similar strategies might lead to dissimilar out-

comes in different national and sectoral contexts. Moreover, there are many different sorts of 

interdependencies between technologies which make them complex adaptive systems (Frenken, 

2006; Foster, 2005), or, as defined in the engineering literature, complex engineering systems, 

which are rich in human and technology complexity (De Weck et al., 2011). Technologies have 

within, between and inter-temporal connections. Current technologies are related with their 

previous generations by a relationship of improvement and are connected to current genera-

tions by a relationship of possible cross-fertilization. Technical progress in a given technology 

can spill to others depending on the relatedness of the engineering problems driving its im-

provement. Arthur argues that “new technologies are not ‘inventions’ that came from nowhere [. . 

.] They are created, - constructed, put together, assembled – from previously existing technologies” 

(Arthur, 2009, p. 2, words in regular font style are adapted from the original quote).2 Knowledge 

spillovers and cross-fertilization effect can be better understood if we consider technologies as 

part of a nested system, or, borrowing once again Brian Arthur’s words, as “systems of technolo-

gies” where “each component of technology is itself in miniature a technology” (Arthur, 2009, p. 

23).  The interdependence between different components reveals the structure that explains 

why technical advances differently diffuse across technologies and why technological opportuni-

ties are not evenly distributed across industries and domains, and are clustered in time. This ul-

timately affects catching-up prospects of latecomers and casts doubts on the existence of context 

independent catching-up recipes. 

 The nested nature of technologies and the direction taken by past improvements are ulti-

mately responsible for the third key feature that make technological change a complex phenom-

enon, namely path-dependence. As argued by Foster (2005), “such a system must exhibit some 

degree of structural irreversibility due to the inherent hierarchical and ‘bonding’ nature of the con-

nections between components that are formed as structural development proceeds. It is this that 

results in the inflexibility and maladaptiveness that precipitates a structural discontinuity of some 

kind.” (Foster, 2005, p.3) From the perspective of catch-up, the structural and intertemporal 

connections across technologies not only channel novelty along rigid pathways, but also make 

firms’ learning choices irreversible. Several authors stressed the relationship between the de-

gree of cumulativeness of technological change and the ease of entrance of new players (Lee and 

Lim, 2001; Malerba and Orsenigo, 1997; Dosi, 1982). The important lesson is that the irreversi-

bility of the learning trajectory makes catching-up reversible. What appears to be a lexical oxymo-

ron is actually the reality that latecomer firms face. Learning along the wrong direction, perhaps 

due to initial positive market and technical feedbacks, can lead latecomer firms to get stuck and 

interrupt the process of technical capabilities upgrading. This can push countries into the mid-

dle-income trap or even make them regress along the income ladder (Lee, 2014). Furthermore, 

wrong learning paths can prevent innovation systems to complete the transition from a learn-

ing-based system to a novelty generating-one (Vertesy, 2011). If learning is path-dependent and 

economic development is based on knowledge-upgrading then the latter is also strongly path- 

                                                             
2 Similar thoughts on the existence of knowledge spillovers and percolation effects, have been elaborated by, among 

others, Kauffman (1988), Verspagen (1997), Silverberg and Verspagen (2005; 2007a; 2007b), Krafft and Quatraro 

(2011) and Metcalfe (2014). 
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dependent. The importance of looking for the right path is therefore crucial for the growth pro-

spects of countries and firms.  

 Path-dependence can be a blessing or a curse. Obviously, incumbents favour cumulative 

technical improvements as long as they follow the direction that rewards the knowledge that 

they accumulated. When that is the case, incumbents enjoy a large advantage over latecomers. 

The emergence of discontinuities brakes that advantage. Thus, the faster those discontinuities 

arise (i.e. the shorter the technology life cycle), the more windows of opportunities for new en-

trants open up (Lee, 2014). Path-dependence also plays against the effectiveness of applying 

what has been learned in one national and sectoral context to different ones. Systems that are 

subject to path-dependence have an intrinsic resistance to radical changes. For this reasons, ap-

plying a set of policies or following a specific inventive strategy just because it has been success-

fully applied elsewhere has no guarantee to succeed, unless the given industry or firms share 

similar histories with those intended to be imitated.  

 The characterization of technology and catching-up dynamics as complex adaptive systems 

that we sketched here raises scepticism on the existence of universally valid and replicable 

catching-up recipes. Does this mean that we are condemned to ignorance? Does this imply the 

irrelevance of studying these phenomena? Absolutely not. Characterizing the dynamics of eco-

nomic and technical systems as complex phenomena must not be mistaken as stating that they 

are purely random processes (Baofu, 2007). In contrast, thinking in terms of complexity helps 

analysing the emergence of patterns and study their properties. The essence of complexity 

thinking applied to technology and catching-up dynamics lays in understanding two crucial mes-

sages. First, one should devote great efforts in separating signal from noise and identify statisti-

cally significant peculiarities in terms of inventive strategies followed by successful players 

along their development path. Second, this exercise should attempt to unfold history by reveal-

ing what makes successful latecomers really special, rather than trying to search for recipes in 

which to trust blindly. This allows revealing historical micro-level trajectories of catching-up. 

These two messages guide the analysis developed in this thesis.   

1.1 Conceptual framework and structure of the thesis 

The thesis analyses technological catching-up in the semiconductor industry at the firm level. 

Semiconductors are the source of catching-up narratives par excellence. As will be discussed in 

Chapter 2, this industry has seen a profound change in its industrial ecosystem, with the success-

ful technological and market catch-up of firms from latecomer countries like South Korea, Tai-

wan and Singapore. In this thesis, by technological catching-up we mean the ability of new en-

trant firms to engage in research at the technological frontier, i.e. of affecting the direction of 

technological change.  

 The three main characteristics of technology that makes it a complex adaptive system ex-

plained above, namely uncertainty, interdependence and path-dependence, have pushed scholars 

to focus mainly on the direction, cumulativeness and speed of technical change as drivers of 

catching-up processes. These dimensions have proven to be key determinants of the ease of en-

try (Lee and Lim, 2001, Malerba and Orsenigo, 1997, Klepper 1997 and 1996, Dosi, 1982). How-

ever, we argue that, if we conceptualize technologies as part of a structured system in which op-

portunities of advances are unevenly distributed and irregularly connected, as done by Arthur 

(2009), Silverberg and Verspagen (2005) and Thurner et al. (2010), four additional properties of 

the system of technologies become crucial in the context of catching-up: the structure and rank-

ing  of the system of technologies, the magnitude of change in problem-solving approaches 
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(which we later define as engineering trajectories) and the heterogeneity of life cycle stages of 

technology domains. Throughout the thesis we intend technology domains as areas of research 

that define a set of common technological problems that are tackled applying similar mindsets 

and toolboxes. A high-tech industry like the Semiconductors is characterized by an heterogene-

ous set of technologies. Technologies are solutions to particular needs. Satisfying those needs 

requires solving given technical challenges. Engineering problems can be tackled from a variety 

of approaches. As will be extensively discussed in Chapter 3, 4 and 5, the sequences of improve-

ments within a given technological domain highlight which approaches to problem solving have 

been used. We define these technical paths as engineering design trajectories, which are the pro-

jection in the engineering design space of trade-offs between technical characteristics deter-

mined at the product level, i.e. of technological trajectories (Dosi, 1982). Decisions on which fea-

tures of a given product need to be improved and how the product is intended to be designed 

define which engineering challenges need to be overcome.  Throughout this thesis, we will also 

discuss how the similarity in the kind of technical problems faced in an industry generates the 

structure of the system of engineering problems. Engineering challenges can be interconnected 

and solving bottlenecks opens up large and widespread opportunities for technical improve-

ments. The structure of the system determines the availability of technological diversification 

pathways and, ultimately, the likelihood of being a persistent core innovator (Chapter 5). The 

heterogeneity of beliefs and search strategies in the technology design space, at the firm level, 

determines the simultaneous existence of different approaches to problem solving and the level 

of inventive efforts devoted to different problems (Chapter 3). Therefore, engineering problems 

can be ranked based on how much inventive efforts they attract. The level of inventive effort is 

also related to the breadth of problem-solving approaches applied to tackle engineering chal-

lenges. Problems that are collectively determined to have high priority attract a lot of inventive 

effort that is likely to cover a wide spectrum of approaches. Therefore, emerging technology do-

mains are likely to be characterized by heterogeneous beliefs on which are the most promising 

approaches to solve a technical problem (Chapter 4). Eventually market selection will foster 

convergence to a subset of search strategies. However, the entrance of new players may bring 

back a large variety of approaches to problem solving into the system. Therefore, as will be 

shown in Chapter 4, technology domains have life cycles, and, at each point in time, there will be 

several domains at different stages of their life cycles within an industry.  

 The structure and ranking of the system of technologies, the magnitude of change in ap-

proaches to problem solving and the heterogeneity of life cycle stages, play an important role in 

determining the ease of catching-up. This role is related to the different ways in which they af-

fect path-dependence. Suppose that the structure of the system of technologies is such that dif-

ferent technology domains and their components are largely and equally connected to each oth-

er in terms of knowledge relatedness. Suppose also that change is localized in one or few com-

ponents. In this case, the probability of breaking path-dependence in the learning advantage of 

incumbents is at its lowest level. The capabilities that incumbents have developed in the past are 

still useful for their survival, or at least allow them to diversify into areas not affected by change 

in the approaches to problem solving. When change is still localized but the system is more 

sparsely connected then the probability that a small window of opportunity for latecomer opens 

up is slightly larger. This is because now incumbents specialized in the components subject to 

change have less chances to use their accumulated knowledge in related areas. Suppose now 

that the magnitude of changes in the approaches to problem solving is larger and pervades to 

several domains. If the system is highly connected, incumbents might still enjoy a small ad-

vantage but only provided that are able to successfully recombine their knowledge. If the system 
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is sparsely connected then path-dependence is fully broken and a pathway of entry opportuni-

ties lay before latecomers. Similarly, the existence of multiple technology domains at different 

stages of their life cycle also interacts with firms’ inventive histories and their strategic options 

for the future. New entrants can decide to focus on emerging domains and enjoy the potential 

early-mover advantage (but also face the hazard) associated with being the first to tackle new 

engineering challenges or explore new problem solving approaches. They can also decide to fo-

cus on more mature or declining domains, in which niches with less competition might be avail-

able for entrance and provide a safe environment for technical learning. 

 The novel theoretical contribution of this thesis resides in making the first attempt toward 

including the structure and ranking of the system of engineering design problems, the magni-

tude of change in approaches to problem-solving and the heterogeneity of life cycle stages of 

technology domains in the discussion of technical catching-up. We use a combination of meth-

odologies based on patent citation network analysis to study catching-up and inventive strate-

gies in the semiconductor industry. The thesis is composed of four essays that are theoretically 

and methodologically intertwined. We analyse patent citation networks to identify the main en-

gineering design trajectories followed by the industry. This is done by applying a methodology 

that identifies the network of main paths (NMPs) within large citation networks (Vespagen, 

2007, Martinelli, 2010, 2012; Hummon and Doreian, 1989). More specifically, citations are in-

terpreted as footprints of similarity in approaches to problem solving. The NMPs highlights the 

sequences of citations that are more central across the system of technologies. The main path ap-

proach is then complemented by two other methodologies. We apply network community-

detection techniques to identifying sub-technology domains in the industry, their structural rela-

tionship and the stage of their life cycle. Finally, we make use of a genetic approach to patent ci-

tation networks (Martinelli and Nomaler, 2014) to measure persistence and modularity of tech-

nical knowledge and the breadth and depth of firm’s technical capabilities. In this approach, the 

knowledge of a specific solution to a selected engineering problem, which is represented by a 

given patent, is seen as a gene that spreads to the population of inventors. Citations therefore 

represent genetic heritage that persists from parent (the cited patent) to offspring (the citing 

patent). As a note for the reader, we stress that the methodologies developed in this thesis are 

also nested. The main path approach is used in Chapters 3, 4 and 5 as the basic building block, 

whose function is to reduce large citation networks to their backbone. Then further analysis is 

done on top of the network of main paths. Yet, despite the risk of redundancies, we decided to 

briefly introduce the whole procedure from the very beginning each time such that each chapter 

can be read as a stand-alone essay. 

 In Chapter 2, we provide a data-driven description of industrial dynamics and catching-up 

in the Semiconductor industry and highlight similarity and differences between successful and 

unsuccessful catching-up cases. In particular, we reveal how the Semiconductor industries in 

S.Korea, Taiwan, Singapore, Hong Kong, China and Malaysia shared similar initial national condi-

tions at the technology level, up to the beginning of the 1990s. However, we unfold how they lat-

er followed very different inventive strategies in terms of source and speed of technical im-

provements. In the second essay (Chapter 3) we investigate whether we observe stability or dis-

continuity in the approach to problem solving and in the ranking of engineering problems of 

semiconductor technologies between 1976 and 2006. We also analyse which firms were pushing 

the trajectories toward either stability or discontinuity and how latecomer firms behaved in this 

respect. Findings show that the innovative entrance of firms from Korea, Taiwan and Singapore 

occurred in the mid-1990s in a moment in which the technological trajectory was stable. Up to 

the end of the 1990s, their learning strategy was prevalently focused on following long-
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established paths of technical improvements and allocating their inventive efforts in accordance 

with the then prevailing ranking of engineering problems. Yet, in the beginning of the 2000s, 

some of them became active ranking-changers and start focusing on a new set of engineering 

challenges related to LCD monitor technologies and advances in metal–oxide–semiconductor 

field-effect transistors (MOSFETs).   

 Although very successful in terms of quickly acquiring influence on the direction of the en-

gineering trajectories, the path following type of entrance applied by latecomers, raises a fun-

damental question concerning the sustainability of their specialization patterns. Did latecomers 

succeed in upgrading their comparative technical advantage from relatively old technology do-

mains to young and emerging ones? This question is answered in the third essay (Chapter 4), 

where we develop a methodology to identify sub-domains of semiconductor technologies and 

categorize the stage of their life cycle. Our results show that, up to the end of the 1990s firms 

from Taiwan, Korea and Singapore specialized mainly in mature and exhausting technologies, 

sometimes attempting to renew them, whereas American and Japanese firms were comparative-

ly better in younger areas. This learning process allowed capability building by Korean and Tai-

wanese latecomers that resulted in a revealed technological advantage in emerging areas at the 

beginning of the 2000s.  

 These results lead to a series of further research questions that are analysed in the fourth 

and last essay (Chapter 5). The fragmentation of the semiconductors’ value chain from the 1990s 

onwards increased the degree of functional specialization of the players involved. Nowadays de-

sign, manufacturing, testing and commercialization of semiconductor devices are made by dif-

ferent firms. However, costs, profit margins and the level of competition differ widely across dif-

ferent stages of the value chain. In particular, the manufacturing stage of the semiconductor in-

dustry shows increasing costs (due to increasing product complexity), decreasing profit margins 

and increasing competition, the latter mainly due to the entrance of China. Therefore, to escape 

the low profitability and high competition trap Taiwanese, Korean and Singaporean firms need 

to move along the semiconductor value chain. The ease of this specialization upgrading crucially 

depends on their ability to diversify their technical knowledge. This is what we analyse in Chap-

ter 5, where we study firms’ innovative survival in the semiconductor industry as a function of 

knowledge diversification and accumulation. As we discussed earlier, the semiconductor indus-

try is characterized by high levels of technical modularity. We hypothesize that, in such context, 

diversification and knowledge accumulation provide better chances for innovation persistence. 

We argue that, when knowledge is hardly portable across domains, the spread of survival chanc-

es between diversified and specialized players should be larger when technological change is 

knowledge replacing. Survival as core innovator (i.e. innovative survival) is defined as persisting 

having patents located on the main paths of citations. Our findings show that diversification sig-

nificantly improves core innovators’ odds of survival but only for large levels of knowledge 

breadth. The effect is indeed conditional to the level of knowledge persistence. In contrast, 

knowledge depth alone does not affect survival as core innovator. However, there are positive 

complementarities between knowledge breadth and depth. 
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2 TECHNOLOGICAL AND 

INDUSTRIAL EVOLUTION OF 

THE GLOBAL SEMICONDUCTOR 

INDUSTRY 

ABSTRACT 

In a wold pervaded by Information and Communication Technologies (ICTs), the Semiconductor 

industry is an engine of economic growth. It is also one of the few high-tech industries that wit-

nessed a significant global diffusion of inventive activities. Several Asian countries attempted to 

narrow their technological gap with the leaders in this industry. Only three of them succeeded. 

These are S.Korea, Taiwan and, albeit to a smaller extent, Singapore. In this chapter we provide 

an overview of how the technological and industrial evolution of semiconductors. We quantify 

the technological and market success of these countries and discuss how their entry was fa-

voured by the increase in the technical modularity of semiconductor devices. We also investigate 

similarities and differences of initial conditions between successful and unsuccessful catching-

up countries. Finally, we show how the former markedly differ from the latter in the extent to 

which, after focusing on improving foreign technologies, they improved upon national ones. 

Firms from successful catching up countries also went through significantly faster cycles of 

technical improvements than their competitor in the US, Japan and the unsuccessful latecomers. 

  



 

10 Technological and Industrial evolution of the global Semiconductor Industry 

2.1 Introduction 

Technology shapes the economy. The success and failure of firms, industries, and countries de-

pends on their ability to keep pace with technological change and being active agents of it. To do 

so they need to constantly introduce, learn and adopt better technologies.  Some technologies 

have wider effects on the economy as a whole. We currently live in a world shaped by infor-

mation and communication technologies (ICTs), whose broad applicability has pervasive effects 

on the economy (Jovanovic and Rousseau, 2005, Soete, 2000 and Freeman and Soete, 1997).  

The flagship of ICT technologies is represented by the Semiconductor industry, whose products 

are ubiquitous in modern electronics. Improving semiconductor technologies is not only a 

source of pervasive technical change but also a key engine of economic growth. For instance, the 

U.S. semiconductor industry’s share of U.S. GDP is the third largest of all U.S. manufacturing in-

dustries, behind only the petroleum refinery and pharmaceutical preparations industries (Par-

pala, 2014). Interestingly, the Semiconductor industry is one of the few high-tech sectors that 

spread to countries that were still experiencing a large technological gap with the leading ones, 

at the time of their entrance in this industry. Given semiconductors’ pervasive role as general-

purpose technologies and its peculiar globalized industrial structure, it is natural to wonder how 

such inclusive growth has occurred. Did the evolution of semiconductor technology favoured the 

entrance of new players? What does it make successful catching-up firms special? 

 In this chapter, we provide an overview of the evolution of the technological and market 

evolution of the Semiconductor industry. We show how this industry has been characterized by 

inclusive growth of technological innovations since about the beginning of the 1980s. We also 

discuss how technical and market catching-up has prominently occurred in two waves. In the 

first wave, which happened in the 1980s, market and technological advantage of US firms has 

been eroded by the entrance of Japanese companies. In the 1990s, a second wave of entrance 

from Asian Tigers’ firms disrupted market structure. The progressive development of strong 

technical capabilities allowed catching-up firms to rapidly gain market shares. We discuss how 

the evolution of the industry’s product portfolio and underlying technologies, in particular the 

increase technical modularity, have favoured this catching-up waves. By analysing patent rec-

ords, we also provide a preliminary analysis of the inventive strategies followed by firms from 

successful and unsuccessful catching-up countries in terms of the sources and speed of technical 

improvements. We also show how, in successful catching-up countries, the inventive activities of 

local firms have led to the formation of a national industry, with several players that progres-

sively improved upon each other’s technologies.  

2.2 Technological change, industrial dynamics and catching-up 

We study the semiconductor industry because it provides a unique case study to test theories 

and empirical evidence of the interplay between technological change and catch-up. Until the 

mid-1990s, Semiconductor inventive activities used to be more concentrated geographically 

than expected by looking at the overall set of technologies patented at the United States Patent 

and Trademark Office (USPTO), as measured by the Herfindahl-Hirschman concentration index 

(HHI) of semiconductor patent shares by country of invention reported in Figure 1. Then, Semi-

conductor inventive activities spread out globally considerably more than expected.  

 



 

 Technological and Industrial evolution of the global Semiconductor Industry 11 

 
Figure 1: The globalization of Semiconductor inventive activities 

 

It is natural to wonder then, which geographical locations have become important sources of 

semiconductor inventions over time. Figure 2 shows the evolution of semiconductor patent 

shares by country of invention. In the 1960s (not reported in Figure 2) US firms held about 85% 

of patents granted by the USPTO in the semiconductor technological classes. At the beginning of 

the 1990s, this share collapsed to less than 50%. This decrease was largely due to the rise of Ja-

pan as the US’ main competitor. However, just after matching the US patent share in 1993, Ja-

pan’s one starts decreasing, while the US level remained approximately constant. Japanese com-

petitive edge as top semiconductor innovator was eroded by the catching-up in technical capa-

bilities by S.Korea, Taiwan and, albeit to a smaller but still non-negligible extent, Singapore. 

Hobday (1995), discussed how a wider set of latecomer countries started manufacturing Semi-

conductors at the beginning of the 1990s. These are China, Hong Kong, Indonesia, Malaysia and 

Thailand.   As a comparison, we report their patent shares. Their performance up to 2006 has 

been poor. China, Hong Kong and Malaysia, have recently experienced growth in their Semicon-

ductor patent shares, while Indonesia and Thailand’s shares have been languishing. However, 

despite this recent growth, patent shares for China, Hong Kong and Malaysia were still very 

marginal, until at least 2006, compared to the technological leaders (US and Japan) and the main 

followers (Korea and Taiwan). They were also considerably lower than any of the top European 

countries (Germany, France, Italy, Netherlands and UK), which are themselves very marginal 

contributors to technological innovation in the Semiconductors.   
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Figure 2: USPTO semiconductor patent shares by country of invention 

Note: author’s elaboration based on the NBER-USPTO data (Hall et al., 2001) 

 

 
Figure 3: Share of semiconductor sales by geographic destination  

Note: author’s elaboration of data from the Global Sales Report (GSR) by the World Semiconductor Trade Statistics 

(WSTS). The GSR is a three-month moving average of semiconductor sales activity by billing country. The  data is 

provided by the WSTS, which represents approximately 55 semiconductor companies worldwide. 

 

 
Figure 4: Share of semiconductor sales by geographic origin 

Note: Figure from Yinug (2015). Market shares based on headquarter of seller. Numbers rounded. Data source: 

SIA/World Semiconductor Trade Statistics (WSTS)/HIS/PricewaterhouseCoopers/IC Insights. 
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The catch-up in terms of technological output by Korea, Taiwan and Singapore, is closely 

matched by the rise in sale shares. Figure 3 shows how remarkable the similarity between the 

trends for patent shares by country of invention and the sale shares by billing country is. From 

the beginning of the 2000s the Asia Pacific region became the most important market in the 

world for semiconductor sales3. It is much more difficult to obtain comprehensive disaggregated 

data for semiconductor sales by country of origin. However, for those at our disposal4, which we 

show in Figure 4, we can notice a strong similarity between the trends for market and patent 

shares by country of origin5. The large correlation between these trends suggests that, as argued 

by Lee and Lim (2001), long run market success and improvements of technological capabilities 

co-evolve. 

 Semiconductors then clearly stand out of the crowd in terms of prominent entrance of new 

players from latecomer countries. This suggests that there may be something peculiar to the 

path of technological change in this industry that lowered barriers to entrance. The product 

portfolio of the industry could be broadly defined by two main categories: commodity integrated 

circuits and application specific integrated circuits (ASICs). The former includes all sort of inte-

grated circuits (ICs) that are mass produced in a standardized manner and used in a large num-

ber of applications. Microprocessors, memories, simple standard chips, and transistors belong to 

this category.  The second large category of devices is made by application specific integrated 

circuits (ASICs). The ubiquity of electronics in modern manufacturing process and products of-

ten required, besides standardized microchips, specific devices tailored to the computing needs 

of the given application. ASICs are therefore a very heterogeneous category that includes both 

ICs that are programmed by the producer to suit a specific need required by the user, and field-

programmable gate arrays, which are designed to allow users to customize them to perform a 

specific function. Despite the undifferentiated nature of commodity devices, economic returns 

and the capabilities required to design them differ widely within the category. The microproces-

sors segment is largely dominated by Intel and Advanced Micro Devices and no player from late-

comer countries managed to enter and consolidate in this segment. Memories make the opposite 

case. They are relatively easier to design and produce than microprocessor. Competition in this 

segment is therefore based on cost-advantage. As discussed by Langlois and Steinmueller 

(1999), this made it a particularly favourable area of entry for latecomers with initially limited 

technical capabilities but strong wage advantage. As we have shown in Figure 2, latecomers’ en-

trance in the Semiconductor technological arena, clustered in two distinct waves. First Japanese 

producers successfully entered in the memory market and challenged the US leadership in the 

1980s. Then large conglomerates from South Korea in particular, and Taiwan to a smaller extent, 

like Samsung, LG and Hyundai Electronics, prominently entered into the memory-making mar-

ket.  

 ASICs are a more interesting case, which show the existence of crucial interactions between 

technological change and industrial dynamics even more prominently than memories. The diffu-

sion of ASICs became possible thanks to the persistent miniaturization of integrated circuits 

components, as predicted by Moore’s law, and the introduction of a particular design of ICs 

                                                             
3 The data comes from the US Semiconductor Industry Association's Global Sales Report (GSR) based on data from the 

World Semiconductor Trade Statistics (WSTS) organization.  
4 The data source is Yinug (2015). 
5 Note that the SIA report excluded foundry output. Consequently, sales of Taiwanese and, partly, Chinese companies, 

are likely to be largely underestimated. 
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called complementary metal–oxide–semiconductor (CMOS). On the one hand, the miniaturiza-

tion of chips made them ubiquitous and increased computational power. This also created de-

mand for customized ICs. On the other hand, CMOS allowed high-density of logic functions on a 

chip, decreasing production costs. The two effects made it possible to invest in the design and 

manufacturing of ICs for small market segments that would have previously been unprofitable. 

This allowed the entrance of small specialized players which focused on specific technical skills 

and thorough knowledge of users’ needs (Adams et al., 2013; Fontana and Malerba, 2010; Ernst, 

2005; Linden and Somaya, 2003).  

 The combination of the emergence of CMOS technology, the diffusion of ASICs and the verti-

cal disintegration of the value-chain, explain the second wave of globalization of the semicon-

ductor industry, with the emergence of key players in the Asian Tigers (S.Korea, Taiwan, Singa-

pore and Hong Kong), and assembly and test plants in Southeast Asia (Malaysia and Thailand) 

and China. Adams et al. (2013) explain how “the increased adoption of Complementary Metal Ox-

ide Semiconductor (CMOS) production processes weakened the interdependence of product design 

and manufacturing. [...] With the creation of standardized interfaces between components and 

Electronic Design Automation (EDA) tools a modular system developed. [...] The interdependence 

between product design and manufacturing was weakened in many product segments in semicon-

ductors and specialist firms were able to enter the industry at both the design and the manufactur-

ing stages” (Adams et al., 2013, p.287). Technical modularity is a form of design that makes com-

ponents of a system interdependent within modules but independent across them. (Baldwin and 

Clark, 2000). Modular unit can therefore be designed and manufactured in separate steps and 

locations. The emergence of modular designs is one of the forces that fragmented the value chain 

and fostered specialization in the semiconductors industry, in other words, technical modularity 

lead to organizational modularity (Ernst, 2005a, 2005b). However, modularity has not neces-

sarily reduced complexity. As discussed by Ernst technical modularity allowed combining more 

and more layers of components into a single chip, making the design of the whole system more 

complex. In fact, since mid-1990s, ASICs have become so complex to include what were previ-

ously seen as undifferentiated devices like microprocessors and memory blocks into a single 

chip that performs the same functions of an entire system. These chips are indeed known as 

“System on a Chip” (SoC). The design, manufacturing and commercialization of complex SoC is 

certainly the most heterogeneous semiconductor market segment in terms of players, strategies 

and product characteristics (Linden and Somaya, 2003). As a way to reduce uncertainty due to 

the increased design complexity of SoCs, incumbent firms became quite conservative concerning 

exploring new design methodologies to avoid discovering problems in the subsequent manufac-

turing of large yields. This has open a room for risk-taking latecomers “willing to use chip designs 

that they believed could help them to capture market shares” (Ernst, 2005a, p.60). 

 The increased design, testing and manufacturing complexity is only one of the technical and 

business challenges faced by players in the semiconductor industry. Shorter product life cycles, 

shrinking profit margins, and global competition are additional key concerns (Brown and Lin-

den, 2009). This is in particular true for the market segments and the steps of the value chain 

traditionally targeted by latecomer. Starting from the mid-2000s, the entrance of Chinese com-

panies in the memory market and the testing, manufacturing and assembly of semiconductor 

devices has directly challenged the success of previous latecomers. Furthermore, while certainly 

providing entry opportunities for Asian Tiger’s latecomers, as argued by Lee (2013), the short-

ening of the technology life cycle also threatens their ability to sustain their growth path, espe-

cially when facing the competition of more cost-effective Chinese firms. Therefore, sustaining 

technological advantage in the industry requires firms to be alert of the direction of technologi-
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cal change, constant upgrade their technical knowledge to the latest design and manufacturing 

technologies and to be open to the use of new materials and production equipments6. 

2.3 Are successful catching-up countries special? 

We have seen how a few latecomer countries (S.Korea, Taiwan and Singapore) have successfully 

narrowed their gap in terms of patent shares in the semiconductor while others, notably China, 

Hong Kong, Malaysia, Thailand and Indonesia, have failed to do so, at least until 2006. In the rest 

of the thesis, we will study in details which inventive strategies have been followed by Korean, 

Taiwanese and Singaporean firms. Here, we briefly investigate whether successful and unsuc-

cessful catching-up countries started from similar conditions and if and how they differed in 

their sources and speed of technical improvements. 

2.3.1 Similarities and differences of initial conditions 

Since, in this thesis, we analyse catching-up in the Semiconductor industry, we first need to ask 

ourselves whether successful catching-up countries were allocating more inventive effort to this 

industry compared to their competitors, before their catching-up process took off. Figure 5 

shows how, until the mid-1990s, Taiwan’s and Singapore’s focus on Semiconductors was not 

higher than in the unsuccessful catching-up countries. It was also comparable to US, Japan and 

European levels (note that the latter are reported on a different scale). To the contrary, Korea’s 

focus on the Semiconductor industry was preceding the take-off of its world’s patent shares. 

This might signal a pre-existing comparative advantage due to a specific targeting of Semicon-

ductor technologies. Once the catching-up process took-off, however, we the importance of Sem-

iconductors within each of the successful latecomers rapidly increased. At the beginning of the 

2000s, Semiconductors patents accounted for around forty-percent of patent in Singapore and 

around twenty-percent in Korea and Taiwan. Similarly, in the 2000s, the share of semiconductor 

in a country’s patent output increased for Malaysia and Thailand as well, fluctuating between 

twenty- and thirty-five percent for the former and around ten-percent for the latter. It remained 

much lower in China, Hong Kong and Indonesia. 

                                                             
6 Magee estimated that two-thirds of the total technological progress in information storage in the semiconductors is 

due to the use of better materials (Magee, 2010). Advances in industrial lasers and optical lithography also helped 

overcome the physical problems and the complexity of miniaturization. 
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Figure 5: Semiconductor patent shares over country’s total patent count 

Another key dimension of comparison is the number of organizations active in Semiconductor 

patenting in each country. This is reported in Figure 67. In this case, we can see that all latecom-

ers, regardless of their success, had only a few patent assignees until 1997. Then, more and more 

organizations started patenting in Korea, Taiwan and Singapore. About 100 different assignees 

had received at least one patent granted in 2006 in Taiwan, about 40 in Korea and 20 in Singa-

pore. China, Hong Kong and Malaysia also experienced growth in the number of patenting organ-

izations, even though of a smaller magnitude. China had 13 of them in 2006 (after reaching 17 

assignees in 2005), Malaysia 15 and Hong Kong 5.  

 
Figure 6: Number of organizations active in Semiconductor patenting by country 

  

                                                             
7 We use harmonized assignee names included in the 2006 version of the NBER-USPTO database (Hall et al, 2001). We 

further cleaned typos in their names manually. Note that no effort was made to harmonize subsidiaries below the 

same holding. This is done on purpose, as different subsidiaries can follow very different inventive strategies and have 

different technical capabilities.  
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Obviously, the geographic and economic size of these countries differ widely, this may partly ex-

plain differences in the number of patenting organizations. The appropriate way to compare 

these countries is to look at the strength of their national semiconductor industry. If we take the 

world patent shares, the national focus on semiconductors and the first year of patenting as a 

reference, we can conclude that successful and unsuccessful catching-up countries shared rela-

tively similar initial conditions in terms of number of inventive agents, strength of technical ca-

pabilities in the semiconductors and national targeting of semiconductor technologies, from the 

time of appearance of the first patenting activity in Semiconductor technologies until around 

1995. On the other hand, there are two sources of dissimilarities. First, as we discussed, since 

the very beginning Korea showed stronger national focus on the semiconductors. Second, de-

spite relatively similar numbers of patenting organizations in the mid-1990s, their type is mark-

edly different. Patenting organizations from Korea and Taiwan were national firms. The largest 

assignees in Korea, at least until 2006, were Samsung, Hyundai Electronics, Hynix and LG Semi-

conductors. In Taiwan they were, Taiwan Semiconductor Manufacturing Corporation, United 

Microelectronic Corporation, the Industrial Technology Research Institute, Vanguard and Win-

bond. These are all local organizations. Singapore had a more mixed model. Its largest patent 

assignees up to 2006 were Chartered, a local foundry, and ASTAR, a government agency, but also 

foreign multinationals like Micron Technologies, ST Microelectronics and Texas Instrument. A 

similar strategy has been followed by Hong Kong, with a mix of local (ASAT and the Hong Kong 

University of Science and Technology) and foreign (Chartered, Motorola and Freescale) assign-

ees. In contrast, Malaysia, Indonesia and China almost only had foreign companies in the list of 

their top assignees up to 2006. 

2.3.2 Sources of technical improvements 

Given that, as we have argued, the improvement of technical capabilities is a key driver of long 

term market success, two additional key dimensions of comparison between successful and un-

successful catching-up countries are the sources and speed of technical improvements. We 

measure them by looking at patent citations. Patents disclose the technical description of an im-

proved technology. We interpret the existence of a citation between patents as a measure or the 

technical relatedness between the improved (i.e. the cited) and the improving (i.e. the citing) 

technology, rather than speculating on the existence of an intentional knowledge flow between 

the two inventions. This is because, as discussed by Criscuolo and Verspagen (2008) and Alcácer 

and Gittelman (2006) many citations are added by the patent examiners rather than the appli-

cant, during the examination process. We first look at the geographic origin of the improved 

technologies, i.e. at the sources of technical improvements. The inclusive growth of the semicon-

ductor industry and the globalization of its inventive activities would lead one to think that 

technological improvements have a more and more international character. In other words, one 

could think that it would be more likely to observe inventions improving on technologies that 

have been invented elsewhere. However, this is not the case. Indeed, the opposite is true. Semi-

conductor related inventions are more and more likely to improve upon locally invented tech-

nologies than expected by chance. To measure that, we computed the expected number of be-

tween-country and within-country citations, and their standard deviation, if one would random-

ly swap citations while preserving the number of patents granted to each organization and coun-

try, the number of citations made and received by each patent and their time structure (i.e. the 

difference between the citing and the cited grant year). We then computed z-scores by subtract-

ing the expected number from the observed one and dividing by the standard deviation. The z-



 

18 Technological and Industrial evolution of the global Semiconductor Industry 

score then indicates whether intra- or inter-country citations are higher, equal or lower than 

expected. Note that, to preserve the characteristic preference for self-citations, we have only 

randomized inter-assignee citations. More information on this randomization process can be 

found in the Appendix A.2.1. Figure 7 shows the results.  

 

 
Figure 7: The increasing reliance on national sources of technical improvements 

 

Approximately since the rise of Japan, and much more strongly after the entrance of the other 

Asian latecomers, there are more and more intra-country citations than expected by chance. 

This means that, when they were not improving upon their own technologies, new entrants, 

progressively increased their preference for improving upon inventions that were developed by 

another organization from the same country, rather than foreign ones. This might sound at odds 

with the globalization narrative. It is not. It is actually a sign of the effectiveness of the globaliza-

tion of inventive activities. As we have seen in Figure 6, despite the rapid growth, there are still 

much less patenting organizations from latecomer countries than from US and Japan. Therefore, 

when citations made by patents granted to assignees from Korea, Taiwan, Singapore and the un-

successful catching-up countries are randomly reshuffled, they have a small probability to be 

reconnected to assignees from the same countries. Therefore, the expectation is very low. The 

fact that there are indeed many more intra-country and between-firms citations than expected 

clearly shows that local technical capabilities have improved to the point that locally-invented 

technologies attract more attention from national organizations different from the assignee than 

foreign invented ones do. Is this true to the same extent across leaders, followers, and successful 

and unsuccessful catching-up countries? Figure 8 provides the answer by disaggregating the z-

scores at the country level. For convenience, we only report the z-score for inter-country cita-

tions. US and Japan clearly became increasingly inward oriented, as there are less and less be-

tween-firms and between-countries citations than expected by chance. Similarly, Korea and 

Taiwan also progressively developed a preference for improving upon locally invented technol-

ogies. Interestingly, this is not the case for Singapore, China, Malaysia and Hong Kong. This 

shows how patenting organizations in these countries have still preferred to improve upon for-

eign technologies, and neglect local sources of technical improvements.    
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Figure 8: Industry-building by improving upon local technologies 

2.3.3 Speed of technical improvements 

Inventions typically improve upon existing technologies. By looking at the difference between 

the grant year of the citing and the cited patents, we can determine how old the sources of tech-

nical improvements are. Disaggregating these trends by countries reveal another key difference 

between successful and unsuccessful catching-up countries in the semiconductors. In Figure 9, 

we show the probability of citations to patents of different ages, computed for each country. In 

the left column, we included only citing patents granted between 1995 and 2000. In the second 

one we include citing patents granted between 2001 and 2006. The shape of these curves is fair-

ly typical across technologies, as shown by Jaffe and Trajtenberg (2002) and Hall and colleagues 

(2001). New technologies need time to be recognized and the improvement of old technologies 

tend to attract much less inventive effort. This causes the particular shape of the probability 

density function. The comparison by country is insightful. In both periods, Korean, Taiwanese 

and Singaporean patenting organizations had a stronger preference for improving upon recently 

improved technologies, compared to firms from the other countries. In contrast, patenting or-

ganizations from unsuccessful catching-up countries do not seem to have any clear preference. 

This could be because probability density functions are noisy when there are few observations. 

This is the case for unsuccessful catching-up countries, which, having fewer patents, also have 

fewer backward citations. To reduce this problem we computed the cumulative distribution 

function (cdf). We report the results in the Appendix A.2.2. Using the cdf, we have also per-

formed a Kolmogorov-Smirnov and an Anderson-Darling test of equality in the distributions be-

tween countries. Both tests confirm that the distributions are statistically different. This showed 

a statistical preference for patenting organizations from successful latecomers in the Semicon-

ductors to perform quick cycles of improvements of existing technologies.  
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Figure 9: Fast improvement of semiconductor technologies by successful catching-up countries 

2.4 Conclusions 

Semiconductors are a fascinating industry for an economist interested in studying the interplay-

ing between technological change, inventive strategies and catching-up. Given its central role as 

engine of economic growth, and the occurrence of both successful and unsuccessful catching-up 

ventures, it is very insightful to analyse the technological and industrial dynamics in this indus-

try and investigate what made successful catching up organizations special. In this chapter, we 

have provided a preliminary overview on that. 

 We have shown that inventive activities in the Semiconductor industry became more and 

more globalized than expected by looking at the overall technologies patented at the USPTO 

starting from the mid-1990s. This corresponds with the prominent entrance of patenting organ-

izations from Korea, Taiwan and Singapore. Firms from these countries managed to rapidly gain 

patent shares, mostly by eroding technological competitiveness of Japanese firms. The increase 

in invention output was closely matched by a fast increase in market shares. At the same time, 

the Asia-Pacific region became the most important market in the world for Semiconductors, as 

measured by dollar amounts of billings. We have also discussed how the technology dynamics 

within the industry clearly favoured the entrance of new players. In particular, the increase in  

technical modularity fragmented the value-chain of semiconductor devices and opened entry 

opportunities for specialized players. However, not all latecomers were able to effectively take 

advantage of these opportunities. A few countries, notably China, Hong Kong, Malaysia, Indone-

sia and Thailand, which started patenting at the USPTO and manufacturing semiconductors ap-

proximately at the same time of Korea, Taiwan and Singapore, failed to narrow the gap in terms 

of patent shares. These countries started from relatively similar initial conditions (at the time of 

their first USPTO patents) in terms of national inventive focus on semiconductors and number of 

patenting organizations. However, a number of clear dissimilarities emerged between successful 

and unsuccessful catching-up countries. First, the former had a rapid expansion of the number of 

patenting organizations within their borders. This shows that the number of active agents with-

in the innovation system increased. Second, the composition of these agents was very different 

across successful and unsuccessful catching-up countries. Patenting organizations in Korea and 

Taiwan were mostly local companies. Singapore and Hong Kong had a mix of local firms and for-
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eign multinational corporations. China, Malaysia, Indonesia and Thailand inventive agents were 

mostly foreign companies, at least until 2006. Third, in Korea and Taiwan, more than in any oth-

er catching-up country, patenting organizations progressively developed a strong preference for 

improving locally invented technology. Fourth, patenting organizations in successful catching-up 

countries had a stronger focus on rapid cycles of technological improvements than leader and 

unsuccessful catching-up countries. A similar conclusion has been recently discussed by Lee 

(2014), who showed how Korean and Taiwanese firms preferentially entered industries whit 

short life cycles. Taken together, these findings suggests that successful catching-up countries 

were actively engaged in industry-building activities, more than what could be observed in other 

countries that shared relatively similar initial conditions at the time of their first USPTO semi-

conductor patents. They had a growing number of national patenting organizations; they rapidly 

shifted from improving foreign technologies to focus on national technologies and they went 

thorough rapid cycles of technological improvements.     

 These findings shed some light on the technological path followed by firms from successful 

catching-up countries. They also highlight how their inventive strategies might have been mark-

edly different from those adopted by patenting organizations from the US, Japan and unsuccess-

ful catching-up countries. In the next chapters, we will analyse in detail the inventive trajectories 

that have been followed by these firms across the technology space. We will also reveal if they 

successfully upgraded their comparative advantage along technology life cycle stages.  
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3 ENGINEERING TRAJECTORIES, 
RANKING OF DESIGN PROBLEMS 

AND CATCHING-UP 

ABSTRACT 

Technology is a complex adaptive system whose direction of development depends on the inter-

dependences of engineering problems, on the propagation of technical solutions and on firms’ 

strategic decisions. We argue that the complex interactions determining the direction of change 

at the technology level can be expressed in terms of two key dimensions: the presence or lack of 

persistence in the ranking of the system of engineering problems and the presence or lack of sta-

bility in the approaches to problem solving. These dimensions are the projection in the engineer-

ing design space of technological trajectories defined at the product level. We design a set of 

metrics to identify changes in these two dimensions, and disclose statistically significant path-

followers, path-changers, ranking-followers and ranking-changers. We analyse the global Semi-

conductor industry. We identify two discontinuities in the direction of technological change. In 

the first half of the 1990s, a disruption in the main approaches to problem solving occurred be-

cause of the introduction of new semiconductor device structures. In the first half of the 2000s, 

we observed a change in engineering trajectories, coupled with a change in the ranking of prob-

lems, caused by advances in the miniaturization of semiconductor devices allowed by the diffu-

sion of MOSFET technologies. We show that firms from latecomer countries were in general sig-

nificant path- and ranking-followers in the 1990s. This partially changed in the first half of the 

2000s, when some of them became significant ranking-changers. 
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3.1 Introduction 

Technology is in continuous evolution. Depending on the direction of technological change, ca-

pabilities can be reinforced or outdated. This affects the catching-up fortunes of new entrants 

and the resilience of incumbents. Studies on catching-up emphasized the characteristics of sec-

toral technological regimes as key determinants of the ease of catching-up (Lee, 2014; Lee and 

Lim, 2001; Breschi et al. 2000, Malerba and Orsenigo, 1997, Klepper, 1997). These are defined as 

the peculiar features of the set of technologies underlying a given industry. Malerba and Orseni-

go (1997) empirically showed that the level of concentration of economic activities, entry of new 

players and the stability of the ranking of core innovators, are strongly affected by the availabil-

ity of technological opportunities, the cumulativeness of technological improvements and the 

ease of appropriating returns to innovation.  Lee and Lim (2001) highlighted that, with respect 

to catching-up, the stability or discontinuity in the technological trajectory plays a particularly 

crucial role. The authors define three types of catching-up strategies. Firms that focus their 

learning efforts on reducing the technological gap by replicating what the current leaders have 

been doing are defined as path-followers. In contrast, the term path-creator refers to firms that, 

while learning existing technologies, improve them to a point that they become fundamentally 

different from what they used to be. Finally, Lee and Lim also defined path-skippers. These firms 

jump over generations of technologies during their learning process and are able to engage 

quickly in frontier research, by skipping intermediate learning stages. This classification is not 

exclusive for catching-up firms. If we assume that a set of possible technical paths exist in an in-

dustry at any point in time, and we broaden our focus on all firms populating an industry, we can 

use a similar classification for any firm. Firms, be they large or small, incumbents or new en-

trants, can be path-changers or path-followers, in a similar vein as they can be exploiters of cu-

mulative knowledge or explorers of new research directions. These strategies can be reactive or 

proactive to change, might be explicitly defined within the firm, or just be the result of random 

events that are implicit in the research and development process. They might also have alterna-

tive fortunes depending on the configuration of the system of technologies at a given point in 

time. Yet, firms’ location with respect to the path of technical improvements only refers to one 

dimension of technological change, namely the presence or lack of stability in the approaches to 

engineering problem solving. We argue that the direction of technological change has a second 

crucial dimension: the presence or lack of stability in the ranking of engineering problems. 

 In this paper, we use patent citation data to trace the direction of technological change 

along these two fundamental dimensions, the ranking of engineering problems and the stability 

of problem solving approaches. By doing so, we reconstruct the engineering trajectories fol-

lowed by an industry over time.  We apply the network of main paths (NMPs) methodological 

approach for these purposes. The NMPs is a methodology that helps disentangling the complexi-

ty of large patent citation networks. It builds on the work by Hammond and Doreian (1989), Gar-

field et al. (1964) and Garfield (1979), and has been extended by a branch of research which 

have applied it to the definition and analysis of technological trajectories in several industries 

(Verspagen, 2007, Fontana et al., 2009, Martinelli, 2008; 2009 and Bekkers and Martinelli, 

2010). This line of research provides an extremely promising way to look at patent data and 

technological performance of firms. The NMPs reveals much richer insights than simple patent 

or citations counts. We contribute to this methodology by defining a set of indices that reveals 

the presence or lack of stability in the ranking of the systems of engineering problems and ap-

proaches to problem solving. We also define a method to assess whether players are statistically 

significant path-followers or changers and ranking-followers or changers. Finally, we design an 
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unbiased measure of firms’ centrality on the main paths of engineering improvements , which 

corrects for network characteristics, time of entry and firm size. We use the NBER patent cita-

tions data file (Hall et al., 2001), which contains detailed metadata for patents issued by the 

USPTO between 1976 and 2006.  

 We analyse the Semiconductor industry as a case study. Semiconductors provide the per-

fect ground to study the interplay between the direction of technological change, players’ strate-

gies and catching-up. The industry has been once dominated by US firms. Then, as shown in 

Chapter 2, about four decades ago, Japan has risen as a major player, followed in the 1990s by 

South Korea, Taiwan and, partly, Singapore. The success of these latecomers has been striking. In 

this work, we investigate which strategies have been adopted by latecomers and incumbents to 

guide their search for high-quality engineering solutions in the technology space. We also assess 

the effectiveness of these strategies in building technological capabilities, measured as a firm’s 

ability to affect the direction of technological change. The paper is structured as follows. In Sec-

tion 3.2, we introduce the theoretical framework that guides our analysis and define the two key 

dimensions of the direction of technological change: the ranking of engineering problems and 

the stability of approaches to problem solving. Section 3.3 explains the methodological approach 

and introduces the set of indices used to analyse these two dimensions and players’ strategies. 

Section 3.4 presents the data used. Section 3.5 reports our findings for the analysis of the direc-

tion of technological change in the Semiconductors. Section 3.6 reveals players’ contribution to 

technological change. Finally, Section 3.7 discusses the effectiveness of players’ strategies in 

terms of actively influent the direction of technological change.   

3.2 Theoretical framework 

The evolution of technology determines and constrains entry, catching-up and growth opportu-

nities (Klepper, 1997, Breschi et al. 2000, Lee and Lim, 2001). Malerba and Orsenigo (1997), 

theoretically defined, and empirically showed, how technological regimes determine ease of en-

trance, stability of the ranking of innovators and concentration of inventive activities. The au-

thors define technological regimes as particular combinations of some fundamental properties 

of technologies. These are opportunity and appropriability conditions, degree of cumulativeness 

of technological knowledge and characteristics of the knowledge base. Lee and Lim (2001), con-

jecture that, as far as catching-up is concerned, cumulativeness of technical advance and the 

predictability of the technological trajectory are the most important dimensions of the techno-

logical regime of an industry. They argue that large knowledge cumulativeness requires experi-

ence to succeed in the current technological search, reducing success chances for new entrants. 

On the other hand, they hypothesize that stable technological developments helps latecomers 

fixing their R&D target.  Lee and Lim, define technological trajectories as changes in the vector of 

technical features along the sequence of product generations. Knowledge cumulativeness refers 

to how much working experience in the previous generation help in mastering the subsequent 

generation. They highlight how stability in the trajectory and knowledge cumulativeness does 

not necessarily co-appear. They use the dynamic random access memory (DRAM) industry as an 

example of a case where the future characteristics of the technology are known well in advance 

but require developing a new set of knowledge. They argue that this scenario helps explaining 

the successful entrance of Korean memory makers. Lee and Lim’s definition of the technological 

trajectory builds on the seminal work by Dosi (1982). Dosi theoretically defined the direction of 

technological change as emerging from the interaction between technological paradigms and 

technological trajectories. Dosi defined the former as “. . . [a] ‘model’ and a ‘pattern’ of solution of 
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selected technological problems, based on selected principles derived from natural sciences and on 

selected material technologies" (Dosi 1982). A technological trajectory is then defined by Dosi as 

“. . .the ‘normal’ problem solving activity determined by a paradigm. [It] can be represented by the 

movement of multi-dimensional trade-offs among the technological variables which the paradigm 

defines as relevant. . . " (Dosi 1982). Within the same paradigm, firms can explore different strat-

egies. Therefore, several technological trajectories can co-exist. The same is argued by Malerba 

et al. (1999), who describe trajectories as the outcome of firm’s choices between competing al-

ternatives, like cost and performance of a given product.  

 This show how technological trajectories are usually understood and defined, in the innova-

tion literature, at the product-level. Yet this is not necessarily the best level to study the co-

evolution of technology, industrial dynamics and catching-up. Products are collection of compo-

nents and technologies (Murmann and Frenken, 2006; Arthur, 2009). It is precisely the structure 

of the system of technologies that determines constraints and opportunities for improvements 

along the spectrum of features that stand behind a product. Furthermore, learning is a problem-

solving activity. As such, it happens at the technology level, as it is at this level that engineering 

problems arise. Therefore, we argue that, in order to understand the scale of change in capabili-

ties and, consequently, the availability of entry and catching-up opportunities, technological tra-

jectories need to be studied at the level of technology domains rather than at the product level. 

More precisely, we argue that the direction of change at the technology level can be expressed in 

terms of two dimensions, namely the ranking of engineering problems and the stability of prob-

lem-solving approaches. Figure 10 illustrates this argument.  

 As discussed in the literature (Malerba et al., 1999; Dosi, 1982), technological trajectories 

are intended as the sequence of design choices made by firms when they face trade-offs between 

the features of a given product that they want to improve. Obviously, some features may be 

complementary and can be simultaneously improved; some others may be in contrast. Potential-

ly, one could trace performance improvements over time between complementary and compet-

ing product features, as sketched in the upper-left corner of Figure 10, and done by Malerba et 

al. (1999). For instance, thanks to miniaturization, integrated circuits can be made smaller and 

more powerful at the same time. In contrast, increasing their computing power while simultane-

ously reducing energy consumption or heat dispersion is a much more challenging task. This 

generates implicit relations between product features, which could in principle be described by 

a product features’ space, where features that can be simultaneously improved would be linked 

together, as illustrated in the top right corner of Figure 10. The breadth of features of a given 

product, its functional performance and the ease of breaking trade-offs between features, cru-

cially depend on generating innovative solutions to engineering challenges. Therefore, the 

choice of which product features one would like to improve simultaneously determines the dis-

tribution of inventive efforts across a given set of engineering design problems. Firms might 

have different believes on which product features should be improved and which engineering 

challenges have to be tackled. It follows that the aggregation of firms’ inventive efforts deter-

mines a ranking of engineering problems, based on the amount of collective efforts that they at-

tract. Therefore, one could also assess the evolution of such ranking by tracing the share of in-

ventive efforts devoted to the search of solutions to each problem, as fictitiously illustrated in 

the mid-left panel of Figure 10. Similarly to what described for product features, design prob-

lems are also related to each other’s. Solving a given design challenge may allow finding a solu-

tion to related ones. In other words, the space of engineering problems has a latent structure, 

which is deeply related to the structure of the product feature space. Again, such structure could 
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be represented as a network of engineering problems linked by a relationship similarity in pos-

sible solutions. 

 

 
Figure 10: The relationship between technological trajectories, ranking of 

design problems and engineering design trajectories 

 

Because of the uncertainty intrinsic to the innovation process, solutions to design problems may 

be searched in multiple ways. Different approaches may be followed with different frequencies. 

Despite the variety of possible approaches, problem solving tends to be path dependent. This is 

because agents (be they inventors or firms) tend search for solutions to problems by leveraging 

on knowledge that they have learned in the past through individual and collective effort. This 

generates paths of incremental technical improvements that shares similarity in problem-

solving approaches. Such paths are sketched in the bottom-right panel of Figure 10, where nodes 

represent solutions linked by similarity in problem-solving approaches. Sometimes, new ap-

proaches are pursuit by explorative agents. If successful, they effectively set new paths that oth-

ers can follow. The stability of problem-solving approaches refers to the frequency and the ex-

tent that new paths are created. Therefore, the ranking of engineering problems and the stability 

in problem solving approaches are the projection in the engineering design space of technologi-

cal trajectories defined by decisions on how to tackle trade-offs at the product level. For this rea-
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son, we refer to the paths of technical improvements as engineering trajectories. Paths that keeps 

attracting more and more inventive effort, implicitly reveal which are the prevailing problem-

solving approaches followed by inventors in a given industry. Therefore, they can be defined as 

the main engineering design trajectories historically followed in an industry. In our toy network 

sketched in the bottom-right panel of Figure 10, the main path is highlighted in red. 

 The relationship between technological and engineering trajectories is bidirectional. Prod-

uct design choices, which define technological trajectories, depend on the co-evolution of tech-

nical progress, market needs and firms strategies. In this work, we focus on the first factor of 

influence, namely, technical progress. Solutions to design challenges define the direction of tech-

nical progress at the product level and expand the variety of possible applications of a given 

technology. They also enlarge the set of available features of related products. Therefore, engi-

neering trajectories, defined at the technology level, determine which technological trajectories 

at the product level are possible. This is known in the literature as the technology-push hypothe-

sis. Of course, the opposite direction of causality can also exist. Market demand for certain appli-

cations and features creates incentives for investing resources to solve particular engineering 

problems that characterize them. This is referred to as the demand-pull hypothesis. What is 

sometimes neglected in the technology-push and demand-pull debate is the way change propa-

gates. Problems are interconnected. Solutions to technical bottlenecks spark the emergence of 

new applications, which ultimately define new technical challenges. For instance, miniaturizing 

microchips allows a variety of applications in electronics to emerge. However further miniaturi-

zation defines a set of key technical challenges. For example, as the technology scaling reaches 

channel lengths less than a micron, second order effects, which were ignored in devices with 

longer channel length, become very important. Some of these effects are velocity saturation and 

degradation due to overheat. Solutions to these problems propagate to other technologies. This 

discloses the existence of a system of technology. Finding a solution to these semiconductor-

related technical challenges made it possible to have lighter and more powerful computers, or 

flatter and brighter television and computer screens. It also allowed creating new products, like 

smartphones and tablets. These new products ultimately define new technical challenges. Heat 

dispersion and energy consumption are problems that are much more important in laptops, tab-

lets and smartphones than in desktop personal computers. Similarly, better brightness, image 

sharpness and energy saving features became available for modern screens of TV and portable 

devices because of the miniaturization of semiconductors. However, they also posed different 

engineering problems compared to old generations of these technologies. Therefore, the connec-

tions of the system of engineering problems can change over time. There might always be a cen-

tral problem (like the miniaturization of microchips) but the related problems might change, 

depending on changes in the technological trajectory at the product level.  

 Ultimately, the ranking of engineering problems and the stability of problem-solving ap-

proaches determine the scale of change in the required technical capabilities. These changes af-

fect the success of new ventures and the survival of old ones. This is why analysing the evolution 

of these two dimensions is critical for our understanding of catching-up. As Lee and Lim (2001) 

pointed out, changes in trajectories create entry opportunities but also increase risk because of 

the intrinsic uncertainty related to exploring new paths. Similarly, changes in the ranking of en-

gineering problems can potentially create discontinuities in the otherwise cumulative nature of 

knowledge generation, making prior experience less important.  These changes are the results of 

firms’ strategies. Therefore, based on the two dimensions of technical change discussed here, we 

can categorize firms as path-changers or followers and as ranking-changers or followers. We 

define path-followers as agents that focus on incremental innovation by applying well-
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established approaches to problem solving. In contrast, path-changers attempt to explore new 

paths. This can potentially lead them to become vehicles of radical change. Ranking-followers, 

focuses their innovative effort on seeking solution to engineering problems that are currently 

perceived by the majority as the most important ones. Ranking-changers are relatively more fo-

cused on problems that comparatively attract less attention. This could be because they are re-

lated to niche products or because they are overlooked by the majority. Yet niches can develop 

into large markets depending on the evolution of technology and demand. Similarly, problems 

that are overlooked today can become very central in the future.  

 Now, the question is, how can we empirically trace the evolution of engineering problems and 

approaches to problem solving? Trajectories of technical improvements can be detected by trac-

ing paths of patent citations, as done in Verspagen (2007), Fontana et al. (2009), Martinelli 

(2008 and 2009) and Bekkers and Martinelli (2010). This strategy also makes the identification 

of trajectories empirically possible. To trace technological trajectories defined at the product 

level one would need a great wealth of multidimensional data on functional performance and 

cost, to be able to identify how firms navigated along trade-offs. Studying engineering trajecto-

ries at the technology level can be done by using publicly available patent data. Patents are 

proofs that novel and non-obvious solutions to given engineering problems have been found. A 

few characteristics of the patent systems can be exploited to identify paths of engineering im-

provements, and disclose the system of engineering problems and the approaches to problem 

solving used8. A patent is examined by experts in the subject matter at its claim level. Claims are 

classified into subjects and searched for existing prior art. The goal of this search is to find evi-

dence that what has been claimed is entirely or partly lacks novelty. Such evidence is then used 

to narrow the temporary monopolistic legal protection granted by the patent to what is truly 

new. As stated in the USPTO Manual of Patent Examination Procedure (MPEP)9, any document 

used in the rejection of a claim is used as a reference. This means that patent citations effectively 

highlight the existing prior art of an invention. The definition of what constitutes prior art in the 

USPTO system, clarifies why we claim that citations highlight similarities in the approach to 

problem-solving. In this respect, the MPEP states the following. “During patent examination the 

claims are given the broadest reasonable interpretation consistent with the specification” (USPTO, 

2014, MPEP Section 904.01). “Not only must the art be searched within which the invention 

claimed is classifiable, but also all analogous arts must be searched regardless of where the claimed 

invention is classifiable. The determination of what arts are analogous to a particular claimed in-

vention […] depends upon the necessary essential function or utility of the subject matter covered 

by the claims, and not upon what it is called by the applicant. For example, for search purposes, a 

tea mixer and a concrete mixer may both be regarded as relating to the mixing art, this being the 

necessary function of each” (USPTO, 2014, MPEP Section 904.01c). 

 Therefore, paths of citations between patents disclose sequences of improvements of exist-

ing prior art. As such, they reveal commonalities in the approaches to problem solving. These 

paths do not have to be necessarily intended as conscious use of prior knowledge. In contrast, 

the addition of citations by examiners allows exploiting expert opinions on what constitutes re-

                                                             
8 In this work we use US patents. Therefore, the characteristics of the patent systems that we discuss here refer to the 

functioning of the system run by the United States Patent and Trademark Office (USPTO). Differences in the way in-

ventions are defined and classified exists with other major patent offices in the world, such as the European Patent 

Office (EPO) and the Japanese one.  
9 The USPTO MPEP is available online at this website: http://www.uspto.gov/web/offices/pac/mpep/ 
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latedness of approaches. Therefore, paths of citations can be legitimately interpreted in terms of 

similarity of approaches to problem solving. This means that changes in the composition of the 

relevant prior art over time reveal changes in the trajectories followed to tackling engineering 

problems. Furthermore, changes in the propensity of some paths of citations to attract further 

inventive efforts reveal changes in the ranking of the system of engineering problems. This theo-

retical argument stands behind the methodological approach used in this work. We introduce 

this approach in the next section. 

3.3 Methodology 

To make our theoretical framework operational we need to perform a number of tasks that will 

ultimately allow us to investigate if the process of technological change in the Semiconductor 

industry followed a cumulative or disruptive path. We will then be able to identify path- and 

ranking-changers in the industry. The tasks needed to accomplish those goals are listed in Table 

1, together with the methodology used to tackle them. In the following subsections, we explain 

the methodology that stands behind each task in details.  

 
Table 1: Methodological framework roadmap 

Task Methodology/Measure used 

Identification of technically influent patents and of the main 

paths of technical solutions 

Network of Main Paths (NMPs) 

Measuring the ranking of the system of engineering 

problems 

Attractiveness of the largest and second largest components of 

the NMPs 

Measuring the stability of problem-solving approaches Patent persistence within and between NMPs two largest 

components 

Measuring centrality on the paths of engineering 

improvements 

Path-centrality index  

Measuring agents’ contribution to the direction of 

technological change 

Path-changing and ranking-changing indices 

3.3.1 Identification of technically influent patents and of the main paths of technical 
solutions 

Patent technical and economic value is highly skewed (Silverberg and Verspagen, 2007). There-

fore, the merit of sampling important patents out of the whole population is twofold. First, we 

reduce noise in the citation network generated by patents of dubious technical and economic 

value. Second, we reduce a large-scale citation network to its backbone. This allows the funda-

mental structure of the network to emerge. We define technical importance as a patent’s ability 

to influence technical change. Therefore, technically important patents are those laying on the 

most central paths of engineering improvements. To identify those paths we rely on the Network 

of Main Paths approach (NMPs). The first step of the methodology consists in assigning weights 

to each citation. To do that we rely on the Search Path Node Pair (SPNP) algorithm as explained 

in Batagelj (2003) and De Nooy et al. (2005). The SPNP algorithm counts the number of times 

that each node lays on all possible paths that connects any node to anyone else. As such, it has a 

very clear interpretation as a measure of connectivity. When normalized over the total number 
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of possible paths, the SPNP value of node i, tells us the probability that a random walk (i.e. fol-

lowing any path regardless of its length) between any pair of nodes in the network passes 

through node i. The flow-normalized SPNP is analogous to the measure of random walk-

betweenness centrality (RWBC) proposed by Newman (2005).  However, the former anticipated 

the latter, as was first discussed in Hummon and Doreian (1989). Both SPNP and RWBC are cal-

culated taking into account all possible paths between any pair of nodes. This distinguishes them 

from the standard measure of betweenness, which takes into account only the shortest path(s). 

We argue that this is a better measure of centrality in the context of technological trajectories as 

if one would assess the technological relatedness of a reachable pair of patents by looking only 

at the shortest path of citations it would exclude alternative sequences of technological im-

provements which connect the same pair of patents. These alternative sequences can be very 

informative as, for instance, they might pass through a different technological area or involve 

different companies. Once citation weights have been calculated, the original network is reduced 

to its main paths by an iterative process. The algorithm starts from source nodes (patents that 

are cited but do not cite anyone) and identifies the main paths of citations by following at each 

junction the citation that carries the highest weight, until a sink node (a patent that cites some-

one but is not cited) is reached. The procedure is explained with the help of a fictitious network 

shown in Figure 11.  

 

 
Figure 11: A dummy citation network 

 

The dummy network is made of 22 patents. The SPNP weight for every citation is shown above 

each line. Citations are represented by arrows, whose head indicates the direction of improve-

ment (technology disclosed in cited patents is improved by citing ones). Consider, for instance, 

the citation between patents 5 and 9. It has a weight of 16. This is given by the multiplication of 

the number of patents reaching patent 5, plus 5 itself (i.e. patents 1 and 5), and the number of 

patents reached by patent 9, plus 9 itself (i.e. patents 9, 13, 15, 17, 14, 16, 18 and 19). To identify 

the NMPs we start from the set of source nodes (patents 1, 2, 3 and 4) and follow at each step the 

citation carrying the highest weight, till one of the end nodes is reached (patents 17, 18, 19, 21 

and 22). By repeating this procedure for each start point we identify the NMPs, which, in the ex-

ample above, is made of two components whose nodes are coloured in black (main one) and 

grey (second one). It is important to notice that the two components of the NMPs are not sepa-

rated if we look at the original network, but the white nodes that connect them have a negligible 

importance from the point of view of the paths of engineering improvements. This distinction let 

different systems of engineering problems to emerge. Patents within components are mutually 

related by paths of important improvements that address engineering problems connected to 
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each other’s. If the component is very large, the relationship can be loose. Nevertheless, it exists. 

In contrast, solutions disclosed in patents that are located in different components are not relat-

ed.  Therefore, a dynamic analysis of the NMPs allows detecting changes in the composition and 

ranking of the systems of engineering problems and tracing the stability of problem-solving ap-

proaches. The dynamic approach consists of cumulating networks at different points in time (e.g. 

from time t until t+1, then from t until t+2, and so on). This allows assessing how the entrance of 

newly granted patents in the system affects the presence of old ones in the network of main 

paths and the size ranking of its components. When newly granted patents largely connect to the 

main component of the NMPs the ranking of the systems of problems is preserved. When the 

relative majority connects to any other component, there is a change in ranking. A new system of 

engineering problems now attracts the bulk of innovative efforts. Newly granted patents also 

reveal which approach to problem solving has been followed. To understand how this is the case 

let us use once again the dummy network illustrated in Figure 11. Suppose that a set of 10 new 

patents would enter in the network at time t+1. For simplicity let us imagine that the 10 patents 

will connect (directly or indirectly) just to one endpoint10. Then, three cases might be observed.  

 CASE 1: If the new entrant patents connect to patent 18 or 19 then the main component is 

still attracting the majority of innovative effort and all patents that were previously on the 

main paths within the largest component will still be found there. In this case, both the ap-

proaches to problem solving and the stability of the ranking of problems are preserved. 

 CASE 2: New entrant patents connect to either patent 21 or patent 22. If that happens, the 

sequence of patents 3-7-44-20 becomes the root of the new largest component. In this case, 

the largest component is still the main attractor of innovative effort but now solutions to re-

lated engineering problems are seek through different approaches, as revealed by the fact 

that new patents connect to a previously less exploited prior-art.  

 CASE 3: Let us now imagine that the new entrant patents will connect at time t+1 to patent 

17. In this case, what was formerly the second largest component becomes the main one and 

the ranking of the system of engineering problems is subverted. 

3.3.2 Measuring the ranking of the system of engineering problems and the stability of 
problem-solving approaches 

Obviously, in real-world networks the attachment of newly granted patents follows patterns that 

are more complex. Some of them might connect to the largest component and some to the sec-

ond or any of the others. Yet, these patterns can always be reduced to two dimensions. From the 

point of view of the stability of the ranking of the system of engineering problems, what matters 

is whether the relative majority connects to a component different from the previously largest 

one. From the point of view of stability of approaches to problems solving, the extent to which 

new patents connect to previously unexploited prior-art, which could be either related to the 

main system of problems or not, indicates how much the search of solutions follows alternative 

approaches. Therefore, we only need to keep track of two measures, the attractiveness of the 

largest component of the NMPs, and the persistence of patents within and between the largest 

                                                             
10 In reality, they could connect to any other patent as well, but this empirically happens with a probability inversely 

proportional to the time lag between the citing and the cited paten, for time lags longer than about 4.5 years, as shown 

by Jaffe and Trajtenberg (2002). 
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components of the NMPs over time. The ranking of a given system of engineering problems j (i.e. 

of a component of the NMPs) at time t, is measured by the attractiveness of the component of the 

NMPs that represents it. 

𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑡𝑗 =  
𝑃𝑡𝑗

∑ 𝑃𝑡𝑘𝑘
 (3.1) 

Where the numerator Ptj is the number of important patents granted at time t that connect to 

component j. The denominator is simply the sum of all the important patents granted at time t, 

which connect to any of the component k of the NMPs.  

 The stability of approaches to problem-solving is measured by the following index, which 

quantifies persistence of patents within the components of the NMPs over time. The patent per-

sistence index (PPI) for component j from period t to period t+1 is equal to: 

𝑃𝑃𝐼𝑗𝑡→𝑡+1
=  

𝑁𝑗
𝑡 ∩ 𝑁𝑗

𝑡+1

𝑁𝑗
𝑡  (3.2) 

Where the denominator 𝑁𝑗
𝑡  is equal to the number of patents in component j at time t and the 

numerator is equal to the intersection between the set of patents in component j at time t and 

the set in the same component at time t+1. Obviously, it is possible to use the same approach to 

quantify movements of patents across components. In this case, the numerator measures the 

intertemporal intersection between components. By cumulating NMPs from period to period, we 

are able to assess the stability of search strategies across the space of possible solutions to engi-

neering problems. If newly granted patents in period t+1 build on the same prior-art that was 

improved along paths defined in period t, then citations from the former will connect, directly or 

indirectly, to the latter. In this case, paths that were central in t remains central in t+1. This indi-

cates stability in the approach to problem solving and in the corresponding technological trajec-

tory. In contrast, when newly granted patents represent solutions found through searching al-

ternative approaches, citations will point to a previously unexplored prior-art. This will disrupt 

the main paths, revealing a change in the approach to problem solving. 

3.3.3 Measuring centrality on the paths of engineering improvements 

We ultimately want to analyse catching-up strategies at the firm level. This requires defining a 

measure of the capability gap and identifies the strategies applied to reduce or close it. We de-

fine technical capabilities as the ability of affecting the direction of technological change. This 

ability is revealed by patent centrality on the NMPs. Companies whose patents are located in 

central junctions of the NMPs are able to influence the perception of which engineering prob-

lems are important and which approach to problem-solving is promising. Therefore, the effec-

tiveness of technical catching-up strategies can be measured in terms of companies’ ability to 

move to the centre of the system of engineering problems, i.e. to have patents centrally located 

in the NMPs. As we explained in Section 3.3.1, the SPNP index provides this information. Howev-

er, the index suffers from a problem that hinders its comparability over time, which we need to 

solve before using it as a measure of company centrality on the paths of technical improvements. 

Two effects play a role here. First, let us remind the reader that the SPNP index is calculated at 

the node level. It counts the number of times that a given node shows up on the possible paths 

that connect any node to anyone else. Hence, if we sort the network topologically such that any 
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node is preceded by all nodes pointing to it, we immediately realize that nodes that stand in the 

middle will tend to get higher SPNP values. This is simply because, by construction, they have 

better chances to be found on several paths. The second effect comes from the empirical evi-

dence on the growing size of patent citations networks. One has to consider that a growing num-

ber of newly granted patents per year implies a growing number of citations added to the net-

work every year (unless the average number of backward citations per patent dramatically 

falls). Consequently, the number of possible paths between nodes increases (exponentially) with 

the size of the network. This implies that the probability of a node to lay on many connecting 

paths increases when the network grows and a giant component exists. These conditions are all 

fulfilled by our empirical network. Therefore, if we compare the centrality of a given company in 

the network of main path over time by using the average of the SPNP count of its patents, it is 

very likely to observe that the company becomes more and more central. This could be a “real” 

phenomenon or it might be purely because the SPNP count increases because of network 

growth. The SPNP therefore needs to be normalized. Dividing the SPNP count of every node by 

the total number of paths computed at every period of observation does not solve the problem 

because the probability of laying on many paths grows less quickly than the number of paths 

itself, hence creating another bias. To correct for these biases and allow us to compare SPNP 

weights over time, we need to rescale the SPNP weight measure. We call the new measure Path 

Centrality Index (PathC). The index for node i is calculated as follows. 

𝑃𝑎𝑡ℎ𝐶𝑖 =  
𝑆𝑃𝑁𝑃𝑖

1
𝑁𝑡

∑ 𝑆𝑃𝑁𝑃𝑖
𝑁𝑡
𝑖=1

 
(3.3) 

PathC is the SPNP weight of node i divided by the average SPNP weight assigned to the subset Nt 

of patents granted in the same year t of patent i. Because of the very large number of patents per 

grant year (minimum Nt is around 5000), the average SPNP for any given grant year is a good 

approximation of the true expected SPNP value for a randomly chosen patent granted in the giv-

en year, assuming it would cite other patents randomly. Accordingly, PathCi quantifies how good 

patent i has performed in terms of connectivity. It does so by comparing its performance with 

the connectivity achieved by other patents which entered in the network at the same time, 

therefore facing the same probability of getting high (or low) SPNP weights. Note that this does 

not mean that patent i’s performance will only be affected by patents granted in the same year, 

as the numerator of the fraction still depends on how important is patent i in terms of connectiv-

ity with respect to the whole network. This method is analogous to the fixed-effect approach 

proposed by Hall et al. (2001) to clean the number of forward citations received by a patent by 

any possible effect of network structure. As explained by the authors this simple method allows 

purging the data from systematic effects caused by change in the propensity to cite and in the 

number of citing patents. However, it also does wipe off any “real” technology-based effect. In 

particular, it does not allow us to compare absolute levels of centrality for the same agent (be it a 

patent or a firm) over time. Yet, it effectively serves our purpose of identifying the most central 

patents and companies within several periods. Indeed, the same approach can be used to com-

pare within-period firms’ centrality on the main paths. This is done in two steps. Fist we calcu-

late the average PathC index obtained by the subset NjT of patents belonging to company j at pe-

riod T: 
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𝑃𝑎𝑡ℎ𝐶𝑗𝑇 =  
1

𝑁𝑗𝑇
∑

𝑆𝑃𝑁𝑃𝑖

1
𝑁𝑇

∑ 𝑆𝑃𝑁𝑃𝑖
𝑁𝑇
𝑖=1

𝑁𝑗𝑇

𝑖=1

 (3.4) 

Being based on the average of patents’ centrality, his aggregating method is biased against large 

firms. The reason is straightforward. Large firms sample more patents from the population. 

Therefore, the larger they are, the more the centrality of their average patent will approximate 

the average SPNP for each grant year. Therefore, the aggregate PathC will approach to one for 

NjT approaching NT, shadowing firm’s real centrality. Hence, to use the PathC as a measure of 

companies’ centrality we need to correct for this bias by removing the firm’s size effect . We do 

that by bootstrapping firms’ average PathC. For each firm, we randomly sample NjT patents out 

of the population of patents granted in the given period under observation and then calculate 

the average PathC of the random sample. We repeat this process for 1000 iterations. This re-

turns a distribution of expected PathC for each firm, given its size and the topography of the 

network in each period under observation. This distribution provides the p-value for the empiri-

cally observed PathC. We can then assess whether the company is significantly more (or less) 

central than expected by its size and the structure of the system of technologies. We then asses 

the strength of firms’ centralities (or the lack of it) by computing z-scores of the empirical PathC 

compared to the expected one. 

𝑧 − 𝑃𝑎𝑡ℎ𝐶𝑗𝑇 =  
𝑃𝑎𝑡ℎ𝐶𝑗𝑇

𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙
− 𝜇𝑃𝑎𝑡ℎ𝐶𝑗𝑇

𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑎𝑚𝑝𝑙𝑒

𝜎𝑃𝑎𝑡ℎ𝐶𝑗𝑇

𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑎𝑚𝑝𝑙𝑒
 (3.5) 

The z scores of the PathC index can be interpreted as a measure of technological influence of a 

particular company. A large z-PathC for a given firm means that, in the given period, the firm 

was significantly more influential than expected in terms of shaping the direction of the paths of 

technical improvements.  

3.3.4 Measuring path-following, path-changing, ranking-following and ranking-
changing propensity  

We argued that the direction of technological change can be explained by two dimensions, the 

ranking of engineering problems and the stability of approaches to problem-solving. Therefore, 

players’ contribution to shaping the direction of technological change can be described accord-

ing to these two dimensions. 

 Depending on the extent to which innovative effort is directed to previously attractive en-

gineering problems or to newly attractive ones, economic agents can be ranking- followers or 

ranking-changers. This is measured by the observed odds that patents granted to a given agent 

connect to a system of engineering problems (i.e. the component of the NMPs) that is not the 

highest ranked one.  The rank-changing index (RCI) for agent j at period T, is calculated as fol-

lows. 

𝑅𝐶𝐼𝑗𝑇 =  
𝑃𝐶𝑗𝑘𝑇

𝑘=2 − 𝑃𝐶𝑗𝑘𝑇
𝑘=2

𝑃𝐶𝑗𝑇

 (3.6) 
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Where PCjt is the number of patents granted to agent j in period T,  𝑃𝐶𝑗𝑘𝑇
𝑘=1 is the count of patents 

that connected to the first component of the NMPs for company j, in period T, and 𝑃𝐶𝑗𝑘𝑇
𝑘=2 is the 

same for the second component. In other words, the RCI is simply the difference between the 

share of firm j’s patents that connect to the first and second largest components of the NMP in 

period T. Therefore, a large RCI indicates that the given agent is generating more inventive out-

put in the second largest system of technologies than in the first, contributing to change the 

ranking of the system of engineering problems. Using shares allows taking into account how 

spread firm’s inventive activities are across all the components of the NMP. Yet, similarly to the 

PathC index, we first need to correct for a bias against large firms that is intrinsic to the way we 

defined the RCI. Just by random chance, large firms can be expected to have a more broadly di-

versified set of inventive activities. This is because the more patents they randomly sample out 

of the population the more the set of inventive output is likely to be spread across components. 

Therefore, the larger PCjT, the smaller the shares of output in the first and second component 

and, consequently, the smaller the RCI. Once again, we rely on bootstrapping techniques to clean 

for this size-induced effect. For each firm j in each period T, we randomly sample PCjT items from 

the population of patents under the null hypothesis that each component has the same chance to 

be selected at each draw. We repeat this process for 1000 iterations and each time compute the 

RCI. We then compute p-values and adjusted z-scores (i.e. cantered on the mean of the random 

sample) for the empirically observed RCI. This exercise allows comparing the observed RCI with 

the one expected assuming that firms have no specific interest in any area of the system of engi-

neering problems. Therefore, the z-score reveals how much a firm truly focus on the second 

component of the NMPs compared to the first one, given its size. Thus, it can be used to identify 

significant ranking changers and followers.  

 With respect to the approach to problem-solving agents (be they patents or firms) can be 

path-followers or path-changers. To quantify the extent to which an agent is following or chang-

ing the approach to problem solving we need to look at which prior-art she is building upon. We 

measure this by means of the path-following index (PFI). The PFI for patent i at time t is meas-

ured as follow. 

 𝑃𝐹𝐼𝑖𝑡 =
1

𝑁𝑆𝑖𝑡

∑ 𝑃𝑎𝑡ℎ𝐶𝑗

𝑗 ∈𝑆𝑖𝑡

 (3.7) 

Where PathCj is the average Path Centrality Index of the cited patent j. 𝑁𝑆𝑖𝑡
 is the size of the set Sit 

of patents cited by patent i. Therefore, the PFI is the average path-connectivity of i’s cited pa-

tents. If patent i connects on average to patents that are more central than their peers (i.e. with 

PathC>1), i’s PFI will be larger than one. Oppositely, a PFI smaller than one reveals that patent i 

connected to patents on average less central than their peers, namely to a relatively unexploited 

prior art. In particular, their low PathC indicates that they build on a short path of improvements 

and that their technical solutions had been largely unexploited, at the time the new patent con-

nects to them. This is similar to the concept of exploration defined as introducing solutions that 

are new-to-the-world (March, 1991). The strength of path-following or path-changing behaviour 

at the patent level, can be measured by computing a p-value statistic. To do that, for each five-

year period t, we estimate the cumulative distribution function of PFIi and then we derive the 

PFI thresholds corresponding to the bottom five-percent of the distribution (for significant path-

changers) and the top five percent (for significant path-followers). 

 Now we have a measure that quantifies the extent to which new patents connect to poorly 

or well-connected ones. Yet, citing poorly connected patents does not necessarily improve their 
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connectivity on the trajectory significantly. For that to happen, the citing patent must effectively 

set a new path to which many additional patents will connect in the future. This will eventually 

pull the previously poorly connected patents to the main paths. The potential power-of-pull index 

(POP)  for patent i is computed as follows.  

𝑃𝑂𝑃𝑖 =  
𝑅𝑖

𝑓𝑤𝑑

1
𝑛𝑡

∑ 𝑅𝑖
𝑓𝑤𝑑𝑛𝑡

𝑖=1

 (3.8) 

Where 𝑅𝑖
𝑓𝑤𝑑

 is the number of patents younger than patent i that reach him. This equals the 

number of patents that cite directly or indirectly patent i. The POP index measures how many 

forward (direct and indirect) connections a patent receives more than the average of his grant 

year cohort nt, within the window of time under observation. We stress that this is a potential 

power of pull as the effective ability to pull unexploited prior art to the main paths depends on 

the long-term success of the new path. The POP only measures promising early success within a 

five-year period, as the number of direct and indirect forward connections is measured within 

the window of time under observation. However, patents with significantly larger POP receive 

more forward connections than their average peer does within the five-year period. This means 

that solutions disclosed in those patents are quickly attracts further inventive efforts, perhaps 

because long awaited. The p-value statistics for the POP can be calculated in the same vein as for 

the PFI, by first estimating its cumulative distribution and then extracting the threshold corre-

sponding to the top five-percent. Analysing which patents have statistically larger POP and PCI 

allows identifying path-changing patents, as the citing patent is effectively changing the trajecto-

ries of problem-solving activity by pulling old patents that were previously unexploited into the 

NMPs. The same can be done at the firm level by calculating the average POP and PCI for each 

firms’ set of patents. However, the aggregation of PFI and POP at the firm level faces the same 

size-induced bias discussed for PathC and RCI. Once again, this is solved by bootstrapping PFI 

and POP to remove the size effect, using the same procedure discussed above. Therefore, the t-

statistics that we eventually use at the firm level are the following. 

𝑧 − 𝑃𝐹𝐼𝑗𝑇 =  
𝑃𝐹𝐼𝑗𝑇

𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙
− 𝜇𝑃𝐹𝐼𝑗𝑇

𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑎𝑚𝑝𝑙𝑒

𝜎𝑃𝐹𝐼𝑗𝑇

𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑎𝑚𝑝𝑙𝑒
 (3.9) 

𝑧 − 𝑃𝑂𝑃𝑗𝑇 =  
𝑃𝑂𝑃𝑗𝑇

𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 − 𝜇𝑃𝑂𝑃𝑗𝑇

𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑎𝑚𝑝𝑙𝑒

𝜎𝑃𝑂𝑃𝑗𝑇

𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑎𝑚𝑝𝑙𝑒
 (3.10) 

Where 𝑃𝐹𝐼𝑗𝑇
𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙and 𝑃𝑂𝑃𝑗𝑇

𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙are the empirically observed averages of the values of PFI 

and POP for the set of patents belonging to firm j in period T. The larger the patent count for firm 

j in period T, the more the distribution of PFI and POP calculated for the random sample tends to 

approach normality.  Therefore, firms with z-PFI≥2 and POP≥2, are significantly more path-

followers than expected by their size and the topology of the network in the period under obser-

vation. Similarly, levels of z-PFI≤-2 and POP≥2 disclose significant path-changing firms. 
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3.4 Data 

We conduct our analysis using data from the second version of the NBER Patent Citation Data 

File (Hall et al., 2001). This dataset contains a detailed classification of patents granted by the US 

Patent Office (USPTO) between 1975 and 2006, and includes information on patent citations. 

Records are classified by US patent class (nclass), International Patent Classification (IPC) codes, 

application year, grant year and the country where the assignee company is registered. Semi-

conductor technologies belong to the macro-category “electronics” of the US classification sys-

tem. They are classified into five different subclasses. They are the followings:  

 257: Active solid-state devices (e.g. transistors, solid-state diodes) 

 438: Semiconductor device manufacturing: process 

 326: Electronic digital logic circuitry 

 505: Superconductor technology: apparatus, material, process 

 716: Design of semiconductor devices 

The most interesting distinction is the one between classes 257 and 438. The former includes 

inventions related to particular semiconductor devices (transistors, solid-state diodes, integrat-

ed circuits, etc.) so it can be generally understood as the container of product innovations. Manu-

facturing process innovations are generally classified in class 438. These two classes together 

include about 86% of patents in our dataset in the period 1976-2006. Class 438 account for 

about 46% of semiconductor patents, whereas about 40% of them belong to class 257. Class 326 

takes account of inventions associated to electronic circuits performing logic operations, which 

are those features that allow programmability of integrated circuits. It accounts for 7% of pa-

tents. Class 716 encompasses semiconductors design related inventions. 4.8% of patents are 

classified in this class. Finally, Class 505 comprises inventions related to the materials exhibiting 

superconductivity (of which semiconductors are made) and processes related to treating these 

materials. Only 1.6% of semiconductor patents belong to class 505. To construct the initial da-

taset of semiconductor patents we extracted from the complete NBER patent citations data file 

all patents belonging to one of the technological sub-classes listed above. Then we retrieved all 

citations for which both the citing and the cited patent belong to one of the five semiconductor-

related classes. This returns 118361 patents and 779083 citations, covering the time span be-

tween 1976 (intended as the grant year of the patent) and 2006. This is what we refer to as the 

initial dataset of semiconductor patents. 

3.4.1 Descriptive statistics of the Network of Main Paths 

As explained in Section 3.3.1, the initial dataset of semiconductor patents is further refined to 

single out only influent patents from the point of view of technology development. This is done 

by applying the Network of Main Paths approach. One has to imagine this procedure as opening 

a Russian nested doll (Matryoshka), in which at every layer we reduce the network further. As in 

a Matryoshka every reduced network is fully contained in the one before.  

Table 2 compares network sizes over cumulated periods. For the sake of our dynamic analysis 

we decided to split the time span into 6 cohorts whose cutting year are 1980, 1985, 1990, 1995, 

2000 and 2006. Following what we discussed in Section 3.3.1, in 

Table 2, as in most of the rest of this work, we use cumulated time cohorts. That means 

that each time cohort builds on and includes the one before. We start from the initial dataset of 

118361 patents and we remove the isolated ones (those who do not cite and are not cited by any 

other patent). The result, for the complete period 1976-2006, is a network of 114097 nodes. 
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This network contains several weak components11, which are by definition disconnected with 

each other. We extract the main component of the whole network and feed it into the main path 

algorithm. The NMPs itself has several components. To analyse changes in the ranking of the sys-

tem of engineering problems, in the rest of the paper we focus on the two largest components of 

the NMPs. The main component of the NMPs for the period 1976-2006 is made of 3544 patents 

and 3562 citations. These are the most influential patents from the point of view of the paths of 

technical improvements in the semiconductor technology domain.  
 

Table 2: Comparison of networks' sizes 

  1976-

1980 

1976-

1985 

1976-

1990 

1976-

1995 

1976-

2000 

1976-

2006 

Whole network - number of patents 2079  5631 12533  26853  54086 114097 

Whole network - number of citations 2712 13310 40255 102957 272843 779076 

Main component -number of patents 1703  5385 12348  26686  53874 113756 

Main component -number of citations 2469 13164 40145 102864 272728 778890 

Network of Main Paths - number of patents 1445  3490  6042  10107  15387  23428 

Network of Main Paths - number of citations 1403  3291  5697   9489  14588  22077 

Network of Main Paths - Main Component - number of patents  694  1540  2678   2043   4557   3544 

Network of Main Paths - Main Component - number of 

citations 

 756  1597  2734   2064   4617   3562 

 

The NMPs is made of several components. Table 3 reports the number of patents belonging to 

each of the first five NMPs’ components as a percentage of the total number of patents in the 

NMPs. If we look at the relative size of the main component one can immediately notice a drop 

from period 1976-1990 to 1976-1995. Until the end of the 1980s, the main component com-

prised at least 44% of the total patents in the NMPs. This percentage decreases significantly 

from the early 1990s onwards. Moreover, the same drop in size is observed at the aggregate lev-

el for the five largest components. In the first period of our sample, the first five components ac-

counted for about 64% of the patents in NMPs. This percentage reduces by almost a half in the 

last period. This is a first interesting finding that suggests how the ranking of engineering prob-

lems increasingly changed from the beginning of the 1990s. We will analyse this in more details 

in the next section. 
Table 3: Relative size of the largest NMPs' component 

  First Second Third Fourth Fifth SUM 

1976-1980 48.03% 8.79% 3.32% 2.01% 1.73% 63.88% 

1976-1985 44.13% 2.89% 2.24% 1.60% 1.38% 52.24% 

1976-1990 44.32% 5.58% 1.26% 1.22% 1.16% 53.54% 

1976-1995 20.21% 8.71% 6.57% 6.33% 2.95% 44.77% 

1976-2000 29.62% 10.26% 2.00% 1.90% 1.37% 45.14% 

1976-2006 15.13% 11.79% 3.55% 2.01% 1.96% 34.44% 

                                                             
11 In a directed network a weak component is defined as the subset of patents for which there exists a path from any 

node to anyone else once we symmetrize the dyadic relationship between nodes (i.e. we consider every link as bidi-

rectional). 
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3.5 Findings 

The indicators described in the previous section can now be used to analyse the direction of 

technological change, agents’ contribution and the effectiveness of catching-up strategies. We 

present our findings in the next three sub-sections.  

 

 
Figure 12: Attractiveness of the two largest components of the NMPs 

3.5.1 Direction of technological change 

Figure 12 shows the evolution of the attractiveness index for the two largest components of the 

NMPs. The figure clearly shows that the largest component of the network of main paths dra-

matically loses attractiveness over time. In contrast, since 1996, the second largest component 

begins attracting more patents and overtakes the main one from 2001 onwards. This finding re-

veals a progressively strong change in the ranking of the system of engineering problems. It is 

interesting to report that the abstracts of the patents belonging to the second largest component 

of the NMPs in the 2000s, reveal a focus on displays and energy-saving technological solutions. 

This suggests that the second largest component of the NMPs is composed of technological areas 

more related to flat screens and portable devices rather than to desktop computers and laptops. 

This corresponds to a case in which a change in the technological trajectory, caused by a change 

in the functions of products that attract inventive efforts, disrupts the ranking of engineering 

problems.  This is because the technical requirements of new portable devices pose different 

technological problems than designing and manufacturing PCs and laptops. 

 The ranking of the system of engineering problems therefore clearly changed over time. 

The graphical illustration of the main component of the NMPs and the visual analysis of its 

changing composition are reported in the Appendix A.3.1.  
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Table 4: Patent persistence within the main component of the network of main paths 

 1976-1985 1976-1990 1976-1995 1976-2000 1976-2006 

1976-1980 55.04% 62.97% 23.05% 62.39% 60.23% 

1976-1985  63.12% 25.58% 66.04% 63.38% 

1976-1990   26.14% 58.96% 53.06% 

1976-1995    50.71% 35.93% 

1976-2000     48.63% 

 

Using the patent persistence index (PPI) discussed in Section 3.3.2, we can analyse stability in 

the approaches to engineering problem solving.  Table 4 reports the PPI within the main compo-

nent of the NMPs, decomposed by cohorts. In other words, the table shows the percentage of pa-

tents granted within the period reported on the rows, which are found in the main component of 

the NMPs computed for the period indicated in the column label. One can immediately notice 

that there has been a major disruption in the composition of the NMP in the first half of the 

1990s. This means that patents granted in the period 1991-1995 were drawing on a previously 

not well-exploited prior-art. This reveals a change in the approach to problem solving. This hap-

pened despite the ranking of problems was stable in that period, as shown in Figure 12. Never-

theless, the disruption in the approach to problem solving has been lately offset by a subsequent 

counter-discontinuity that occurred in the second half of the 1990s. Indeed, patents granted in 

the period 1996-2000 reverted to exploit the old and paths of technical improvements estab-

lished up to the end of the 1980s.  In fact, about 63% of patents from the 1976-1980 cohort of 

the main component of NMPs are found in the main component in the period 1976-1990. Many 

of them are excluded from the main component in the period 1976-1995 (only 23% of them per-

sisted in the main component) but reappear in the period 1976-1995, when the PPI returned to 

its 1976-1990 level. A very similar trend is observable for patents that belong to the main com-

ponent in the period 1976-1985. Their level of persistence in the main component of the NMPs 

computed for periods 1976-1990 and 1976-1995 is almost identical to the PPI of patents be-

longing to the main component of the NMPs in period 1976-1980. Similarly, we observe that on-

ly 26% of patents from the main component  computed in period 1976-1990 are part of the 

main component of NMPs76-95, whereas many more (about 59%) shows up in the last two pe-

riods. These findings clearly show that an important but temporary discontinuity in the ap-

proach to problem solving occurred in the first half of the 1990s.  

 So far, we have only looked at stability of problem solving approach in the main component 

of the NMPs. However, we know from the previous analysis that over time the main component 

has lost importance in favour of the second component. Therefore, to investigate stability of 

problem-solving approaches in the two main components, we analyse patent persistence within 

and across components with the help of Figure 13. Nodes on the first row represent the second 

component over time and those in the second row represent the main one. Node size is propor-

tional to the relative size of each component in terms of number of patents (as reported it in Ta-

ble 3). Links within and across components report PPI values.  

 Figure 13 reveals some interesting insights. Fist, the PPI within the second component is 

extremely low if existent at all. This means that the second component of the NMPs cannot be 

meaningfully interpreted as an established system of engineering problems alternative to the 

mainstream one. Yet it has an interesting role whose nature changes over time. In the first two 

periods, the second component hosts areas of research on semiconductor technologies that late-

ly converge into the main paths of technical improvement that constitute the main component. 
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This means that, up to the end of the 1980s, the main paths of technical improvements partly 

built on prior art that was previously explored but still underdeveloped, whose usefulness was 

initially overlooked. In the two periods 1991-1995 and 2000-2006, the role of the second com-

ponent changes. From source of novelty becomes a host for approaches to problem solving that 

gets temporarily disconnected from the main component. Indeed, in the period 1976-1995 it 

receives almost one fourth of the prior art contained in the main component in period 1976-

1990. This set of prior art almost entirely converge back into the main component in the follow-

ing period. Something similar happens between the last two periods, when almost eighteen per-

cent of the patents found in the main component persist to the second one.  

 

 
Figure 13: Patent persistence within and between components 

 

We can derive two conclusions out of the analysis of stability of problem solving approaches. 

First, a major but temporary discontinuity in the paths of technical improvements occurred in 

the mid-1990s. Second, disagreement on which paths of technical improvements deserved more 

attention also arose in the first half of the 2000s. In both instances, the result was an increase in 

the breadth of search across useful prior-art, which resulted in the movement of a large set of 

patents from the main to the second component of the NMPs. The fact that those patents were 

still found in the NMPs, albeit in the second component, show that the prior-art that they repre-

sent was still perceived of some use by some players, although its importance decreased in rela-

tive terms. These conclusions highlight the heterogeneity of players’ strategies and believes, 

which make technological change a complex dynamic. We analyse players’ role and the effec-

tiveness of their inventive strategies in the next section. This will also reveal who created those 

discontinuities. However, before to move to the firm-level, we can identify path-changers and 

path-followers at the patent level. We do that with the help of Figure 14, which reports patent 

position in the PFI-POP space. We focus on the last three five-year periods, 1991-1995, 1996-

2000 and 2001-2006 as the previous analysis has shown that interesting changes in the direc-

tion of technical change have occurred in the semiconductors from the 1990s onwards. Panels in 

the first column, report the scatter plots of patents in the PFI-POP log-log space. They include all 

semiconductor patents granted in the given five-year period. The second column includes only 

patents located in the first two components of the NMPs granted in the same window of time. 

The third one includes only patents located in the first two components granted in the first two 

years of the five-year period. This is used as a robustness check. Even though the POP index is 

normalized by the average for each grant year, patents granted in the last three years might not 

have sufficient time to receive any forward connection and therefore the few that receive some 

might have a very high POP. This would add noise and might bias the results toward the young-

est patents. Therefore, the plots reported in the third column are useful to assess whether our 
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results are strongly affected by patents granted in the last years of the five-year period. Clearly, 

they are not. In each panel, dashed lines mark the threshold for statistical significance. Patents 

located above the horizontal line and to the left of the first vertical one have a POP significantly 

higher than their peers in the five-year period and a significantly smaller PFI. Therefore, they are 

significant path-changers. Patents located above the POP threshold and to the right of the second 

vertical dashed line are significant path-followers. Panels in the second column show that nearly 

all the significant path-followers and most of the significant path-changers are located in the first 

two components of the NMPs, confirming the effectiveness of the NMP approach in identifying 

influential patents. Figure 14, also shows that significant path-changing patents are rare, much 

rarer than significant path-followers. This is not surprising as it is comparatively much more dif-

ficult to explore new paths and be successful (i.e. attracts more connections than expected), then 

successfully exploiting previously well-defined paths. There are many potential path-changers, 

but most of them do not have sufficient power of pull to effectively change the main paths of im-

provements. Also worthwhile noticing how, despite the previous analysis has shown that the 

engineering trajectories temporally changed in the first half of the 1990s, there are only two sig-

nificant path-changing patents in this period. Whether they are alone responsible for the whole 

shift in the main paths of the network depends on how many patents they reached through indi-

rect citations and of how many outgoing paths are generated by them. However, it is important 

to highlight how a shift in trajectories at the macro-level could also be the result of the accumu-

lation of many small shocks. Namely of a large number of poorly successful patents that connects 

to the same small set of poorly connected patents. 

 Table 5, reports the list of path-changing patents. Reading these patent documents is very 

revealing about the effectiveness of our method to identify solutions that significantly change 

the approach to problem solving. Indeed, all of these patents describe alternative methods of 

solving existing problems, legitimizing the definition of path-changers. Two path-changing pa-

tents have been granted between 1991 and 1995. Both of them are located in the main compo-

nent of the NMP. The one with lowest PFI is a Xerox 1992 patent on thin-film transistors, a tech-

nology that increases image stability and contrast in modern LCD displays. The patent describes 

an invention that uses a polycrystalline diamond film, which naturally exhibits light insulating 

properties. This allowed removing light shielding layers from thin film transistors, reducing de-

vice complexity as well as manufacturing time and costs. The second one describes a semicon-

ductor device with several die stacked one on another within a single package. This ingenious 

solution allows larger computational power by eluding the problem of increasing density of in-

tegrated circuits (i.e. larger number of transistors per square centimetre of die area). The pa-

tent’s assignee is single inventor, Mr. Peter J. C. Normington. This patent has been very success-

ful in establishing a new path and has been cited 156 times. 
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Figure 14: Identifying significant path-changer and path-follower patents 

 

For the second half of the 1990s, three patents can be identified as significant path-changers. 

The first one is a Bell Communications Research (BCR) patent that describes a solution to a high 

growth temperature problem related to complementary metal-oxide semiconductor (CMOS) 

processing. Previous solutions to temperature limitations had been proposed before the BCR 

patent, as aknowledge in its text. However, while effectively addressing temperature problems, 

previous approaches also caused an insufficient electrical conductivity of the heterostructure of 

SiO2 /Si substrates that made it insufficient for effective integrated circuit application, as ex-

plained in the BCR patent document. The BCR invention uses a different approach to address the 

high temperature limitations while providing the desired electrical sheet conductivity. The sec-

ond path-changing patent in the 1996-2000 period is a Mitsubishi patent that describes a device 

having a multilayered metal interconnection structure with improved flatness. This solution, is 

also addressing the problem of generating higher speed and computational power by providing 

multiple layers of electrode interconnections. This solution set a path that will be eventually tak-

en by organizations from latecomer countries, such as Taiwan Industrial Technology Research 

Institute (ITRI), foundries like Taiwan Semiconductor Manufacturing Company (TSMC), United 

Microelectronic Corporation (UMC) and Singapore-based Chartered Semiconductors, and Kore-

an firms Samsung and LG Semiconductors. All of these firms have patents that cite Mitsubishi’s 

technical solution. Successful US firms, such as Texas Instruments, Advanced Micro Devices 

(AMD) and Micron Technologies, also cites Mitsubishi’s patent. In particular, Micron and AMD 

will eventually dominate the main two components of the NMPs in the period 2001-2006 in 

terms of centrality. This proves how much influence this new path has had in the process of 

technological change in the industry. The third path-changing patent in the second half of the 

1990s has been granted to Bosch, for disclosing an invention that allows producing a hybrid 

semiconductor structure while tackling a main disadvantage of previously known methods in 

terms of reliability. 
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Table 5: List of path-changing patents 

period patent gyear PFI POP #fwdcit 

NMP  

comp. title assignee 

1991-1995 5099296 1992 0.0007 4.571 15 1 Thin film transistor Xerox 

1991-1995 5281852 1994 0.0027 4.016 156 1 Semiconductor device 

including stacked die 

Peter J. C. 

Normington 

1996-2000 5519235 1996 0.0001 3.286 45 1 Polycrystalline ferroelectric 

capacitor heterostructure 

employing hybrid electrodes 

Bell 

Communications 

Research 

1996-2000 5763954 1998 0 12.07 46 2 Semiconductor device having 

multilayered metal 

interconnection structure and 

manufacturing method 

thereof 

Mitsubishi 

1996-2000 5866951 1999 0.0003 3.7776 18 2 Hybrid circuit with an 

electrically conductive 

adhesive 

Bosch 

2001-2006 6291319 2001 0 12.64 59 1 Method for fabricating a 

semiconductor structure 

having a stable crystalline 

interface with silicon 

Motorola 

 

Finally, in the period 2001-2006, only one significant path-changing patent has been identified 

by our method. It is a process innovation developed by Motorola. The invention relates to a 

method for fabricating a semiconductor structure including a crystalline alkaline earth metal 

silicon nitrogen based interface. As explained in the patent document, this provides a more sta-

ble silicon surface, which is essential for subsequent epitaxial growth of single crystal thin films 

on silicon for numerous device applications. It is interesting to note that all of the path-changing 

patents identified by our method, except for one, belong to large incumbent corporations. This 

somehow constitute an argument in favour of the late Schumpeter’s hypothesis that large firms 

are more conductive for radical innovations.  
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Table 6: Top path-follower patents 

period patent and 

assignee 

gyear PFI POP #fwdcit PathC NMP 

comp 

title 

1991-1995 5061647 

Motorola 

1991 30.64 5.5745 49 228.1 2 Forming a conductive layer over a 

substrate having a gate 

dielectric,… 

1991-1995 5015598 

Philips 

1991 32.64 8.9875 69 222.8 2 Metal-insulator-semiconductor 

1991-1995 5168072 

Texas Inst. 

1992 38.41 6.9655 162 199.4 1 Method of fabricating an high-

performance insulated-gate field-

effect transistor 

1991-1995 5079180 

Texas Inst.  

1992 10.32 13.495 91 194.4 1 Method of fabricating a raised 

source/drain transistor 

1991-1995 5015595AMD 1991 22.57 10.011 51 132.1 2 Method of making a high 

performance MOS device having 

both P- and N-LDD regions using 

single photoresist mask 

1996-2000 5534447 UMC 1996 97.10 12.623 38 515.1 1 Process for fabricating MOS LDD 

transistor with pocket implant 

1996-2000 5538913 UMC 1996 150.0 16.170 76 495.6 1 Process for fabricating MOS 

transistors having full-overlap 

lightly-doped drain structure 

1996-2000 5670401 

Vanguard 

1997 181.5 6.692 19 546.5 1 Method for fabricating a deep 

submicron mosfet device using an 

in-situ polymer spacer to decrease 

device channel length 

1996-2000 5801083 

Chartered 

1998 94.13 10.282 149 540.4 1 Use of polymer spacers for the 

fabrication of shallow trench 

isolation regions with rounded top 

corners 

1996-2000 5489543UMC 1996 27.48 33.333 54 449.4 1 Method of forming a MOS device 

having a localized anti-

punchthrough region 

2001-2006 6190977 TI-

Acer 

2001 15.04 8.160 26 344.1 2 Method for forming MOSFET with 

an elevated source/drain 

2001-2006 6524920 AMD 2003 42.98 12.616 30 326.2 2 Low temperature process for a 

transistor with elevated source 

and drain 

2001-2006 6703648 AMD 2004 53.18 20.805 55 364.3 2 Strained silicon PMOS having 

silicon germanium source/drain 

extensions and method for its 

fabrication 

2001-2006 6979855 

Micron 

2005 32.28 5.1814 13 490.1 1 High-quality praseodymium gate 

dielectrics 

2001-2006 6921702 

Micron 

2005 38.02 14.063 67 316.9 1 Atomic layer deposited 

nanolaminates of HfO2/ZrO2 films 

as gate dielectrics 
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It is also insightful to identify significant path-follower patents. Since there are many of them, in 

Figure 14 we only report information for the most central ones (i.e. the top-5 of the PathC rank-

ing). Two major insights emerge from the table. First, some of the path-following patents listed 

in the table address similar research areas, as proved by the frequent appearance of the terms 

‘source/drain’ in the titles and the reference to MOS/MOSFET/PMOS/CMOS devices. These re-

lated patents are found in the first component of the NMPs in 1976-1995, and in 1976-2000 but 

move to the second in 1976-2006. They are part of the same long path of improvements that re-

lates to a key transistor technology, metal–oxide–semiconductor (MOS). The metal–oxide–

semiconductor field-effect transistor (MOSFET) provides switching function in microprocessors 

and memories to implement logic gates and data storage. They are the most widely used type of 

transistor in integrated circuits. This explains why they attracted such a constant inventive ef-

fort over time (MOS technology actually dates back to the 1960s). Particular attention has been 

devoted to the fabrication method, to make them cheaper and facilitate integration. For instance, 

the technique called complementary-metal–oxide–semiconductor (CMOS) consists in coupling 

two complementary MOSFETS into one high/low switch. This technique increased modularity, 

by allowing separating IC design from manufacturing (Adams et al., 2013). One major problem, 

as explained in patents 5670401 (Vanguard) and 6190977 (TI-ACER), is that the constant effort 

to miniaturize devices implies the need to solve a bunch of related problems. As stated in the TI-

ACER patent, “as the MOS transistors become narrower and thinner accompanying with shorter 

channels, the problems like the junction punchthrough, the leakage, and the contact resistance 

cause the reduction in the yield and the reliability of the semiconductor manufacturing processes”. 

The preparation of an extremely shallow source/drain junction is one way to solve some of 

these problems, which has attracted the inventive effort behind the solutions disclosed in the 

three patents located in the second component of the NMPs in period 2001-2006. These findings 

show how the approach to solve key problems, which arise from a long-lasting trajectory of min-

iaturization efforts, has been following a well-established path over the last four decades. This 

path is traced by solutions that largely shared the same approach to problem solving. The table 

also provides an interesting insight into the dynamics of catching-up. The ranking of path-

follower patents for the period 1996-2000 is dominated by latecomer firms, whose inventions 

address some of the MOSFETS related problems listed in the quote above. The diffusion of CMOS 

and MOSFETS opened entry opportunities in IC manufacturing for latecomers, as discussed in 

Adam et al. (2013) and Langlois and Steinmuller (1999). This implied that latecomer innovative 

effort focused on fabrication-related problems. These problems became major bottlenecks for 

further IC performance improvements, due to increased chip miniaturization. This ultimately 

explains the centrality of latecomer’s solutions in the NMPs. Three of these firms are from Tai-

wan. United Microelectronics Corporation (UMC) is the second largest Taiwanese semiconductor 

companies, and second largest foundries in the world by revenues (according to IC Insights), be-

hind Taiwan Semiconductor Manufacturing Company (TSMC). Vanguard is the third Taiwanese 

IC foundry service provider. It started in 1994 as a DRAM subcontractor of TSMC. It then evolved 

into a pure-play foundry company. TSMC and the Industrial Technology Research Institute 

(ITRI) are its largest investors. The last patent to appear in the top five path-follower ranking 

belongs to Chartered Semiconductors. Chartered Semiconductors was a Singaporean company 

which, prior to its acquisition by GlobalFoundries in 2010 (a joint venture between AMD and 

Abu Dhabi’s Advanced Technology Investment Company), was the world's third largest dedicat-

ed independent semiconductor foundry, after TSMC and UMC. Another Taiwanese firm hold a 

key path-following patent in period 2001-2006. This is ACER. The company started as Texas In-

strument-Acer, a joint venture between the US incumbent Texas Instruments and the Taiwanese 
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new entrant ACER. The joint venture was founded in 1976. Twenty-one years later, in 1997, 

Acer acquired the notebook division of TI and became one of the world leaders in notebook 

manufacturing. 

 We have analysed the direction of technological change in the Semiconductor industry 

along two dimensions, the ranking of engineering problems and the stability of problem-solving 

approach. This allowed identifying a discontinuity in the engineering trajectories of technical 

improvements in the first half of the 1990s and at the beginning of the 2000s, and a change in 

the ranking of problems in the early 2000s. We have also identified path-changing and path-

following patents, which greatly shed light on the nature of these dynamics. We can now move to 

the organizational level and investigate which firms shaped the direction of technological change 

and which one followed the course of the events. We only focus on the last three periods, given 

that the analysis presented in Section 3.5.1, identified them as interesting cases of change in the 

direction of technological progress in the Semiconductors. 

3.5.2 Players’ inventive strategies 

We have analysed the direction of technological change in the Semiconductor industry along two 

dimensions, the ranking of engineering problems and the stability of problem-solving approach. 

This allowed identifying a discontinuity in the engineering trajectories of technical improve-

ments in the first half of the 1990s and at the beginning of the 2000s, and a change in the rank-

ing of problems in the early 2000s. We have also identified path-changing and path-following 

patents, which greatly shed light on the nature of these dynamics. We can now move to the or-

ganizational level and investigate which firms shaped the direction of technological change and 

which one followed the course of the events. We only focus on the last three periods, given that 

the analysis presented in Section 3.5.1, identified them as interesting cases of change in the di-

rection of technological progress in the Semiconductors. 

 Figure 15 shows firm position on the PFI-POP space. The value of the indices reported on 

the axes are the z-scores computed on the basis of randomized samples of equal firm size, as ex-

plained in Section 3.3.4. This allows removing any possible effect related to large disparities in 

the number of patents hold across firms. Marker colour is proportional to log-transformed pa-

tent count. Dashed lines indicates the thresholds of statistical significance, which lay two stand-

ard deviations above the mean (i.e. z =2, p-value ≅ 0.05). For visual purposes, we only plot firms 

with a number of patents significantly greater than the geometric mean of firm patent count (i.e. 

two standard deviations of the log-transformed data).  This allows focusing only on firms that 

dedicate a significant amount of inventive effort in Semiconductors. We report firm labels for 

firms located in areas of the space that fulfil statistical significance requirements. A number of 

key insights emerge from Figure 15. 

 From a methodological point of view, the comparison of observed PFI and POP with their 

random counterpart effectively removed scale effects. Large and small firms are scattered in the 

space without any particularly remarkable order. Size does not seem to affect neither PFI, nor 

POP. Consequently, firms’ centrality (measured by PathC) is also independent from their size.  

We investigate if there is a relationship between the number of patents owned by a firm and the 

three indicators, PFI, POP and PathC in the Appendix A.3.2. The statistical analysis confirms that 

POP is independent from PFI and PFI, POP and PathC are independent form patent count. This is 

in itself an interesting insight. It shows that large players are as likely as small ones to have influ-

ential and high quality patents, and have same likelihood to be path-changers/followers. Moreo-

ver, being a path-follower does not necessarily ensures receiving more forward connections than 
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randomly expected, compared to being a path-changer. This reveals that, at the firm level, there is 

no preferential attachment of new patents to established paths. In turns, this means that, in princi-

ple, being a path-follower does not automatically make players more central. 

 
Figure 15: Identifying path-changing and path-following firms  

(marker color proportional to log transformed patent count) 
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In each of the three periods, the PFI-POP space is relatively more crowded in the area whose 

centrepiece has a PFI of -1 and POP of -2. This means that many semiconductor-focused firms 

seem to have a slight tendency toward being path-followers but in general have patents of a rela-

tively poor influence (i.e. the average POP is smaller than expected by firm size). However, the 

strength of this tendency is not sufficient to pass the thresholds of statistical significance, show-

ing that this pattern could possibly be just a random phenomenon. A few firms stand out of the 

crowd. Nevertheless, several of those that can be distinguished for unequivocally strong path-

changing or path-following strategies, lack the strength to pull new paths into the network, or 

hold old ones in, alone. This is revealed by lower levels of POP than expected by firm size. Yet, a 

few insightful tendencies can be observed.  

 Firms that pass the requirements of statistical significance for both PFI and POP, are path-

followers in the 1990s and mostly path-changers in the first half of the 2000s. This reveals that 

the temporary change in the engineering trajectories that happened in the first half of the 1990s, 

as discussed in Section 3.5.1, was not caused by a particular set of firms. Rather it was caused by 

idiosyncratic inventive outputs that explored new approaches. No firms were specifically trying 

to change the main trajectories in that period. In contrast, changes that happened in the early 

2000s, where driven by specific strategies of a few firms that focused their inventive efforts to 

new paths and new problems.   

 Firms from latecomer countries (Taiwan, S.Korea and Singapore), have a strong preference 

to connect to established paths. This is especially clear for the world largest foundries, TSMC 

(Taiwan), UMC (Taiwan), and Chartered (Singapore, now called Global Foundries). They are al-

ways found in the right part of the space. They have PFI significantly larger than expected and in 

some cases even a POP above the threshold for statistical significance (TSMC in the 1990s, UMC 

and Chartered in 1996-2000). The group is joined by Vanguard, another Taiwanese foundry and 

Acer Display, at the end of the 1990s. Winbond, the largest brand name integrated circuit suppli-

er in Taiwan, is also close to be a significant path-follower in the period 1996-2000. Korean 

firms, LG (in the 1990s), Hyundai Electronics and Samsung (both in 1991-1995 and 2001-2006), 

also have PFI much above the expected level, but the power-of-pull of their patents is not as 

strong as for the Taiwanese companies and Chartered. American microprocessor company Ad-

vanced Micro Devices (AMD), Intel’s closest competitor, is also part of the path-following group, 

in each of the three periods. This contrasts with Intel’s strategy, whose patents have a compara-

ble power-of-pull but are much less focused on following the main paths of improvements than 

AMD’s ones. 

 In the first half of the 2000s, a group of significant path-changers emerged. Some of them 

are relatively small players. Yet, some are noteworthy. Xilinx Semiconductors is famous for in-

venting the field programmable gate array (FPGA) and being one of the first semiconductor 

company to adopt the fabless business model. LSI Logic is another fabless focused that had an 

historical role in the industry. LSI helped create and nurture development of the application-

specific integrated circuit (ASIC) industry.   The company now focuses on designing semiconduc-

tors for storage, networking in data-centers, mobile networks and client computing. Both Xilinx 

and LSI Logic had a strong preference for being path-changers in the second half of the 1990s. 

However, only in the early 2000s they got a sufficient power-of-pull to become significant path-

changers. The presence of these two important fabless, that are known to be central players in 

the industry, suggests that our method is indeed able to identify path-changers. Fairchild, Intel’s 

mother, is also part of the path-changing group. Fairchild main line of business is now focused 

on high-performance power ICs and power discrete devices. The combination of path-changing 

companies working on power, mobile networks and networking, in the 2000s, reflect the shift-
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ing target of applied research on semiconductor devices from desktop PCs to laptops, tablets, 

smartphones and cloud computing.  

 There is also a crowd of potential path-changers in the first half of the 2000s, which have 

very strong preference to connect to unexploited paths, but lack sufficient power-of-pull. Among 

them, some consistently show a path-changing strategy in more than one period. These are 

mostly Japanese incumbents such as Fujitsu, Hitachi, Canon, Rohm Semiconductor and Sumito-

mo.  

 As we broadly discussed in Section 3.2, the stability of approaches to problem solving, here 

represented by the tendency to be path-followers, is just one of the two crucial dimension of the 

direction of technological change. The ranking of engineering problems is also insightful about 

the characteristics of technical progress. We have seen in Section 3.5.1, that a change in the rank-

ing has occurred in the 2000s. The RCI, allows identifying which players reported more in-

ventive output in the second component of the NMP than in the first, compared to what could be 

expected by random chance. Figure 16 reports the RCI ranking for firms in the last three periods. 

We only show firms whose RCI is statistically significant at the 95%. Besides being path-

followers, firms from latecomer countries were ranking followers. This is the case for UMC, 

TSMC, Chartered, Samsung and Vanguard. In the 1990s, large American and Japanese incum-

bents were those with relatively more inventive output in in the second component of the NMP, 

effectively trying to revert the ranking of the systems of engineering problems. This pattern 

changed in the 2000s. None of the latecomers is found in the list of significant ranking followers 

in the last period. In contrast, TSMC, together with the Korean Electronics and Telecommunica-

tions Research Institute (ETRI), Hann Star Display and LG LCD, were part of the group of rank-

ing-changers. The latter two are specialized on display technologies. The same holds for another 

ranking changer, Semiconductor Energy Laboratories (SEL). SEL’s president and majority 

shareholder, Shunpei Yamazaki, used to be the most prolific inventor according to the number of 

USPTO patents hold, until 2008. The presence of these firms confirms what emerged from the 

analysis of path-changers, namely that the second component of the NMPs in the first half of the 

1990s, is characterized by the emergence of a new set of engineering problems. It is worth not-

ing that the most ranking-changing player in the second half of the 1990s was Tessera Technol-

ogies. This US company is focused on miniaturization technologies that then aggressively license 

out to big players. Indeed Tessera is known as one of the largest patent trolls in the industry 

(Business Insider, 2012). 

3.5.3 Effectiveness of players’ strategies 

Having analysed players strategies we can now assess their effectiveness in terms of earning 

centrality on the paths of technological improvements. Figure 17 reports the rankings of the z-

scores of PathC at the firm level. We only show firms whose z-score is statistically significant (i.e. 

z≥2).  As we discussed in the previous section, our findings show that there is no relationship 

between PFI and POP. Therefore, in principle, it is possible to achieve high centrality even with a 

path-changing strategy, as long as the path-changing patents attract a considerable number of 

forward connections. However, in practice, it seems that path-following strategies are much 

more likely to earn centrality on the main paths. Indeed, only two of the most central firms listed 

in Figure 17, have a PFI lower than zero. These are Micron (PFI=-0.77) and Applied Materials 

(PFI=-0.6) in the last period. The cautious path-and ranking-following strategy of Taiwanese and 

Singaporean foundries has been very successful in terms of gaining centrality in the network, 

also due to their high quality patents (large POP). Since the early 1990s, TSMC and UMC have 
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been very central, and they maintained a position in the top ranking in the two subsequent peri-

ods. Chartered, Vanguard, Winbond and Taiwan Industrial Technology Research Institute also 

have been very central in one or two periods. This confirms the remarkable ability shown by 

these firms to quickly catch-up in terms of technological capabilities. Korean firms Samsung and 

LG also followed similarly cautious strategies, but they have been somewhat less successful in 

terms of centrality.  

 

 

 

Figure 16: Ranking-changing and ranking-following firms 

 

Figure 17: Most central players 

3.6 Conclusions 

In this work, we developed a theoretical and methodological framework to analyse two key di-

mensions of the direction of technological change, the ranking of engineering problems and the 

stability of approaches to problem solving. We applied this framework to the semiconductor in-

dustry, giving particular attention to the analysis of catching up strategies followed by latecomer 

firms. We showed that, a major change in the approach to problem solving has occurred in the 
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first half of the 1990s. Two patents were identified as significant path-changers. They focused on 

designing semiconductor structures made of polycrystalline diamond thin-films, and on vertical 

stacking dies on a single chip to increase computational power without increasing horizontal 

density of elements on microchips. We also identified a change in engineering trajectories, cou-

pled with a change in the ranking of problems, which occurred in the first half of the 2000s. This 

was caused by advances in the miniaturization of semiconductor devices allowed by the diffu-

sion of MOSFET technologies. This technology is the result of a long and well-established path of 

improvements, which could be referred to as a sort of backbone of the system of semiconductor 

technologies. However, the market success of new applications for semiconductor devices (like 

smart portable devices and LCD televisions), changed the connections among engineering prob-

lems, and created new challenges that attracted the relative majority of inventive efforts from 

the beginning of the 2000s. 

 Our findings show that, in the 1990s and first half of the 2000s, firms from latecomer coun-

tries (Taiwan, Korea and Singapore), especially Taiwanese and Singaporean foundries, were sig-

nificantly more path and ranking followers than expected by their size and time of entry. How-

ever, some of them, notably those engaged in LCD technology, were significant ranking changers 

in the early 2000s. This path and ranking following strategy has been instrumental in granting 

these firms centrality on the main engineering trajectories. Indeed, patents granted to Taiwan-

ese, Singaporean and, to a smaller extent, Korean firms, were of a relatively high quality, attract-

ing significantly more forward connections than expected by their size and time of entry. This 

shows how these firms were able to quickly develop the necessary technical capabilities to con-

tribute high-quality inventive solutions that further strengthened the main trajectories of engi-

neering improvements. Moreover, the fact that some latecomers are ranking changers in 2000s 

suggests that the path-following strategy adopted in the decade before, which ensured them 

strong centrality on main paths of improvements, strengthen their technological capabilities. It 

provided experience and knowledge about the direction of technological change in the industry, 

which allowed them being actively changer of the ranking of engineering problems in the early 

2000s.  These findings are in line with the anecdotal evidence on catching-up strategies in the 

semiconductor industry, as shown by Mathews and Cho (1999), Chang et al. (1994) and Cho et 

al. (1998). 

 It is important to highlight that our definition of firm’s strategies with respect to the paths 

of technical improvements loses one category compared to Lee and Lim’s (2001) threefold clas-

sification of catching-up strategies. The authors classified latecomer firms into path-following, 

path-creating and path-skipper. The empirical identification of path-skipping strategies requires 

defining and tracing the whole life cycle of a given technology. In particular, in our current 

framework, we do not make any statement about the future success or failure of path-changers 

and the new trajectories of improvements that they contributed. However, this framework can 

be suitably modified for identifying technology domains and trace their life cycle. This is done in 

the next chapter. In the third chapter, we will instead analyse how changes in the main trajecto-

ries of engineering improvements affect firms’ survival and how diversification can provide an 

evolutionary advantage over competitors in uncertain technological environments. Finally, con-

structing an index able to reveal statistically significant path and ranking changer has to be con-

sidered as a first step of a potentially very rich research agenda. It becomes possible, for in-

stance, to study whether a common profile for significantly more explorative firms can be de-

scribed. Our analysis has already showed that, at least for the semiconductor industry, size, 

measured by patent count, is not a good predictor of path and ranking-changing behaviour. Al-

ternative explanations might point to particular market or technological conditions that push 
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these firms to be more risk-takers. Another hypothesis could be that path and ranking-changers 

have a more diversified research workforce that allows them to pursuit several paths. Our indi-

ces make it possible to perform an econometric analysis with the goal of revealing predictors of 

firms’ path and ranking changing behaviour and, consequently contributing to unveil the future 

direction of technological change. 
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4 LIFE CYCLE OF TECHNOLOGY 

DOMAINS AND COMPARATIVE 

TECHNOLOGICAL ADVANTAGE  

Catching-up, leapfrogging and falling behind in terms of productivity in high-tech industries cru-

cially depends on firms’ ability to keep pace with technological change. In fast changing indus-

tries, today’s comparative technological advantage does not guarantee tomorrow’s success. 

Firms’ innovation prospects depend on their learning paths as the set of central engineering 

problems and the approaches followed to seek their solutions change with time. This highlights 

the importance of studying the relationship between life cycle of technology domains and com-

parative advantage patterns of new and incumbent innovators. We understand domains as areas 

of applied research that share common engineering problems and follow similar approaches to 

problem-solving. We theoretically define the life-cycle of technology domains and its relation 

with product and industry life-cycles. We empirically identify technology domains and trace 

their life-cycle by mean of patent citation analysis. The methodology is based on the analysis of 

the age of the different domains and of the characteristics of their technological trajectories. We 

then investigate comparative technological advantage patterns of new and incumbent innova-

tors. Our findings prove that new innovators have a comparative advantage in emerging and 

young domains. We also show that, up to the end of the 1990s, firms from latecomer countries 

specialized mainly in areas at the later stages of their life cycles.  
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4.1 Introduction 

In this paper, we analyse the relationship between the life cycle of technology domains and the 

revealed technological capabilities of incumbent and new innovators. The striking example of 

sustained fast economic growth and enormous structural transformation that several countries 

like the Asian Tigers (Hong Kong, Taiwan, South Korea and Singapore) and some of the BRICS 

(Brazil, Russia, India, China and South Africa) have provided in the last half-century, have been 

explained by a variety of points of view. A widely accepted explanation points to the role played 

by technology and knowledge upgrading as engines of economic growth and sources of interna-

tional competitiveness (Kim and Nelson, 2000). The development of internal technological skills 

and the access to foreign technology is the key factor behind the process of catching-up (Fager-

berg and Godinho, 2005; Hobday, 2000; Perez and Soete 1988; Verspagen, 1991; Abramovitz, 

1994). Technology is in continuous evolution and the direction and speed of technical change, by 

creating and replacing capabilities at different paces, determine the availability of entry and 

catch-up opportunities (Lee, 2013; Lee and Lim, 2001 and Dosi, 1982) and changes in industry 

structure (Breschi et al. 2000; Malerba and Orsenigo, 1997; Schmookler, 1962). The life cycle of 

technology domains is therefore a determining factor of the evolution of products and industries 

and of the fate of catching-up endeavours.  

 Although technology, product and industry lifecycles are conceptually and dynamically in-

tertwined, confusing the three levels of analysis generates conflicting predictions on the special-

ization patterns of new entrants. Industry life cycle theory (Klepper, 1997, 1996; Afuah and Ut-

terback, 1997; Jovanovic and MacDonald, 1993; Suarez and Utterback 1993; Utterback and Ab-

ernathy, 1975) predicts higher entrance to occur in the earlier stages of the life cycle. This is 

when there are plenty of technological opportunities and a dominant design has yet to emerge. 

Consequently, the entry barriers are weaker due to the lack of cumulative technical and market 

knowledge advantage. Innovation management literature has also extensively analysed speciali-

zation of new entrants with respect to industry and product life cycles. However, the latter is 

even more specific than industry life cycle theory in predicting the type of technologies that are 

instrumental for successful entrance. Christensen disruptive technologies are the favourite com-

petitive battlefield of new innovators (Christensen et al., 1998; Christensen, 1997). There are 

two main conceptual puzzles in these branches of literature. First, these theories focus exclu-

sively on entrance from advance countries. Second, the theoretical framework does not clearly 

distinguish at which level between industries, products and technologies the mechanisms be-

hind the life cycle operates. The literature provides two alternative theoretical approaches that 

focus on global competition: international product life cycle theory and catching-up. The inter-

national economics literature on product life cycle (PLC), sparked by the seminal contribution of 

Vernon, predicts that latecomers are more likely to specialize in obsolete technologies that are 

progressively abounded by leader countries and whose production moves to developing coun-

tries to exploit their comparative advantage based on cheap labour (Vernon, 1966). Recent find-

ings in this strand of literature follows Vernon’s framework (Bergek et al., 2013; Karniouchina et 

al., 2013). Vernon’s theory has raised some criticisms, which focused mostly on the fact that to-

day’s production is characterized by fragmented value chains, and modular technologies and can 

therefore happen in more places simultaneously. Catching-up and technology regimes literature 

emphasizes how innovative entrance depends on changes happening at the technology level, as 

the introduction of new technologies or radical change in existing ones create higher technologi-

cal opportunities which, ceteris paribus, tend to favour the entry of new innovators (Lee, 2013; 

Lee and Lim, 2001; Breschi et al. 2000) 
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 A unifying framework that provides a systemic perspective relating industries, products 

and technologies is provided by Murmann and Frenken (2006). Industries can be seen as collec-

tion of vertically and horizontally related products which themselves are made of several com-

ponents whose design and manufacturing require distinct technologies. Industry life cycle there-

fore depends on the life cycle of the underlying set of products. There is a wide agreement in the 

literature that a key factor that shapes product life cycle is the emergence of a dominant design 

after a phase of fluidity that involves searching several possible design paths (Afuah and Utter-

back, 1997; Suarez and Utterback, 1993; Anderson and Tushman, 1990; Utterback and Aber-

nathy, 1995). Yet products do not necessarily offer the best resolution to study search across the 

design space and the emergence of orthodoxy in the design approach. Products are systems of 

components and sub-components whose development follows own technological trajectories. 

Therefore, the life cycle of technology domains clearly affects product and industry life cycles. A 

micro-founded analysis of entrance and catching-up must necessarily focus on studying change 

at the technology level, as it is at this layer that learning happens. The goal of this paper is to im-

prove our understanding of the relationship between technology domain life cycle and speciali-

zation patterns of new innovators, in particular in the context of technological catching-up. Fol-

lowing Dosi’s definition of technological trajectories, we conceptualize technology evolution as 

the process of solving engineering problems (Dosi, 1982). This involves searching for solutions 

following different approaches. We argue that the emergence of an accepted approach to prob-

lem solving and the stability of the set of problems is the technology domain level analogy to the 

rise of a dominant design at the product-level. We define technology domains as areas of re-

search that define a set of common technological problems that are tackled applying similar 

mindsets and toolboxes.  

 Despite the variety of theoretical contributions to the literature of technology life cycle and 

dominant-design, few attempts have been made to empirically trace the evolution of technology. 

Perhaps this explains the contradictory predictions found in the literature on the specialization 

patterns of new entrants, specifically with respect to the direction of technology evolution. The 

few notable contribution to the study of life cycles at the technology level are the work of Jaffe 

and Trajtenberg (2002) and Lee (2013). Jaffe and Trajtenberg (2002) analysed the average time 

lag between cited and citing patents. They found that, on average, the number of citations to a 

given patent rapidly increases up to 3-4 years after it has been granted. It then relentlessly de-

creases. Lee (2013) argues that the citation leg trend is a good proxy of the technology life cycle 

as it reveal for how long the piece of technical information represented by a given patent keeps 

being a useful source of knowledge for improvement of technology. We argue that to link the 

technology and the industry level it is necessary to analyse the life cycle of the system of tech-

nologies within an industry, rather than focusing on single sub-classes. Furthermore, looking 

only at the citation lag provides a measure of the speed of change but do not provide a picture of 

the scope and direction of change. In this paper we contribute a method to identify domains 

within a technology class and analyse their life cycle. We can trace the stage of their evolution by 

looking at changes in the attractiveness of the engineering problems pertaining the given do-

main and the stability of the approaches followed to tackle them. Our method is based on a dy-

namic analysis of complex patent citation networks. We focus on the semiconductor industry as 

a case study as it provides a particularly suitable ground for testing such relationship. Industry 

leadership has changed over time, because of different waves of successful latecomer entrance. 

The industry is characterized by a persistently evolving knowledge base, increasing global com-

petition and short business cycles (Brown and Linden, 2009). Furthermore, given the focus of 

this paper, it is particularly interesting to notice that the technology life cycle of semiconductors 
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is considerably shorter than other industries, as shown by Lee (2013). This has been proposed 

by Lee as a key explanation of the success of catching-up efforts due to the speed of knowledge 

replacement. Therefore, it is crucial to understand in which semiconductor technology domains 

new entrants specialize, determine the stage of their life cycle and assess whether latecomers 

specialization patterns progressively upgrade to emerging domains. In particular, we answer the 

following research questions: (i) In which life-cycle stages new innovators have a comparative 

technological advantage over incumbents? (ii) Are there significant differences in the revealed 

technological advantage of new innovators from different countries? 

 We identify domains and trace their evolution by analysing patent citation networks. Patent 

are understood as proofs that an innovative solution to a selected engineering problem has been 

found. Citations highlight the approach followed to tackle the problem by identifying the prior-

art the design process has built upon. We use data from the second version of the NBER patent 

citation database (Hall et al., 2001) which covers the window of time between 1976 and 2006. 

To reduce noise in the data coming from the highly skewed distribution of patents’ technical and 

economic value (Gambardella et al., 2008; Hall et al., 2005; Reitzig, 2003), first we identify the 

set of the most influential patents from the point of view of the development of the main techno-

logical trajectories within the semiconductor technology class. For this purpose we use the main 

path approach originally developed by Hummon and Doreian (1989) and subsequently refined 

and applied in recent work by Verspagen (2007), Fontana et al., (2009), Martinelli (2008; 2009), 

Bekkers and Martinelli (2010). Within this set of patents, we identify several interrelated tech-

nology domains using a community detection method proposed by Newman (2004). Then we 

develop a methodology to describe the life cycle stages of these domains according to the attrac-

tiveness of their engineering problems and the stability of the approaches followed to seek the 

solution. The basic intuition is that the centrality of the problems pertaining a given domain de-

creases over time, while the stability of the approaches to problem-solving increases.  

 The structure of the paper is as follows. First, we present a short overview on the technolo-

gy and industrial dynamics of the global semiconductor industry (Section 4.2), to make the read-

er familiar with the background of this study. Then we introduce the theoretical framework that 

we followed to define technology life cycle (Section 4.3) and the necessary methodological steps 

to identify technology domains and infer the stage of their life cycles (Section 4.4). Finally, we 

present the results that answer the two research questions (Section 4.5). 

4.2 Technology and Industrial Dynamics of the Global Semiconductor Industry 

We focus our study on the semiconductor industry. Semiconductors are the best example of a 

high-tech industry in which catching-up, and possibly leapfrogging, by former laggard countries 

like Taiwan, Korea, and Singapore, prominently occurred. Technological change played a crucial 

role in determining the availability of entry opportunity. From the beginning of the 1980s on-

wards, the increased modularity of semiconductor design and manufacturing technology frag-

mented the value chain fostering specialization and jeopardizing production. New firms could 

now enter the industry at different stages of the production process. As argued by Adams et al. 

(2013), “the increased adoption of Complementary Metal Oxide Semiconductor (CMOS) production 

processes weakened the interdependence of product design and manufacturing. [...] With the crea-

tion of standardized interfaces between components and Electronic Design Automation (EDA) tools 

a modular system developed. [...] The interdependence between product design and manufacturing 

was weakened in many product segments in semiconductors and specialist firms were able to enter 

the industry at both the design and the manufacturing stages” (Adams et al., 2013, p.287). Fur-
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thermore, on the product side the development of Application Specific Integrated Circuits 

(ASICs) and of systems on a chip (SoC), which squeezed all components of an electronic system 

into a single chip, allowed application customization. This fragmented the market and created 

entry and survival opportunities for small firms (Fontana and Malerba, 2010; Ernst, 2005; Lin-

den and Somaya, 2003). Further miniaturization was also made possible by technological ad-

vancements in industrial lasers and lithography, which allowed exploring new innovative solu-

tions. This shows how changes in technology strongly affect industrial dynamics and provides a 

first argument in favour of analysing the life cycles of semiconductor technology domains. A sec-

ond one is provided by the short product life cycle that characterizes the industry (Brown and 

Linden, 2009). Periods of sustained revenues growth are constantly followed by periods of de-

cline. This is also explained in a report by Integrated Circuit Engineering Corporation (ICE, 

1996): 

 “[In the] long term, the sustained profitability of the semiconductor manufacturers depends on 

each company's ability to maintain high enough profit margins on the devices it produces to allow 

sufficient capital outlays for future generations of devices. From year to year, the health of the sem-

iconductor industry as a whole is indicated by its characteristic "boom" and "bust" periods, known 

as the silicon cycle. Since 1978, there have been four growth cycles in which sales grew an average 

of 30 percent per year. Following each growth cycle, the industry experiences a one to two year pe-

riod when sales growth averaged slightly under 4 percent.” (ICE, 1996) 

 The cyclicality of the semiconductor industry at the business level provides a strong reason 

for studying its life cycle at the technological level as the introduction of new products depends 

on improving existing technologies and generating new ones. In this respect Lee (2013), by 

computing the citation lag between cited and citing patents, showed that semiconductor tech-

nologies have the second shortest life cycle length among those considered, with an average cy-

cle time of 6.07 years before the underlying technical knowledge becomes outdated.  

 From the technological point of view there are a number of indicators that show as the sem-

iconductor industry as a whole moved from an emerging phase in the second-half of the 1970s 

to maturity in the beginning of the 2000s. The empirical regularities of industry and product life 

cycles have been sketched by the work of Klepper (1996; 1997). The author summarizes them as 

follows: “While distinguishing stages is somewhat arbitrary, the essence of the PLC is that initially 

the market grows rapidly, many firms enter, and product innovation is fundamental, and then as 

the industry evolves output growth slows, entry declines, the number of producers undergoes a 

shakeout, product innovation becomes less significant, and process innovation rises.” (Klepper, 

1997, p.149). The shift in importance from product to process innovation is also at the hearth of 

models of industry evolution that followed the seminal contribution by Utterback and Abernathy 

(1975). The symptoms of a long-run maturity of the semiconductor industry are evident from 

Figure 18. Panel A reports the trend of the relative number of technologically influent patents 

granted by the USPTO from 1976 until 2006 in each of the five US sub-classes of the Semicon-

ductor technology class (i.e. 438–process, 257-product, 326-materials, 505-programmability, 

716-design)12. Product and process innovations were equally important in the end of the 1970s, 

                                                             
12 It is important to note that the percentage of patents by technological class shown in Panel A of Figure 18 is not 

calculated based on all patents granted by the USPTO and classified in one of the semiconductor subclasses. Rather, 

we refer to the percentage by class with respect to a subset of technologically influent patents identified through the 

Main Path Approach, which we introduce in Section 4.4.1. The same holds for Panel B, where by new innovators we 
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when microprocessors had been recently introduced (Intel commercialized its first micropro-

cessor in 1971), then process innovation strongly took over. Another sign of maturity, in line 

with life cycle theory is provided by the trend in technological concentration shown in Panel B. 

Industry maturity is usually associated with a decreasing number of new entrants (new innova-

tors in our case) and an increasing concentration index. Panel B shows somehow contradictory 

evidence of that. The trend of innovative entrance appears to be quite cyclical, with two peaks 

reached in the second half of the 1980s and the 1990s. The number of incumbents, on the other 

hand, increases constantly (although at a decreasing pace) up to the end of the 1990s. This clear-

ly points to the fact that some of the new innovators managed to successfully establish them-

selves in the industry. Consequently, the number of incumbents increased over time. Yet, in the 

first half of the 2000s, both the number of new innovators and incumbents decreases strongly. 

Consequently, the concentration index (we use the well-known Herfindal-Hirshman Index –HHI) 

explodes in the beginning of the 2000s. This reveals that the share of technologically influential 

patents had increasingly concentrated in the hands of a few firms. Therefore, at the technological 

level, the semiconductor industry is undergoing what is commonly defined as a shakeout in the 

2000s, in line with the hypothesis of industry maturity. This is explained by life cycle theory as 

the result of the emergence of a dominant product design. There is anecdotic knowledge that 

semiconductor devices, such as microprocessors and memories, have indeed achieved great 

standardization and a dominant design focusing on miniaturizing their components has 

emerged (Epicoco, 2013). However, due to the multiproduct nature of the industry and the im-

portance of customized application-specific semiconductors (ASICs), the theoretical concept of a 

dominant design, as defined in the literature, lacks meaning when broadly applied at the indus-

try level. Yet, in Chapter 3, we have shown how a mainstream approach to design and a domi-

nant system of engineering problems have guided innovative effort in the industry up to the end 

of the 1990s, as shown by the stability of the main technological trajectories13 and the ranking of 

problems. Then, a new set of technical problems, mainly related to screen and MOSFET technol-

ogies arose, pushing designers to explore different approaches.  

 

                                                                                                                                                                                              
refer to firms that hold at least one patent in the subset of technologically influent ones for the first time and by in-

cumbent innovators we mean firms that had at least one patent in that subset in the period(s) before. 
13 In the previous chapter, we show how the main approaches to engineering problem solving, i.e. the technological 

trajectories, actually got temporarily perturbed in the mid-1990s, when new players from S.Korea, Taiwan and Singa-

pore became prominent innovators.  



 

 Life Cycle of Technology Domains and Comparative Technological Advantage 61 

 
Figure 18: Industry technology dynamics 

 

Given the record of successful catching-up efforts in the industry, it is interesting to brake the 

trend of new innovators of Figure 18 B at the country level.  Figure 19 shows the share of new 

innovators by geographical origin. As we can see, innovative entrance is in accordance with the 

historical knowledge of the evolution of the global semiconductor industry, as described by 

Langlois and Steinmueller (1999).  The share of US new innovators decreased over time up to 

the end of the 1990s, in favour of a larger entrance in the technological area by firms from Tai-

wan, Korea and Singapore, which account for about 20 per cent of all new innovators in the 

1990s. In contrast, the share of new innovators from Japan is rather constant across our sample. 

Finally, it is interesting to note that, despite European firms becoming quite marginal players in 

the global semiconductor industry, they seem to be able to still play a significant role at the 

technological level, at least in terms of innovative entrance.  

 The brief overview of the industry trends reported in this section has shown how semicon-

ductor firms are exposed to strong and shortening business cycles and how the industry seems 

to have entered in a phase of maturity in which only a few players are able to be successful in 

terms of generating influent technological innovations. These two effects reinforce the im-

portance to clearly define life cycles at the level of technology domains and analyse specializa-

tion patterns of incumbent and new innovators. In the next section, we elaborate on the theoret-

ical framework that guides us in this analysis. 
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Figure 19: New entrant innovators by country of origin 

4.3 Theoretical framework 

The answers to the questions “how technology change?” and “how are products and industries 

affected?” have been seek in a variety of ways. As we have discussed in the introduction of the 

paper, the prevailing belief is that the emergence of dominant product designs is the selection 

mechanism that stop the search process and, consequently, reduce the number of players in the 

competition arena. This allows focusing innovative efforts to process innovation, which, by mak-

ing the product cheaper, spark diffusion. Eventually the fossilization of product design con-

strains the generation of novelty and lead to the emergence of decreasing returns to adoption. 

This eventually increases the probability that the dominant design is re-thought or abounded in 

search of the new product to introduce. 

 This is an accurate representation of the life cycle of a single product and there is evidence 

that the pattern of market entry and exit in the industry is consistent with the predictions of the 

product life cycle theory (Klepper, 1996; 1997). Yet its application to industries with a large het-

erogeneity of products, some of which are highly customized and based on highly modular tech-

nologies, is limited by conceptual difficulties. Semiconductor devices are made by several inde-

pendent components. Some of them contribute to different products and therefore the underly-

ing technical problems and the way solutions are seek affect the life cycle of several products. 

Second, in high-tech industries long-run market survival depends on technical capabilities (Lee 

and Lim, 2001). Therefore innovative entry (and exit), defined as the ability to tap in the right 

technological trajectory, is more informative of a firm’s long-run success than market entry, 

which could be due to a transitory cost-advantage, in particular for catching-up firms.  In an in-

dustry characterized by a multi-technology space, the ability of persistently come-up with inven-

tions that proves to be on the right direction with respect to the future technological develop-

ments depends on direction of technological change, depends on the life cycle of technology do-

mains. We therefore claim that, for industries like Semiconductors, life cycles should be studied 

at the technology level.  

 We define a technology domain as an area of engineering research bounded by a set of 

common design problems and by similar approaches to problem solving. We adapt Murmann 

and Frenken’s (2006) nested hierarchy approach to theoretically link the technology domain 

level to the product level. This theoretical exercise does not have to be seen as an attempt to 
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formally build a correspondence table between products and technologies. The goal of this work 

is to illustrate the systemic nature of technology and the relationship between industry, product 

and technology domains’ life cycle. This is used to stress how the most insightful unit of analysis 

is the technology level. Our theoretical framework is illustrated in Figure 20. 

 

 
Figure 20: Nested hierarchy of life cycles 

 

An industry is made by a collection of products. There is general agreement in the recent eco-

nomic (Murmann and Frenken, 2006), engineering (de Weck et al., 2011) and complex system 

(Arthur, 2009) literature in describing products as systems of nested hierarchies made by layers 

of components and parts. The degree of modularity of the system determines whether compo-

nents can be designed and produced in isolation from each other’s. Technology domains can 

span them both vertically and horizontally or they can be confined to a given component or 

product. This ultimately depends on the generality of the underlying engineering problem. For 

instance, miniaturization or reduction of energy-consumption, are very general and ubiquitous 

problems. The former carries a variety of related sub-problems like velocity saturation or deg-

radation due to overheat, as the technology scaling reaches channel lengths less than a micron. 

These problems are not isolated and related to a single product or component. In contrast, they 

affect the whole system. Change at the domain level propagates in the system along multiple 

paths, generating positive feedbacks or creating cascades of design problems, as shown by Giffin 

et al. (2008). Therefore, the search for solutions to key design challenges ultimately affects the 

life cycle of components and products. Consequently, incumbents’ and new entrants’ innovation 

prospects depend on their technical capabilities and their knowledge upgrading paths measured 

at the domain level. Mapping the hierarchical structure of the system goes beyond the scope of 

this work. For our purposes, we only need to perform the following tasks: 

1- Identify technology domains; 

2- Assess their life cycle stage; 

3- Investigate whether incumbents’ and new innovators’ revealed technological advantage 

significantly differs along the life cycle of technology domains. 

The technical aspects of the methodology used to address each of the three tasks are explained 

in details in the next section. Here we highlight the theoretical motivation behind them. A popu-

lar approach concerning the problem of identifying technology domains rely on raw information 

contained in patent database and on patent classification codes such as the US patent codes or 

the International Patent Classification (IPC). We believe that the well-known skewed nature of 

the distribution of patent economic and technical value (Silverberg and Verspagen, 2007; Tra-

jtenberg, 1990) makes it mandatory to clean the data by first identifying influent patents. This is 

done by applying the Main Path Approach (MPA) that identifies patents that lay on the main 
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paths of technical improvements, as measured by citation flows. Moreover, we claim that using 

patent classes to identify domains is not a suitable option given the purpose of this study. Classi-

fications are a very useful source of information but by definition are done ex-post and are sub-

ject to a certain degree of subjectivity. For instance, an emerging domain would not be immedi-

ately recognized as such. It will require a new classification, which will imply a considerable lag 

in our ability to recognize emerging technologies. For this reason, we rely on a bottom-up net-

work-based classification that makes use of network community-detection techniques. Domains 

are identified by clustering patents based on their similarity. The latter is measured by direct 

and indirect citations. Citations are a proof that the prior-art disclosed in the cited patent has 

been improved by the cited one. As such, they reveal the similarity of the underlying technical 

problem and the use of the same problem-solving approach. This perfectly fits with our theoreti-

cal definition of domains. Selecting only the most technologically influent patents besides clean-

ing the data also allows distinguishing innovators from inventors. By the former, we mean play-

ers that are able to generate novelty that is later recognized as useful from the point of view of 

technical progress. The latter are players whose inventive output does not attract sufficient at-

tention to determine the course of technology evolution. In this sense, we use the term innova-

tion in a Schumpeterian way, implying that inventions became innovations only when they are 

recognized as useful and, therefore, start diffusing. We further distinguish between incumbent 

and new innovators. Note that the use of the terms “new innovators” or “incumbent innovators” 

rather than new entrants or simply incumbents is purposely made. Industrial organization theo-

ry would distinguish between firms that have started producing for the first time (new entrants) 

or have been doing it for a while (incumbents). Since we look at the technological dimension ra-

ther than the manufacturing one, we characterize firms by their ability to generate technological 

inventions that lately attracted a significant sequence of engineering improvements.  

 Once we have theoretically defined what technology domains are, and why we identify 

them using a bottom-up citation-based approach, we can formalize the theoretical concept of 

domain life cycle. We argue that the evolution of a technology domain can be described by two 

variables: the importance of the underlying technical problem and the persistence of the variety 

of approaches to problem solving.  

 An archetypal description of the evolution of a technology domain is presented in Figure 21. 

Let us suppose that the origin of a given technology domain is a breakthrough innovation. These 

innovations bring a completely new set of engineering problems that are very loosely related 

with previous solutions. The problem-solving approach is therefore disconnected with past ex-

perience. This implies that a variety of search strategies is applied to seek the solution. Break-

throughs are obviously rare and are usually identified as such only ex-post. Our approach identi-

fies potential breakthroughs ex-ante as clusters of related problems with no or loose connec-

tions with the past that attract a lot of innovative effort by some of the players. In other words, 

finding solutions to these problems is considered as an important task. If the underlying prob-

lems are recognized as important and a solution is possible, at some point the variety of search 

strategies starts to decrease. Problem solving begins to be path-dependent and the persistence 

of a common approach increases. The underlying problems are still considered as important but 

they attract slightly less innovative efforts than before. The domain moved toward its early de-

velopment phase. As time goes by the domain enters its maturity phase, a bulk of existing 

knowledge accumulates, the search of alternative approaches greatly reduces and the problems 

themselves become to be perceived as less important. This can be due to at least three reasons. 

First valid solutions have already been found (i.e. technological progress have moved further). 

Second, technological development at the product level has taken a different trajectory and oth-
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er engineering problems are perceived as bottlenecks of progress. Third, the problems start to 

be perceived as unsolvable. In any of the three cases if a general agreement on the reduced im-

portance of the problem emerges the domains move to its decline or exhausting stage. Innova-

tive efforts drop dramatically and the remaining gleams of inventive activity, if at all, follow 

clearly predefined problem-solving approaches. This destiny is not ineluctable. Some players 

might think that searching for better solutions is still worthy, perhaps because of a different vi-

sion of the future development of the technological trajectory or because of the attempt to im-

prove older generations of a given product or technology. This is likely to be the case for players 

engaged in technological catching-up endeavours. When this happens, there is a renewed inter-

est in the set of technical problems and a revamp in the search of alternative approaches. The 

domain enters into a renewing phase. This type of life cycle is portrayed in Figure 46 in the Ap-

pendix A.4.1. If the renewal phase is successful and the new approaches are promising a new life 

cycle might start, otherwise the domain might face decline anyhow. 

 When we described the archetypal life cycle of a given technology domain we assumed it 

started with a breakthrough.  Besides a successful renewal of an old domain, another exception 

to the breakthrough kick off exists. A life cycle might be initiated by the emergence of disruptive 

technology domains. Christensen (1997) defined disruptive technologies as those that initially 

perform worse than the current best practices and address a different market but eventually 

outperform current technologies even in their own market. We use the word disruptive to de-

scribe domains whose engineering problems initially do not attract much innovative effort be-

cause they are not generally recognized as important. Furthermore, in these domains, the search 

of solutions follows unconventional paths. However, if promising approaches to problem solving 

arise, the importance of the problem and the value of the new design approaches might be rec-

ognized by many players. These domains would then start attracting more inventive effort. 

Eventually, this would spark the life cycle. This is shown in Figure 47 in the Appendix A.4.1. 

 
Figure 21: Archetypal life-cycle of a given technology domain starting with a breakthrough 

 

The exploration of different approaches to a problem, has a clear theoretical relationship with 

the concept of technological trajectories. A technological trajectory is defined by Dosi (1982) as 

the direction of problem-solving activities within a technological paradigm.  Yet, although con-

ceptually related there is an important difference concerning the level of analysis and the way 
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they affect technological progress. Trajectories are typically defined at the product level. They 

are the results of design choices on which features of the product to improve, in particular when 

these features are affected by trade-offs (e.g. computational power vs. energy consumption). 

Technological trajectory affect and are affected by the life cycle of technology domains. On the 

one hand, choices along the trajectory obviously imply that some engineering problems will be 

perceived as more important than others and consequently attract more innovative efforts. De-

pending on the novelty of the problem, the urge to find appropriate solutions will either spark a 

variety of search strategies or follow predefined and more conservative approaches. On the oth-

er hand, the solution of problems that affect several components and/or products, pushes inno-

vative efforts toward some products features rather than others or might even allow braking the 

trade-off. 

 There is also a clear relationship between the life cycle of technology domains and catching-

up strategies followed by latecomers. Lee and Lim (2001) defined three types of catching-up: 

path-following, stage-skipping and path-creating. When the latecomer firm just follows the same 

path taken by the forerunner (with a narrowing delay), the catching-up process is said to be 

path-following. When, instead, the latecomer firm learn so quickly to be able to skip one or more 

generations of the technology, catching-up follows a stage-skipping pattern. Finally, the authors 

define path-creating catch-up. This is defined as the situation in which the process of learning 

and assimilation of older generations of a given technology, by a latecomer firm, results into sig-

nificant technical improvements that take a different direction compared to the current path fol-

lowed by leaders. The authors argue that stage-skipping and path-creation are better described 

as leapfrogging rather than catching-up as they involve doing something different from what 

previously done by the leaders. There is a strong analogy between the life cycle stage of a given 

technology domain and the type of catching-up followed by latecomers. Successful path-

following catching-up would correspond to initially specializing in exhausted areas and then sys-

tematically move backward along the life cycle, specializing in mature, early-growth and emerg-

ing areas at each subsequent time. If any of the steps would be skipped along the catching-up 

process than we could describe it as a stage-skipping type, or leapfrogging.  Taking Lee and Lim’s 

definition literally, path-creating would correspond to an early specialization in breakthrough or 

disruptive areas, as it reveals that the latecomer is exploring its own path. However, we claim 

that specialization in renewing areas also falls into the path-creating category of catching-up 

given the explorative nature of the learning endeavour. 

4.4 Methodology and Preliminary Data Analysis 

To empirically test the validity of our theoretical framework, identify semiconductor technology 

domains’ and analyse players’ revealed technological advantage over the life cycle, we need to 

perform a number of practical tasks. Table 7 reports these tasks together with the methodology 

used to address them. The table is intended to serve as a roadmap to navigate the next sub-

sections, where we systematically explain the methodology used to tackle each task. 
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Table 7: Methodological roadmap to analyse the life cycle of technology domains and 

specialization patterns of new and incumbent innovators 

Task Methodology used 

Define a method to identify technologically influent patents Network of Main Paths Approach 

Define a method to cluster patents around relatedness of 

problems and approaches to problem-solving (i.e. identify 

technology domains) 

Community detection 

Measure importance of the underlying problem and 

persistence of the problem-solving approach 

Communities’ patent composition analysis 

Define boundaries of the importance and persistence to 

categorize life cycle stages of technology domains, from 

breakthrough to declining 

Analysis of the distribution of patent types 

Analyse which actors (i.e. new or incumbent innovators) are 

more active in which stages.  

Analysis of the Revealed Technological Advantage Index 

4.4.1 Identification of technologically influent patents 

Patent technical and economic value is highly skewed (Silverberg and Verspagen, 2007; Trajten-

berg, 1990). Only a few patents stand out of the crowd in terms of their importance for the 

course of technical change and their economic value. Therefore, there are two reasons to reduce 

population of patents to a sample of the important ones. First marginal patents and their cita-

tions create noise that can make it difficult to identify important signals from the data. Second, 

the reduced network size is computationally convenient for subsequent data analysis. The Net-

work of Main Paths (NMPs) is a methodology developed to identify the routes through which 

knowledge diffuses in large citation networks made of patents or publications (Martinelli, 2009; 

Fontana et al., 2009; Verspagen, 2007). When applied to patent citation networks this method-

ology allows analysing the evolution of the main sequences of technological improvements in a 

given industry or technological area. The first building block of this approach relates to the 

meaning of patent citations. If patent B cites patent A then the former improves upon the latter. 

In other words, A represents the state-of-the-art concerning the particular technology described 

in patent B at the moment in which patent application B was filed. Therefore citations can be 

interpreted as a measure of technological relatedness14 and provide insights on the direction of 

technological change. In particular, the citation relationship proves that the citing patent focused 

on the same engineering problem than the cited one. Furthermore, it also highlights the use of a 

similar approach to problem solving as otherwise the relationship between the technical claims 

of citing and cited patents would not be justified. In this case, the latter would not be considered 

as the relevant prior-art for the former. Obviously, a patent can cite and be cited by many other 

patents. Hence, if we want to follow the main trajectories of technology evolution among a set of 

                                                             
14 From this perspective, the well-known fact that many, if not most, of the citation are added by the patent examiner 

rather than the applicant plays in our favor. Indeed patent applications are examined by expert in the field of the 

technology described by the patent. Therefore, citations added by examiners can be seen as an even more objective 

measure of technological relatedness among patents. Obviously examiner-added citations are instead much more of a 

problem if one wants to use them as a measure of spillover between patent assignees. This is not the case for this 

work.  
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patents, we first need to decide which direction to take at every junction. This is what the algo-

rithm to define the NMPs does. First, we calculate the weight of every citation using the search 

path node pair (SPNP) algorithm, developed by Batagelj (2003) based on the original measure 

introduced by Hummon and Doreian (1989).  The SPNP returns the number of times that each 

citation link lies on all possible paths connecting any node to anyone else15. This is easily calcu-

lated by multiplying the number of patents that reach (through direct and indirect citations) the 

cited patent by the number of patents that are reached (directly or indirectly) by the citing pa-

tent. Therefore, a high SPNP weight indicates that the given citation and the two patents in-

volved are located in a highly connected and connecting area of the network. This means that the 

given citation has a strong technological influence, as many paths of technological improvement 

pass through it. The NMPs is then identified by following the paths emanating from start nodes 

(nodes that are cited but not cited), taking at each junction the direction of the citation which 

carries the highest weight, till an end point (a node who cites but is not cited) is reached. This 

process can be repeated several time by cumulating windows of time, (e.g. from time t till t+1, 

then from t till t+2, and so on). By computing the NMPs for each period we can observe how the 

entrance of young patents at each point in time affects the presence of old ones in the network of 

main paths (i.e. the persistence of old technological trajectories). When newly granted patents 

connect to previously well-connected patents, technical improvements follow the same paths of 

citations of the previous period(s). In this case, the technological trajectories are said to be sta-

ble and cumulative. We interpret this case as an instance of stability of problem-solving ap-

proaches. To the contrary, if the new patents connect to paths that were previously underex-

ploited the patent composition of the NMPs changes and the technological trajectories are af-

fected by a discontinuity. We interpret the latter as a case of search of alternative problem-

solving approaches. In a nutshell a given NMPs at each point in time is populated by three types 

of patents: those recently granted (i.e. young patents), older patents that appeared in previous 

snapshots of the NMPs (i.e. old persistent patents) and older ones that show-up for the first time 

(i.e. old new patents). The distribution of patents across the three types is instrumental in identi-

fying the life cycle of technology domains, as we will explain in Section 4.3.  

 We apply the NMPs methodology to the whole citation network of semiconductor tech-

nology-related patents granted by the USPTO between 1976 and 2006. First, we extract all US 

patents belonging to the following five US technology sub-classes: 438–process, 257-product, 

326-materials, 505-programmability, 716-design. Then we create the citation network and ex-

tract the largest connected component. The latter is used to feed the NMPs algorithm that ex-

tract the most important paths of citations based on the SPNC weights and identify the patents 

laying on them. The largest component of the resulted reduced network is composed by the set 

of patents that we claim being the most influential from the perspective of technical progress.  

Table 8 reports the network size at each layer of data reduction. Figures showing the main com-

ponent of the NMPs for the six periods are reported in the Appendix A.4.2. The technology do-

mains are highlighted in different colours (these areas have been identified through the commu-

nity detection procedure explained in Section 4.2).  

                                                             
15 Readers familiar with recent developments in graph theory will recognize the similarity with the measure of ran-

dom-walk betweenness centrality (RWBC) introduced by Newmann (2005). Indeed SPNP and RWBC are essentially 

the same measure. The former had been defined by Hummon and Doreian (1989). 
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Table 8 shows that the main component of the NMPs for the periods 1976-1995 and 1976-2006 

decreased in size compared to the periods before them. Both were analysed in the previous 

chapter. The drop in the period 1976-1995 has been explained by the action of new innovators 

from latecomer countries that happened in the mid-1990s. Their learning strategy consisted in 

searching for alternative-approaches to the existing sets of engineering problems. However the 

disruption that they caused to the main paths was temporary.  Some patents from the main 

component of the NMPs in 1976-1995 moved to the second component in the next period. Yet 

they were brought back into the largest component in 1976-2000, revealing successful attempts 

to make a synthesis of different problem-solving approaches. In the context of this paper, it is 

more interesting to focus on the drop in the size of the main component of the NMPs that oc-

curred in the last period (1976-2006). This second drop was also discuss in the previous chap-

ter. In this case, the reason was a change in the ranking of engineering problems. At the begin-

ning of the 2000s, newly granted patents connected more to the second largest component of 

the NMPs than to the first. This means that a change in the ranking of engineering problems’ im-

portance occurred in this period. Priority of innovative effort shifted from those related to do-

mains pertaining to the largest component to those found in the second one. The analysis of pa-

tents titles and abstracts revealed that technology domains found in in the second component 

focused on engineering problems related to LCD displays, in particular for e-readers and flat tel-

evisions. This suggests that the second largest component of the NMPs is composed of domains 

more related to entertainment and portable devices than to desktop computers and laptops. 

What we observe in this period could therefore be a case of overlap between the life cycle of 

products and technology domains. Given the importance of engineering problems related to the 

second component of the NMPs in the last period under observation, we include it in the analysis 

performed in the rest of the paper. 

 
Table 8: Basic network statistics 

  76-80 76-85 76-90 76-95 76-00 76-06 

Whole network - number of patents 2079  5631 12533  26853  54086 114097 

Whole network - number of citations 2712 13310 40255 102957 272843 779076 

Main component -number of patents 1703  5385 12348  26686  53874 113756 

Main component -number of citations 2469 13164 40145 102864 272728 778890 

Network of Main Paths - number of patents 1445  3490  6042  10107  15387  23428 

Network of Main Paths - number of citations 1403  3291  5697   9489  14588  22077 

Network of Main Paths -Main Component –  

number of patents 
 694  1540  2678   2043   4557   3544 

Network of Main Paths - Main Component –  

number of citations 
 756  1597  2734   2064   4617   3562 

4.4.2 Grouping technologically influent patents into technology domains 

What we have analysed so far is just the size of the NMPs. We need to identify technology do-

mains in this network. Given our definition of technology domains as areas of research charac-

terized by commonality of problems and approaches, the best way of identify them is by com-

munity detection. It became a common practice to analyse large networks’ community structure 

in order to split them into partitions. Partitional and agglomerative hierarchical clustering 
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methods have been defined to identify such structure. We use a method proposed by Newman 

(2004) based on the concept of modularity. Modularity is defined as the fraction of links (cita-

tions in our case) in the network that falls within a community. The algorithm maximizes modu-

larity. This allows identifying communities as areas of the networks whose nodes are more re-

lated to each other’s than with nodes outside the community. Technical details about the New-

man’s community detection algorithm can be found in the Appendix A.4.3, where we also vali-

date the quality of the algorithm’s results. We chose to use the Newman algorithm because, con-

trary to other popular community detection algorithm like, for instance, the Newman and Girvan 

one (2003), the former provides a benchmark to evaluate the quality of the partition and does 

not require to arbitrarily choose the number of communities to be identified. Indeed the modu-

larity maximization procedure and the comparison with equivalent random networks returns 

the best partition of the network analysed, without assuming a pre-existing community struc-

ture.  

Some basic statistics about semiconductor technology domains identified by Newman’s algo-

rithm are reported in 

Table 9. The high values of modularity (always higher than 0.85) reveal a strong underlying 

community structure within the largest component (and the second one in the last period) of the 

NMPs. This provides empirical support for the existence of several, relatively separated, areas of 

research within the semiconductor industry. The algorithm identifies a number of domains vary-

ing between 14 and 15 over the periods observed. The size of the largest area changes quite a 

lot. So does the standard deviation and the coefficient of variation.  
 

Table 9: Basic statistics for the technology domains identified by Newman’s algorithm 

  76-80 

 

76-85 76-90 76-95 76-00 76-06  

(1st Comp.) 

76-06  

(2nd Comp.) 

Number of patents 694 1540 2678 2043 4557 3544 2762 

Modularity 0.8567 0.8789 0.9013 0.9066 0.9161 0.9021 0.8967 

Number of domains 14 15 14 14 15 15 14 

Size of the main domain 128 328 368 272 637 701 489 

% of patents in main domain 18,44% 21,30% 13,74% 13,31% 13,98% 19,78% 17,70% 

Size of smallest domain 15 29 52 65 62 73 53 

% of patents in smallest domain 2,16% 1,88% 1,94% 3,18% 1,36% 2,06% 1,92% 

Average cluster size 49,57 102,66 191,29 145,93 303,80 236,27 197,29 

St.dev. 34,16 80,38 80,41 69,76 143,03 149,51 118,04 

Coefficient of variation (St.dev/Av) 0,69 0,78 0,42 0,48 0,47 0,63 0,60 

 

The large size differences among technology domains hint to the importance of analysing their 

life cycle. In the next subsection, we explain how we identify the life cycle stages of technology 

domains that we have just identified. 

4.4.3 Characterizing technology domains according to their life cycle stage 

Our method to identify the life cycle of technology domains is based on the existence of three 

types of patents that are found in the NMPs at each point in time: young, persistent old and new 
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old. Young patents are those granted in the last period of observation. Persistent old patents are 

those that have already been part of the largest component of the NMPs at least once in the peri-

ods before the one observed. In our analysis, we focus on six periods: 1976-1980, 1976-1985, 

1976-1990, 1976-1995, 1976-2000 and 1976-2006. Let us take, for instance, the last period 

1976-2006. For this period, the three patent categories can be described as follows. Young pa-

tents are those granted after the end of the previous period (i.e. from 2000 till 2006) which con-

nects to the main component of the NMPs. Persistent old patents are those who showed up in 

the main component of the NMPs at least once in one of the previous five periods. New old pa-

tents are those granted before 2001 which had never been part of the main component of the 

NMPs before. The distinction between persistent old patents and new old patents allow us to 

distinguish domains where there is no search of alternative approaches, from those who are ex-

ploring a new path. Furthermore it also help us to differentiate between areas which are young 

but nevertheless building on previously explored technological paths and young areas which are 

not related to any technological solution that have been developed in the past. Figure 22 shows 

the relationship between the type of old patents and the age of the technological areas. Each cir-

cle stands for one of the technology domains identified over the six periods. Its position on the 

horizontal axis reflects the age of the area. The vertical axis coordinate is given by the percent-

age of old new and old persistent patents found in the domain (each domain counts for two cir-

cles in Figure 22). Dashed lines are lines of best fit obtained by linear regression using a second 

degree polynomial as mathematical model. 

 The figure shows that young domains are more likely to build on previously unexploited 

technological solutions (new old patents) than known ones (persistent old patents). Therefore, 

search across possible problem-solving approaches is higher. To the contrary, the more a do-

main grows old, the more likely it will follow a stable and previously defined approach to prob-

lem solving. The two curves closely resemble the patterns sketched in Figure 22. This confirms 

our theoretical predictions based on the cumulative nature of technological change. Figure 22 

also clearly shows that patent composition within a technological area changes drastically with 

age.  Our classification method follows the intuition that it is possible to categorize domains’ life 

cycle stages based on the relative number of young, persistent old and new old patents, they are 

composed of. This allows defining all the stages of the life cycle of technological areas, from 

emerging to declining.  

 

 
Figure 22: The relationship between persistent old patent, new old patents 

and the age of semiconductor technology domains 
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Based on the theoretical framework discussed in Section 4.3 and the empirical findings shown in 

Figure 22, we propose the following theoretical correspondence between each life cycle stage 

and the patent composition that reflects it. 

Breakthrough  

Breakthroughs break the usual pattern of knowledge cumulativeness that normally characteriz-

es technical change. Their relationship with previous solutions is very little if existent. We argue 

that domains in their breakthrough stage are characterized by a large number of young patents 

and a few new old and persistent old patents if at all. 

Disruptive emerging areas 

We argue that disruptive technological areas are characterized by the presence of several young 

patents that builds largely on previously disconnected patents and very little on persistent old 

ones. This reflect the high search across possible approaches to problem solving which charac-

terize emerging areas but also the peculiar focus on previously unexploited existing solutions 

which make the domain disruptive in nature. The other marking trait of disruptive domains is 

that the underlying set of problems initially does not receive much attention. The latter two 

characteristics distinguish disruptive domains from breakthroughs. 

Early development 

If successful, disruptive or breakthrough domains are developed further and move to a stage of 

early growth. During this stage, the attractiveness of the area of research is high and the techno-

logical trajectory starts to consolidate. Therefore, the number of young patents is high, the pres-

ence of persistent old patents increases and the one of new old patents decreases.  

Maturity 

Maturity is similar to the early development stage with the only difference that the domain now 

attracts much less innovative efforts (i.e. fewer young patents connect to it) and technological 

change becomes increasingly cumulative. This means that the number of persistent old patents 

keeps growing, to the detriment of the exploration of alternative approaches.  

Renewing  

After the maturity stage the evolution of a given technology domain is at a crossroad. The devel-

opment of the given technology could be either stopped or get new vigour. In the former case, 

the domain begins exhausting. In the latter, it enters into a renewing stage. In this case, alterna-

tive paths are explored to avoid obsolescence. This might begin a new life cycle or just extend 

the life of a technology domain for a short while without avoiding its imminent decline. The re-

newing stage is characterized by a few young patents that build extensively on new old ones and 

on some persistent old patents. 

Exhausting  

Exhausting (or declining) areas are characterized by very few, if any, young patents, a large 

number of persistent old patents and almost no new old ones. 

 At this point, we have a theoretical definition of the life-cycle stages of technology domains 

and the preliminary characterization of them according to the relative number of young, old per-

sistent and old new patents that is found in each domain. To make our methodology operational 

we need a practical way to formally distinguishing one stage from the other. Consider a triangu-
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lar shaped space in which the horizontal axis measures the relative number of old persistent pa-

tents in a given domain and the vertical axis reports the relative number of young patents. The 

structure of the space is such that domains can only locate in the lower triangle that is defined 

by the axis and the diagonal connecting the maximum values of the two axis (i.e. 100). This is 

because the relative number of patents per each category is constrained between 0 and 100. 

Therefore, by construction the orthogonal distance of each domain from the diagonal measure 

the relative number of old new patents. We call such space the life-cycle space of technology do-

mains as the entire life of a given domain can be described by movements along this space. The 

space is reproduced in Figure 24. However, before to discuss the figure, let us first explain step-

by-step the process behind its creation. We first need to draw borders on such space that will 

help us identifying the areas corresponding to each life-cycle stage. To accomplish this task we 

need to formally quantify the relative number of young, persistent old and new old patents that 

a domain must have for its life cycle to be in a given stage. Quantify how much is a lot is a task 

that is best done by comparison. Therefore, we first take all domains identified by Newman’s 

algorithm over the periods 1976-198516, 1976-1990, 1976-1995, 1976-2000 and 1976-2006, we 

look at the percentage of young, persistent old patents and new old ones in each area and then 

we plot the distribution of these percentages. This is shown in Figure 23, where each of the do-

mains is split into three observations indicating the percentage of young, new old and persistent 

old patents it is composed of. On the horizontal axis, we have the values for the percentages of 

each category of patents that are part of one of the technology domains, whereas on the vertical 

axis we have the cumulative percentage of the distribution, meaning the percentage of observa-

tions with a value smaller than the value on the horizontal axis. We drew two horizontal dashed 

lines to clearly separate the top 20 percent from the mid-60 percent and the bottom 20 percent 

of the distribution. This allows us to identify the border values for the first quintile and the last 

quintile. For instance, if we look at the distribution of the relative number of young patents 

among all technology domains we see that 20 per cent of the domains have less than 1.14 per 

cent of young patents, 60 per cent have between 1.14 per cent and 49.35 per cent of them and 20 

per cent have more than 49.35 per cent of young patents. For instance, this means that a given 

domain can be said to have many young patents if more than 49.35 per cent of its patents are 

young. In this case, the remaining 50.65 per cent is distributed between new old patents and 

persistent old ones. The same exercise can be applied to new old patents and persistent old 

ones. In the former case 20 per cent of the domains have less than 11.11 per cent of new old pa-

tents, 60 per cent have between 11.11 per cent and 45.57 per cent of them and 20 per cent have 

more than 45.57 per cent of young patents. Finally, if we look at the distribution of the relative 

number of persistent old patents we see that 20 per cent of the domains have less than 11.97 per 

cent of them, 60 per cent have between 11.97 per cent and 86.67 per cent and 20 per cent have 

more than 86.67 per cent. It is important to notice that there are no domains purely composed 

by young or new old patents. Nevertheless, a few are entirely made of persistent old patents. 

From a NMPs methodological point of view we can argue that a domain purely made by young 

patents or by new old ones would be disconnected from the main component of the NMPs by 

construction and therefore not observed. To the contrary, albeit rarely, domains entirely com-

                                                             
16 We cannot use the first period, 1976-1980 because, being the initial period, by construction all the areas are entire-

ly composed by young patents. 
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posed by persistent old patents can be found in the main component of the NMPs. They indicate 

technological ancestors upon which newer solutions build. 

 

 
Figure 23: Empirical cumulative distribution of the percentage of young, new old and persistent old patents 

for all the domains in the periods 1976-1985, 1976-1990, 1976-1995, 1976-2000 and 1976-2006 

 

Now that we have more precise quantities of young, new old patents and persistent old ones, we 

can use them to elaborate a more precise definition of the life cycle stages of technological do-

mains. Table 10 reports the thresholds that define the amount of each type of patents to be 

found in a given domain for it to be classified in one of the life cycle stage reported in the left 

column. We call this thresholds quantile borders. For instance, for a domain to be classified as a 

breakthrough it needs to have at least 49.35 per cent of young patents, less than 45.57 per cent 

of new old ones and less than 11.97 per cent of persistent old patents.  

 However, the quantile borders alone are not sufficient to determine life cycle stages. The 

main reason is that, being thresholds, quantile borders suffer from the drawback that areas that 

lay very close to the border might actually be more similar to the areas located on the other side 

of the border than to the other areas located on the same side. This problem is similar to the one 

of defining homogeneous groups of people living in areas whose borders have been set on paper, 

without considering the common characteristics of people living close to the border. In other 

words, we would like to have borders that respect the geography of the life-cycle space. There-

fore, the initial quantile borders are used to calculate centroids, which serve as basins of attrac-

tion. To sum up, first we calculate the quantile borders for the distribution of the percentage of 

young, new old and persistent old patents for all the domains in the periods 1976-1985, 1976-

1990, 1976-1995, 1976-2000 and 1976-2006 (Table 10). Then we use them to preliminary iden-

tify regions of the life-cycle space that are coherent with the theoretical description of the life 

cycle stages of technology domains and the empirical distributions of young, persistent old and 

new old patents. Afterwards we calculate the centroid for each of the preliminary defined areas 

of the life-cycle space. Finally, we compute the distance to each of the centroids for each tech-

nology domain identified through Newman’s algorithm. The life cycle stage of each technology 

domain is then identified by assigning each domain to the closest centroid. This procedure is 

shown in Figure 24.  
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Table 10: Patent distribution quantile borders by patent type and life cycle stage 

 Quantile classification  

 

 Many Q1 (i.e. top 20%)  

 Mid Q2, Q3, Q4 (i.e. mid 60%)  

 Few Q5 (i.e. bottom 20%)  

    
Quantile borders for the technological area life cycle stages 

 

 Young patents New old patents Persistent old patents 

Breakthrough 

emerging areas 

Many = Q1 (>49.35%) Few-mid = Q2-Q5 (<45.57%) Few = Q5 (<11.97%) 

Disruptive  

emerging areas 

Few-mid  

= Q2-Q4 (<49.35%) 

Many = Q1 (>45.57%) Few = Q5 (<11.97%%) 

Early growth areas Many = Q1 (>49.35%) Few-mid  

= Q2-Q5 (<45.57%) 

Mid Q2-Q4  

= (11.97%≤ …<86.67%) 

Mature areas Few-mid  

= Q2-Q4 (<49.35%) 

Few-mid  

= Q2-Q5 (<45.57%) 

Mid Q2-Q4  

= (11.97%≤ …<86.67%) 

Renewing areas Few-mid  

= Q2-Q4 (<49.35%) 

Many = Q1 (>45.57%) Mid Q2-Q4  

= (11.97%≤ …<86.67%) 

Exhausting areas Few = Q5 (<1.14%) Few = Q5 (<11.11%) Many = Q1 (>86.67%) 

 

Each node stands for one of the technology domains identified in Section 4.2. The size of the 

node is proportional to the size of the given domain measured by the number of patents. The 

location of a domain on the life-cycle space is informative of its patent-composition and there-

fore of its life-cycle stage. In Figure 24 red lines highlight quantile borders reported in Table 10 

and centroids are marked with a red ‘x’. Domains that share the same colour fall within the basin 

of attraction of the same centroid. This means that they are closer to that centroid than to any 

other one and therefore are in the life-cycle stage indicated by the centroid. Note that by con-

necting centroids of subsequent life cycle stages and tracking the evolution of the relative num-

ber of young, old persistent and old new patents, curves similar to those reported in Figure 21 

emerge. This highlights the strong connection between the theoretical description of the life-

cycle of technology domains and the methodology used to trace it. 

 Now we have a classification of the life cycle stage of each technology domain. To test its 

logical consistency we trace movements from each life cycle stage to the other ones. Of course, 

for our classification to be coherent, we should observe movements consistent with time. This 

means that, for instance, patents that are classified into a technology domain in its early devel-

opment stage in period T should be mainly part of a domain classified as mature in the next pe-

riod. Some might still be found in an early-development stage. This would indicate that the life 

cycle of that domain is relatively slow. Some others might jump over stages and be found in re-

newing or exhausting domains. This would indicate that the life cycle of that domain moved fast-

er in the period observed. The crucial aspect is that they should not be found in large numbers in 

an earlier stage, otherwise the time consistency of our methodology would be broken. A small 

number of patents could actually move back to an earlier stage but this can only happen when 

some patents from one domain serve as foundation for a younger one in the next period. This 

possibility is intrinsic to the evolution of communities as defined by Newman’s algorithm and 

the network of main path approach. However, this cannot happen in large numbers because oth-
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erwise the new domain would not be younger than the original one and would then be classified 

in the same life cycle stage than the latter, or in one of the followings.  

 

 
Figure 24: The life-cycle space 

 

Table 11 shows how many patents from domains which, in period T, were in one of the life cycle 

stages listed on the rows moved, in the next period, to any of the domains whose life cycle stage 

in T+1 is indicated in the columns. 

 
Table 11: Movements from one life cycle stage to the others over consecutive periods 

 
The table clearly proves that our methodology is logically consistent as most of the patents fol-

low the expected movement to “older” life cycle stages (to the right of the diagonal) and very few 

moves to “younger” domains whose life cycle stage is antecedent the one of origin (to the left of 

the diagonal). Having proved the consistency of our methodology, we can now introduce the an-

swers to the paper’s research questions. 

4.4.4 Measuring comparative technological advantage along the life-cycle 

In the introduction of our paper, we raised two research questions about the role played by in-

cumbent and new innovators along the life-cycle of technology domains.  In order to analyse ag-

gregate comparative technological advantage we propose an original index that returns a macro-

aggregation of micro-comparative technological advantage of individual firms. Our specializa-

tion index, which we call SPEC, builds on the well-known revealed technological advantage index 
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(RTA). The RTA is a specialization index defined by Soete (1987), which builds on the Ricardian 

concept of comparative advantage and, more precisely, on the revealed comparative advantage 

index as defined by Balassa (1965). The intuition behind the RTA is that even if a given entity 

(countries, firms, geographical regions) might have less patents than other entities in absolute 

terms, there might still be areas of technology in which it enjoys a comparative advantage. This 

means that such entity could be able to produce comparatively more patents in a given techno-

logical area than in the overall industry. Indeed, the index reveals the domains in which a given 

entity performs comparatively better. This reflects the entity’s comparative advantage in terms 

of research productivity in those domains. Neoclassical economic theory would suggest that 

agents (firms or countries) should specialize in those domains where they enjoy comparative 

advantage. Obviously, this is a static suggestion that does not take into account the possibility of 

knowledge upgrading. Our use of the SPEC index is intended to investigate in which life-cycle 

stages agents’ capabilities significantly differ, in particular between new and incumbent innova-

tors. However, it must not be understood as a suggestion that agents should necessarily special-

ize in those domains permanently. To the contrary, in Section 4.5.2, we seek evidence of 

knowledge upgrading by looking at how the revealed comparative advantage changed over time. 

The original version of the RTA index is calculated as follows: 

𝑅𝑇𝐴𝑖𝑘 =  
𝑥𝑖𝑘/ ∑ 𝑥𝑖𝑘𝑖

∑ 𝑥𝑖𝑘 / ∑ 𝑥𝑖𝑘𝑖,𝑘𝑘
 (4.1) 

Where xik is entity’s (country or firm) i number of patents in domain k. The RTA index is equal to 

zero when entity i holds no patents in the given domain k. When the index is equal to 1 entity i’s 

patent share in area k is equal to its share in all areas. Values of the index greater than 1 indicate 

comparative advantage in the given domain. The original version of the index is not symmetric, 

meaning that it is bounded to zero for comparative disadvantage in the domain but unbounded 

for comparative advantage. This causes problems when the RTA is used in econometric models 

or when one wants to compare the shape of its distribution for different entities. Since in this 

work we intend to do the latter we therefore opt for the symmetric version of the RTA (SRTA), 

which is calculated as follows: 

𝑆𝑅𝑇𝐴𝑖𝑘 =  
𝑅𝑇𝐴𝑖𝑘 − 1

𝑅𝑇𝐴𝑖𝑘 + 1
 (4.2) 

In its symmetric version the index ranges from -1 (full negative specialization) to lim
𝑅𝑇𝐴→∞

1 (full 

positive specialization), with values greater than 0 indicating comparative advantage in the do-

main. 

 We use the symmetric RTA as a basis to construct an index that gives a micro-founded pic-

ture of specialization patterns at the aggregate level. We first need to estimate the probability 

density function (pdf) of the SRTA for each country. The pdf returns the probability to observe a 

given SRTA value if we choose a firm at random out of the sample of firms belonging to a given 

country. We use a kernel smoothing function to estimate the probability distribution that best 

fits the empirical (cumulative) distribution of the SRTA for the given entity. The kernel density 

function estimates the probability to observe a given SRTA for the whole range of the SRTA in-

dex (from -1 to 1). This improves our ability to compare entities of different size as the empirical 

distribution for small entities relies on fewer observations than for large entities. Once we esti-

mated the probability density function, we compute the SPEC index as follows: 
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(4.3) 

Our specialization index SPECik is the weighted sum of the probability ρ to observe SRTA values 

at the firm level reflecting comparative advantage in the given domain (i.e. SRTA>0). Indeed 

ρ(SRTAj)ik is the probability to observe a given SRTA value j greater than zero (i.e. positive spe-

cialization) among the whole sample of SRTA values calculated for the area k for all firms be-

longing to the given country i. This probability is multiplied by the strength of specialization, 

namely by the value of the SRTA j, which, ranging from 0 to 1, effectively serves as a weight for 

the sum. We limit the SRTA range to positive values because we are not interested in compara-

tive disadvantage. In other words, a large value of the SPEC index means that, if we extract a firm 

at random out of the sample of firms from the given country, that firm has a high probability to 

be strongly specialized in the area under consideration. It is important to note that our index 

focus on the right tail of the distribution of SRTA. This is an improvement over traditional ap-

proaches that calculates the SRTA at the firm level and then averaged it at the country level. This 

approach fails to realize that comparative advantages are rarer than comparative disadvantages. 

Therefore calculating the average SRTA over the whole distribution hides the interesting signal 

contained in the data. Indeed, typically, the average SRTA would be negative. Given that observ-

ing values of the SRTA greater than zero is much less common than the opposite, the interesting 

information that the data provides with respect to comparison across groups is not provided by 

the mean. Rather, what really matters is how large the difference between the right tails of the 

distribution for the two groups is. Comparing the SPEC index across groups provides this infor-

mation. Another popular choice in the literature is to calculate the SRTA for a given country as 

the aggregate of all of its firms. This approach is also unsatisfactory in the sense that the aggre-

gate picture might be heavily influenced by a few large firms, washing away the information 

about comparative advantages or disadvantages of small firms. The SPEC index does not suffer 

from this problem either.  

4.5 Findings 

In the two following subsections, we present the findings that answer the two research ques-

tions raised in the introduction of this paper: (i) In which life-cycle stages new innovators have a 

comparative technological advantage over incumbents? (ii) Are there significant differences in the 

comparative technological advantage of new innovators from different countries? Before introduc-

ing the answers to these questions, we first describe the distribution of new and incumbent in-

novators in the NMPs sample. Table 12 reports the number of firms by geographic origin and 

type (new or incumbent innovators) across the five periods under consideration. To answer our 

two research questions, we merge the first and second component of the NMPs in the last period 

together, as explained in Sections 4.1 and 4.2.  
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Table 12: Number of firms by geographic origin and category 

All firms 1981-1985 1986-1990 1991-1995 1996-2000 2001-2006 (1st+2nd) Total 

US 61 92 62 75 80 370 

JP 24 32 28 47 29 160 

KR 0 2 5 7 5 19 

TW 0 1 6 17 15 39 

SG 0 0 1 4 3 8 

KR/TW/SG 0 3 12 28 23 66 

Total 85 127 102 150 132 596 

  

      New Innovators 1981-1985 1986-1990 1991-1995 1996-2000 2001-2006 (1st+2nd) Total 

US 35 50 20 40 48 193 

JP 13 18 10 25 8 74 

KR 

 

2 3 2 3 10 

TW 

 

1 5 11 7 24 

SG 

  

1 2 1 4 

KR/TW/SG 0 3 9 15 11 38 

Total 48 71 39 80 67 305 

  

      Incumbents 1981-1985 1986-1990 1991-1995 1996-2000 2001-2006 (1st+2nd) Total 

US 26 42 42 35 32 177 

JP 11 14 18 22 21 86 

KR 0 0 2 5 2 9 

TW 0 0 1 6 8 15 

SG 0 0 0 2 2 4 

KR/TW/SG 0 0 3 13 12 28 

Total 37 56 63 70 65 291 

4.5.1 New and incumbent innovators’ revealed technological advantage 

In order to have a reliable estimation for the distribution of SRTAs for new and incumbent inno-

vators we initially plot all five periods together. This returns 305 observations for the new inno-

vators and 291 for the incumbents. Figure 25 shows the kernel smoothed cumulative distribu-

tion functions for the two categories of firms. The vertical axis reports the probability to ob-

serve, across the whole sample, values of the SRTA smaller or equal than those reported on the 

horizontal axis. Therefore if one distribution is “smaller”17 than the other for positive values of 

the SRTA it means that the former shows a comparatively stronger specialization pattern in the 
                                                             
17 The correct terms would be first order stochastic dominance if one distribution were always below the other one 

and second order stochastic dominance if the two distributions cross at some point, meaning that one distribution is 

below the other only for values greater than a certain threshold. Stochastic dominance refers to the difference in 

probabilities to observe values of a given amount. If the distribution for one category is stochastically dominated (i.e. 

it falls below the other) for the whole or part of the range it means that the probability to observe large (small) values 

of the variable is higher (smaller) than for the other category. 
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given technology life cycle stage than the latter, as the probability to observe large SRTA values 

is higher. A first look at the figure reveals that the shape of the distributions changes across the 

different life cycle stages. However, in at least three cases, breakthrough, early growth and ma-

ture areas, the right tail of the distribution for both groups behaves quite similarly. The differ-

ence appears to be stronger in disruptive, renewing and exhausting areas. We test whether the 

behaviour of the two populations is statistically different by mean of the Anderson-Darling non-

parametric two-sample test. The table of result is reported in Appendix A.4.4. The test confirms 

that the distribution of SRTA for new and incumbent innovators is statistically different for all 

the life-cycle stages except for the exhausting one. New innovators seem to have a comparative 

advantage in disruptive areas (as predicted by Christensen), whereas incumbents seem to be 

comparatively stronger, for mild levels of the SRTA, in renewing and exhausting areas, in line 

with industry life-cycle theory. A clearer picture of these differences is shown in Figure 26, 

where we plot the SPEC index for new and incumbent innovators. 

 
Figure 25: Estimated cumulative distribution functions for new and incumbent innovators 
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Figure 26: Micro-founded specialization index for new and incumbent innovators 

 

Our micro-founded specialization index confirms what we inferred from the visual inspection of 

the cumulative distributions. New innovators have a greater probability than incumbents to 

have a comparative advantage in all life-cycle stages up to maturity. These differences are all sta-

tistically significant based on the Anderson-Darling test. However only for disruptive domains 

the comparative advantage is considerably strong.  For renewing and exhausting domains the 

opposite is true and the comparative advantage is hold by incumbents. Yet the difference is sig-

nificant only for the former. Therefore, if we only distinguish firms based on whether they are 

new or incumbent innovators, without considering their country of origin, the semiconductor 

industry follow a recommended specialization pattern which is consistent with industry life-

cycle theory, Christensen’s notion of disruptive technologies and Levinthal and March’s defini-

tion of incumbents’ myopia (Christensen, 1997; Levinthal and March, 1993) . Indeed our findings 

are consistent with the theoretical prediction that new innovators perform comparatively better 

in technology domains in the initial stages of their life-cycle because incumbents are more likely 

to face learning traps that make them reluctant to explore new approaches to problem-solving. 

Our findings show that this is in general true but the comparative advantage is particularly 

strong only for disruptive domains. This answers our first research question. To tackle the sec-

ond one we need to further distinguish firms based on their geographical origin. This is done in 

the next sub-section. 

4.5.2 Countries’ revealed technological advantage 

In Figure 27 we split new entrant innovators by geographical origin. Once again, in order to have 

enough observations for the estimation of the cumulative distribution function we plot all peri-

ods together (this constraint will be removed in the last part of the analysis). Furthermore, for 

the same reason, we need to group latecomer new innovators from Korea, Taiwan and Singa-

pore into a single geographical area. This approach allows revealing the comparative technologi-

cal advantages of new innovators from catching-up (i.e. Korea, Taiwan and Singapore), early en-

trant (i.e. Japan) and leader (i.e. US) countries. For the sake of further comparison, we also plot 

the distribution of SRTA for incumbent innovators. This distribution is the same shown in Figure 

25. 
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Figure 27: Estimated cumulative distribution functions for new innovators 

from the US, Japan, and the three Asian tigers 

 

US and Japanese new innovators follow the same pattern of comparative advantage. The kernel 

estimated cumulative distributions of the SRTA values for US’s and Japan’s new innovators are 

extremely close in all the life cycle stages with the exception of disruptive areas. To the contrary, 

there is a remarkable difference between the distributions of the three Asian tigers and those of 

US and Japan, especially at the extreme stages of the life cycle. In breakthrough, renewing and 

exhausting areas, the distribution of SRTA values for Korean, Taiwanese and Singaporean new 
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innovators is always stochastically dominated by the distribution for US and Japanese new inno-

vators. This means that Asian tiger’s new innovators are comparatively more specialized in 

those areas that US and Japanese ones. The opposite is true for disruptive areas, whereas there 

is not much difference for early growth and mature ones. It is also interesting to compare spe-

cialization patterns between new innovators, now split by geographical origin, and incumbents. 

In technology domains in the early stages of their life-cycle, US and Japanese new innovators’ 

specialization patterns closely follow incumbent innovators’ one. On the other hand, for domains 

in the late stages (mature, renewing and exhausting), incumbents’ distribution of SRTA values 

resembles more to the specialization patterns of new innovators from the three Asian tigers. 

This suggests that incumbent strategies are imitated more strongly by US and Japanese new in-

novators when it comes to specializing in emerging technologies, whereas they are followed 

more closely by Asian tigers’ firms when the decision is about specializing in relatively older 

technologies. 

 As done in the previous section, to give a more precise answer to our second research ques-

tion we look at the micro-founded specialization index for new innovators by geographical 

origin. This is reported in Figure 28. Once again, differences in the distributions plotted in Figure 

27, which implies differences across SPEC indices, have been tested for statistical significance 

using the Anderson-Darling test (Appendix A.4.4).  

 

 
Figure 28: Micro-founded specialization index for incumbents and new innovators by geographic origin 

 

Let us first consider breakthrough, renewing and exhausting domains. If we pick a firm at ran-

dom out of each of the samples of new innovators, there is a larger probability that the randomly 

selected firm has a strong comparative advantage in those areas if we sample it from the Asian 

tiger group rather than the US or Japanese ones. Yet differences across the related distributions 

are statistically significant only for renewing domains. They are close to be significant in break-

through and exhausting domains, when we compare Asian tigers’ new innovators against US 

ones for the former and against Japanese new innovators for the latter. They are not significant 

in when comparing Asian tiger’s and Japanese new innovators in breakthrough and Asian tiger’s 

and American new innovators in exhausting domains. When we look at disruptive areas, the pat-

tern reverses. Japanese and US new innovators enjoy a strong comparative advantage, whereas 
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Asian tiger’s ones have a clear disadvantage. Yet, the Anderson-Darling test reveals that the ad-

vantage over the Asian tigers is significant only for Japanese new innovators, albeit close to sig-

nificance for American ones. Differences are very mild for early growth and mature areas, alt-

hough statistically significant in the case of early development domains for Japan. The advantage 

enjoyed by Asian tiger’s new innovators over US and Japanese ones is consistent with the anec-

dotic knowledge of the development of the Semiconductor industry in these countries. As shown 

by Mathews and Cho (1999), Chang et al. (1994) and Cho et al. (1998), the strategy adopted by 

firms from Taiwan and Korea consisted in accessing relatively obsolete foreign technologies and 

reverse-engineer them to start their learning path. To the contrary, their comparative advantage 

in breakthrough domains, although not significant, deserves more attention. In particular, from 

the point of view of catching-up and knowledge upgrading, it is interesting to know when this 

advantage started to emerge.  

 Thus far, we provided a static analysis, due to the lack of a sufficient number of observa-

tions to have period-by-period reliable estimations for the new innovators. We can overcome 

this constraint by looking at all firms together, regardless of whether they are new or incumbent 

innovators. This way we are able to show a dynamic picture of micro-founded specialization pat-

terns at the country level. Figure 29 shows the trend of the SPEC index over time across geo-

graphic areas.  

 

 
Figure 29: The evolution of the micro-founded specialization index over time 

 

A dynamic look at specialization patterns reveals that the comparative strength of Asian tigers in 

breakthrough domains is recent and started in the 2000s. Up to the end of the 1990s, firms from 

Korea, Taiwan and Singapore, were comparatively more specialized in renewing and exhausting 

domains. Interestingly, an increase of the SPEC index for these firms can also be observed in the 

2000s for disruptive areas. What is also striking is that US and Japanese firms’ comparative 

technological advantage in breakthrough areas (and disruptive ones, for Japan only) is decreas-

ing in the 2000s in favour of areas at later stages of their life cycle (mature, renewing and ex-

hausting). More information on the technical nature of each of the technology domains identified 

in the 2001-2006 period is included in the Appendix A.4.5. 
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 These results shed light on the different strategies followed by the mayor players of the 

semiconductor industry. New entrants from emerging countries successfully catch-up with the 

leaders by initially specializing in renewing and exhausting technology domains. These areas of 

engineering research were left free by US and Japanese firms, which, up to the mid-1990s, were 

comparatively more specialized in disruptive and early growth areas. However, in the 2000s 

latecomer countries began to develop a distinct specialization in breakthrough areas and also an 

increasing focus on disruptive ones, though maintaining a comparative technological advantage 

in exhausting areas. A closer look at the data reveals that the large values of the SPEC index for 

Taiwan, Korea and Singapore in breakthrough and disruptive areas in the 2000s, is mainly due 

to their specialization in emerging areas belonging to the second component, rather than the 

first one. This highlights their ability to anticipate a possible radical change in the trajectory (in 

favour of semiconductor applications for devices such as e-readers, tablets, LCD monitors) and 

testify the effort they devoted to build capabilities in the new frontier thin-film transistor LCD 

technologies (Hung, 2006; Chang, 2005). The combination of these findings with what emerged 

from the analysis in Chapter 3, describe a clear picture of the learning strategies followed by 

latecomers in the Semiconductor industry. As shown in Chapter 3, up to the end of the 1990s, 

firms from Taiwan, Korean and Singapore were primarily focused on following well-established 

approaches to tackle central engineering problems in the semiconductors. However, the findings 

of the life-cycle analysis showed that, at the same time they were trying to renew these relatively 

older domains by mixing well-known approaches to problem solving with new ideas. These al-

lowed latecomer firms building strong technological capabilities that quickly shift their compar-

ative advantage to breakthrough areas in the early 2000s. This is confirmed by the ranking-

changing strategies followed by some of these firms in the first half of the 2000s, as emerged 

from Chapter 3.  Therefore, we can conclude that successful technological catching-up by firms 

from latecomer countries took a form that combined what Lee (2013) and Lee and Lim (2001) 

called path-creating and stage-skipping strategy. By focusing on renewing established engineer-

ing trajectories, they build sufficient technological capabilities to explore new ones. In contrast, 

for players from leading or early entrant countries (US and Japan), comparative advantage pat-

terns reflect Klepper’s industry life cycle theory. Entry focuses on emerging technologies, with a 

stronger advantage in disruptive domains, as predicted by Christensen (1997). For the sake of 

keeping the analysis concise, we did not show details on comparative advantage for individual 

firms. The interested reader can find a series of tables reporting SRTA indexes calculated for the 

mayor firms in the industry in the Appendix A.4.6.  

4.6 Discussion and conclusions 

Catching-up and leapfrogging in high-tech industries strongly depends on the direction of tech-

nological change and on the emergence of new technology domains and decline of old ones. In 

fast changing technical and business landscapes today’s capabilities do not necessarily ensure 

long-run survival. This highlights the importance of studying the relationship between technolo-

gy life cycle and the dynamic of comparative advantage patterns of new and incumbent innova-

tors. Our study is one of the few empirical contributions, together with Lee (2013), to the discus-

sion of technology life cycles at the domain level. Patent citation networks offer a fertile ground 

for such analysis. We theoretically defined the life-cycle of technology domains and its relation 

with product and industry life-cycles. Furthermore, we built a methodology to identify technolo-

gy domains and trace their life-cycle by means of disentangling the complexity of large patent 
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citation networks. This provided new insights on the dynamics of comparative advantage in the 

semiconductor industry. 

 First, we confirmed the empirical validity of entry and comparative advantage predictions 

from the theories of industry life-cycle and disruptive technologies. Second, we showed that, un-

til the end of the 1990s, US and Japanese firms were comparatively better in emerging technolo-

gy domains, whereas firms from Taiwan, Korea and Singapore, tended to specialize in relatively 

older domains, mainly in their mature, renewing and exhausting stages. These comparative ad-

vantage patterns changed strongly in the beginning of the 2000s, when firms from the three 

Asian tigers, next to their advantage in declining domains they also started developing a com-

parative advantage in emerging ones. This proves that latecomer firms from these countries 

have engaged in a mix between path-creating and stage-skipping catching-up, as theorized by 

Lee and Lim (2001). These results are also in accordance with the empirical analysis of technol-

ogy cycle time and catching-up made by Lee (2013) in which the author shows that the success-

ful catching-up of Korea and Taiwan built on upgrading the specialization pattern from older to 

newer technologies, exploiting short-life cycles. Our findings are also in line with the description 

of how Korean and Taiwanese firms managed to build their technological capabilities, as dis-

cussed by Chang et al. (1994), Mathews and Cho (1999),  Cho et al. (1998), Chang and Tsai, 2002, 

Bell and Juma (2008) and Hobday (2000). These authors agree in highlighting the instrumental 

role played by Korean and Taiwanese firms’ early specialization in old foreign licensed  technol-

ogies to develop internal R&D capabilities lately used to upgrade their specialization. The Asian 

tigers’ relatively strong position in domains that were emerging in the early 2000s, testifies their 

ability to be forward-looking. 

 Yet, it is important to notice that in this work we did not assess the future impact of emerg-

ing domains. Our goal was to analyse whether new entrants’ comparative advantage in those 

domains significantly differs from incumbents’ one. It is needless to mention that emerging 

technologies are intrinsically risky and there is no guarantee that their development will be sus-

tained in the future. A detailed analysis of how emerging areas affect the future direction of the 

technological trajectories goes beyond the scope of this paper. However, a preliminary analysis, 

that was not reported here, revealed that some areas did generate sustained new trajectories 

whereas others failed to do so. Since this has crucial implication for catching-up, a full analysis of 

the knowledge interaction between technology domains and the transferability of capabilities 

between areas is an open question for future research. 

 Finally, we want to praise the strength of using interdisciplinary approaches to disentangle 

today’s technological and economic complexity. Several tools have been developed for this pur-

pose, mainly at the intersection of economics with mathematics, physics and network science. 

The application of economic thinking to a combination of these tools, the community detection 

technique and the network of main paths, proved to be extremely insightful to analyse an eco-

nomic question that occupied scholars at least since Vernon’s seminal work (1966), namely the 

one of the relationship between life cycles and comparative advantage. The correspondence of 

our findings with the extensive anecdotal knowledge of catching-up in the semiconductor indus-

try contributes to validate our methodology to trace the life-cycle of technology domains and 

make a case for its use to study the technology dynamics of other high-tech industries or apply it 

at a wider scale to the question of the co-evolution of technologies.  
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5 DO I FIT? INNOVATIVE SURVIVAL, 
TECHNOLOGY DYNAMICS AND 

THE EVOLUTION OF KNOWLEDGE 

We study firms’ survival as core innovators (i.e. innovative survival) in the semiconductor indus-

try as a function of knowledge diversification and accumulation. The semiconductor industry is 

characterized by high level of technical modularity, which is reflected in poor knowledge prox-

imity across technology domains. We hypothesize that, in such context, diversification and 

knowledge accumulation provide better chances for innovative survival. Moreover, we argue 

that, when knowledge is hardly portable across domains, the spread of survival chances be-

tween diversified and specialized players should be larger when technological change is 

knowledge replacing. We contribute new measures of knowledge persistence, breadth, depth 

and modularity, which take into account the topological structure of the system of technology 

domains. We do that by combining the Network of Main Paths (NMPs) analytical tool with the 

genetic approach (GA) to patent citation networks defined by Martinelli and Nomaler (2014). 

Our findings show that diversification significantly improves core innovators’ odds of innovative 

survival on the main paths of citations but only for large levels of knowledge breadth. The effect 

is conditional to the level of knowledge persistence. In contrast, firm’s knowledge depth alone, 

as well as the size of its technical knowledge base and the business method adopted, does not 

affect innovative survival. However, there are positive complementarities between knowledge 

breadth and depth. Important policy and managerial implications of these findings are dis-

cussed. 
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5.1 Introduction 

Technology, innovation and capability upgrading are widely believed to be among the main 

drivers of economic growth (Kim and Nelson, 2000). Several studies have analysed the empirical 

relationship between innovation and performance. In some cases the simplest measure of per-

formance has been used, i.e. survival. A variety of factors has been proven to affect firm survival. 

A not-exhaustive list includes product innovation (Fontana and Nesta, 2009, Cefis and Marsili, 

2005), new technology development (Levitas et al., 2006) product differentiation (Cottrell and 

Nault, 2004), capabilities (Sapienza et al., 2006), pre-entry experience (Bayus and Agarwal, 

2007, Buenstorf, 2007) and industry life cycles (Agarwal and Gort, 2002). From an evolutionary 

perspective, survival is seen as the ability to adapt to change (or successfully introduce muta-

tions) and fit the new environment. The urge to adapt depends on the scale and direction of 

change. Audretsch, (1995) showed that a highly innovative environment exerts a disparate effect 

on the post-entry performance of new entrants. New firms that are able to adjust and offer a via-

ble product experience higher rates of growth and a greater likelihood of survival. Therefore, the 

survival of firms in the competitive environment is substantially affected by the evolution of the 

technology underlying their products and the related manufacturing process. (Suarez and Utter-

back, 1995). 

 The lesson that we can learn from the studies on firm survival is that the ability to innovate 

and to adjust to changes in the technological environment are key explanations of market sur-

vival. Consequently, understanding the determinants of innovative survival is of crucial im-

portance. We characterize innovative survival as firm’s persistent presence in the set of core in-

novators. By the latter, we mean those players that are capable of affecting the direction of tech-

nological change by consistently produce influent technological improvements. In other words, 

core innovators define the approaches followed to solve engineering problems. To identify influ-

ent technical improvements we select, out of all semiconductor-related patents, those that are 

centrally located on the paths of technical development of semiconductor technologies. This is 

done using a bibliometric approach called Network of Main Paths (NMPs). We estimate the 

probability of firms’ innovative survival as a function of their technical knowledge breadth, 

depth, experience and business type. We also assess how the scale of knowledge replacement 

along the main paths of technological improvement, affects innovative survival. We use patent 

data from the second version of the NBER patent citation database (Hall et al., 2001), which cov-

er the period between 1976 and 2006. Since US are a crucial market for semiconductors we as-

sume that any technologically or economically important invention in this field is patented at the 

USPTO.  

 Surprisingly, the number of studies that focus on innovative survival as dependent variable 

is considerably smaller than those focusing on firm market survival, even though the former has 

been hypothesized to explain the latter. As Lee and Lim (2001) pointed out, a durable and sus-

tainable market success crucially depends on the ability to upgrade firm’s technological capabili-

ties constantly. Malerba and Orsenigo (1999) showed that innovative turbulence is an important 

composite phenomenon, in which innovative entrants/exiters and lateral entrants/exiters play 

different roles. Most of the entrants are occasional innovators, while persistent innovators are 

only a few but have the largest patent shares. That is why they are referred to as core innova-

tors. Explaining innovative survival (sometimes also called innovation persistence) is not an 

easy task. Studies on the topic have found mixed evidence (Antonelli et al., 2012; Roper and 

Hewitt-Dundas, 2008; Raymond et al., 2006; Malerba et al., 1997). Most of them measured per-

sistence using self-reported innovation outcomes or indirect measures of innovation that are 
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more closely related to strategic decisions, like R&D investments, or affected by large noise, like 

patent counts. For instance, Antonelli et al. (2012), measured product and process innovation 

persistence using a self-reported binary variable from a survey of firms. They found that the 

higher level of persistence is found for R&D-based innovation activities. Roper and Hewitt-

Dundas (2008), using data from the European Community Innovation Survey (CIS) found that 

product and process innovation exhibit strong persistence at the firm level, but they find that 

persistence is not significantly stronger among highly active innovator. On the other hand, Ray-

mond et al. (2006), also using the CIS, found no evidence of true persistence in firms’ ability to 

achieve technological product or process innovation. This seemingly contradictory evidence 

might be explained by hypothesizing that, if technical change is knowledge-replacing, the cumu-

lative advantage of incumbent core innovators is broken. Therefore, in this scenario, we expect 

no differences in the ability to innovate between new entrants and incumbents as they both start 

at the same level of knowledge. The need to further understand the determinants of innovative 

survival provides the motivation of this paper.  

 We focus on the global semiconductor industry as a case study. Several factors threat semi-

conductor firms’ ability to persistently generate influential technical solutions. Firms need to 

keep pace with an exponential rate of improvement (Koh and Magee, 2006) fuelled by high com-

petition and short product life cycle (Brown and Linden, 2009). Furthermore, in the last two 

decades, the industry has experienced an unprecedented level of technology modularization that 

spurred functional specialization along the value chain and entrance of specialized suppliers. 

This further increased competition. There are four main types of players in the industry, Inte-

grated Device Manufacturers (IDM), which design, manufacture and commercialize their own 

chips, fabless companies, which specialize in the design of semiconductor devices, foundries, 

which manufacture them on behalf of third parties and specialized suppliers of equipment and 

materials. The technology modularization has fostered the entrance of fabless, foundries and 

specialized suppliers by reducing the economies of scope due to the decreased interdependence 

of different technological components (Adams et al., 2013; Langlois and Steinmueller, 1999). 

Modularity has also increased the variety of possible applications for semiconductors. The diffu-

sion of Complementary Metal Oxide Semiconductor (CMOS) production processes reduced phys-

ical and cognitive interdependence between product design and manufacturing. This was caused 

by the standardization of interfaces between components. The introduction of systems-on-a-

chip (SoC) and Application Specific Integrated Circuits (ASICs) furthered increased the market 

segmentation and fostered product specialization (Adams et al., 2013; Brown and Linden, 2009). 

 However, this positive view on modularity and specialization is contrasted by more cau-

tious theories in the literature on production networks. Ernst (2005b) argues that: “competitive 

dynamics and cognitive complexity create modularity limits. […] interfirm collaboration requires 

more (not less) coordination through corporate management, if codification does not reduce com-

plexity—which it fails to do when technologies keep changing fast and unpredictably”. At the tech-

nological level, modularity means that technology is developed into separate and independent 

components. Therefore mastering the design of one component requires little knowledge about 

the internal functioning and the design process of the others. Even though this clearly fosters 

specialization, it also means that knowledge is highly domain-specific. Therefore, if a technologi-

cal shock affects a given component, innovative survival of firms specialized in that component 

requires being able to quickly jump to the new generation of the domain-specific technology. 

This is because what had been learned so far is not useful to innovate in other domains. In other 

words, there are no escape routes to related knowledge domains. When between-technology 

knowledge flows are limited, the ability to adopt a new generation of the domain-specific tech-
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nology, for innovators specialized in that domain, crucially depends on the intertemporal persis-

tence of domain-specific knowledge. If knowledge persists across time the urge of diversification 

is smaller because the knowledge required to master the new technology is did not change much 

compared to the old one. This is the case when technological change is cumulative. 

 This paper focuses on the relationship between modularity, knowledge persistence and in-

novative survival. The research question that we seek to answer is whether technical knowledge 

diversification (i.e. knowledge breadth) affects firms’ innovative survival, in particular in periods 

of large technological turbulence. We also argue that diversification is only one dimension of the 

knowledge space. Knowledge accumulation (i.e. knowledge depth) provides a complementary 

dimension. In other words, if we think about knowledge as a tree, the breadth dimension corre-

sponds to the number of branches the tree has. The depth dimension tells us how deep the roots 

feeding each of the branches are. The relationship between knowledge depth and survival is 

more ambivalent. Knowledge accumulation can provide a shield against technological turbu-

lence by allowing early detection of decline of a given technology domain due to the high level of 

experience. However, the opposite could be true if the former investments to accumulate that 

knowledge generate resistance to change and learning myopia (Levinthal and March, 1993). We 

contribute to the debate on innovative survival by defining a new method to identify core inno-

vators that goes beyond simple patent counts or self-reported outcomes. Furthermore, we de-

velop a set of indicators to measure knowledge modularity and persistence at the patent level, 

and firms’ knowledge breadth and depth. These measures are based on the genetic approach 

(GA) to patent citation networks developed by Martinelli and Nomaler (2014). The GA takes into 

account the topography of the system of technical knowledge. It is used here to map relationship 

across technology domains and the structure of firms’ knowledge base. To identify the set of 

technology domains within the Semiconductor Industry we use a network community detection 

technique developed by Newman (2004). The paper is structured as follow. Section 5.2 clarifies 

the theoretical framework and defines the hypotheses that guide our analysis. Section 5.3 pre-

sent the data used. The set of models that we estimate are introduced in Section 5.4. In Section 

5.5 we explain how we measured the model variables. Trends of knowledge modularity and per-

sistence in the semiconductor industry are discussed in Section 5.6. Finally, in Section 5.7 and 

5.8 we introduce and elaborate the preliminary empirical analysis and the findings from the re-

gressions.  

5.2 Theoretical framework and research hypotheses 

The theoretical framework that we apply in this paper is based on seven key concepts and their 

interaction: engineering trajectory, knowledge persistence, technology domains, technical 

knowledge modularity, firms’ knowledge breadth and depth and innovative survival. We first theo-

retically define each of these concepts and then discuss their interactions. By engineering trajec-

tory, we mean the main paths of technical improvements followed in an industry to tackle prod-

uct and process design challenges. It represents how innovators solved technical problems re-

lated to create and manufacture better performing products, i.e. semiconductor devices in our 

case. Engineering trajectories are, therefore the projection in the design space of technological 

trajectories defined by functional and technical trade-offs that emerge at the product level. As 

Dosi (1982) theorized, a technological trajectory is defined as “the ‘normal’ problem solving ac-

tivity determined by a [technological] paradigm. [It] can be represented by the movement of multi-

dimensional trade-offs among the technological variables which the paradigm defines as relevant”. 

The set of product features one wishes to improve and the engineering problems that need to be 
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addressed to achieve those improvements are deeply intertwined and affect each other in a 

complex fashion. The historical paths of technical approaches used to solve those design chal-

lenges are what we define as engineering trajectories. When current approaches to problem 

solving cumulatively build on previous ones, knowledge developed in the past is still useful in 

the present. In this case, we can state that there is a strong persistence in technical knowledge. 

Therefore, this instance of technical change can be described as knowledge reinforcing. In con-

trast, when innovators explore new approaches to solve engineering problems, which do not 

build on previously well-established paths, the trajectory of improvements experiences a discon-

tinuity. Previous knowledge becomes less useful to solve current problems. This pattern of tech-

nical change can be said to be knowledge-replacing. Ultimately, the presence or lack of changes 

in the approaches to problem solving depends on the strategic decisions of the players involved. 

However, some firm are more influent than others in shaping the direction of the engineering 

trajectories. We measure firms’ technical influence as the ability to have central patents on the 

paths of technical improvements. Patents’ monetary and technological value is notoriously high-

ly skewed (Gambardella et al., 2008; Silverberg and Verspagen, 2007; Hall et al., 2005; Reitzig, 

2003).  Some technologies attract much more innovative effort than others do and some are able 

to set the path of current and future engineering solutions to selected technological problems. 

Firms’ ability to persistently having influent patents is what we define as innovative survival.  

When we think about the design space of an industry, we intend that the set of products and re-

lated engineering challenges is heterogeneous. In particular, the set of applications of semicon-

ductor devices is highly diversified, including products as diverse as microprocessors, memories, 

light-emitting diodes (LED), liquid-crystal displays (LCD), personal computers, smartphones, 

tablets, and application-specific integrated circuits (ASICs). Therefore, the set of engineering 

challenges and approaches to problem solving is very diverse. We define technology domains 

within an industry as areas of applied research that share a set of common technological prob-

lems that are tackled applying similar approaches. Technical modularity measures the extent to 

which knowledge is domain-specific. In a highly modular system, the technical knowledge that is 

needed to succeed as an inventor in a given domain is very unrelated to what is needed in other 

domains. The notion of a system of domains allows defining the concept of firms’ knowledge 

breadth and depth. The former refers to how diversified a firm’s technical knowledge is across 

domains. The latter indicates how much of the knowledge historically generated within a do-

main is known by the firm.  

 To discuss how the seven key concepts of our theoretical framework interact with each 

other, we need to define a broad picture of firm’s inventive process and its relationship with firm 

survival, both as core innovator and in the marketplace. This picture is illustrated in Figure 30. 
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Figure 30: Theoretical framework 

 

Large firm’s size allows for conspicuous investments in R&D, which, depending on the level of 

technological capabilities, can generate high or low quality technology outputs. These can be 

measured by the level of technical influence of its patents. We argue that the ability to generate 

such influent technologies depends not only on R&D investments but also on the unobservable 

technological capabilities. The number of technologically influent patents granted to a given firm 

can be used as a proxy of the size of its technical knowledge base. The larger the knowledge base 

the more diversification and knowledge accumulation opportunities can be enjoyed. Depending 

on how the disruptive or cumulative nature of the firm’s innovative output, technologically in-

fluent patents can either set a new engineering trajectory or reinforce the prevailing approach to 

problem solving. This creates a systemic shock or reinforces the known landscape of the techno-

logical environment. In turns, this can either create new opportunities for knowledge diversifi-

cation or strengthen knowledge accumulation. This is a bidirectional relationship as firms’ 

knowledge diversification and accumulation effort also changes or reinforces the existing tech-

nology landscape. Ultimately, innovators’ resilience to technology shocks or probability to suc-

cessfully introduce change, depend on diversification and the level of knowledge accumulation. 

Note that the shock is exogenous to firms that react to novelty but endogenous to the firm ex-

ploring the new trajectory. However, in the latter case success is not guaranteed. Therefore, di-

versification and knowledge accumulation can still be beneficial. The former, by sharing the in-

novator’s bets across several technology domains. The latter, by increasing the likelihood that 

the new trajectory will eventually be the winning one. Finally, depending on exogenous market 

response to technology introduction and development, innovative survival leads to financial 

capital accumulation, which injects additional resources into the system.  

 The ease of exploiting diversification opportunities depends on the level of relatedness be-

tween firms’ current products and technologies and those in which they wish to diversify (Teece 

et al., 1994; Breschi et al., 2003; Neffke and Henning, 2013). Depending on the structure of the 

product and technology spaces, diversification may not be trivial. One might wonder then what 

makes technical knowledge diversification beneficial. Diversification is usually intended in the 

literature as the process of adding new products to the firm’s portfolio or entering new sectors 

of the economy (Frenken and Boschma, 2007; Saviotti and Pyka, 2004). However, the commer-

cialization of new products or entry in new markets does not imply that the firm is diversifying. 
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This could also be achieved by shifting firm’s specialization. Moreover empirical evidence shows 

that novelty is often introduced by new ventures rather than incumbents especially at the be-

ginning of the technology life cycle, as argued by Utterback and Abernathy (1975) and Christen-

sen (1993) and empirically showed, for instance, by Klepper (2002 and 1997), Rosenbloom and 

Christensen (1994), and in Chapter 3 of this thesis. We argue that the peculiar advantage of 

technical knowledge diversification is the increase in the probability to persist fitting the envi-

ronment for a simple economic principle of risk sharing. This ultimately creates dynamic returns 

as survival allows for knowledge and physical capital accumulation that sustain the growth path. 

This argument moves the spotlight from market survival and macroeconomic shocks to innovative 

persistence and technology shocks. Following this reasoning, we formulate our first hypothesis.  

 Hypothesis 1: Innovative survival is positively affected by knowledge diversification (i.e. 

large knowledge breadth).  

 Knowledge diversification measures how much firms can share risk across technology do-

mains. Moreover, it also indicates the extent to which firms can enjoy knowledge complementa-

rities across several technology domains and knowledge spillovers coming from advances in re-

lated domains. This is what Frenken et al. (2007) define as related-variety. From a theoretical 

point of view, complementarities and spillovers are possible only under two circumstances. First 

knowledge from different domains must be somehow related. This is not the case under modu-

larity. Second, that the firm has a sufficient level of absorptive capacity to effectively internalize 

knowledge coming from outside the boundaries of the current firm’s domain(s) of specialization. 

As explained by the pivotal work of Cohen and Levinthal (1990), the latter can only be achieved 

in presence of pre-existing internal learning efforts. In other words, firms need to have sufficient 

knowledge depth to enjoy knowledge spillovers from related domains. Large knowledge accu-

mulation can allow early detection of decline of a given technology domain and provide the nec-

essary absorptive capacity to eventually attempt to take alternative paths. On the other hand, 

former investments to build knowledge depth can generate resistance to change that is particu-

larly high if the investment is seen as a sunk cost, i.e. when high modularity makes knowledge 

less portable across technical domains. It is therefore difficult to a priory-define a hypothesis 

about the relationship between knowledge depth and innovative survival. They might be charac-

terized by a positive or negative relationship or the combined effects of the positive and negative 

aspects of knowledge depth might generate an inverted-U shape. We therefore formulate a gen-

eral hypothesis, without specifying whether the relationship is positive or negative and defining 

its functional form.  

 Hypothesis 2: Knowledge accumulation (i.e. large knowledge depth) affects innovative 

survival. 

 Technical knowledge breadth and depth can also be interpreted as measurable outcomes of 

exploration and exploitation strategies respectively. In his seminal work March (1991) defined 

the organizational trade-off which is intrinsic in the decision to allocate resources to the “explo-

ration of new possibilities or the exploitation of old certainties”. What attracted particular interest 

in the organization learning literature is the hypothesis that ambidexterity, i.e. the ability to 

combine both exploitation and exploration, is the key to sustained performance (Raisch et al., 

2009). A similar explanation focuses on dynamic capabilities, i.e. the ability to update and recon-

figure firms’ routines, knowledge and strategies as the main determinant of long-term survival. 

O’Reilly and Tushman (2008) proposed a synthesis of the two approaches that sees ambidexteri-

ty as a manifestation of dynamic capabilities. Following these theories we hypothesizes that 

technical knowledge breadth and depth have strong complementarities. Obviously, it is not easy 

to simultaneously pursuit both. The innovator’s attempt to master new domains is likely to re-
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duce, at least initially, its overall knowledge depth because a previously unknown area is ex-

plored.  Yet, successfully breaking the trade-off and being able to enlarge both breadth and 

depth allows risk-sharing and enjoying economies of learning. He and Wong (2004) showed that 

the interaction between explorative and exploitative innovation strategies is positively related 

to sales growth rate. Similarly, achieving complementarities between technical knowledge di-

versification and accumulation should increase the odds of innovative survival. This argument 

leads to our third hypothesis.  

 Hypothesis 3: Innovative survival is positively affected by the ability to break the trade-off 

and achieve large values of both knowledge breadth and depth. 

 So far, we have discussed the effects of knowledge diversification and accumulation on in-

novative survival in isolation from technological change. Clearly, the probability of innovative 

survival crucially depends on how useful the current and past knowledge is to be successful in 

the future, as measured by knowledge persistence. As shown by Breschi et al. (1998) and 

Malerba and Orsenigo (2000) patterns of organization of innovative activities are determined by 

the nature and peculiarities of the underlying technology. Technological regimes are defined as a 

combination of some fundamental properties of technologies, namely opportunity conditions, 

appropriability conditions, degrees of cumulativeness of technological knowledge and character-

istics of the knowledge base. Lee and Lim (2001) stress that as far as catching-up by latecomers 

is concerned, cumulativeness plays a particularly important role as it increases the predictability 

of the technological trajectory. We add that this is true for all firms, regardless if they are incum-

bents or latecomers. More generally, we hypothesize that high knowledge persistence favors 

current core innovators’ ability to persist being influent. Obviously, the opposite is also true. 

 Hypothesis 4: Low knowledge persistence increases the hazard of innovative exit. 

 Furthermore, as argued by Malerba and Orsenigo (1993), the higher the degree of cumula-

tiveness of technical change the larger the set of technology paths that current core innovators 

can take. However, it is important to distinguish between ex-ante and ex-post paths. As we ar-

gued in the introduction, high levels of knowledge modularity make it difficult to create escape 

paths to other knowledge domains after a shock in the technological trajectory has occurred. 

Therefore, to improve survival chances it is necessary to diversify ex-ante. Hence, we postulate 

our last hypothesis. 

 Hypothesis 5: Knowledge diversification provides a larger survival premium compared to 

specialization when technological change is knowledge-replacing (i.e. when knowledge persis-

tence is low).  

 To test these hypotheses empirically, we first need to perform a number of tasks. We need 

to identify influent patents, core innovators and technology domains within the Semiconductor 

industry. Furthermore, we need to measure knowledge persistence, modularity and firms’ 

knowledge breadth and depth. These tasks and the methodology used to tackle them are sum-

marized in Table 13. We will discuss them in details in the next section. 

 
Table 13: Methodology roadmap 

Task Methodology used 

Data preparation 

Identify influential patents and core innovators 

Identify technology domains 

 

Network of main paths (NMPs) 

Community detection on the NMPs 

Measurement of the model variables 

Measure technical knowledge modularity and persistence 

Measure firms’ technical knowledge breadth and depth 

 

Genetic approach to patent citation networks (GA) 

GA 
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5.3 Data preparation and description 

5.3.1 Identification of influential patents and core innovators 

We use data from the NBER-USPTO database containing metadata of granted utility patents and 

their citations from 1976 to 2006 (Hall et al., 2001). Our initial dataset is composed of all organi-

zations that have been granted at least one patent classified in one of the semiconductor US 

technological classes between 1976 and 200618. This dataset is made of 4170 unique assignees, 

114097 patents and 779076 citations for the entire period. This dataset is reduced to select only 

technologically influent patents and their assignees. We define technological influence as the 

ability to affect the direction of technological change. This is intended as the act of indicating 

which are the most promising approaches to address the key engineering challenges that affect a 

given industry. To identify technologically influent patents we make use of a methodology that 

analyses the network of main paths (NMPs). The NMPs’ approach has been originally proposed 

by Hummon and Doreian (1989), further developed by Verspagen (2007) and lately applied by 

Fontana et al (2009), Martinelli (2008 and 2009) and Bekkers and Martinelli, (2010) to several 

empirical cases studies of technology dynamics in different industries. The NMPs identifies the 

routes through which knowledge diffuses in large citation networks (made of patents or publica-

tions). When applied to patent citation networks this methodology allows analysing the evolu-

tion of the main sequences of engineering improvements within the technology domain(s) un-

derlying a given industry. The first building block of this approach relates to the meaning of pa-

tent citations. If patent B cites patent A then one of the claimed features of the invention de-

scribed in the former improves upon the latter. In other words, as described in the USPTO Man-

ual of Patent Examination Procedure, A represents the state-of-the-art concerning a claimed fea-

ture of the technology described in patent B, at the moment in which patent application B was 

filed (USPTO, 2014). Therefore, citations can be interpreted as a measure of technological relat-

edness and provide insights on the direction of technological change. Obviously, patents can cite 

and be cited by many patents. Hence, if we want to follow the main trajectories of technology 

evolution among a set of patents, we first need to decide which direction to take at every junc-

tion. This is what the NMPs algorithm does. First, we calculate the weight of every citation using 

the search path node pair (SPNP) algorithm, as developed by Batagelj (2003).  The SPNP returns 

the number of times that each citation link lies on all possible paths connecting any node to any-

one else. This is easily calculated by multiplying the number of patents that reach (through di-

rect and indirect citations) the cited patent by the number of patents that are reached (directly 

or indirectly) by the citing patent. Therefore, a high SPNP weight indicates that the given citation 

and the two patents involved are located in a highly connected and connecting area of the net-

work. This means that the given citation has a strong technological influence, as many paths of 

technological improvement pass through it. The NMPs is identified by following the paths ema-

nating from start nodes (nodes that are cited but not cited), taking at each junction the direction 

of the citation which carries the highest weight, till an end point (a node who cites but is not cit-

                                                             
18 The US patent classification distinguishes five classes related to semiconductor technologies: 257, ‘Active solid-state 

devices (e.g. transistors, solid-state diodes)’; 438, ‘Semiconductor device manufacturing: process’; 326, ‘Electronic 

digital logic circuitry’; 505, ‘Superconductor technology: apparatus, material, process’; 716, ‘Design of semiconductor 

devices’. 



 

96 Do I fit? Innovative Survival, Technology Dynamics and the Evolution of Knowledge 

ed) is reached. By repeating this procedure for each start point, we identify the NMPs. The NMPs 

can be made of separate network components when some of the main paths do not intersect. 

Engineering solutions described in patent belonging to different components can therefore be 

interpreted as unrelated. It is important to notice that components of the NMPs are not neces-

sarily separated if we look at the original network, but the nodes that connect them have a negli-

gible importance from the point of view of technological trajectories. We interpret patents that 

show up in the NMPs sample as the technologically influent one because of their importance in 

setting the engineering trajectory followed by innovators in the industry in the window of time 

under observation. We identify the NMPs for six left-cumulated periods: 1976-1980, 1976-1985, 

1976-1990, 1976-1995, 1976-2000 and 1976-2006. Cumulating periods starting from the same 

initial grant year (i.e. 1976), allows assessing how newly granted patents affects the stability of 

the main paths of technical improvements. By doing so, we can identify influent patents granted 

in the last five years of each period. For each period, we only focus on the largest component of 

the NMPs and the second one when deemed important. This applies to periods 1991-1995 and 

2001-2006, when, as shown in Chapters 3 and 4, the second component accounted for a signifi-

cant share of the influent inventing activities. This is the sample of technologically influent pa-

tents that we use as the basis for identifying core innovators. From now on, we will refer to this 

sample as the NMPs sample. It is made of 673 unique assignees and 9555 unique patents granted 

in the six five-years periods mentioned above.  

 The set of 673 assignees of NMPs patents represents the group of innovators in the indus-

try. In other words, a given firm might be engaged in patenting in one of the semiconductor clas-

ses but none of its patents might be important enough from the perspective of technological evo-

lution in the industry to make it to the NMPs sample. In this case, the given firm is not consid-

ered an innovator (it might at best be considered an inventor). This builds on Schumpeter’s dis-

tinction between invention and innovation based on their recognized usefulness. Innovators can 

be further distinguished between core and marginal innovators. Core innovators are entities that 

appear in the NMP sample for more than one period (i.e. over a time horizon of at least 10 years) 

or entities that show up in just one period (i.e. 5 years, except for the last period which is made 

of 6 years) but hold a significant share of patents in at least one technological domain19. All the 

other entities are marginal innovators whose patents are important enough to make it to the 

NMPs sample but whose inventive outcome in the semiconductor technology domain lacks ei-

ther persistence or success. This is a similar to the definition of core innovators from Malerba 

and Orsenigo (1995) and Malerba et al. (1997). The conceptual relationship between inventors, 

marginal and core innovators and the NMPs sample is graphically summarized by Figure 31.  

                                                             
19 There are 142 unique core innovators between 1976 and 2006. Within this set, 129 show up in more than one peri-

od, although not necessarily in a row, whereas only 13 of them are only present once but have a significant share of 

patents in at least one technology domain. However, none of these 13 appears in the final subsample that we use for 

the econometric analysis. Therefore, the sample used for the regressions, which is limited to the window of time be-

tween 1980 and 2000, is only made by core innovators that show up in the NMP more than once.   
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Figure 31: The relationship between inventors and innovators 

 

We can also categorize innovators in terms of their time of entrance. We distinguish between 

new, incumbent and exit innovators. New innovators are organizations that show up in the 

NMPs sample for the first time. They might later prove to be core or marginal innovators. In-

cumbent innovators are organizations that appeared in the list of assignees of the NMPs sample 

at least once in the previous periods. Exit innovators are organizations that ceased to be part of 

the NMPs sample in the period under observation.  

 Table 14 provides detailed information on the number of technologically influent patents 

(i.e. the size of the NMPs sample), their share of the total number of semiconductor patents, the 

number of innovators and their sub-categories for each of the five periods under observation. 

Two major trends emerge from Table 14. First, the number of technologically central patents in 

the semiconductor industry decreases in the periods 1991-1995 and 2001-2006, compared to 

the previous periods. This is due to the decrease in the number of assignees, which in turn is 

caused by a fall in the number of marginal innovators in those two periods. The number of core 

innovators is relatively stable over time. More precisely in the first half of the 1990s and the 

2000s we observe a peak in of innovative exit and the effect on the total number of innovators is 

further exacerbated by the fall of innovative entrance. Therefore, in these two periods the indus-

try has undergone a phase of innovative shakeout. As we explained in Chapters 2 and 3, for the 

first period the cause was a significant shift in the main engineering trajectories caused by a few 

path-changing inventions that explored new designs for integrated circuits. For the second peri-

od, the reason was a change in the ranking of engineering problems induced by the emergence of 

new technological sub-domains related to LCD and MOSFET technologies. 

 The data that we have presented so far describes the entire NMPs sample. However, as we 

discussed in the theoretical framework, in this study we analyse persistence as core innovators. 

Marginal innovators are not central players in the industry. Therefore, they might exit for rea-

sons that go beyond their knowledge breadth and depth. For this reason, we excluded them from 

the sample used for the regression analyses. Furthermore, we have to avoid type II errors, i.e. 

exit misidentification. As in any high-tech industry, semiconductors business are often acquired 

or merged and companies frequently engage in joint ventures. For our purposes, we need to dis-

tinguish real innovative exit from exit by acquisition or merge. In the latter case the acquired or 

merged organization clearly remains technologically influent if is still found in the list of core 

innovators. Therefore, if the new entity is considered a core innovator we count it as survival. 

Else, we consider it as a real exit. There is one of the former cases and ten of the latter in the 

NMPs sample. Finally, some cases organizations temporarily exit from the list of core innovators 
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and join it back later. In this case, we still count this as a real exit because, even if momentarily, 

the given organization lost its technological centrality.  We found twelve of such cases in the 

NMPs sample. 

 
Table 14: Size of the NMPs sample and categories of innovators 

Time period 1981-1985 1986-1990 1991-1995 1996-2000 2001-2006 

Number of technologically influent patents (size of the 

NMPs sample) 
689 818 661 1067 901 

Share of total USPTO semiconductor patents 42.64% 32.45% 15.30% 17.63% 9.36% 

Number of assignees (i.e. innovators) 96 145 120 167 132 

Core innovators 64 89 87 89 77 

Marginal innovators 32 56 33 78 55 

New innovators (from previous period) 42 88 54 102 74 

Incumbent innovators 54 57 66 65 58 

Exit innovators (from previous period) 48 39 79 55 109 

 

Moreover, out of the six periods for which we computed the NMPs we can only use four for the 

empirical analysis. This is because we need to identify new innovators by discriminating prior 

experience, as the latter is one of the control variables that we include in the logit model de-

scribed in the next section. The period 1976-1980 is used to provide information on prior expe-

rience for the first period used, i.e. 1981-1985. Moreover, our data are right censored. We need 

to truncate the sample to 2000, in order to be able to observe survival to the next period. This is 

because we do not have information on which firms survive after 2006. To sum up, the panel 

dataset that we use for the econometric analysis is made by 133 unique core innovators fol-

lowed over four five-year periods: 1981-1985, 1986-1990, 1991-1995, 1996-2000. The 133 core 

innovators hold 2862 patents between 1980 and 2000. 

 We classified core innovators according to their business type. We mostly relied on data 

from ICinsights, a business consulting firm specialized in the semiconductor industry.20 When 

needed we complement it with additional information gathered from company websites or Wik-

ipedia web-pages. Assignees that represented subsidiaries belonging to the same company have 

been manually merged into a single entity. Table 15 provides more details on the functional and 

geographical composition of core innovators. The total number of core innovators per period 

per business type is highlighted in bold characters. We then break business types by country of 

origin (we report information only for the set of key countries in the industry: US, Japan, S.Korea, 

Taiwan and Singapore21).  Integrated Device Manufacturers (IDMs) are large vertically integrat-

ed players that perform all the steps of the value chain (from design to commercialization) in-

house. To the contrary, fabless and foundries, specialized in design and manufacturing, respec-

tively, and often interact with each other. Suppliers provide IDMs, fabless and foundries with 

equipment and materials.  

  

                                                             
20 We thank Roberto Fontana for sharing the data. 
21 Note that, up to 2006 no single patent from Chinese firms managed to make it in the NMPs sample. 
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Table 15: Core innovators’ functional and geographic composition 

  1981-1985 1986-1990 1991-1995 1996-2000 2001-2006 

Equipment suppliers 1 2 2 5 9 

JP 1 1 1 3 3 

US  1 1 2 5 

Fabless   4 4 5 5 

TW    1 1 

US  4 4 4 4 

Government or Industry Research Institutes 6 8 9 11 8 

JP 1 3 2 2 2 

KR  1 2 2 1 

TW  1 2 2 1 

US 3 3 2 4 3 

Integrated Device Manufacturers 39 53 50 46 37 

DE 1 1 1 2 2 

JP 10 14 14 16 12 

KR  1 3 3 4 

TW   1 3 4 

US 23 30 25 17 13 

Material suppliers 1 2 4 5 5 

DE    1 1 

JP  1 3 2 2 

US 1 1 1 2 2 

Pure-Play Foundries   3 4 4 

SG   1 1 1 

TW   2 3 3 

Universities 3 3 2 4 3 

US 3 3 2 4 3 

Users 14 17 13 9 6 

DE   1  1 

JP 1 2 2 2 1 

US 12 14 9 6 3 

 

Users are players external to the industry whose products incorporate semiconductor devices. 

Some users invest in R&D for specific needs related to semiconductor technologies. Further-

more, there are a number of universities, government and industry research centres that are 

particularly active in the R&D landscape of the industry, we will lately collectively refer to them 

in this paper as research providers. In terms of number of core innovators, it seems that innova-

tion was demand-pulled in the 1980s and become more and more technology-pushed toward 

the 2000s. Indeed the importance of downstream innovation (by users) is reducing, in favour of 

upstream-oriented innovation (by equipment and material suppliers) over time. 
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5.3.2 Identification of Semiconductor technology domains 

To measure knowledge breadth and depth of core innovators we first need to identify the set of 

semiconductor technology domains. Our definition of domains as areas of applied research that 

share a set of common technological problems which are tackled applying similar approaches, 

make it possible to exploit the characteristics of the patent system to empirically identify them. 

Patent claims describe the solution to given engineering problems, and the reference list high-

lights on which other patents the claimed invention has improved upon. The presence of cita-

tions between patents proves that similar mindsets and toolboxes have been applied to tackle 

the given problems, as discussed in the USPTO Manual of Patent Examining Procedure (USPTO, 

2014). Therefore, to empirically identify semiconductor technology domains we can partition 

the network of patents into communities using a method proposed by Newman (2004) based on 

modularity maximization. The method identifies areas of the network (called communities) 

whose nodes (patents in our case) are more related to each other than with nodes belonging to 

different communities. Patent relatedness is defined by the presence of citations. As such, a 

community identifies a region of the technological space whose patents are closely related by 

sequences of technical improvements. This distinguishes them from patents located in other re-

gions of the citation network. We can then interpret communities as technology domains within 

the meso-family of semiconductor technologies. To identify network communities Newman pro-

poses to maximize a measure of modularity (Q) defined as follows: 

𝑄 =  ∑(𝑒𝑘 − 𝑎𝑘
2)

𝑘

 (5.1) 

Where eii is the fraction of edges falling within community k and ai2 is equal to the squared sum 

of edges falling between communities, as 𝑎𝑘 =  ∑ 𝑒𝑘𝑗⩝𝑗≠𝑘 . As explained by Newman (2004), to 

assess the significance of the community structure the fraction of edges that fall within commu-

nities is compared to the expected value of the same quantity if edges would fall at random 

without regard for the community structure. If a particular partition returns no more within-

community edges than would be expected by random chance modularity Q would be equal to 

zero. The best partition is found by iteratively optimizing modularity. The optimization ap-

proach starts from the worse possible combination (each node is a community) and then begins 

an iterative aggregation process which stops when the increase of modularity becomes negative. 

The modularity maximization procedure and the comparison with equivalent random networks 

returns the best partition of the network analysed, without assuming a pre-existing community 

structure. Therefore, Q is not only a measure of the quality of the partition but can be effectively 

used to measure the interdependence between domains. Larger values of Q mean that the differ-

ent domains of the technological space are less interdependent as the identified partition of the 

network is more statistically significant (i.e. boundaries across domains are more strongly de-

fined). Note that, to apply the algorithm to the case of directed networks we first need to make 

the relationships across patent pairs symmetric. This is done by transforming citations into un-

directed edges. This reinforces the interpretation of citation as a measure of technological relat-

edness between pairs of patents.  

 We feed the community detection algorithm with the set of key semiconductor patents 

granted within each of the following periods 1976-1985, 1976-1990, 1976-1995, 1976-2000, 

1976-2006. By cumulating periods, we are able to assess variation on the modularity structure 

of all generations of semiconductor patents caused by the entrance of young patents. This cumu-

lative perspective takes into account the possibility that in some cases young patents might not 



 

 Do I fit? Innovative Survival, Technology Dynamics and the Evolution of Knowledge 101 

be directly related to each other but still be part of the same domain if they have a strong genetic 

proximity with the same ancestors. One possible criticism to this approach is that Newman’s 

modularity maximization does not consider the temporal structure of a citation network when 

evaluating the statistical significance of an existing link between a pair of nodes compared to the 

probability that the given link exists in a random network. As shown by Jaffe and Trajtenberg 

(2007), patents have a relatively short forward citation life. Typically, the number of yearly cita-

tion to the average patent starts decreasing after 3-4 years from the grant date. The community 

detection algorithm does not consider this when evaluating the significance of the presence/lack 

of a citation between a pair of patents compared to a random network in which links among 

pairs of nodes fall completely at random. Whether this should be considered as a serious bias 

depends on the extent to which the algorithm tends to identify domains purely based on the age 

composition of the patents they are composed of. In the Appendix A.4.3, we showed that the age 

structure of the semiconductor domains identified with the Newman’s algorithm is highly scat-

tered. This proves that in our case the citation lag bias is not strong enough to undermine the 

validity of the domains identified by the community detection process. Table 16 reports basic 

statistics of the domains identified by Newman’s algorithm. 

 
Table 16: Basic statistics for the identified semiconductor technology domains 

  76-85 76-90 76-95 76-00 76-06 

Number of domains 15 14 29 15 29 

Size of largest domain 328 368 272 637 701 

% of patents in largest domain 21,30% 13,74% 9,31% 13,98% 11,12% 

Size of smallest domain 29 52 20 62 53 

% of patents in smallest domain 1,88% 1,94% 0,68% 1,36% 0,84% 

Average domain size 102,66 191,29 100,79 303,80 217,44 

Patent dispersion (1-HHI) 0,9591 0,9873 0.9837 0,9733 0.9868 

 

The patent dispersion across domains is measured by the Herfindal-Hirshman Index (HHI), 

normalized by the maximum possible value of dispersion attainable given the number of do-

mains (similarly to the knowledge breadth index explained in Section 5.2.1.4). Values closer to 1 

indicate maximum dispersion across domains, thus pointing to a perfectly equal distribution of 

patents across communities. The table reveals high patents dispersion. This shows that the 

community structure is not dominated by a few domains. This further proves the meaningful-

ness of the identified network partition.  

5.4 Model 

We estimate, using maximum likelihood, the following pooled data logit model, where the prob-

ability of survival for observation i belonging to core innovator j is: 

𝑃(𝑠)ij =  P(Sij = 1 |Xij , Xi, α) = 𝐹(Xij + Xi + α)  (5.2) 

𝑆𝑖𝑗  is a binary variable taking value of one if player j persist being a core innovator in the follow-

ing period. The matrix 𝑋𝑖𝑗 is composed of the list of predictors of innovative survival for each 

observation i belonging to player j. These predictors are: knowledge breadth (KB), knowledge 
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depth (KD), count of NMPs patents (PC), number of periods of experience as core innovator and 

business model followed by the innovator. The latter is a factor variable that distinguishes be-

tween IDM, foundry, fabless, supplier, research provider and user. 𝑋𝑖 provides information that 

is player-invariant, in our case it is the level of knowledge persistence in the period in which ob-

servation i has been recorded. Finally, α serves as a baseline probability of survival, which is in-

cluded to capture the effect that core innovators have an intrinsic propensity to survive.  

 Since we are treating time variant data at the firm level as pooled cross-section, we esti-

mate robust error by clustering the variance-covariance matrix by core innovator. Note that core 

innovators that survived for more than one period entered in the pooled cross-sectional sample 

twice or more. Clustering the variance-covariance matrix by core innovator allows for arbitrary 

correlations across observations belonging to the same player, leaving the form of the correla-

tion free to vary from player to player. For the sake of comparison we also estimate a panel data 

version of the model described in (1) with innovator-specific random effects22. Random effects 

model are more efficient than their cluster pooled data counterpart because the firm-specific 

effect is estimated separately from the error term. However, random effect models assume that 

the within-firm correlation takes the same form for all innovators. We recognize that the as-

sumption behind random effects might not be fully legitimate in this context. Firms pursue dif-

ferent strategies that interact with the level of their capabilities. This might take different forms 

and, therefore, differently affect the probability of survival. Furthermore, it might also create 

correlation between the individual random effect component of the error term and the KB and 

KD regressors. Nevertheless, the rational of comparing the results with a random effect model 

here has the specific purpose of investigating whether the overall results holds and whether we 

are able to reduce the variance of the predicted probability of survival for fully specialized and 

poorly diversified players. In the panel data random effect version of model (1) the probability 

of survival for observation i belonging to core innovator j at time t is: 

𝑃(𝑠)ijt =  P(Sjt = 1 |Xijt , Xj , Xt  , μj) = 𝐹(Xijt + Xj + Xt + μj)  (5.3) 

Where 𝑋𝑖𝑗𝑡 are time dependent predictors for observation i belonging to player j (i.e. our KB, KD, 

PC and Experience variables), 𝑋𝑖𝑗 is a time independent predictor that varies across players j (i.e. 

the business model variable), 𝑋𝑡  is a time dependent predictor that is constant across players 

(i.e. knowledge persistence) and 𝜇𝑗  is the core innovator specific effect which represents the 

combined effect of all omitted subject-specific unobserved variables that cause some subjects to 

be more (or less) more likely to survive than others.  

 To test the robustness of our findings to the estimation method used we also run probit and 

complementary log-log versions of the pooled and panel data models described in (1) and (3). 

All the main finding hold regardless of the method used to linearize the relationship between 

survival and the predictors. Therefore, we will only discuss findings for the logit model and re-

port results for the probit and complementary log-log versions in the appendices A.5.4 and A.5.5. 

                                                             
22 We opted for a random effect model instead of a fixed effect one as the latter severely reduces the sample size. The 

estimation of a fixed effect logit model relies on conditional maximum likelihood, therefore it necessarily drops 80 

right censored observations (i.e. those core innovators that never exit over the given window of time) because the 

dependent variable is a constant in this case. This reduces the sample size by 207 observations. The effect of such a 

large harvest is very problematic as the maximum likelihood maximization process does not converge for most of our 

models and the estimation becomes impossible. 
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Given the stability of findings, we opted to present the findings for the logit model instead of the 

probit or complementary log-log versions because of the ease to interpret coefficients as odds 

ratios provided by the former. Note that, since we include a variable measuring innovators’ pe-

riods of experience and a baseline survival probability α, the complementary log-log version of 

our model becomes conceptually similar to the discrete time representation of an underlying 

continuous time proportional hazard model. This is particularly convenient as it means that our 

results would be confirmed by a formally defined discrete-time survival analysis. 

5.5 Measurement of the key variables 

To study the effects of firms’ technical knowledge diversification and accumulation and the sta-

bility of the engineering trajectory on firms’ innovative survival, we need to define measures of 

firms’ knowledge breadth, depth and persistence of technical knowledge. We also need a meas-

ure of knowledge modularity to assess the difficulty of knowledge diversification. In the litera-

ture knowledge diversification has been measured by counting active fields of research, by com-

puting the concentration of a firm’s patents across technological classes or by calculating firms’ 

specialization indices across fields (e.g. Xu, 2014; D’Este, 2005; Brusoni et al., 2005; Brusoni and 

Geuna, 2003). Knowledge accumulation is usually measured by firms’ patent counts in each class 

(e.g. Xu, 2014) or by counting areas of fields in which firms are co-specialized in basic and ap-

plied research. (e.g. Brusoni et al., 2005). These approaches dissatisfy us for a number of rea-

sons. First, as we discussed in Section 5.3.2, relying on classification systems to define technolo-

gy domains does not consider that technology relatedness goes beyond class boundaries. Fur-

thermore, classifications react with a long lag to changes in the structure of the system of tech-

nologies23. Bottom-up techniques, such as community detection on citation networks, identify 

domains in real time, without assuming any prior knowledge of relatedness across domains. In 

this sense, they are not affected by any cognitive or time bias. This is particularly important to 

detect the level of knowledge diversification of surviving firms.  Moreover, measuring diversifi-

cation by looking at the distribution of item counts across domains does not provide any infor-

mation on how much of the domain-specific knowledge a firm actually mastered. Similarly, hav-

ing the same amount of patents in two or more classes does not necessarily imply that the firm’s 

technical knowledge is equally distributed across those classes. This is because the difficulty of 

generating patentable inventions might vary greatly across domains. Nor does it provide any 

information on how the inventions disclosed in the firm’s patents are related to the existing pri-

or art. Because of these reasons, we need measures of technical knowledge diversification, ac-

cumulation and persistence that respect the structural properties of the knowledge system and 

its topography. To define a suitable measure for each of these dimensions of technical 

knowledge we rely on the similarity between knowledge and genetic evolution. Technological 

knowledge largely builds on past achievements and firms innovative efforts draws on prior in-

ternally and externally developed technological solutions. As such, technological knowledge is 
                                                             
23 For instance, the USPTO introduced a cross-reference art collection for Nanotechnology in October 2004. According 

to the output of the USPTO reclassification efforts of old patents into the newly created art collection class, the first 

Nanotechnology patent has been granted in 1978. This means that it took twenty-six years for a social agreement on 

the existence of the Nanotechnology domain to emerge and lead to the creation of an ad-hoc technology class. This is 

because the patent system is a complex engineering system rich in technology and human complexity (de Weck et al., 

2011). 
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largely cumulative, although from time to time radical innovations are introduced. These cause a 

shift in the technological trajectory and, if successful, permanently change the direction of tech-

nological change. When this happens, in order to survive firms need to adapt their capabilities to 

the new technological environments (unless, of course, if they are those that introduced the rad-

ical innovations). An appropriate analogy with genetic evolution can be easily made. Populations 

also evolve slowly and in a cumulative fashion, as genetic traits are inherited from generation to 

generation. Shocks in the form of random mutations can break this persistency by introducing 

novel genetic traits, whose survival will ultimately be decided by natural selection. A second 

source of genetic variety takes the form of transmission from parents to offspring of genes that 

evolved as the result of adaptation to the environment (i.e. Lamarckian inheritance). This analo-

gy inspired the definition of a genetic approach (GA) to patent citation networks, which has been 

developed by Martinelli (2010) and Martinelli and Nomaler (2014). The approach provides an 

original way to measure technological knowledge, its persistence and evolution. Our main con-

tribution to the genetic approach lays in the definition of a method to map firm technological 

genome and its genetic heritage. In addition, we also define a set of metrics that allow applying 

this approach to measure firm’s technical knowledge breadth, depth and knowledge persistence 

at the industry level. The GA looks at patents as knowledge genes. Citations therefore represent 

channels through which knowledge is inherited from cited to citing patents. Therefore, a citation 

network can be interpreted as a map of genetic history, portraying knowledge that persists from 

parents (cited patents) to offspring (citing patents). In the following, we describe how we con-

struct our measures of firms’ knowledge breadth, depth, and knowledge persistence and modu-

larity at the patent level. 

5.5.1 Knowledge persistence 

Figure 3 represents a dummy citation network. Nodes stand for patents and arcs represent cita-

tions from the patent to the right to the one on the left (the arrow indicates the direction of im-

provement). The first step of the patent genetic decomposition requires sorting the network 

topologically, meaning that nodes are ordered such that for every directed citation ab from pa-

tent b to patent a, a comes before b in the ordering. Thus, network truncations can be identified. 

Truncations are analogous to generations in a genealogy family tree. In Figure 32 we have three 

truncations. The number of truncations corresponds to the largest possible path in the network. 

Nodes labels report a fictitious patent number and the name of the assignee. Nodes’ colour high-

lights fictitious technological domains.  
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            Truncation 1                      Truncation 2                                Truncation 3 

Figure 32: Fictitious citation network with shares of genetic heritage 

 

Let us assume that filled nodes represent patents belonging to domain A and white ones belong 

to domain B. The weight of the arcs represents the share of knowledge direct genetic heritage 

(we refer to it as the weight w), meaning the share of the knowledge included in the citing patent 

that is inherited from the cited one. The weight between patents i and j is computed as follows: 

𝑤𝑖𝑗 =  
𝑐𝑖𝑡𝑖𝑗

𝑏𝑤𝑑𝑐𝑖𝑡𝑗
 (5.4) 

Where citij is a dummy variable taking the value of one if j cites i and zero otherwise and bwdcitj 

is the number of backward citations made by patent j. For instance, patent 7 cites patent 4 only. 

Therefore 100% of the knowledge that patent 7 inherits from the set of patents belonging to the 

directly preceding truncation comes from patent 4. Patent 8, instead, builds on patents 4 and 5, 

meaning that these two patents contribute 50% each to the first layer of inherited knowledge of 

patent 8. However, the genetic decomposition of the citation network goes beyond direct cita-

tions and keeps into account the topology of the whole network (i.e. all the connection across all 

‘generations’). Indeed, as explained by Martinelli and Nomaler (2013), the genetic approach de-

composes the knowledge content of a given node in function of the nodes that precede it. There-

fore, we need to account for genetic heritage across all possible truncations. Following the same 

example, we can see that 100% of the knowledge inherited by patent 4 from the preceding trun-

cation comes from patent 1, whereas 50% of the knowledge of patent 5 comes from patent 2 and 

50% from patent 3. Consequently the contribution of patent 1 to patent 8’s knowledge is equal 

to 0.5 (=1*0.5), whereas patents 2 and 3 contributes 0.25 (=0.5*0.5) to patent 8’s knowledge. It 

follows that we can define an index of the total genetic heritage (from now on just heritage) from 

each patent to each other one. The heritage index between a pair of patents i and j is computed 

multiplying the weights of all the links connecting patents i and j. The heritage index can be easi-

ly normalized such that the sum of the weights of the backward citations originated from a given 

patent adds up to one. In this case, the index becomes the share of the total genetic heritage 

(normheritage) of the citing patent that is inherited from each of the other patents in the net-

work.  
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For the sake of clarity we report in Table 17 the heritage and the normheritage (in italics and as 

percentage) for each pair of patents in the dummy network of Figure 32. It is important to notice 

that, as argued by Martinelli and Nomaler (2014), the genetic decomposition does not underplay 

the role of novelty. One has to distinguish between knowledge that is inherited and knowledge 

that is generated. Citation weights represent shares of the former. The existence of the citation 

represents the latter, as citations identify prior art which is subsequently improved. Therefore, 

the very same existence of the citation proves the relevance of the novelty created by the cited 

patent.  

 We can now calculate the persistence index (PI) for patents belonging to the first two trun-

cations in the network of Figure 3. For this purpose let us define the set E of endpoint patens i 

such that: 

E = { i | bwdciti > 0 , fwdciti = 0 } (5.5) 

Where bwdciti and fwdciti are backward and forward citation made and received by endpoint 

patent i respectively. Endpoints are therefore those patents that end the sequence of citations in 

the network. We index them by e  i  E. The persistence index (PI) computes how much of the 

knowledge of a given patent i ∉ E is retained in the set of endpoints E. It can be computed as fol-

lows: 

𝑃𝐼𝑖 =  ∑ ℎ𝑒𝑟𝑖𝑡𝑎𝑔𝑒𝑖𝑒

𝑒

 (5.6) 

The PI for the patents of the fictitious network of Figure 32 are reported in the last raw of Table 

18.  
Table 17: Measuring knowledge genetic heritage across patents 

    Parents patent (i.e. cited)   

    1 2 3 4 5 6 Total heritage 

Offspring patents        
(i.e. citing) 

4 1.00 0.00 0.00 0.00 0.00 0.00 1 

  100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

 5 0.00 0.50 0.50 0.00 0.00 0.00 1 

  0.0% 50.0% 50.0% 0.0% 0.0% 0.0% 

 6 0.00 0.00 1.00 0.00 0.00 0.00 1 

  0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 

 7 1.00 0.00 0.00 1.00 0.00 0.00 2 

  50.0% 0.0% 0.0% 50.0% 0.0% 0.0% 

 8 0.50 0.25 0.25 0.50 0.50 0.00 2 

  25.0% 12.5% 12.5% 25.0% 25.0% 0.0% 

 9 0.00 0.00 1.00 0.00 0.00 1.00 2 

  0.0% 0.0% 50.0% 0.0% 0.0% 50.0% 

 10 0.00 0.00 1.00 0.00 0.00 1.00 2 

  0.0% 0.0% 50.0% 0.0% 0.0% 50.0% 

 11 0.00 0.00 1.00 0.00 0.00 1.00 2 

  0.0% 0.0% 50.0% 0.0% 0.0% 50.0% 

 12 0.00 0.00 1.00 0.00 0.00 1.00 2 

  0.0% 0.0% 50.0% 0.0% 0.0% 50.0% 

 13 0.00 0.00 1.00 0.00 0.00 1.00 2 

    0.0% 0.0% 50.0% 0.0% 0.0% 50.0% 

   Persistence Index 2.50 0.75 6.75 1.50 0.50 5.00 17 

    14.7% 4.4% 39.7% 8.8% 2.9% 29.4% 
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In our example, the most prominent patent in terms of persistence is patent 3, which accounts 

for 37.5% of the knowledge retained in the last truncation of patents. The example we used so 

far represents a static picture of a citation network. By dynamically analysing different snap-

shots of subsequent networks, it is possible to measure how knowledge persistence changes 

over time. Suppose that we observe the citation network for three periods, T – T+C, T+C – T+2C 

and T+2C – T+3C. We can measure recent knowledge persistence from one period to the next by 

computing the persistence index including only patents granted within one period, take for in-

stance period T+C – T+2C, in the list of parents patents and only patents granted in the next pe-

riod, T+2C – T+3C, in the list of endpoints. The ratio of the total heritage of endpoints belonging 

to the third period received from parent patents granted in the second is a measure of recent 

knowledge persistence from period 2 to 3. Similarly, we can measure cumulative knowledge per-

sistence, for the third period, by including in the list of parent nodes all patents granted in the 

first and second period. Obviously, this version of the index tends to decrease over time as gen-

eration of patents goes by. 

 
Table 18: Measuring knowledge persistence 

    Parents patent (i.e. cited) 

     1 2 3 4 5 6 Total heritage 

Endpoints 

7 1.00 0.00 0.00 1.00 0.00 0.00 2 

  50.0% 0.0% 0.0% 50.0% 0.0% 0.0% 

 8 0.50 0.25 0.25 0.50 0.50 0.00 2 

  25.0% 12.5% 12.5% 25.0% 25.0% 0.0% 

 9 0.00 0.00 1.00 0.00 0.00 1.00 2 

  0.0% 0.0% 50.0% 0.0% 0.0% 50.0% 

 10 0.00 0.00 1.00 0.00 0.00 1.00 2 

  0.0% 0.0% 50.0% 0.0% 0.0% 50.0% 

 11 0.00 0.00 1.00 0.00 0.00 1.00 2 

  0.0% 0.0% 50.0% 0.0% 0.0% 50.0% 

 12 0.00 0.00 1.00 0.00 0.00 1.00 2 

  0.0% 0.0% 50.0% 0.0% 0.0% 50.0% 

 13 0.00 0.00 1.00 0.00 0.00 1.00 2 

    0.0% 0.0% 50.0% 0.0% 0.0% 50.0% 

   Persistence Index 1.50 0.25 5.25 1.50 0.50 5.00 14 

    10.7% 1.8% 37.5% 10.7% 3.6% 35.7% 

 

5.5.2 Firms’ knowledge breadth and depth 

To develop a measure of firms’ knowledge breadth and depth we first need to define an index of 

knowledge proximity that can be used to identify the position of a given firm in the multi-

domain technological space (i.e. the genetic composition of its technological knowledge base). 

Let us define the set of patents belonging to firm f as F and the set of patents belonging to tech-

nology k as K. We then define the set Z as the intersection of F and K: 

Z = F ∩ K = { i |i  F and i  K} (5.7) 

The proximity index between a given firm f and the set of technological domains k is then calcu-

lated as the total genetic heritage of firm f coming from domain k, as shown in the following 

equation. 
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𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦𝑓𝑘 =  ∑ ℎ𝑒𝑟𝑖𝑡𝑎𝑔𝑒𝑖𝑗

𝑖,𝑗 ∈ 𝑍

 (5.8) 

Table 19 reports the firm-technology domain proximity for our fictitious network. Firm A has 

the largest knowledge base, as measured by its total heritage. Twenty percent of its technical 

knowledge is related to technology domain 1 and eighty percent to domain 2. 

 
Table 19: Measuring firm-technology domain proximity 

    Cited 

    Tech 1 Tech 2 Total heritage 

Citing 

Firm A 1.75 7 8.75 

  20.0% 80.0% 

 Firm B 3.5 0.75 4.25 

  82.4% 17.6% 

 Firm C 

 

2 2 

  0% 100% 

 Firm D 

 

2 2 

  0% 100% 

  

The knowledge breadth (KB) index for a firm f is calculated as the Herfindal-based dispersion 

index of a firm’s proximity to the different technological domains k normalized by the maximum 

Herfindal index attainable given the total number of technological domains (equal to K). The 

equation is as follows. 

K
K
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1

2

1
1

1

 (5.9) 

Where the denominator is equal to the highest possible value the numerator can attain. Proximi-

ty is calculated using normheritage. The KB index ranges from a zero to one. A value of zero indi-

cates that firm f is fully specialized, meaning that 100% of its knowledge is retained from a sin-

gle technological domain. To the contrary, a value of one means that firm f is fully diversified, i.e. 

its knowledge is equally spread across all existing domains.  

 The knowledge depth index (KD) measures how much of the knowledge persistence of the 

given domains in which firm f operates is retained by the firm. In other words, KD measures how 

knowledgeable the firm is in the domains in which it operates. The index is calculated as follows. 

 

(5.10) 

Where proximity is calculated using normheritage and F is equal to the number of firms and Kf is 

the number of domains in which proximityfk > 0. The denominator is equal to the largest numera-

tor attainable by firm f given the number of areas in which it operates. KD ranges from zero to 
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one. It takes the value of zero when firm f is a marginal player in each domain in which it oper-

ates. Values closer to one indicate that the firm monopolized the domains in which it operates, 

meaning that 100% of the persistent knowledge in those domains is retained by the firm. It is 

easy to verify that, in our example, the values of knowledge breadth and depth for our fictitious 

firms are as follows: KBA=0.64; KDA=0.23; KBB=0.58; KDB=0.22; KBC=0.0; KDC=0.01; KBD=0.0; 

KDD=0.01. 

 In summary, the knowledge breadth index measures the width of a given firm’s knowledge 

tree, i.e. how many roots the patent citation network of the given firm has, whereas the 

knowledge depth measures how long the roots are. Note that, from a strategic point of view, it 

exists a trade-off between increasing knowledge breadth and depth. Suppose that a successful 

specialized firm (i.e. one with high KD but narrow KB) decides to diversify into an existing tech-

nological domain. Most likely, the firm will face some initial difficulties in mastering the new 

technology. Consequently, at first it will be less knowledgeable than rival firms that were already 

present in that domain. Therefore, the firm’s attempt to increase its KB is likely to decrease its 

knowledge depth initially. Depending on the firm’s capabilities, it might ultimately be able to di-

versify successfully or it might need to reconsider its strategy and move back to a specialization 

position.  

 Based on the level of KB and KD we can classify core innovators in four categories, as shown 

in the taxonomy illustrated in Table 20. We classify core innovators according to the following 

four categories: Diversified Leaders (DL), Diversified Followers (DF), Specialized Leaders (SL) and 

Specialized Followers (SF). We use this classification to test the third hypothesis, discussed in 

Section 5.2. In order to compute the survival rate for the four categories we need to decide upon 

a threshold to use to distinguish high and low levels of knowledge depth and broad and narrow 

knowledge depth. The thresholds used are based on the distribution of knowledge breadth and 

depth. We discuss them in Section 5.7. 

 
Table 20: Knowledge taxonomy of core innovators 

  Knowledge Depth (KD) 

  Low High 

Knowledge 
Breadth (KB) 

Broad Diversified follower Diversified leader 

Narrow Specialized follower Specialized leader 

5.5.3 Measures of knowledge modularity 

In order to assess whether semiconductor technologies became more or less modular over time 

we make use of two indicators: Newman’s Q modularity and genetic modularity. The latter is our 

original contribution. Newman’s Q only accounts for the presence of inter-domain linkages but 

does not measure the strength of information flowing on them. Genetic modularity reveals the 

level of knowledge relatedness across domains. Using a genealogy analogy, modularity Q sets 

family borders within a population, genetic modularity measures genetic closeness across fami-

lies. 

 We define a measure of modularity that complements Newman’s Q and provides infor-

mation about the genetic relationships between different domains. Newman’s Q only takes into 

account direct citations (i.e. direct relatedness). However even though a pair of domains might 
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be connected by few citations, in principle, they could still be genetically interconnected if a lot 

of knowledge flows through those citations. We therefore construct an index of genetic modular-

ity. We first need to define a measure of external knowledge usage at the domain level (DEK). 

This is computed as follows. 





K

k

jk

jj

j

proximity

proximity
DEK

1

1  
(5.11) 

The domain external knowledge index (DEK) measures how much of the knowledge of domain j 

is inherited from all domains k other than j. Genetic modularity is then defined as follows. 

𝐺𝑒𝑛𝑒𝑡𝑖𝑐 𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦 = 1 − (
1

𝐾
 ∑ 𝐷𝐸𝐾𝑘

𝑘

) (5.12) 

Genetic modularity measures how much of the knowledge in the system comes from inter-

domains genetic relationships on average. Genetic modularity ranges from zero to one. Higher 

values indicate that technology domains are more genetically independent from each other. Val-

ues closer to zero reveal knowledge admixture across technology domains. 

5.5.4 Control variables 

In our model, we include two control variables for the technological size of the firm and its level 

of innovative experience. We measure the size of core innovators’ technical knowledge base as 

the count of technologically influent patents they have been granted. This simply equals the 

number of NMPs patents granted to each core innovator in each of the five periods. In the re-

maining of the paper, we refer to this variable with the acronym PC (patent count). Finally, the 

number of periods in which each core innovator has showed up in the NMPs sample is used as a 

proxy of the players’ innovative experience. 

5.6 Trends of knowledge modularity and persistence 

The goal of this section is to briefly describe the dynamics of technological change followed by 

the semiconductor industry over the period between the beginnings of the 1980s until mid-

2000s. We describe the trends followed by the industry according to our indices of knowledge 

modularity and persistence.  

 Table 21 reports the evolution of modularity Q and genetic modularity of the NMPs sample 

as well as the set of measures of knowledge persistence. Values of the genetic modularity are 

even higher. This shows that not only the different domains are connected by a few citations but 

also that very little knowledge flows pass through those citations. Trends for both indicators do 

not reveal large variations over time. Essentially semiconductor technology domains are genet-

ically independent from each other. This reinforces the importance of testing our hypothesis 

concerning knowledge diversification. Since technical knowledge is not easily portable across 

domains in the semiconductor industry, diversification needs to be already in place before the 

occurrence of possible shocks in knowledge persistence as reactive behaviour is hindered by the 

lack of bridges across domains. The last four rows of Table 21 show the trend in knowledge per-
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sistence from 1980 to 2000. Since persistence is calculated from one period to the next, obvious-

ly, the value for the last period is not available. We report two versions of the recent and cumula-

tive knowledge persistence indices. The first one is computed for the whole NMPs sample. As we 

have discussed in Section 5.3, the latter includes the main component of the NMPs for each of the 

five periods under observation and the second largest component for periods 1991-1995 and 

2001-2006. This is done to take into account that a larger than usual share of influential patents 

were found in the second component in these two periods. We also compute recent and cumu-

lated knowledge persistence on a sub-set of the NMPs sample that only includes the main com-

ponent. We refer to the latter as the indices of recent and cumulated knowledge persistence on 

the main trajectories. 

 When measured using the NMPs sample, both recent and cumulated knowledge persistence 

indicators show a cyclical trend for knowledge persistence, with peaks in 1990 and 2000 and 

lower values in 1985 and 1995. If we look at cumulated knowledge, we see that only 21.9% of 

the knowledge embodied in the endpoints of the network in the period 1986-1990 was inherited 

by patents granted before 1986. This means that 78% of the knowledge generated in this period 

is genuinely novel. Therefore, a lot of new knowledge needs to be learned to keep updated. This 

figure increased to 53.4 in period 1991-1995 (i.e. less than half of the knowledge is new) and 

then drop to 13.1% in period 1996-2000. Finally, it increases again to 25.1% in 2001-2006 but 

without reaching the level of 1991-1995. On average, over the four periods, knowledge persis-

tence is 28.35%. Therefore, more than 70% of the knowledge generated in each period is genu-

inely new, on average. We argue that this is a strong indicator of knowledge-replacing techno-

logical change, which creates a strong evolutionary pressure. The trends differ when we meas-

ure persistence on the main trajectories only. Recent knowledge persistence becomes monoton-

ically decreasing, whereas cumulated knowledge decreases up to 1995 and slightly increases 

from period 1996-2000 to 2001-2006. These differences show that the knowledge replacing na-

ture of technical change has been considerably stronger for those domains that are found on the 

main trajectories of improvements, i.e. those related to the largest areas of research in the industry. 

 
Table 21: Trends of knowledge modularity and persistence 

  1981-1985 1986-1990 1991-1995 1996-2000 2001-2006 

Modularity Q 0.879 0.901 0.907 0.916 0.902 

Genetic Modularity 0.975 0.981 0.947 0.977 0.966 

Cumulated Knowledge Persistence (NMPs) 0.220 0.534 0.131 0.251 n.a. 

Recent Knowledge Persistence (NMPs) 0.150 0.338 0.091 0.153 n.a. 

Cumulated Knowledge Persistence (Main traj.) 0.220 0.184 0.131 0.144 n.a. 

Recent Knowledge Persistence (Main traj.) 0.150 0.110 0.091 0.084 n.a. 

5.7 Econometric issues 

Before presenting the findings from the logit model estimation, we discuss a few econometric 

issues that affect the regressions. We also inspect our predictors of innovative survival for pos-

sible collinearity. 

 Figure 33 shows the distribution of four out of the five firm level variables (information 

about the fifth one, business type, can be found in Table 15, Section 3). Vertical bars represent 

the number of observations included in each bin, whereas dotted lines show the Kernel 

smoothed probability density function, estimated with the Epanechnikov method. The distribu-
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tion of knowledge breadth, reported in the upper left panel, is clearly bimodal with two peaks, 

one at 0 and one at 0.77. This indicates that there are two distinct populations of core innovators 

in terms of knowledge diversification. One is made by fully specialized players and the other is 

composed of diversified innovators. However, even considering diversified players alone does 

not return a normal distribution as the right tail is fatter than a normal one. The existence of two 

distinct populations of core innovators with respect to their level of diversification can potential-

ly make it difficult to assess how knowledge breadth affects the probability of innovative surviv-

al. In particular, the large density of observation in the left tail of the distribution followed by a 

particularly low density for intermediate levels of KB in the range 0<KB≤0.4, is a source of con-

cern for the efficiency and reliability of the estimated effect of KB. This makes the use of a con-

tinuous variable of KB particularly unreliable because the estimation of the effects of KB on sur-

vival is very inefficient for that range (i.e. the standard deviation of the parameter is very high). 

For this reason, we build a categorical variable based on ten equally spaced bins of KB. This ap-

proach assumes that the effect of the relationship between the independent and the dependent 

variable is flat within intervals. However, using ten bins greatly mitigate the influence of this as-

sumption. Furthermore, it allows avoiding any prior assumption on the functional form of the 

relationship by letting the data speak for it. It does not completely solve the problem of unequal 

density of observations but allow ignoring it by refraining to make any conclusion regarding the 

effect within the range 0<KB≤0.4 and by erasing its influence on the estimation of the effect for 

the other bins. As a comparison with a continuous version of KB, we also test the effect of diver-

sification by using a restricted cubic spline function. This approach allows maintaining a smooth 

relationship between KB and survival and maximizes power (by using fewer degrees of freedom 

than the categorical variable approaches). The spline function transforms the predictor (KB) to 

achieve linearity while still estimating a non-linear relationship in a smooth way.  

 The measure of knowledge depth does not present any particular econometric issue. The 

distribution of KD is log-normal, with a geometric mean of 0.00052 = e(-7.56). This show how 

difficult is to cumulate knowledge. On average, core innovators in the semiconductor industry 

know 0.052% of the total technical knowledge produced in the sub-domain(s) in which they are 

active. The largest value of KD in our sample is 0.085. This has been achieved by Motorola in the 

period 1991-1995, when its KB scored 0.95. Table 39, reported in the appendix A.5.1, lists the 

top 10% observations by KD. Among them, fifty-percent are US innovators, 26.47% are Japa-

nese, 11.76% Taiwanese, 8.82% are Korean and 2.94 are Singaporeans. About 65% are IDMs 

and circa 15% are foundries. The lower panels of Figure 33, reports the distribution of patent 

counts (i.e. the number of key patents granted to a given company in a single period) and of pe-

riods of experience as core innovator. Both are skewed to the left, with most observations hav-

ing less than 10 patents and showing up in the NMPs for the first time. 
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Figure 33: Distribution of knowledge breadth, depth, patent count and experience 

 

As discussed in Section 5.5, to test our third hypothesis we construct the categorical variable 

KNOWCLASS capturing the interaction between KB and KD. Given the nature of the distribution 

of these two variables, we created two versions of KNOWCLASS. The first one uses the median of 

KB and of the natural logarithm of KD as cut-off values. As this generates the four categories pre-

sented in Section 5.5 we label this version KNOWCLASS4. It follows that for an observation to be 

considered to have large knowledge breadth and depth it needs to be in the top-half of the dis-

tribution for both variables. We also construct a second version of KNOWCLASS (called 

KNOWCLASS6) which classifies the location of a core innovator in the KB-KD knowledge space 

into six categories. The boundaries of each category reflect the characteristics of the distribu-

tions of KB and KD. In particular we split KB in three groups, low, intermediate and high, using 

the peaks identified by the kernel estimated probability density function as cut-off values. KD is 

split using the geometric mean as cut-off value. As such, we can therefore distinguish core inno-

vators according the following six categories, whose boundaries are defined in Table 22: fully 

specialized followers (FSFs), fully specialized experts (FSEs), mildly diversified followers 

(MDFs), mildly diversified experts (MDEs), highly diversified followers (HDFs) and highly diver-

sified experts (HDEs). KNOWCLASS6 is the preferred classification as its cut-offs values respect 

the characteristics of the sample population in terms of KB and KD variable distributions. We 

need to note that only three observations fall within the HDF category. This is an interesting in-

sight as it tells that highly diversified players also tend to have relatively large levels of 

knowledge accumulation. However, it also makes the econometric estimation of the probability 

of survival for HDFs highly unreliable. Therefore, we shall not consider the estimate for this cat-

egory. The scarcity of observations for core innovators with very large values of KB and very low 

values of KD, but there are several players with very large KD and low KB. This possibly suggests 

the presence of unidirectional reinforcing effects of diversification on knowledge accumulation 

that do not hold in the opposite direction. A possible explanation might be due to a size effect. As 

firms’ technical knowledge base grows, diversification opportunities open up (due to smaller 

opportunity costs of exploration) and the increased experience allows for knowledge accumula-
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tion in several domains. The econometric regressions shall shed light on the presence of size ef-

fects.  

 The last pre-estimation diagnostic that we perform is the correlation and collinearity analy-

sis. Scatter plots of the relationship between continuous explanatory variables (i.e. KB, KD and 

PC) are shown in Figure 34 and their correlations are reported in Table 23. Although in all three 

cases the distribution of observations across the variable space follows a general pattern the 

corresponding correlation is not large enough to create worries in terms of collinearity. In each 

case, the variable on the horizontal axis explains around 30% of the variance of the variable on 

the vertical axis. Indeed the variance inflation factors (VIF), reported in Table 23 are low enough 

to exclude collinearity-induced estimation problems. Panels A and B of Figure 34 are also useful 

for an early diagnostic of a possible size-effect. We note that all players with a large technical 

knowledge base are diversified and knowledgeable. However, the variance of KB and KD even at 

very large levels of PC is sufficiently large to allow distinguishing the effect on survival chances 

caused by technological size from that caused by diversification or knowledge accumulation in 

the econometric analysis. This does not hold for the categorical variables KNOWCLASS4 and 

KNOWCLASS6, as shown by Figure 35. In particular, for values of PC greater or equal than 14 all 

players have the same level of KNOWCLASS4, whereas the threshold is PC≤24 for KNOWCLASS6. 

This means that regressions will not be able to properly distinguish the effect of size from the 

effect of diversification when we use these variables. Therefore, we will limit the sample to play-

ers with a value of PC lower than the identified thresholds in our regression models. 

 
Table 22: cutoff values of KB cat, KNOWCLASS4 and KNOWCLASS6 

Variable Range Count Freq. 

Knowledge classification (4)  

(KNOWCLASS4) 

Specialized follower (SF):  KBi≤MKB &  KDi≤MKD 113 0.340 

Specialized expert (SE):  KBi≤MKB &  KDi>MKD 52 0.157 

Diversified follower (DF):  KBi>MKB &  KDi≤MKD 53 0.160 

Diversified expert (DE):  KBi>MKB &  KDi>MKD 114 0.343 

Knowledge classification (6)  

(KNOWCLASS6) 

Fully specialized follower (FSF):  KBi=0 &  KDi≤geomµKD 95 0.286 

Fully specialized expert (FSE):  KBi=0 & KDi>geomµKD 34 0.102 

Mildly diversified follower (MDF):  0< KBi ≤0.77 & KDi≤geomµKD 54 0.163 

Mildly diversified expert (MDE):  0< KBi ≤0.77 & KDi>geomµKD 73 0.220 

Highly diversified follower (HDF):  KBi >0.77 & KDi≤geomµKD 3 0.009 

Highly diversified expert (HDE):  KBi >0.77 & KDi>geomµKD 73 0.220 

Note: MKB = median(KB) =0.4821 ;  MKD = median(lnKD) = 5.9879e-004 = e-7.42 ;  geomµKD =  5.2090e-004 = e-7.56 

 
Table 23: Correlation between independent variables and collinearity diagnostic 
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Figure 34: Scatter plot of continuous variables 

 

As a preliminary investigation of the univariate effects of our predictors on the probability of 

innovative survival, we have also computed the empirical conditional probability of survival for 

core innovators, given their values of KB, KD, PC, KNOWCLASS, experience and business type 

and the level of knowledge persistence. These are reported in the Appendix A.5.2. They show 

that diversification and knowledge accumulation are associated with better survival chances but 

only after a given threshold is passed. Having large values of both KB and KD as well as increas-

ing the size of the technological knowledge base is associated with a larger probability of surviv-

al. We have also assessed whether survivors and exiters can be legitimately be described as be-

longing to two different populations. We did that by testing whether the empirical cumulative 

distribution function of KB and KD for survivors is statistically dominated by the one for exiters. 

These tests are reported in the Appendix A.5.3. They show that indeed survivors are statistically 

more likely to have larger KB and KD than exiters. We shall see whether putting all these possi-

ble explanations of survival together into econometric regressions will confirm these prelimi-

nary insights. 
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Figure 35: Scatter plot of categorical variables versus technical knowledge base size 

5.8 Findings 

Hypothesis 1: Knowledge diversification 

Table 24 reports the estimated coefficients for a set of logit models. We start from the simplest 

possible model in which we estimate the linear effect of diversification and knowledge accumu-

lation without controlling for any other effect. This returns the coefficients reported in Model 1. 

We then progressively include control variables to assess how the sign and strength of the coef-

ficients of KB and KD change when we start controlling for alternative explanations. Once we 

have assessed the effect of the control variables, we add the last variable of interest, the level of 

knowledge persistence from period to period. This lead to the full model sketched in Section 5.4 

and reported in Table 24 as Model 5. This exercise confirms that knowledge diversification sig-

nificantly affects the probability of survival. However, this is statistically true only for large lev-

els of KB. Bins higher that the sixth one have higher and statistically significant better odds of 

survival than fully specialized players (the baseline is the first bin in which there are only obser-

vations with KB=0). As we discussed in the previous section, we refrain to conclude anything 

about the relationship between diversification and innovative survival in the range 0<KB≤0.4. 

However, we note that core innovators with a level of KB in the range 0.4<KB≤0.6 (i.e. bins 5 and 

6) do not enjoy better survival chances than fully specialized players. Bins 5 and 6 are not re-

ported to save space but their coefficient is not significant. The positive effect of technical 

knowledge diversification on innovative survival, emerges from the seventh bin of KB. The coef-

ficients reported in the tables are the slopes of the relationships. In a logit model, they can be 

easily related to the odds of survival. After controlling for technological size, business model, 

experience, and level of knowledge persistence, we estimate that, compared to the first KB bin 

(i.e. KB=0), the estimated odds of survival are e1.734=5.66 times higher for the seventh bin, 

e2.905=18.26 higher for the eight bin and e1.740=5.66 for the ninth one. The tenth bin had to be ex-

cluded from the estimation because it perfectly predicted survival (i.e. all observations with 

KB≥0.9 survived to the next period). These effects are all statistically significant at the 95% con-

fidence level. The coefficients for Model 7, where we assumed a relationship between the log-
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odds of survival and KB defined by a restricted cubic spline function, confirm the significant ef-

fect of KB. The joint effect of the restricted cubic spline coefficients is significant at the 95% lev-

el. However, the first coefficient is not. This suggests that this function does not perfectly capture 

the effect of KB. Most likely this is due to the scarcity of observation for low levels of knowledge 

diversification.  

 Because of this reason, it is particularly insightful to look at the estimated adjusted predict-

ed probability of survival and marginal effects of diversification. These are shown in Figure 36. 

The former is the estimated probability of survival conditional to the level of KB only, i.e. filtered 

by the estimated effect of the other variables included in the regression. The latter are the first 

derivative of the former, i.e. they indicate how much survival chances improve for a decimal unit 

change in KB. We compute adjusted probabilities and average marginal effects using observed 

values for the variables other than the one of interest. This means that for each observation we 

fix the variable of interest at a given value (e.g. we increment KB from zero to one of one decimal 

point at the time), keep the other variables at their observed value and compute the predicted 

probability of innovative survival using the coefficients estimated by the regression. Finally, we 

average the predicted values24. This is preferable than using the means values of the other pre-

dictors as the observed values allow estimating the effect of the variable of interests more pre-

cisely by replicating the economic and statistical logic of matching studies in which all else is 

equal. In Panels A and C and E of Figure 36, we also overlay the scatter plot for the predicted 

probability of survival estimated for each observation including all possible variables. The com-

parison with the adjusted probability of survival for KB helps identifying what is the effect of KB 

on the overall probability of survival, given the combined effects of all the other variables. Panel 

A reports the estimations for Model 9 in Table 24. The conclusion emerged from the regression 

coefficients is confirmed. The probability of survival for diversified players is significantly larger 

than for fully specialized ones but only from the seventh bin onwards. In particular, the adjusted 

probability of survival is 0.65 for fully specialized innovators and increases to more than 0.89 for 

players with KB≥0.6. From this level on further increasing KB statistically improves survival 

chances, as confirmed by the estimated average marginal effects. Finally, we look at adjusted 

probability of survival and marginal effects for Model 10 in Table 24. These are shown in Panel C 

of Figure 36. The use of a restricted cubic spline function of KB, seems to let a U-shaped relation-

ship for the adjusted probability of survival to emerge. However, at no levels of KB the estimated 

P(S) for diversified players is statistically different from that of fully specialized ones. Yet, the 

marginal effects confirms the findings from Model 9, namely that starting from intermediate lev-

els of KB further diversifying increases the probability of survival, although with decreasing re-

turns.  

 We can derive the following conclusions out of the combined analysis of the estimated coef-

ficients for KB and the adjusted probabilities and marginal effects for all models. First, diversifi-

cation statistically increases survival chances only from intermediate levels of KB onwards and it 

seems to so with decreasing returns. Second, we cannot state any safe conclusion for what hap-

pens at lower levels of KB because the estimation is very inefficient in the range of values 

0<KB≤0.4 and particularly poor for KB equal to zero. Indeed, in all our models the predicted 

probability of survival for fully specialized players has a very high variance (as indicated by the 

high range of value taken by the scatter plots). Moreover, the adjusted probability of survival for 

                                                             
24 The procedure uses the STATA margins command as explained in Williams (2012). 
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fully specialized players greatly varies when we shift from a categorical variable of KB to a re-

stricted cubic spline function. It fluctuates from 0.65 to 0.95 depending on the model estimated. 

This, together with the scarcity of observations in the subsequent range 0<KB≤0.4, might strong-

ly affect the shape of the relationship for the restricted cubic spline model, whose U-shape could 

consequently just be an artefact.  

 In this respect, it is also worth highlighting that the coefficient for the Specialized dummy, 

which we add in the restricted cubic spline model to estimate the probability of survival for KB 

equal to zero, is not significant. This points to a lack of a peculiar effect of being fully specialized 

compared to being diversified at any level. This, together with the high variance of predicted 

P(S) for KB equal to zero, points to possibly idiosyncratic explanations of survival for fully spe-

cialized innovators. To control for the presence of firm-specific effects and the possibility that 

survival of fully specialized innovators follows different determinants than for diversified ones, 

we perform two distinct exercises. First, we break the sample into two sub-samples, one for 

KB=0 and one for KB>0. Second, we run the same set of regressions estimating a panel data ran-

dom effect logistic regression model.  

  Table 25 reports the coefficients of the models estimated using the two sub-samples for 

fully specialized and diversified core innovators. We comment on the first two models in the 

next sections, as there is obviously no diversification effect for the subsample of observations 

with KB equal to zero. Model 3 in Table 25 replicates Models 6reported in Table 24. The same 

conclusions emerged from the latter hold, namely that diversification significantly improves 

survival chances when innovators strongly diversify. Note that in Model 3 of Table 25 the base-

line is now bin 5, i.e. the first one that we can trust in the subsample of diversified players due to 

the scarcity of observations in bins 2, 3 and 4. This strongly indicates that our conclusions do not 

depend on the estimation of survival chances for fully specialized players.  

 Models 8 and 9 in Table 24 and 4, 5 and 6 in Table 25, report the panel data random ef-

fect logit version of the pooled data models discussed thus far. Results are broadly consistent 

with what emerged from the analysis of the pooled data with clustered errors. Coefficients for 

the KB variables are higher for KB bin 7 and 8 in the random effect panel data Model 8 than in 

the corresponding pooled data one (i.e. Model 6). However, the coefficient for Bin 9 loses signifi-

cance. This suggests that the high survival chances enjoyed by fully diversified players are idio-

syncratic to their capabilities and not related to their high level of KB. 

 The contribution of the panel level variance component σμ is highly significant. In both cas-

es (Models 8 and 9), rho is statistically different from zero and equal to 0.6. This means that 

around sixty percent of the variance in the probability of survival is explained by intra-cluster 

correlation between the probabilities of survival for a given player in different periods. As ex-

plained by Rodriguez and Elo (2003, p.43), “the estimate of σu can be interpreted as an ordinary 

logit coefficient by writing the random effect uij∼N(0,σu2) as σuzij, where zij∼N(0,1). In this formula-

tion, there is a parallel between the covariates xij, representing observed characteristics with coeffi-

cients β, and the standardized random effects zij, representing unobserved traits with coefficient 

σu”. More precisely, if we take Model 8 as an example, the odds of survival in a given year for a 

core innovator who has unobserved propensity to survive one standard deviation above the 

mean are almost nine times the corresponding odds for a core innovator with average unob-

served propensity and the same observed characteristics (eσμ = e2.185 = 8.89). 

 For the sake of comparison, we also computed adjusted predictions and marginal effects 

for the fixed-effect panel data model where we use the categorical variable for KB. Both are 

computed by setting the random intercept (i.e. the intra-class panel variance component 𝜇𝑗) to 

zero. In other words, they show the effect of diversification after we filter the unobserved play-
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er-specific effect out. They are shown in Panel E and F of Figure 36. They confirm the main con-

clusions discussed thus far. Technical knowledge diversification improves innovative survival 

chances from intermediate levels of KB onwards, even after controlling for firm-specific random 

effects. The figures also show that the random-effect panel data models failed to reduce the vari-

ance of predictions for fully specialized players. We perform the same exercise of splitting the 

sample done for the pooled data to see if random effects differently affect fully specialized and 

diversified players. The estimated coefficients are reported Models 4, 5 and 6 in Table 25. An 

interesting finding emerges. In principle, the inclusion of random effects wash out the signifi-

cance of diversification for the KB>0 sample. The strength of the effect actually increases (the 

coefficients are larger) but it loses significance. This might be easily interpreted as a sign that for 

diversified players the firm-specific effect is the actual determinant of survival that is masked as 

diversification effect when we neglect to consider both. However, the panel estimator is not sig-

nificantly different from zero. This means that for the split sample, the two random-effect panel 

data models are not better than the pooled data versions discussed before.  

 To sum up, considering the commonalities of findings about the effects of knowledge 

breadth on innovative survival we can conclude that starting from intermediate levels of 

knowledge breadth, further diversification significantly increases the resilience of core innova-

tors and their ability to survive. This emerged from the comprehensive analysis of estimated co-

efficients, adjusted probabilities, marginal effects, controlling for player-specific random effects 

and splitting the sample in fully specialized and diversified players. We therefore confirm our 

first hypothesis within these constraints. Due to the statistical characteristics of our sample, the 

peculiar distribution of KB and the lack of more detailed information at the company level, we 

are unable to derive any safe conclusion about the effect of diversification when players have 

small levels of diversification.  

Hypothesis 2: Knowledge accumulation 

Our second hypothesis focuses on the role of knowledge accumulation. If we look at Table 24, we 

notice that the effect of KD on the log-odds of survival is positive and significant as long as we do 

not control for experience and knowledge persistence. Both variables are related to time. Not 

surprisingly, this suggests that knowledge accumulation is at least partially correlated with time. 

In particular, the lack of significance of KD when we control for the time-related variables means 

that the informative content included in the former is actually just a manifestation of the latter. 

Table 25 provides the same findings regardless of the composition of the sample. The lack of 

significance for the coefficients of KD, no matter if we assume a linear or quadratic relationship 

between KD and the odds of innovative survival or if we look at the entire population or at spe-

cialized and diversified innovators separately, lead us to reject hypothesis two. 

 
Table 24: Pooled and panel data logit model estimation 

LOGIT 

MODEL 

VARIABLES 

(1) 

Pooled 

clust.VCE 

PC<24 

(2) 

Pooled 

clust.VCE 

PC<24 

(3) 

Pooled 

clust.VCE 

PC<24 

(4) 

Pooled 

clust.VCE 

PC<24 

(5)  

Pooled 

clust.VCE 

PC<24 

(6) 

Pooled 

clust.VCE 

PC<24 

(7) 

Pooled 

clust.VCE 

All obs. 

(8) 

Panel 

RandEff 

PC<24 

(9) 

Panel 

RandEff 

All obs. 

 survival survival survival survival survival survival survival survival survival 

KB bin category (base = bin 1 = KB=0) 

KB bin 7 

(0.6≤KB<0.7)  

1.398** 1.615** 1.715** 1.808*** 1.719** 1.734**  2.361**  

(0.630) (0.653) (0.691) (0.688) (0.688) (0.705)  (1.198)  

KB bin 8 

(0.7≤KB<0.8) 

2.679** 3.159** 3.207** 3.163** 2.925** 2.905**  4.244**  

(1.044) (1.331) (1.286) (1.317) (1.346) (1.347)  (1.928)  
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LOGIT 

MODEL 

VARIABLES 

(1) 

Pooled 

clust.VCE 

PC<24 

(2) 

Pooled 

clust.VCE 

PC<24 

(3) 

Pooled 

clust.VCE 

PC<24 

(4) 

Pooled 

clust.VCE 

PC<24 

(5)  

Pooled 

clust.VCE 

PC<24 

(6) 

Pooled 

clust.VCE 

PC<24 

(7) 

Pooled 

clust.VCE 

All obs. 

(8) 

Panel 

RandEff 

PC<24 

(9) 

Panel 

RandEff 

All obs. 

 survival survival survival survival survival survival survival survival survival 

KB bin 9 

(0.8≤KB<0.9) 

1.392* 2.130*** 2.032*** 2.049*** 1.725** 1.740**  3.093  

(0.800) (0.739) (0.732) (0.756) (0.761) (0.759)  (2.029)  

Specialized       -2.142  -3.853 

       (1.783)  (3.231) 

Restricted cubic spline (knots at KB = 0, 0.48, 0.89) 

r.c.s. KB1       -7.273  -13.52 

       (5.521)  (9.904) 

r.c.s. KB2       10.73*  18.46* 

       (5.701)  (10.38) 

ln(KD) 0.148* 0.166* 0.128 0.141 0.0974 -0.423 -0.390 -0.855 -0.822 

 (0.0827) (0.0877) (0.0914) (0.0981) (0.100) (0.443) (0.447) (0.683) (0.670) 

ln(KD)2      -0.0295 -0.0280 -0.0601 -0.0589 

      (0.0251) (0.0253) (0.0402) (0.0395) 

PC  -0.0626 -0.0262 -0.0355 -0.0146 -0.00655 0.0124 -0.0465 0.00340 

  (0.0639) (0.0687) (0.0715) (0.0721) (0.0729) (0.0351) (0.103) (0.0624) 

Experience (base = new entrants) 

  1 period   -1.367*** -1.320*** -1.340*** -1.345*** -1.271*** -2.208** -2.169** 

   (0.367) (0.395) (0.411) (0.410) (0.408) (0.964) (0.963) 

  2 periods   -1.302*** -1.279*** -1.118** -1.113** -1.039** -2.401* -2.433* 

   (0.456) (0.482) (0.486) (0.489) (0.477) (1.295) (1.325) 

  3 periods   -0.900 -0.956 -0.531 -0.426 -0.457 -1.793 -1.877 

   (0.593) (0.664) (0.677) (0.637) (0.621) (1.479) (1.497) 

  4 periods   -1.161* -1.175* -0.704 -0.707 -0.612 -2.493 -2.324 

   (0.602) (0.692) (0.699) (0.711) (0.693) (1.807) (1.738) 

Business cat. (base = IDMs) 

  Fabless    -0.579 -0.298 -0.285 -0.145 -0.915 -0.693 

     (0.535) (0.557) (0.575) (0.583) (1.429) (1.417) 

  Supplier    0.628 0.987 0.967 0.949 1.291 1.379 

    (0.852) (0.837) (0.853) (0.818) (1.387) (1.396) 

  Res.provider    -0.832* -0.686 -0.697 -0.727 -1.378 -1.321 

    (0.472) (0.499) (0.507) (0.486) (0.944) (0.929) 

  User    -0.429 -0.427 -0.405 -0.543 -0.856 -0.980 

    (0.426) (0.424) (0.423) (0.412) (0.861) (0.862) 

RK Persistence     18.19** 18.11** 18.15** 27.13* 28.73* 

(main traject.)     (7.919) (7.811) (7.625) (15.04) (15.15) 

Constant 1.882** 2.132** 2.646*** 2.977*** 0.559 -1.603 0.634 -2.465 1.331 

 (0.777) (0.861) (0.946) (0.999) (1.442) (2.214) (2.549) (3.323) (4.336) 

Observations 290 290 290 286 286 286 323 286 323 

# of companies        122 126 

Log-Likelihood -145.9 -145.4 -138.6 -135.3 -132.8 -132.1 -135.6 -129.8 -133.1 

Pseudo R2 0.114 0.117 0.158 0.173 0.188 0.192 0.220   

Sigma_u        2.185 2.273 

Rho        0.592 0.611 

Signif. of rho        0.016 0.013 

Notes: Robust standard errors in parentheses (errors clustered by company for the pooled data) 

Significance legend: *** p<0.01, ** p<0.05, * p<0.1. Vertical bars indicate joint significance of the variables reported to the left 

of the bar(s) (||| p<0.01, || p<0.05, | p<0.1). Business category ‘Foundry’ (in all models) and KB bins 2 and 10 (in Model 9) 

were omitted from the regressions as they predicted survival perfectly. For Model 9 only KB bins whose coefficient is 

statistically significant are reported. 
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Table 25: Pooled and panel data logit model estimation with split sample 

LOGIT 

MODEL  

VARIABLES 

(1) 

Pooled  

clust.VCE 

KB=0 

(2) 

Pooled  

clust.VCE 

KB=0 

(3) 

Pooled  

clust.VCE 

PC<24 & KB>0 

(4) 

Panel  

RandEff 

KB=0 

(5) 

Panel  

RandEff 

KB=0 

(6) 

Panel  

RandEff 

PC<24 & KB>0 

 survival survival survival survival survival survival 

KB bin category (base = bin 5) 

KB bin 6  

(0.5≤KB<0.6) 

  0.660 

(0.585) 

  0.786 

(0.982) 

KB bin 7  

(0.6≤KB<0.7) 

  1.926** 

(0.902) 

  2.460 

(1.650) 

KB bin 8  

(0.7≤KB<0.8) 

  3.286** 

(1.293) 

  4.631 

(3.330) 

KB bin 9  

(0.8≤KB<0.9) 

  2.419** 

(0.968) 

  3.530 

(2.897) 

ln(KD) 0.0311 -0.819 1.793 0.0311 -0.819 2.086 

 (0.109) (0.508) (1.411) (0.110) (0.631) (1.879) 

ln(KD)2  -0.0466* 0.0940  -0.0466 0.103 

  (0.0283) (0.0812)  (0.0339) (0.108) 

PC 0.0523 0.0925 -0.0990 0.0525 0.0925 -0.158 

 (0.260) (0.249) (0.0714) (0.261) (0.265) (0.163) 

Experience (base = new entrants) 

  1 period -1.711** -1.730** -0.995 -1.710** -1.730** -1.598 

 (0.699) (0.706) (0.729) (0.684) (0.685) (1.746) 

  2 periods -1.921** -1.907** -0.224 -1.920*** -1.907*** -0.590 

 (0.769) (0.792) (0.801) (0.728) (0.736) (1.485) 

  3 periods -1.965* -1.674* 1.559 -1.965** -1.674* 1.735 

 (1.005) (0.994) (1.337) (0.921) (0.951) (1.803) 

  4 periods -1.586 -1.656 -0.0383 -1.585 -1.656 -0.539 

 (1.024) (1.024) (1.163) (1.012) (1.023) (2.132) 

Business cat. (base = IDMs) 

  Fabless -0.679 -0.683 - -0.679 -0.683 - 

  (0.789) (0.796)  (0.874) (0.871)  

  Supplier 0.550 0.513 0.712 0.550 0.513 1.164 

 (1.351) (1.376) (1.217) (1.261) (1.268) (2.201) 

  Res.provider -0.0841 -0.0752 -1.304** -0.0841 -0.0752 -2.004 

 (0.603) (0.628) (0.657) (0.611) (0.620) (1.872) 

  User -0.673 -0.647 -0.812 -0.673 -0.647 -1.308 

 (0.570) (0.559) (0.644) (0.626) (0.621) (1.460) 

RK Persistence  40.61*** 39.32*** 0.224 40.60*** 39.32*** 4.782 

(main traject.) (13.02) (12.55) (12.14) (14.62) (14.41) (21.71) 

Constant -1.787 -5.399** 9.586 -1.787 -5.399 11.82 

 (1.869) (2.752) (6.371) (2.149) (3.462) (9.515) 

Observations 128 128 155 128 128 155 

# of companies    84 84 83 

Log-Likelihood -66.36 -65.32 -54.71 -66.36 -65.32 -54.53 

Pseudo R2 0.211 0.224 0.237    

σu    0.0027 0.000978 1.866 

Rho    2.34e-06 2.91e-07 0.514 

Significance of rho    0.498 0.499 0.273 

Notes: Robust standard errors in parentheses (errors clustered by company for the pooled data) 

Significance legend: *** p<0.01, ** p<0.05, * p<0.1. Vertical bars indicates joint significance (||| p<0.01, || p<0.05, | p<0.1). 

Business category ‘Foundry’ (in all models), ‘Fabless’ and KB bins 2 and 10 (in Model 3 and 6) are omitted from the regressions 

as they predict survival perfectly. For Models 3 and 6 only KB bins others than 2, 3 and 4 are reported. Bin is 5 used as baseline.  
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Table 26: Pooled data logit models estimation with KNOWCLASS 

LOGIT  

MODEL 

(1) 

PC<15 

(2) 

PC<15 

(3) 

PC<15 

(4) 

PC<15 

(5) 

PC<24 

(6) 

PC<24 

(7) 

PC<24 

(8) 

PC<24 

(9) 

PC<24 

(10) 

PC<24 

VARIAB. survival survival survival survival survival survival survival survival survival survival 

Knowclass (4):          

Div. Expert 2.43*** 2.158** 1.836**        

 (0.872) (0.853) (0.813)        

Div. Follower 0.597 0.322  -1.83**       

(0.507) (0.462)  (0.813)       

Spec. Expert 0.275  -0.322 -2.15**       

(0.397)  (0.462) (0.853)       

Spec. Follower  -0.275 -0.597 -2.4***       

 (0.397) (0.507) (0.872)       

Knowclass (6):          

Highly div. expert     1.529** 1.271* 1.105* 0.406 2.780**  

    (0.612) (0.667) (0.623) (0.592) (1.373)  

Highly div. follow     -1.250 -1.508 -1.674 -2.374*  -2.78** 

    (1.483) (1.485) (1.386) (1.342)  (1.373) 

Inter. div. expert     1.124** 0.866 0.700  2.374* -0.406 

    (0.548) (0.629) (0.543)  (1.342) (0.592) 

Inter. div. follow.     0.424 0.166  -0.700 1.674 -1.105* 

    (0.431) (0.497)  (0.543) (1.386) (0.623) 

Spec. expert     0.258  -0.166 -0.866 1.508 -1.271* 

    (0.485)  (0.497) (0.629) (1.485) (0.667) 

Spec. follower      -0.258 -0.424 -1.12** 1.250 -1.52** 

     (0.485) (0.431) (0.548) (1.483) (0.612) 

PC 0.120 0.120 0.120 0.120 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 

 (0.098) (0.098) (0.098) (0.098) (0.085) (0.085) (0.085) (0.085) (0.085) (0.085) 

Experience           

  1 period -1.2*** -1.2*** -1.2*** -1.2*** -1.2*** -1.2*** -1.2*** -1.2*** -1.2*** -1.2*** 

 (0.446) (0.446) (0.446) (0.446) (0.427) (0.427) (0.427) (0.427) (0.427) (0.427) 

  2 periods -1.19** -1.19** -1.19** -1.19** -1.03** -1.03** -1.03** -1.03** -1.03** -1.03** 

 (0.488) (0.488) (0.488) (0.488) (0.487) (0.487) (0.487) (0.487) (0.487) (0.487) 

  3 periods -0.679 -0.679 -0.679 -0.679 -0.532 -0.532 -0.532 -0.532 -0.532 -0.532 

 (0.642) (0.642) (0.642) (0.642) (0.664) (0.664) (0.664) (0.664) (0.664) (0.664) 

  4 periods -0.802 -0.802 -0.802 -0.802 -0.350 -0.350 -0.350 -0.350 -0.350 -0.350 

 (0.708) (0.708) (0.708) (0.708) (0.700) (0.700) (0.700) (0.700) (0.700) (0.700) 

Business cat.          

  Foundry - - - - - - - - - - 

  Fabless -0.307 -0.307 -0.307 -0.307 -0.147 -0.147 -0.147 -0.147 -0.147 -0.147 

  (0.559) (0.559) (0.559) (0.559) (0.552) (0.552) (0.552) (0.552) (0.552) (0.552) 

  Supplier 0.907 0.907 0.907 0.907 1.068 1.068 1.068 1.068 1.068 1.068 

 (0.806) (0.806) (0.806) (0.806) (0.817) (0.817) (0.817) (0.817) (0.817) (0.817) 

Res. provider -0.750 -0.750 -0.750 -0.750 -0.689 -0.689 -0.689 -0.689 -0.689 -0.689 

(0.488) (0.488) (0.488) (0.488) (0.465) (0.465) (0.465) (0.465) (0.465) (0.465) 

  User -0.832* -0.832* -0.832* -0.832* -0.766* -0.766* -0.766* -0.766* -0.766* -0.766* 

 (0.454) (0.454) (0.454) (0.454) (0.411) (0.411) (0.411) (0.411) (0.411) (0.411) 

RK Persistence  21.79*** 21.79*** 21.79*** 21.79*** 20.54*** 20.54*** 20.54*** 20.54*** 20.54*** 20.54*** 

(main traject.) (7.509) (7.509) (7.509) (7.509) (7.451) (7.451) (7.451) (7.451) (7.451) (7.451) 

Constant -0.897 -0.622 -0.299 1.536 -0.795 -0.537 -0.371 0.329 -2.045 0.735 

 (0.875) (0.932) (1.012) (1.231) (0.880) (0.968) (0.942) (1.101) (1.792) (1.099) 

Observations 276 276 276 276 292 292 292 292 292 292 

Log-Likelihood -126.7 -126.7 -126.7 -126.7 -138.2 -138.2 -138.2 -138.2 -138.2 -138.2 

Pseudo R2 0.200 0.200 0.200 0.200 0.164 0.164 0.164 0.164 0.164 0.164 

Notes: Robust standard errors in parentheses (errors clustered by company). Significance legend: *** p<0.01, ** p<0.05, * 

p<0.1. Business category ‘Foundry’ (in all models) was omitted from the regressions as it predicts survival perfectly. 
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Table 27: Panel data random effect logit models estimation with KNOWCLASS  

RE XTLOGIT  

MODEL 

(1) 

PC<15 

(2) 

PC<15 

(3) 

PC<15 

(4) 

PC<15 

(5) 

PC<24 

(6) 

PC<24 

(7) 

PC<24 

(8) 

PC<24 

(9) 

PC<24 

(10) 

PC<24 

VARIAB. Surviv. Surviv. Surviv. Surviv. Surviv. Surviv. Surviv. Surviv. Surviv. Surviv. 

Knowclass (4):          

Div. Expert 2.93** 2.48** 2.13**        

 (1.205) (1.09) (1.04)        

Div. Follower 0.802 0.354  -2.132**       

(0.617) (0.60)  (1.047)       

Spec. Expert 0.448  -0.354 -2.485**       

 (0.556)  (0.60) (1.093)       

Spec. Follower  -0.448 -0.802 -2.934**       

 (0.55) (0.61) (1.205)       

Knowclass (6):          

Highly div. expert     1.846 1.416 1.334 0.537 2.795  

    (1.359) (1.335) (1.239) (1.153) (1.911)  

Highly div. follow     -0.949 -1.379 -1.461 -2.258  -2.795 

    (1.896) (1.905) (1.827) (1.812)  (1.911) 

Inter. div. expert     1.309* 0.879 0.797  2.258 -0.537 

    (0.680) (0.734) (0.626)  (1.812) (1.153) 

Inter. div. follow.     0.512 0.0821  -0.797 1.461 -1.334 

    (0.547) (0.687)  (0.626) (1.827) (1.239) 

Spec. expert     0.430  -0.0821 -0.879 1.379 -1.416 

    (0.639)  (0.687) (0.734) (1.905) (1.335) 

Spec. follower      -0.430 -0.512 -1.309* 0.949 -1.846 

     (0.639) (0.547) (0.680) (1.896) (1.359) 

PC 0.106 0.106 0.106 0.106 0.0819 0.0819 0.0819 0.0819 0.0819 0.0819 

 (0.127) (0.127) (0.127) (0.127) (0.083) (0.083) (0.083) (0.083) (0.083) (0.0831) 

Experience           

  1 period -1.52** -1.52** -1.52** -1.52** -1.53** -1.53** -1.53** -1.53** -1.53** -1.53** 

 (0.629) (0.629) (0.629) (0.629) (0.674) (0.674) (0.674) (0.674) (0.674) (0.674) 

  2 periods -1.75** -1.752** -1.75** -1.75** -1.605* -1.605* -1.605* -1.605* -1.605* -1.605* 

 (0.866) (0.866) (0.866) (0.866) (0.937) (0.937) (0.937) (0.937) (0.937) (0.937) 

  3 periods -1.232 -1.232 -1.232 -1.232 -1.154 -1.154 -1.154 -1.154 -1.154 -1.154 

 (1.020) (1.020) (1.020) (1.020) (1.125) (1.125) (1.125) (1.125) (1.125) (1.125) 

  4 periods -1.543 -1.543 -1.543 -1.543 -1.140 -1.140 -1.140 -1.140 -1.140 -1.140 

 (1.219) (1.219) (1.219) (1.219) (1.316) (1.316) (1.316) (1.316) (1.316) (1.316) 

Business cat.          

  Foundry - - - - - - - - - - 

  Fabless -0.551 -0.551 -0.551 -0.551 -0.398 -0.398 -0.398 -0.398 -0.398 -0.398 

  (1.021) (1.021) (1.021) (1.021) (1.051) (1.051) (1.051) (1.051) (1.051) (1.051) 

  Supplier 1.072 1.072 1.072 1.072 1.270 1.270 1.270 1.270 1.270 1.270 

 (1.038) (1.038) (1.038) (1.038) (1.077) (1.077) (1.077) (1.077) (1.077) (1.077) 

  Res. 

provider 

-1.018 -1.018 -1.018 -1.018 -1.036 -1.036 -1.036 -1.036 -1.036 -1.036 

(0.646) (0.646) (0.646) (0.646) (0.712) (0.712) (0.712) (0.712) (0.712) (0.712) 

  User -1.173* -1.173* -1.173* -1.173* -1.113 -1.113 -1.113 -1.113 -1.113 -1.113 

 (0.658) (0.658) (0.658) (0.658) (0.687) (0.687) (0.687) (0.687) (0.687) (0.687) 

RK Persistence  27.20** 27.20** 27.20** 27.20** 26.67** 26.67** 26.67** 26.67** 26.67** 26.67** 

(main traject.) (11.63) (11.63) (11.63) (11.63) (12.50) (12.50) (12.50) (12.50) (12.50) (12.50) 

Constant -0.946 -0.498 -0.144 1.988 -0.863 -0.433 -0.351 0.446 -1.812 0.983 

 (1.278) (1.326) (1.401) (1.713) (1.304) (1.442) (1.416) (1.546) (2.467) (1.945) 

Observations 276 276 276 276 296 296 296 296 296 296 

Num. of innovators 121 121 121 121 126 126 126 126 126 126 

Log-Likelihood -126.1 -126.1 -126.1 -126.1 -137.6 -137.6 -137.6 -137.6 -137.6 -137.6 
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RE XTLOGIT  

MODEL 

(1) 

PC<15 

(2) 

PC<15 

(3) 

PC<15 

(4) 

PC<15 

(5) 

PC<24 

(6) 

PC<24 

(7) 

PC<24 

(8) 

PC<24 

(9) 

PC<24 

(10) 

PC<24 

VARIAB. Surviv. Surviv. Surviv. Surviv. Surviv. Surviv. Surviv. Surviv. Surviv. Surviv. 

Sigma_u 1.218 1.218 1.218 1.218 1.371 1.371 1.371 1.371 1.371 1.371 

Rho 0.311 0.311 0.311 0.311 0.363 0.363 0.363 0.363 0.363 0.363 

Significance of rho 0.056 0.056 0.056 0.056 0.136 0.136 0.136 0.136 0.136 0.136 

Notes: Significance legend: *** p<0.01, ** p<0.05, * p<0.1. Business category ‘Foundry’ (in all models) was omitted from the 

regressions as it predicts survival perfectly. 

 

 

 
Figure 36: Adjusted predictions and average marginal effects of knowledge breadth 

Note: shaded areas and spikes represent 95% confidence intervals. Adjusted probabilities and 

marginal effects computed at the observed values of the other predictors. 
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Hypothesis 3: Interaction effects between knowledge breadth and accumulation 

To test Hypothesis 3 regarding the presence of complementarities between diversification and 

knowledge accumulation, we estimate an equivalent version of the full model (Model 5, Table 

24) where the individual effects of knowledge breadth and depth are replaced by the categorical 

variable KNOWCLASS indicating the relative position in the knowledge breadth-depth space. As 

discussed in Section 5.7, we measure KNOWCLASS in two different ways, corresponding to 4 or 

6 categories. Results are reported in Table 26 for the pooled data and in Table 27 for the random 

effect panel data models. The first four columns report the same model estimated using four 

knowledge categories based on the median levels of KB and log-KD. The estimated coefficients in 

each column are computed using each of the four different categories as baseline. Being a diver-

sified expert provides significantly better odds of survival than anyone else. In particular, after 

controlling for other explanations, including player-specific random effects, diversified experts 

have e2.934=18.8 times better survival odds than specialized followers. However, moving from 

any of the other categories to anyone else, does not improve survival chances significantly. This 

confirms the importance to improve both breadth and depth at the same time, especially for ful-

ly specialized players. Yet this is true for the other categories as well. In fact, once you are an ex-

pert you can only improve the odds of survival by increasing breadth while maintaining high 

depth. The same reasoning holds for diversified followers, which need to improve depth while 

maintaining high breadth to see their odds of survival improving significantly. These conclusions 

hold true when we measure KNOWCLASS using six categories and pooled data. However, this 

time controlling for innovator-specific random effects washes significance of the movement 

across the breadth-depth space out, except for being an intermediate diversified expert com-

pared to a fully specialized follower.  

 The overall findings provide some evidence in favour of our third hypothesis. Yet we cannot 

fully confirm it because the results are not robust to the way we categorize the knowledge 

breadth-depth space, in particular when we control for innovator-specific random effects.  

Hypothesis 4: Knowledge persistence 

Hypothesis 4 postulated a positive relationship between knowledge persistence and resilience 

of core innovators. We measured knowledge persistence in several ways, distinguishing be-

tween recent and cumulated knowledge and between the main trajectories (identified by the 

main component of the NMP) and the whole NMP sample of influential patents (including the 

second component in selected periods). In Tables Table 24, Table 25, Table 26 and Table 27, we 

only reported recent knowledge persistence in the main technological trajectories. This is the 

only version of knowledge persistence that turned out significant. This finding is in itself very 

interesting as it shows that technological shocks that are able to provoke shakeouts come from 

changes in the approach to problem solving (i.e. the main engineering trajectories identified by 

the NMPs) concerning the set of problems that currently attracts most of the inventive effort by 

firms (i.e. the main component of the NMPs). 

 For the full sample, the variable measuring recent knowledge persistence on the main tra-

jectory is always strongly significant, regardless of the model estimated. The coefficients across 

the different models show that full recent knowledge persistence on the main trajectory increas-

es log-odds of survival by a value within the range 18.11 – 28.73, compared to zero persistence. 

As plotted in panel A of Figure 37, this translates in an increase in the probability of survival 

from 0.4 to 1. When we split the sample between fully specialized and diversified innovators, an 

interesting finding emerges. Recent knowledge persistence on the main trajectory significantly 

improves survival chances for the former only whereas it is not significant for the latter. All else 
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equal and after filtering player-specific random effects out, for fully specialized innovators a 

change from zero recent knowledge persistence on the main trajectory to full persistence im-

proves the probability of survival from 0.06 to 1, as shown in Paned D. We note from Panels B 

and C of Figure 37 that a level of about 0.2 is sufficient to achieve a probability of survival of 1 

for fully specialized innovators. This allows quantifying a guiding threshold that indicates the 

level of change in technical knowledge after which knowledge replacing technical change starts 

affecting the composition of the set of current core innovators. All else equal when less than 

twenty percent of the technical knowledge produced in the last 5 years persist on the current 

main technological trajectory the probability of survival for current fully specialized core inno-

vators start decreasing. This confirms our fourth hypothesis but only with respect of fully spe-

cialized core innovators. 

 
Figure 37: Adjusted predictions of Recent Knowledge Persistence (Main Trajectories) 

Hypothesis 5: Interaction between knowledge persistence, breadth and accumulation 

We have just learned that, when we split the sample into fully specialized and diversified play-

ers, persistence keeps being significant for the former and turn insignificant for the latter. This is 

a first evidence in support of our last hypothesis. A more formal test comes from the estimation 

of the average marginal effects (AMEs) of diversification at different persistence levels.  We es-

timated the AMEs for increasing levels of persistence ranging from zero to one, with increments 

of 0.05. We estimated them for each KB bin category with respect to the first bin, which included 

fully specialized players only and the fifth one, which is the first reliable bin category for inter-

mediate levels of KB. This way we can assess whether increasing KB starting from 0, or 0.5, sig-

nificantly improves survival chances conditional to the level of knowledge persistence. Table 28 

presents the results.  
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Table 28: Average Marginal Effects (AMEs) of diversification conditional on the level of knowledge persistence 

RK Persistence (MT) KB bin AME SE z p CI_lb CI_ub Significance

0 7 0.361 0.151 2.39 0.017 0.065 0.657 **

0.05 7 0.352 0.122 2.88 0.004 0.112 0.591 **

0.1 7 0.264 0.082 3.2 0.001 0.102 0.425 **

0.15 7 0.157 0.064 2.47 0.014 0.032 0.281 **

0 8 0.569 0.196 2.9 0.004 0.185 0.954 **

0.05 8 0.484 0.147 3.3 0.001 0.196 0.771 **

0.1 8 0.332 0.082 4.03 0 0.171 0.494 **

0.15 8 0.188 0.068 2.77 0.006 0.055 0.321 **

0 9 0.362 0.159 2.28 0.022 0.051 0.673 **

0.05 9 0.353 0.134 2.64 0.008 0.091 0.614 **

0.1 9 0.264 0.091 2.9 0.004 0.086 0.443 **

0.15 9 0.157 0.067 2.35 0.019 0.026 0.288 **

RK Persistence (MT) KB bin AME SE z p CI_lb CI_ub Significance

0 7 0.380 0.169 2.25 0.025 0.048 0.711 **

0.05 7 0.376 0.149 2.52 0.012 0.084 0.668 **

0.1 7 0.288 0.121 2.38 0.018 0.050 0.525 **

0 8 0.588 0.198 2.98 0.003 0.201 0.975 **

0.05 8 0.508 0.160 3.16 0.002 0.193 0.823 **

0.1 8 0.356 0.117 3.05 0.002 0.127 0.585 **

0.15 8 0.205 0.100 2.06 0.039 0.010 0.401 **

0 9 0.381 0.173 2.2 0.028 0.042 0.720 **

0.05 9 0.377 0.156 2.42 0.015 0.072 0.682 **

0.1 9 0.288 0.125 2.3 0.022 0.042 0.534 **

BASE LINE KB BIN 1 (KB=0)

BASE LINE KB BIN 5 (0.4<=KB<0.5)

 
 

To keep the table easily readable we only report AMEs statistically different from zero at the 

p<0.05 level. The first half of the table shows that, all else equal, the spread of survival chances 

compared to fully specialized players (i.e. the AME) is positive and significantly different from 

zero only for bins 7, 8 and 925 and only for levels of knowledge persistence smaller or equal than 

0.15. When knowledge persistence increases diversification does not significantly improves sur-

vival chances. The same holds when we compute the AMEs using the fifth bin as base line. Filter-

ing players-specific random effects out (i.e. computing the AMEs using Model 8 from Table 24), 

largely confirms the results. Only the AMEs for a persistent level of 0.15 turns insignificant. Yet, 

its p-value is very close to 0.1. Our fifth hypothesis was therefore too mild. The argument that 

the effect of diversification on survival is stronger when technological change is knowledge re-

placing is partially misleading. Our findings show that diversification only affects core innova-

tors’ resilience when technological change is strongly knowledge-replacing. 

Behaviour of the control variables 

Two additional findings emerge from our estimations. They come from the behaviour of the con-

trol variables. First, with the seldom and inconsistent exception of research providers and users 

in some of the models, there are no statistical differences across business models in terms of 

                                                             
25 Note that AMEs calculation is based on Model 6 from Table 24. KB bins 2 and 10 were omitted from the regressions 

as they predicted survival perfectly. Consequently, AMEs for these bins could not be computed. 
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probability to survive as core innovator compared to being an Integrated Device Manufacturer. 

Given that IDMs are usually financially much bigger than fabless, foundries and suppliers, this 

also suggests that there are no financial size effects. Second, fully specialized players with less 

than 10 years of experience as core innovators (i.e. with a presence on the NMPs for up to 2 pe-

riods), have significantly less chances of survival than new fully specialized innovators. This 

suggests that the negative effects of full specialization are particularly stronger in the medium 

term.  

Comparison with probit and complementary log-log models 

As a robustness check, we estimate the same models reported in Tables Table 24, Table 25 and 

Table 26 using probit and complementary log-log cross-section regressions. Results are report-

ed in the Appendices A.5.4 and A.5.5. Our findings are remarkably robust to the choice of the bi-

nary outcome regression model. None of the conclusions derived for our five hypothesis changes 

using the alternative estimation methods. 

5.9 Conclusions 

In this work, we analysed the effect of technical knowledge diversification and accumulation on 

firms’ innovative survival in the semiconductor industry. We hypothesized that diversification, 

accumulation and their joint occurrence are associated with firms’ survival in the set of core in-

novators. Moreover, we argued that knowledge-replacing technical change negatively affects 

firms’ innovative survival and that the diversification and accumulation-induced survival premi-

um should be larger in periods of technological turbulence. 

 We have proven that indeed diversification, significantly and positively affects innovative 

survival in the semiconductor industry, though only for large levels of knowledge breadth. In 

contrast, knowledge accumulation alone does not help to improve the probability to persist as 

core innovator. We also proved that when technological change is knowledge-replacing (i.e. 

when recently created technical knowledge is of no use for mastering the current engineering 

solutions), there is a higher hazard of innovative exit and the set of core innovators undergoes a 

phase of shakeout. In particular, our findings showed that diversification provides a premium in 

terms of resilience to changes in the main technological trajectories compared to specialization 

only when technical knowledge persistence is low. For high levels of persistence, differences in 

terms of knowledge breadth across the full sample of core innovators do not affect the probabil-

ity of survival. However, for players that are already mildly diversified, further increasing their 

knowledge breadth further widening their knowledge breadth provides a survival premium that 

is not conditional to the level of knowledge persistence. Our findings also showed that these 

conclusions holds after controlling for the size of the technical knowledge base and for the busi-

ness model followed by core innovators (IDMs, foundries, fabless, suppliers, users and research 

providers). This suggests that the benefits of technical knowledge diversification are independ-

ent from product diversification and from the stage of value-chain fragmentation. Finally, we 

also showed that the hazard of exit is particularly strong for mid-levels of innovative experience.  

 These findings have important managerial and policy implications. Concerning the former, 

it is clear that even in an industry characterized by large technology modularity, functional or 

product specialization should not necessarily lead to technical knowledge specialization. When 

knowledge persistence is low, knowledge specialization increases the hazard of being locked-out 

from the new technological developments, putting long-run market survival at risk. This raises 

the question of how to pursuit knowledge diversification when technology is highly modular. 
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Since in such a technological space it might not be obvious to move across domains, as they 

share little knowledge and capabilities, it might be necessary to heavily rely on external sources 

of knowledge, especially for small players. The history of the global semiconductor industry has 

shown how R&D alliances and technology licensing have been instrumental in the catching-up 

processes of latecomer firms. Our results suggest that they might also have allowed firms to di-

versify into poorly related technological domains. This hypothesis can serve as a base for future 

research.  

 The policy implications of our findings are particularly important for small catching-up 

countries characterized by few firms with limited R&D resources. Such firms might face serious 

difficulties to pursuit a strategy of technology diversification and knowledge accumulation at the 

same time. How can the government help? There are two policy options. First, diversification at 

the country level can be achieved through specialization at the firm level. When firms’ specializa-

tion patterns are not overlapping (i.e. when firms are specialized in different areas), country’s 

knowledge is diversified. Such strategy can be called ‘diversified specialization’. Such outcome 

can hardly emerge through self-organization as Marshallian externalities, coming from 

knowledge spillovers and economies of co-specialization, might induce firms to focus on similar 

technological domains. Therefore, diversified specialization requires external coordination by 

the local government, which should provide incentives for firms to conduct R&D in non-

overlapping areas. This would allow achieving, at the country level, Jacobian externalities com-

ing from related variety. As we show in the Appendix A.5.7, the data suggests that this aggregate 

diversification pattern was achieved in S.Korea and Taiwan. However, further work is necessary 

to confirm this. A second policy option has more to do with the structure of the technological 

space. We argued that modularity and knowledge-replacing technical change represent evolu-

tionary traps that expose specialized innovators at risk of innovative extinction. The drop in 

knowledge persistence urges players to upgrade their knowledge to master emerging domains 

but high modularity makes knowledge less portable across the technological space. The second 

policy option in this scenario requires direct government intervention. Public research centres 

can engage in R&D project that lay at the interface of technological domains. By doing so, the 

government is providing a technological infrastructure that connects otherwise poorly connect-

ed areas in the technology space. The rational is similar to the argument that sees the provision 

of physical infrastructure (like railroads or highways) connecting isolated cities or regions as a 

government’s task. Similarly, venturing into research projects whose goal is to create bridges 

across technology domains is too costly, and possibly not profitable in the short to medium run, 

to be performed by private firms. Reasons to explore inter-domain connections might not be ob-

vious for profit maximizing firms. Government intervention, in this second policy option, should 

focus on creating escape paths that can be travelled to move from declining domains to emerg-

ing ones. 

 A major limitation of our study come from the lack of financial information about the com-

panies in the sample and of data able to better discriminate firms-specific technical capabilities. 

In particular, data on R&D investments, number of researchers, years of experience of the re-

searchers, being engaged in a strategic alliance, would have greatly helped improve the preci-

sion of the estimation of survival chances for fully specialized players, which suffered from a 

very large variance. In absence of such data, we need to accept that survival of fully specialized 

players cannot be explained with sufficient confidence just by looking at their level of knowledge 

accumulation. A second limitation comes from the nature of the study. By focusing only on the 

semiconductor industry, we are unable to compare our findings with alternative cases charac-

terized by lower knowledge modularity. However, this approach can be easily applied to multi-
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industry studies, as long as we can safely rely on their propensity to patent. This provides a sec-

ond field of future research. 
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6 CONCLUSIONS 

In this PhD Thesis, we analysed the complex relationship between technology, industrial dynam-

ics and catching-up in the Semiconductor industry. We did so by developing a new theoretical 

and methodological framework to study the evolution of the space of engineering solutions 

along two dimensions, the structure of the system of engineering problems and the paths of 

problem solving approaches. We argued that changes in these two dimensions are intertwined 

with the evolution of technological trajectories that are defined at the product level. This novel 

theoretical framework, and the network analysis methods developed to analyse it empirically, 

provided the possibility to quantitatively investigate the co-evolution of technology and firms’ 

inventive strategies with previously unmatched resolution and level of statistical rigour. In this 

conclusive chapter, we summarize the main contributions and findings of the thesis, discuss the 

implications of this PhD dissertation on evolutionary economics and innovation studies and 

briefly present its key policy and managerial implications. Finally, we introduce the research 

agenda sparked by this work. 

6.1 Summary of the thesis’ contributions and findings 

This thesis provides a variety of methodological contributions to the analysis of technology dy-

namics and catching-up. We designed a set of patent citation network analysis methods to un-

fold sources and speed of technical improvements of catching-up firms (Ch.2), measure the sta-

bility of the ranking of engineering problems and the paths of problem-solving approaches 

(Ch.3), identify firms that are able to influence the direction of technological change (Ch.3), re-

veal significant path- and ranking -changers and followers (Ch.3), identify technology domains, 

trace their life cycle and measure firms dynamic technical comparative advantages (Ch.4), 

measure the extent to which technical change is knowledge replacing (Ch.5) measure firms’ 

technical knowledge breadth and depth (Ch.5), and quantify the premium in innovative survival 

chances associated with firms’ technical knowledge diversification and accumulation (Ch.5). We 

applied these methodologies to study technology and industrial dynamics in the semiconductors 

using patent data from the USPTO-NBER database between 1976 and 2006. The choice of the 

Semiconductor industry as field of study allowed validating the findings of our methodologies 

against the breadth of literature on latecomer catching-up strategies that builds on anecdotal 
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evidences, policy analysis and case studies. Our quantitative methods proved to be able to repli-

cate these qualitative evidences.  

 New theoretical insights on the co-evolution of technology and firms’ inventive strategies in 

the Semiconductors were achieved. The network analysis of semiconductor patent citations also 

shed light on the paths followed by firms from successful latecomer countries (Taiwan, Korea 

and Singapore). In Chapter 2, we unfold how, despite sharing relatively similar initial national 

conditions in terms of technology environment at the time of their first USPTO patents, firms 

from successful and unsuccessful catching-up countries followed different inventive strategies 

with respect of the sources and speed of technical improvements. In Taiwan, Singapore and Ko-

rea, we could observe the rise of an industry, with many players that progressively learned from 

each other and adopted a strategy of rapid technical improvements. In Chapter 3, we showed 

that the main paths of engineering improvements have been disrupted twice in the last four dec-

ades. A temporary but substantial disruption in the approaches to problems solving occurred in 

the first half of the 1990s. This change was caused by attempts to look for alternative ways of 

improving integrating circuits’ computational power and energy efficiency. One of such attempts 

focused on circumventing second order problems caused by miniaturization, like power leakage 

due to heat dispersion. A second one explored the feasibility of stacking dies vertically rather 

than horizontally, to achieve a higher density of transistors on a chip. A milder change in the di-

rection of the main paths of engineering improvements was observed in the beginning of the 

2000s. This discontinuity was coupled to a change in the ranking of engineering problems, 

caused by the diffusion of new applications for semiconductor devices, such as LCD TV and com-

puter monitors, tablets and smartphones. Moreover, further improvements in metal–oxide–

semiconductor field-effect transistors (MOSFETs) also stand behind these changes. Our findings 

also show that, in the 1990s and first half of the 2000s, firms from successful latecomer coun-

tries, especially Taiwanese and Singaporean foundries, were significantly more path and ranking 

followers than expected by their size and time of entry. Some of them, notably those engaged in 

LCD technology, proved to be significant ranking changers in the early 2000s. In most of the cas-

es, their strategy to initially follow well-established paths of improvements and respect the pre-

vailing perception on the ranking of engineering problems has granted them a very influential 

role. Their patents were significantly more central in the network of technical improvements 

than expected by firm size and time of entrance. The analysis in Chapter 4 confirmed that late-

comer countries were indeed able to upgrade their technical knowledge during the process of 

catching-up. Their technical comparative advantage initially laid in improving relatively mature 

and declining technologies. However, in the course of about a decade, it evolved into emerging 

technology domains, most notably in breakthroughs related to LCD technology. Our method to 

identify the life cycle stage of technology domains, developed in Chapter 4, also allowed investi-

gating significant differences in the comparative advantage of new innovators and incumbents 

along the life cycle. In accordance with what hypothesized in the literature on disruptive tech-

nology (e.g. Christensen, 1997) and industry life-cycles (e.g. Klepper, 1997), our findings re-

vealed that new innovators have a slightly higher comparative advantage than incumbent in 

breakthrough technology domains and a much larger one in disruptive technologies. Finally, in 

Chapter 5, we showed that technical knowledge is highly modular in the Semiconductor indus-

try. This makes knowledge and experience technology-specifics and therefore less portable 

across technology domains. Due to this configuration of the system, technical knowledge diversi-

fication provides better chances of innovative survival than specialization, in particular when 

technological change is knowledge-replacing. We also found that the knowledge base of semi-

conductor foundries from Taiwan and Singapore is broadly diversified, perhaps due to their role 
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of generalist manufacturers of microchips for a large set of chip-designers. This allowed them 

persisting in the club of core innovators uninterruptedly from the mid-1990s until at least 2006.  

6.2 Implications of this PhD dissertation for technology and innovation studies 

 What do the findings of this thesis collectively tell us about technology development dy-

namics, inventive strategies and catching-up pathways? A coherent story emerges from our em-

pirical analysis, which matches anecdotal evidences presented in the literature (Brown and Lin-

den 2009, Bell and Juma, 2008, Chang and Tsai, 2002, Lee and Lim 2001, Hobday 2000, Langlois 

and Steinmueller 1999, Mathews and Cho 1999, Cho et al., 1998, Chang et al., 1994). Catching-up 

firms from successful latecomer countries, initially preferentially focused on rapidly improving 

foreign and relatively obsolete technologies characterized by long and established engineering 

design trajectories. They then progressively started learning from national sources, fostering 

knowledge diffusion and industry building within their country, and upgrading their knowledge 

by shifting their comparative technical advantage to younger and emerging technology domains. 

At the same time, firms form these countries built a broadly diversified knowledge base, which 

allowed them to spread development risks and secure their role as core innovators. An obvious 

question emerges. Is this catching-up trajectory, which emerged from the careful analysis of pa-

tent records, the only possible one that could have allowed rapid development of frontier technical 

capabilities? As we discussed in the introduction of this thesis, attempting to answer this ques-

tion is not only hard but it is likely to provide misleading messages. Because of the complex na-

ture of technical and economic change, universally valid and replicable strategies hardly exist. 

However, the description of how the technological environment of the Semiconductor industry 

evolved and the analysis of what made successful latecomer firms special, allow better assessing 

if similar scenarios may exist in other industries in different moment in times. Therefore, we do 

not have a recipe for catching-up, but we at least have a carefully described benchmark. Such 

benchmark has a number of important implications for innovation studies and evolutionary 

economic theory. 

 Firstly, we showed how the interaction between demand, product evolution and changes in 

the space of engineering problems can explain the rise and decline of technology domains. We 

described technology domains as areas of research that define a set of common technological 

problems that are tackled applying similar mindsets and toolboxes. As such, technology domains 

can span product and component boundaries. In other words, the evolution of different products 

may depend on the solution of similar engineering challenges. We have discussed how this is the 

case in the Semiconductor industry, where, due to the ubiquitous application of semiconductors 

in modern electronics, solving some key design challenges related to their miniaturization affect 

performance improvements of several products. The key question then becomes, how do tech-

nology domains evolve? In this thesis, we answered it by discussing how two variables describe 

the entire life cycle of technology domains. These are the amount of firms’ inventive effort de-

voted to solving the central engineering problems behind a domain and the level of firms’ explo-

ration of unconventional problem solving approaches. These two variables can describe whether 

a technology domain is emerging, maturing, declining or renewing, as we showed in Chapter 4. 

The theoretical description of the life cycle of technology domains and the development of 

methodologies to empirically analyse it are a major contribution of this work. In fact, as we dis-

cussed, because technology domains affect different products one can now envisage ways of ex-

plaining and, possibly, predicting the life cycle of products and industries by looking at their en-
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gineering design trajectories. These future research agenda is discussed in more details in the 

last section. 

 Secondly, by linking evolutionary dynamics of products and technology domains, the theo-

retical framework developed in this dissertation can potentially explain the clustering of big in-

novations in time, as theorize by Schumpeter and reported by Silverberg and Verspagen (2005). 

Therefore, it can contribute to identify a key driver of economic cycles. Realize that, at its very 

essence, technological progress is achieved by searching for the right approach to solve engi-

neering challenges allows us to focus on the cognitive process behind the search of design solu-

tions. Moreover, acknowledging that the space of engineering problems has a structure is the 

first step toward analysing how solutions propagate. Eventually, this can explain why we ob-

serve waves of new products. The analysis of the semiconductor industry, which we have devel-

oped in this thesis, shows how there is a cyclic dependence between product evolution, engi-

neering design trajectories and the evolution of technology domains. For instance, we have dis-

cussed how semiconductor devices (such as integrated circuits and memories) have evolved 

around a well-defined technological trajectory. Miniaturization is the product feature that must 

be imperatively achieved by any player in the industry. Miniaturizing microchips simultaneously 

allows increasing computing power and storage space. Therefore, the industry has certainly 

evolved along a technological trajectory that clearly defined the features of semiconductor de-

vices that need to be improved. Determining whether miniaturization is the result of consumer 

preferences or designers’ individual choices was beyond the scope of this work. Our goal was 

simply to analyse how the miniaturization technological trajectory has determined which design 

challenges needed to be addressed and how solutions were searched. Making microchips small-

er and smaller led to the emergence of a particular set of engineering problems, such as heat 

dispersion and deterioration in microchips. We showed how the search for solutions to these 

problems mostly followed established problem solving approaches except for a brief period in 

the mid-1990s coinciding with the entrance of latecomers. However, the miniaturization also 

allowed new products to emerge. These products introduced new design challenges. One exam-

ple of this is the application of light-emitting diodes (LCD) to displays. Ultimately new and better 

products (like flat screen televisions and monitors or small portable electronic devices) emerged 

because of miniaturization advances made possible by solving design challenges. We showed, in 

Chapter 3 and 4, how the structure of engineering problems and their ranking of importance 

evolved during this process because some players started devoting a larger share of inventive 

effort to searching solutions to these new challenges. These dynamics clearly show how product 

features, engineering design challenges and firms’ search for better approaches to tackle engi-

neering bottlenecks, co-evolve in a complex manner. It is precisely the process of searching 

across problem solving approaches that can lead to solutions that are able to expand the space of 

what is technically feasible. In particular, when solutions to engineering problems that are ubiq-

uitous across products are found, like those affecting the miniaturization of microchips, waves of 

new products can emerge. 

 Thirdly, the evolution of engineering design trajectories and technology domains can ex-

plain the emergence of catching-up pathways in an industry. Firms can apply different inventive 

strategies, which can be classified based on which engineering problems they try to tackle and in 

which way. Usually industries are characterized in the literature as relatively homogeneous enti-

ties that can be described by a single life cycle. This compresses information on the variety of 

technology domains that is present in a given industry. We showed that technology domains that 

are at different stages of their life-cycle co-exist in the Semiconductor industry. This implies that 

firms can choose among a variety of strategies, which may lead to different catching-up out-
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comes. The strategy mix can be built around two dimensions. First, a firm has to decide which 

engineering challenges to tackle, i.e. in which technology domains she wants to focus on. Second, 

the firm needs to decide which explorative strategy to follow to navigate across the space of 

problem solving approaches. Expected payoff and their variance may differ according to the 

combination of strategies. For instance, one could focus on emerging domains while following a 

comparatively more conservative exploration strategy, or devote inventive effort to mature are-

as while pursuing new approaches to problem solving. We showed how successful catching-up 

firms evolved from a very risk-adverse strategy focused on relatively old technology domains 

and path-following problem solving to a riskier but potentially more rewarding comparative ad-

vantage in breakthrough technology domains, while still maintaining a relatively preference for 

conservative problem-solving approaches. However, this does not preclude the possibility that 

other strategies would have been effective. A more systematic study of the expected payoff and 

variance for each combination of strategies across industries is required to provide a sound and 

credible answer to this question. However, regardless of whether other strategies could have 

been equally viable and profitable, it is interesting to discuss why latecomers opted, at least ini-

tially, for a strategy mix based on devoting inventive effort to the then prevailing engineering 

challenges while following established problem-solving approaches and specializing in mature 

and renewing technology domains, as shown in Chapters 3 and 4. The common explanation that 

emerges from the literature (e.g. Lee and Lim, 2001) interprets following the path as a signal of 

progressive learning. However, there may be an alternative explanation, which emerged from an 

interview that the author has recently conducted to a former high-level technology development 

manager at Chartered Semiconductor Manufacturing, Professor Lap Chan, from Singapore Uni-

versity of Technology and Design, who has three decades of working experience in the Semicon-

ductor industry, two of which in Singapore. A lot of the senior and junior managers in the newly 

established semiconductors firms in Singapore and Taiwan were people that had been trained in 

the US, as also confirmed by Chang and colleagues (1994) as well as Bell and Juma (2008). Many 

of them also worked for a significant period for top US companies. Therefore, they did not really 

need to learn from scratch. Initially local firms were not engaged in heavy patenting. However, 

as they started producing devices outsourced by US firms and using foreign developed manufac-

turing processes, they also started receiving the first requests of paying high licensing fees. This 

made them realize that, in order to survive, they needed to pile up patents as defensive weapons 

for cross-licensing agreements. This became a common strategy in the global Semiconductor 

industry, as discussed by Hall and Ziedonis (2001). To do that, they had to choose in which tech-

nology domains they needed to focus their inventive effort. The natural choice was to select the 

engineering challenges that were then prevailing in the industry, namely relatively mature do-

mains, as they provided better defensive value. Because many of the employees involved in the 

R&D process had been trained and worked in the US, the most obvious way of tackling such chal-

lenges was to apply the problem solving approaches that they were exposed to while in the 

States. This would explain why these firms were significant path-followers, focused on mature 

and renewing domains, as shown in Chapters 3 and 4. We can then speculate that the change in 

national and development context may have initially disconnected these inventors with the di-

rection of technical knowledge evolution in the industry. Furthermore, emerging domains may 

have been too risky, for newly founded firms in latecomer countries, that needed to quickly pile 

up patents for cross-licensing. This, could explain why these companies shifted their focus to 

emerging domains only later, at the beginning of the 2000s. Incidentally, it may also shed light 

on the apparently puzzling fact that, despite being specialized in manufacturing, foundries from 

Taiwan and Singapore are highly diversified across technology domains, including in areas that 



 

136 Conclusions 

are design-intensive, as shown in Chapter 5. In fact, if looked from this perspective, latecomer 

firms’ wide technical knowledge diversification may take a different meaning. In Chapter 5 we 

showed how early technical knowledge diversification is crucial for survival at the technological 

frontier. We provided three interpretations of this finding in the dissertation. First, knowledge 

diversification provides inventive risk sharing. Even for functionally specialized or mono-

product firms, being diversified at the technical knowledge level allows spreading the risk of 

knowledge obsolescence across domains. Second, it facilitates exploring in which domains the 

firm has a comparative advantage. Third, it provides absorptive capacity. Knowledge diversifica-

tion for firms specialized in manufacturing makes it easier to interact with many design part-

ners. However, as it emerged from the discussion with industry experts, there could be a fourth 

alternative explanation. Early technical knowledge diversification allowed latecomer companies 

in the Semiconductors to build up wide cross-licensing portfolio for defensive purposes. This 

strengthened their bargaining position when dealing with design partners operating in different 

technology domains. This last hypothesis is much less related to learning and has much more to 

do with incentives and competition. Further work is necessary to shed light on the theoretical 

implications of this counterintuitive finding.  

6.3 Policy and managerial implications 

 This thesis’ findings, theories and methods have a number of practical policy and manageri-

al implications. Understanding the structure of the system of engineering problems and describ-

ing the direction of evolution of engineering trajectories is of the outmost importance to design 

inventive strategies for firms, regions and countries that better fit with the evolution of the tech-

nology space. In particular, this dissertation has two types of policy and managerial implications. 

Firstly, we can now precisely quantify the impact of firms’ inventive strategies and of the innova-

tion output of geographic entities’ such as cities, regions and countries on future technology de-

velopments. Secondly, our analysis allows envisaging a range of strategic options that firms and 

geographic entities can choose to modify their location with respect to the prevailing engineer-

ing trajectories and their comparative advantage pattern across technology domains. 

 It is of great interest to firms and geographic entities to know their location on the main 

engineering trajectories and comparing their comparative advantage pattern with competitors. 

Our network analysis methods are able to measure firms’, cities’, regions’ and countries’ inven-

tions’ centrality on the main engineering design trajectories, assess the variety of problem-

solving approaches used within these entities and quantify their technological comparative ad-

vantage across technology domains that are in different life cycle stages. These are direct 

measures of how firms and geographic entities are performing in terms of technical capability 

building. They can also be used to identify competitors’ inventive strategies. It is worth mention-

ing that our study does not make any conclusion about which strategy ought to be followed. In 

particular, we have shown that being path-follower, rather than path-changer, or vice versa, 

does not predict the amount of further inventions that will connect to a given patent or to pa-

tents from a given entity above random expectations (as shown in Figure 45 in the Appendix 

A.3.2). This means that the future success of a given engineering trajectory does not depend on 

the centrality of the previous solutions.  

 However, even though being a path-follower and being specialized in mature and declining 

domains can be a viable strategy to exploit comparative advantage in the short run, it is reason-

able to state that it may endanger the ability of persist innovating at the frontier in the long run. 

Indeed, in Chapter 5, we have shown how knowledge diversification across domains provides 
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better survival chances as core innovator. Therefore, it becomes crucial to understand how in-

novators (be they firms or geographic entities) can turn to path-changers and upgrade their ad-

vantage to emerging technology domains. The first task is to identify emerging technology do-

mains and changes in engineering design trajectories. As we showed in this work, this can be 

done by looking at changes in the main paths of citations in a patent network and on clustering 

the invention space by similarity in approaches to problem-solving. Once emerging domains and 

trajectories have been detected, innovators then need to locate themselves in the space of engi-

neering solutions and find the direction to follow to build strength in the desired domain(s). The 

available options differ, depending on the unit of analysis. Suppose that a path-following firm 

wants to change the way its engineers tackle design problems and/or the very set of design chal-

lenges they focus on. Because learning is path-dependent it can be very difficult to make such 

turn by relying only on in-house researchers’ inventive effort. It may be more viable to hire ex-

ternal talents that have been exposed to different approaches to problem solving and/or work-

ing in different technology domains. If attracting such talents is unfeasible, reorganizing internal 

research teams may be more effective as a way to stimulate novel thinking, as shown by Uzzi et 

al. (2013). Access to a different pool of problem solving approaches may also be provided by ex-

ternal partnerships of different formal strength, ranging from alliances to mergers and acquisi-

tions. Being measured at the firm level, our path- and rank-changing indices, as well as the anal-

ysis of comparative advantage across technology domains, can provide managerial guidance in 

the process of identifying useful external sources of knowledge for partnerships, acquisitions 

and even hiring strategies. 

 Geographic entities have a similar set of strategic options to upgrade their comparative ad-

vantage to emerging domains and, if desired, to reposition themselves on more novel engineer-

ing design trajectories. External talents could be attracted with appropriate incentives or local 

talents can be sent for training purposes to other geographic areas that have expertise in emerg-

ing technology domains or new problem-solving approaches. Similarly, policies could be de-

signed to foster cross-boundary partnership among firms. The key goal of these policies should 

be to increase the variety of problem-solving approaches used within the given geographic area 

and make sure that the comparative advantage is not exclusively focused on mature and declin-

ing technology domains. Obviously, this is a much more difficult task for entities that have lim-

ited resources. In Chapter 5, we suggested how bridge formation and diversified specialization 

might facilitate achieving these goals. The former refers to the local or national government ac-

tion of investing in research projects or laboratories whose goal is the generation of knowledge 

at the crossroad between technology domains. This would create a path that local firms can fol-

low to move their specialization from one domain to a previously unrelated one. Diversified spe-

cialization is a different way of achieving risk sharing at the local or national level while keep 

having strongly specialized firms. As we discussed in Chapter 5 (see Appendix A.5.7), the data 

suggests that this was done in S.Korea and Taiwan, where, at least between 1990 and 2006, 

knowledge diversification at the national level was achieved through knowledge specialization 

at the firm level with narrow inter-firm knowledge overlap. 

 In the knowledge valorisation addendum reported at the end of the manuscript, we thor-

oughly discuss possible consulting service packages addressing policy makers’ and practitioners’ 

need to evaluate the impact of their inventive strategies and identify diversification pathways to 

emerging domains. 
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6.4 Research agenda 

 A very promising research agenda can be built starting from the theoretical framework de-

veloped in this thesis to analyse the co-evolution of technology and firms’ inventive strategies 

and the network analysis methods designed to empirically study this co-evolution. Such agenda 

is composed of three parts: causes, effects and prediction. First, in the thesis we have shown how 

to identify changes in engineering trajectories, ranking of design problems and trace the evolu-

tion of technology domains. It must be then understood which are the causes of these changes. 

Second, it is equally important to study the effects that such phenomena have on industrial dy-

namics and economic cycles. Third, if a sound understanding of these phenomena is achieved, it 

may be possible to predict upcoming changes in trajectory, the emergence of new technology 

domains and the decline of old ones. 

6.4.1 Causes 

 The indices that we developed in Chapter 3, allow measuring changes in the ranking of en-

gineering problems and the paths of problem-solving approaches, and identifying path- and 

ranking-changers. Once we identified who path- and ranking-changers are, we can then look for 

predictors of their strategic behaviour. In other words, we can investigate if firms falling within 

these categories have a common profile that can explain their strategic choices. We have already 

shown how firm size, measured by number of patents, is not a good predictor of their inventive 

strategies (as reported in Figure 45 in the Appendix A.3.2). One possible candidate is the firm’s 

age and its relative performance compared to competitors. Spinoffs and firms that are less suc-

cessful might have more incentives to explore new paths. An alternative explanation of path-

changing and rank-changing behaviour may be provided by the previous working experience 

and social network of a firm’s research workforce. Learning is path-dependent and tacit 

knowledge is sticky. Therefore, it is reasonable to hypothesize that the way firms tackle engi-

neering challenges depend on what type of problem-solving approaches their researchers have 

been exposed to during their career, either personally or by social influence from their close 

peers. The availability of harmonized inventors and firms identification numbers (Li et al., 2014) 

now makes it possible to pursue this line of research. 

6.4.2 Effects 

Changes in the allocation of inventive effort across engineering problems and in the way firms 

tackle them can have wider consequences on industrial and economic dynamics. Evolutionary 

economic theory predicts that large waves of firm entry can be observed when there are changes 

in the technological regime of an industry (Klepper, 1997 and 1996; Malerba and Orsenigo, 

1997). Similarly, one possible line of research could seek to assess whether technology domains 

that witness a change in their engineering design trajectory also attract more innovators. A fur-

ther study could focus on investigating how the stability of the ranking of innovators in a given 

domain is affected by changes in the set of engineering challenges and in the problem solving 

approaches followed to tackle them. 

 We have also highlighted how the structure, topology and evolution of the system of tech-

nology domains, are important determinants of firms’ innovative survival. Furthermore, we 

showed how new entrants, in general, tend to have a comparative advantage in emerging tech-

nology domains, but latecomers tend to initially specialize in following established paths in rela-
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tive more mature technologies. This suggests the importance of analysing how technological 

change propagates. The availability of patent data, coupled with advances in network analysis 

technique, text mining, latent semantic analysis and computational power, allow envisaging 

ways to disentangle the system of engineering problems and study change propagation across 

technology domains. This can potentially explain clustering of big innovations in time and the 

formation of economic cycles. 

 Finally, the ability to identify firms’ inventive strategies opens the door to the possibility of 

studying how the expected payoffs are related to the external context. For instance, the tech-

nique described in Chapter 4, to identify the life cycle stage of technology domains, can be used 

to investigate whether the type of diversification strategies that provides better chances to be 

successful is affected by the stage of development of a technology domain, or how life cycles of 

related domains affect each other’s fate.  

6.4.3 Predictions 

A common criticism that economists hear from the public is the poor predicting performance of 

many economic theories, especially when abrupt economic change occur. Therefore, an obvious 

line of research that could follow up this thesis work addresses the possibility of developing a 

predicting model of changes in the structure and ranking of the system of engineering problems 

and in the engineering design trajectories followed in an industry. The first two parts of the re-

search agenda focused on describing studies that can potentially improve our understanding of 

what causes changes in engineering trajectory and in the space of technology domains and 

which effect these changes have on industrial and economic dynamics. Reaching a sound under-

standing of causes and effects of technical change would allow us to design studies that would 

seek to identify early signals of changes in engineering trajectories and in the relative im-

portance of engineering problems and predict their effects. For instance, if one has identified 

which factors affect firms’ decision to allocate inventive effort to new design challenges or to 

start exploring alternative paths to search for design solutions, it becomes possible to estimate 

the probability that these phenomena will happen. In addition, knowledge of the effects that 

these phenomena have on industrial and economic dynamics can help to associate probabilities 

of occurrence for other events, such as industry shakeouts, or to predict rates of performance 

improvements for different technologies, given the characteristics of their engineering design 

trajectory. 

 

 The technical feasibility of pursuing this rich and ambitious research agenda makes us op-

timistic about the existence of something that eminent scholars described as the PhD afterlife.  
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APPENDIX TO CHAPTER 2 

A.2.1 Normalization of the number of between-firms, within-country citations by 
randomizing citation networks 

To assess the extent to which patenting organizations are building upon foreign or locally in-

vented technologies we need to have an expectation of the number of citations that falls between 

countries and one of the number of within-country citations. One way of building an expectation 

for these values is to shuffle citations randomly and then compute the expected value and stand-

ard deviation of the number of inter- and intra-country citations. When doing so it is crucial to 

create random realizations of the system that are plausible given what we observe in the real 

world. There are a number of phenomena that must be preserved in the randomized networks. 

First, the distribution of citations made and received by patents are strongly skewed (most of 

their cumulative distribution function follows a power-law). Second, the probability of receiving 

a citation is a function of the age of the patent. Inventions needs time to be recognized and old 

inventions are usually considered obsolete. Therefore, the probability of receiving a citation ini-

tially increase with age, pick at around 4 years and then rapidly decrease, as shown by Jaffe and 

Trajetenberg (2002) and Hall et al. (2001). Finally, patenting organizations have a markedly 

tendency to cite their previous patents. This is because learning is path-dependent and many 

technical improvements are incremental in nature. Consequently, firms tend to improve upon 

technical solutions that they have developed in the past. Therefore, to generate plausible ran-

dom realization of the real world, the randomization process must reproduce the in- and out-

degree distributions, the typical aging function of citations and the share of self-citations. The 

easier way of doing so is to swap inter-firm citations for each citing-cited year pair. For each cit-

ing-cited year pair our algorithm swap all inter-firm citations. This preserves both the in- and 

out-degree of each patent (and therefore their distribution) and the lag between the citing and 

the cited grant year of each citation. The number of inter-firm between-country citations and its 

counterpart for within-country citations then becomes random variables. If we repeat the pro-

cess 1000 times we obtain a mean and a standard deviation for these statistics. The mean ap-

proximate their true expected value. We can then compute the z-scores for the number of inter-

firm between- and within-country citations reported in Chapter 2.  Note that, under certain con-

ditions the expected value and the standard deviation can be predicted by the sum of hypergeo-

metric random variables. This is discussed in details in another paper of the same author of this 

thesis (Alstott et al., 2015).  
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A.2.2 Empirical cumulative distribution functions of the probability of citing a 
patent as a function of its age by citing country 

 
Figure 38: Empirical cumulative distribution functions of the probability of citing 

a patent as a function of its age by citing country. 
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APPENDIX TO CHAPTER 3 

A.3.1 Visual analysis of the main component of the Network of Main Paths 

We inspect the composition of the main component of the NMPs, by plotting its visual appear-

ance for each of the six periods considered. These graphs are reported in figures from Figure 30 

to Figure 44. Table 29 reports the legend of nodes’ colour, shape and size, to help interpreting 

the graphs. We can group the insights provided by the visual analysis of the NMPs along two 

themes: technological classes and countries. If we look at shapes of the nodes we can notice that 

patents belonging to class 438 (process innovation) have always been the majority, especially 

among the highly connected nodes (those bigger in size). However, from 1976-1995 they virtu-

ally overthrown other classes, except for a few largely connected US and Japanese patents as-

signed to class 257 (product innovation), which show up in the main component of the NMPs in 

periods 1976-2000 and 1976-2006. This reveals an increasing innovative effort devoted to en-

gineering problems related to process innovation. Indeed, in the first three periods, it was still 

possible to find well connected patents related to product innovation (class 257). Furthermore, 

in periods 1976-1985 and 1976-1990, there were also areas of the network of main paths al-

most entirely populated by patents belonging to class 326. These areas almost disappear from 

the main component of the NMPs in the last three periods. The second important insight comes 

from comparing location of assignees from different countries. The NMPs in the first three peri-

ods is dominated by US and Japanese patents, with the presence of a few patents granted to 

German assignees. In the period 1976-1995 the reader can notice the appearance of many red 

nodes (standing for Taiwanese assignees), and a few lilac ones (South Korean assignees) located 

in crucial parts of the network (on the backbone and in the key junctions). This becomes much 

more visible in the period 1976-2000, when the size of Taiwanese and Korean patents increases, 

revealing an increased centrality of their technological solutions. Interestingly, in the final peri-

od 1976-2006, US patents seem to regain the lead in terms of centrality.  

 
Table 29: Legend of nodes' colour, shape and size 

Colour Assignee’s country Shape U.S. main technology class 

Blue U.S.A. Circle 438 – Process 

Green Japan Square 257 – Product 

Yellow Germany Up-triangle 326 - Programmability 

Cyan Italy and France Diamond 716 - Design 

Purple S.Korea Down-triangle 505 – Material 

Red Taiwan Size Proportional to PathC Index 

Black Singapore   

Orange Netherlands   

Grey No assignee   

Brown Others   
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Figure 39: Main component of the NMPs 1976-1980 

 

 

 

 

Figure 40: Main component of the NMPs 1976-1985 
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Figure 41: Main component of the NMPs 1976-1990 

 

 

 

 

Figure 42: Main component of the NMPs 1976-1995 
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Figure 43: Main component of the NMPs 1976-2000 

 

 
 

 
Figure 44: Main component of the NMPs 1976-2006 
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A.3.2  Statistical analysis of the relationship between PFI, POP, PathC and patent 
count 

We report here the statistical analysis of the relationship between the path-following (PFI) and 

the power-of-pull (POP) indices. We also show how the bootstrapping technique used to clean 

the POP, PFI and Path-centrality (PathC) indices from firm size effects, effectively reveals the 

lack of a true relationship between firms size and innovation strategies. 

 No curve could be meaningfully fitted on the data (the R2 for the best fit was on average 

0.1). The solid line indicates the mean of the y variable for each bin of the x variable. Dashed 

lines are drown above and below two standard deviations from the mean. When the variable on 

the horizontal axis was patent count, logarithmic binning was used to reduce noise due to scarci-

ty of observations in the right tail of the distribution. 

 

 
Figure 45: Statistical relationship between PFI, POP, PathC indices and firms' patent count 
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APPENDIX TO CHAPTER 4 

A.4.1  Alternative beginning and end of the archetypal life-cycle of technology 
domains 

 
Figure 46: Archetypal life-cycle of a given technology domain with resistance to decline 

 

 
Figure 47: Archetypal life-cycle of a given technology domain starting with a disruption 
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A.4.2 Plots of the main component of the network of main paths (NMPs) 

 

 
Figure 48: The space of technology domains between 1976 and 1980 

 

 

 
Figure 49: The space of technology domains between 1976 and 1985 
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Figure 50: The space of technology domains between 1976 and 1990 

 

 

 
Figure 51: The space of technology domains between 1976 and 1995 
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Figure 52: The space of technology domains between 1976 and 2000 

 

 

 

 
Figure 53: The space of technology domains between 1976 and 2006 
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A.4.3  Newman’s community detection algorithm 

To identify technology domains we used Newman’s algorithm (Newman, 2004). The algorithm 

maximizes modularity Q, which is defined as follows: 

𝑄 =  ∑(𝑒𝑖𝑖 − 𝑎𝑖
2)

𝑖

 (A.4.1) 

Where eii is the fraction of edges falling within community i and ai2 is equal to the squared sum 

of edges falling between communities, as  𝑎𝑖 =  ∑ 𝑒𝑖𝑗𝑗 . Newman (2004) explains that modularity Q 

can be also calculated as the fraction of edges that fall within communities, minus the expected 

value of the same quantity if edges fall at random without regard for the community structure. 

The author highlights that if a particular division gives no more within-community edges than 

would be expected by random chance modularity Q would be equal to zero. This approach al-

lows optimizing modularity Q without the need to try all possible partition combinations (which 

would take an amount of time exponential to the number of nodes in the network). The optimi-

zation approach starts from the worse possible combination. It then begins an iterative aggrega-

tion process that stops when the increase of modularity becomes negative. Obviously, as ex-

plained by Newman (2004), since the joining of a pair of communities between which there are 

no edges at all can never result in an increase in Q, one needs only consider those pairs between 

which there are edges. Then the change in Q upon joining two communities is given by: 

∆𝑄 =  𝑒𝑖𝑗 + 𝑒𝑗𝑖 −  2𝑎𝑖𝑎𝑗 = 2 (𝑒𝑖𝑗 − 𝑎𝑖𝑎𝑗) (A.4.2) 

One possible drawback of Newman’s algorithm is that it is not specifically thought for citations 

network, which have the peculiarity to be acyclical directed graphs. Yet, symmetrizing the adja-

cency matrix makes citations a univocal measure of relatedness from patent to patent. This al-

lows using the algorithm. The second possible limitation consists in the fact that a real-world 

citation networks are sparser than the random counterparts that are used as benchmark to max-

imize modularity. This is due to the well-known shape of the distribution of citation-lags for pa-

tent networks. Jaffe and Trajtenberg (2002) showed that citations received by the average pa-

tent peaks after 3-4 years and then sharply decline. This is because constant streams of technical 

improvements make older patents irrelevant for the legal definition of the prior-art. Potentially 

this bias can identify communities on the network purely based on their age structure of patent 

citations, without considering the true relationship of similarity that might exist with older pa-

tents. To assess the strength of this bias we analysed the age structure of the communities (i.e. 

technology domains) identified by the algorithm. Results are shown in Figure 54.  The domains’ 

density of patents for each time cohort is shown by mean of a density plot where darker colours 

represent higher density. We can clearly see that a few domains that are time dependent are vis-

ible only in the last period. Since there are few examples we cannot discard the possibility that 

these domains are indeed declining, i.e. their underlying engineering problems failed to attract 

further attention. The fact that age dependent communities are very rare proves that the poten-

tial bias in the algorithm does not affect the quality and validity of our results.  
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Figure 54: Age structure of technology domains 

A.4.4 Anderson-Darling test results 

In this section, we report the results of the non-parametric two-sample Anderson-Darling test 

for statistical difference. 

Andersen-Darling test Ninc Nnew Test result p-value 

Breakthrough 201 213 H1:Fnew(SRTA) ≠ Finc(SRTA) 0.0000 

Disruptive 381 368 H1:Fnew(SRTA) ≠ Finc(SRTA) 0.0039 

Early growth 266 287 H1:Fnew(SRTA) ≠ Finc(SRTA) 0.0000 

Mature 381 368 H1:Fnew(SRTA) ≠ Finc(SRTA) 0.0000 

Renewing 336 314 H1:Fnew(SRTA) ≠ Finc(SRTA) 0.0000 

Exhausting 336 314 H0: Fnew(SRTA) = Finc(SRTA) 0.8460 
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A.4.5  Topic analysis of the main technology domains of the Semiconductor 
Industry between 2001 and 2006 

In this section, we report the title of the most central patents within each technology domain 

identified by the Newman’s modularity maximization algorithm. 
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Table 30: Topic analysis of the main technology domains of the Semiconductor industry between 2001 and 2006 

Patent grant 

year 

Cluster LC stage NMP 

comp 

PathC Title Assignee 

6451641 2002 3 Exhausting 1 13.40 Non-reducing process for deposition of polysilicon gate electrode over high-K gate dielectric material AMD 

6297539 2001 3 Exhausting 1 2.49 Zicronium or hafnium oxide doped with calcium, strontium, aluminum, lanthanum, yttrium, or scandium SHARP 

6407435 2002 3 Exhausting 1 2.16 Because the layers reduce the effects of crystalline structures within individual layers, the overall tunneling 

current is reduced.  

SHARP 

6207589 2001 3 Exhausting 1 0.20 Method of forming a doped metal oxide dielectric film  SHARP 

6297107 2001 6 Exhausting 1 12.96 High dielectric constant materials as gate dielectrics  AMD 

6200865 2001 6 Exhausting 1 7.57 Use of sacrificial dielectric structure to form semiconductor device with a self-aligned threshold adjust and 

overlying low-resistance gate  

AMD 

6391785 2002 7 Mature 1 1.85 Method for bottomless deposition of barrier layers in integrated circuit metallization schemes  ASM/IMEC 

6184128 2001 7 Mature 1 2.61 Method using a thin resist mask for dual damascene stop layer etch  AMD 

6468924 2002 7 Mature 1 0.73 Methods of forming thin films by atomic layer deposition SAMSUNG 

6750066 2004 7 Mature 1 2.32 Precision high-K intergate dielectric layer  AMD 

6534395 2003 7 Mature 1 0.83 Method of forming graded thin films using alternating pulses of vapor phase reactants  ASM 

6424001 2002 9 Renewing 1 1.34 Flash memory with ultra thin vertical body transistors MICRON 

6639268 2003 9 Renewing 1 0.61 Flash memory with ultra thin vertical body transistors  MICRON 

6680508 2004 9 Renewing 1 1.36 Vertical floating gate transistor  MICRON 

6903367 2005 9 Renewing 1 0.32 Programmable memory address and decode circuits with vertical body transistors  MICRON 

6979857 2005 9 Renewing 1 0.32 Apparatus and method for split gate NROM memory MICRON 

6303523 2001 11 Exhausting 1 1.02 Plasma processes for depositing low dielectric constant films APPLIED MATERIALS 

6410462 2002 11 Exhausting 1 0.57 Method of making low-K carbon doped silicon oxide SHARP 

6287990 2001 11 Exhausting 1 0.90 CVD plasma assisted low dielectric constant films APPLIED MATERIALS 

6534397 2003 12 Disruptive 1 1.65 Pre-treatment of low-k dielectric for prevention of photoresist poisoning  AMD 

6656837 2003 12 Disruptive 1 1.78 Method of eliminating photoresist poisoning in damascene applications  APPLIED MATERIALS 

6406994 2002 12 Disruptive 1 1.79 Triple-layered low dielectric constant dielectric dual damascene approach  CHARTERED 

6593247 2003 12 Disruptive 1 0.87 Method of depositing low k films using an oxidizing plasma  APPLIED MATERIALS 

6784119 2004 12 Disruptive 1 0.37 Method of decreasing the K value in SIOC layer deposited by chemical vapor deposition APPLIED MATERIALS 
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Patent grant 

year 

Cluster LC stage NMP 

comp 

PathC Title Assignee 

6979855 2005 15 Renewing 1 8.45 High-quality praseodymium gate dielectrics MICRON 

7045430 2006 15 Renewing 1 3.68 Atomic layer-deposited LaAlO3 films for gate dielectrics  MICRON 

6767795 2004 15 Renewing 1 6.70 Highly reliable amorphous high-k gate dielectric ZrOXNY  MICRON 

6921702 2005 15 Renewing 1 5.47 Atomic layer deposited nanolaminates of HfO2/ZrO2 films as gate dielectrics MICRON 

6660657 2003 15 Renewing 1 0.68 Methods of incorporating nitrogen into silicon-oxide-containing layers MICRON 

6429061 2002 16 Renewing 2 5.66 Complimentary metal oxide semiconductor (cmos); producing higher perfomance device; forming a relaxed 

silicon germanium layer with isolation and well implant regions  

IBM 

6291845 2001 16 Renewing 2 1.87 Fully-dielectric-isolated FET technology  STMICROELECTRONICS 

6841457 2005 16 Renewing 2 1.42 Use of hydrogen implantation to improve material properties of silicon-germanium-on-insulator material made 

by thermal diffusion  

IBM 

6724008 2004 16 Renewing 2 1.07 Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits  AMBERWAVE 

6713326 2004 16 Renewing 2 0.91 Process for producing semiconductor article using graded epitaxial growth  MIT 

6524920 2003 17 Exhausting 2 22.14 Low temperature process for a transistor with elevated source and drain  AMD INC 

6300201 2001 17 Exhausting 2 6.20 Method to form a high K dielectric gate insulator layer, a metal gate structure, and self-aligned channel regions, 

post source/drain formation  

CHARTERED 

6194748 2001 17 Exhausting 2 4.46 MOSFET with suppressed gate-edge fringing field effect  AMD INC 

6171910 2001 17 Exhausting 2 2.81 Method for forming a semiconductor device  MOTOROLA 

6380043 2002 17 Exhausting 2 1.71 Low temperature process to form elevated drain and source of a field effect transistor having high-K gate 

dielectric  

AMD INC 

6933525 2005 18 Breakthrough 2 1.12 Display device and manufacturing method of the same  HITACHI 

7084428 2006 18 Breakthrough 2 0.88 Transistor, integrated circuit, electro-optic device, electronic instrument and method of manufacturing a 

transistor  

SEIKO EPSON CORP 

6218219 2001 18 Breakthrough 2 0.60 Semiconductor device and fabrication method thereof  S.E.L 

6407431 2002 18 Breakthrough 2 0.48 Semiconductor device and fabrication method thereof  S.E.L 

6762468 2004 18 Breakthrough 2 0.21 Semiconductor device and method of manufacturing the same  TOSHIBA 

6251738 2001 19 Exhausting 2 0.92 Process for forming a silicon-germanium base of heterojunction bipolar transistor  IBM 

6521502 2003 20 Renewing 2 12.74 Solid phase epitaxy activation process for source/drain junction extensions and halo regions  AMD INC 

6365476 2002 20 Renewing 2 8.07 Laser thermal process for fabricating field-effect transistors  ULTRATECH STEPPER 
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Patent grant 

year 

Cluster LC stage NMP 

comp 

PathC Title Assignee 

6660605 2003 20 Renewing 2 6.72 Method to fabricate optimal HDD with dual diffusion process to optimize transistor drive current junction 

capacitance, tunneling current and channel dopant loss  

TEXAS INSTRUMENTS 

6225173 2001 20 Renewing 2 5.80 Recessed channel structure for manufacturing shallow source/drain extensions AMD INC 

6218250 2001 20 Renewing 2 5.41 Method and apparatus for minimizing parasitic resistance of semiconductor devices  AMD INC 

6440793 2002 21 Disruptive 2 6.47 Vertical MOSFET  IBM 

6261894 2001 21 Disruptive 2 3.63 Method for forming dual workfunction high-performance support MOSFETs in EDRAM arrays  IBM 

6964897 2005 21 Disruptive 2 2.28 SOI trench capacitor cell incorporating a low-leakage floating body array transistor  IBM 

7122840 2006 21 Disruptive 2 1.23 Image sensor with optical guard ring and fabrication method thereof  TSMC 

7098146 2006 21 Disruptive 2 1.11 Semiconductor device having patterned SOI structure and method for fabricating the same  TOSHIBA 

6703648 2004 22 Disruptive 2 18.24 Strained silicon PMOS having silicon germanium source/drain extensions and method for its fabrication  AMD INC 

6743684 2004 22 Disruptive 2 14.29 Method to produce localized halo for MOS transistor  TEXAS INSTRUMENTS 

6881632 2005 22 Disruptive 2 10.56 Method of fabricating CMOS inverter and integrated circuits utilizing strained surface channel MOSFETS  AMBERWAVE 

7074623 2006 22 Disruptive 2 8.70 Methods of forming strained-semiconductor-on-insulator finFET device structures  AMBERWAVE 

7122449 2006 22 Disruptive 2 7.24 Methods of fabricating semiconductor structures having epitaxially grown source and drain elements  AMBERWAVE 

6190977 2001 24 Exhausting 2 28.94 Method for forming MOSFET with an elevated source/drain  TEXAS INSTRUMENTS - 

ACER 

6303450 2001 24 Exhausting 2 8.48 CMOS device structures and method of making same  IBM 

6284657 2001 25 Mature 2 1.52 Non-metallic barrier formation for copper damascene type interconnects  CHARTERED 

7122442 2006 25 Mature 2 0.47 Method and system for dopant containment  TEXAS INSTRUMENTS 

6611045 2003 25 Mature 2 0.17 Method of forming an integrated circuit device using dummy features and structure thereof  MOTOROLA 

6642579 2003 25 Mature 2 0.16 Method of reducing the extrinsic body resistance in a silicon-on-insulator body contacted MOSFET  IBM 

6864155 2005 25 Mature 2 0.14 Methods of forming silicon-on-insulator comprising integrated circuitry, and wafer bonding methods of forming 

silicon-on-insulator comprising integrated circuitry 

MICRON 

6555839 2003 26 Renewing 2 1.43 Buried channel strained silicon FET using a supply layer created through ion implantation  AMBERWAVE 

6350993 2002 26 Renewing 2 0.41 High speed composite p-channel Si/SiGe heterostructure for field effect devices  IBM 

6207977 2001 26 Renewing 2 0.04 Vertical MISFET devices  IMEC 

6204126 2001 27 Exhausting 2 2.52 Method to fabricate a new structure with multi-self-aligned for split-gate flash  TSMC 

6573126 2003 28 Renewing 2 0.81 Process for producing semiconductor article using graded epitaxial growth  MIT 
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Patent grant 

year 

Cluster LC stage NMP 

comp 

PathC Title Assignee 

6323108 2001 28 Renewing 2 0.24 Fabrication ultra-thin bonded semiconductor layers US NAVY 

6261929 2001 28 Renewing 2 0.23 Methods of forming a plurality of semiconductor layers using spaced trench arrays  NORTHCAR. ST. UNI. 

6191007 2001 28 Renewing 2 0.12 Method for manufacturing a semiconductor substrate  DENSO CORP LTD 

6235567 2001 28 Renewing 2 0.06 Silicon-germanium bicmos on soi  IBM 

6413802 2002 29 Disruptive 2 29.61 Finfet transistor structures having a double gate channel extending vertically from a substrate and methods of 

manufacture  

UNIV OF CALIFORNIA 

6214670 2001 29 Disruptive 2 18.48 Method for manufacturing short-channel, metal-gate CMOS devices with superior hot carrier performance  TSMC 

6686231 2004 29 Disruptive 2 13.00 Damascene gate process with sacrificial oxide in semiconductor devices  AMD INC 

7084018 2006 29 Disruptive 2 10.55 Sacrificial oxide for minimizing box undercut in damascene FinFET  AMD INC 

6962843 2005 29 Disruptive 2 8.79 Method of fabricating a finfet  IBM 
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A.4.6  SRTA tables at the firm level 

In this section we report the SRTA values calculated for a selection of firms from the US, Japan, 

Korea, Taiwan and Singapore. To keep the analysis short we do that only for the last three peri-

ods. Tables from Table 31 to Table 38 reports the SRTA values for the main US, Japanese, Tai-

wanese, Korean and Singaporean players over time. We highlight values of the SRTA greater 

than 0.2 in bold. Firms are distinguished between new and incumbent innovators and also based 

on their business area (IDM=Integrated Device Manufacturer, GRO=Government Research Or-

ganization, NGRO=Non-Governmental Research Organization, Equipm.=Equipment supplier). 

The tables confirm comparative technological advantage patterns as discussed in Section 4.5.2. 

However, they provide further details for those interested to track specialization trends for par-

ticular firms or research institutes.  

 
Table 31: SRTA for the top Taiwanese, Korean and Singaporean firms (1991-1995) 

Company New Inn vs Inc Type #Patents Disruptive Early growth Mature Renewing Exhausting 

UMC (TW) New innovator Foundry 31 -0,477 0,230 -0,087 0,597 0,597 

SAMSUNG (KR) Incumbent IDM 8 0,046 0,300 -0,365 -1,000 -1,000 

TITRI (TW) Incumbent GRO 7 0,112 -0,171 -0,306 0,490 -1,000 

HYUNDAI ELEC. (KR) New innovator IDM 7 -0,523 0,359 -0,306 0,708 -1,000 

LG ELEC. (KR) New innovator IDM 7 -0,230 -0,171 0,360 -1,000 -1,000 

TSMC (TW) New innovator Foundry 6 -0,155 0,245 0,107 -1,000 -1,000 

CHARTERED (SG) New innovator Foundry 4 -1,000 0,664 -1,000 -1,000 -1,000 

KETRI (KR) Incumbent GRO 3 0,188 -1,000 0,107 -1,000 -1,000 

WINBOND (TW) New innovator IDM 2 -1,000 -1,000 0,576 -1,000 -1,000 

 
Table 32: SRTA for the top US and Japanese players (1991-1995) 

Company New Inn vs Inc Type #Patents Disruptive Early growth Mature Renewing Exhausting 

TEXAS INSTR. (US) Incumbent IDM 39 -0,053 -0,223 0,177 -0,312 0,355 

MOTOROLA (US) Incumbent IDM 38 -0,040 -0,211 -0,010 0,235 0,623 

MICRON (US) New innovator IDM 38 0,096 0,132 -0,546 0,235 0,037 

IBM (US) Incumbent IDM 35 0,159 -0,005 -0,221 -1,000 -1,000 

MITSUBISHI (JP) Incumbent IDM 33 -0,073 -0,052 0,189 -0,234 -1,000 

TOSHIBA (JP) Incumbent IDM 33 -0,202 -0,538 0,340 0,301 -1,000 

NEC (JP) Incumbent IDM 22 -0,335 -0,052 0,375 -1,000 -1,000 

AT&T (US) Incumbent IDM 17 0,016 0,186 -0,207 0,093 -1,000 

SONY CORP (JP) Incumbent IDM 17 -0,051 -0,264 0,273 -1,000 -1,000 

FUJITSU (JP) Incumbent IDM 13 0,083 -0,135 -0,076 0,223 -1,000 

HITACHI (JP) Incumbent Equipm. 11 0,089 -0,052 0,007 -1,000 -1,000 

NATIONAL SEMICOND. 

(US) 

Incumbent IDM 11 -0,002 -1,000 0,340 -1,000 -1,000 

HARRIS (US) Incumbent User 7 0,374 -1,000 -1,000 -1,000 -1,000 

LSI LOGIC (US) Incumbent Fabless 7 0,305 -0,171 -1,000 -1,000 -1,000 

APPLIED MATERIALS 

(US) 

Incumbent Equipm. 6 0,188 0,245 -1,000 -1,000 -1,000 

HUGHES (US) Incumbent User 6 -0,465 -1,000 0,425 0,547 -1,000 

MATSUSHITA (JP) Incumbent IDM 6 -0,465 0,245 0,107 -1,000 0,744 
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Company New Inn vs Inc Type #Patents Disruptive Early growth Mature Renewing Exhausting 

OKI ELECTRIC (JP) Incumbent IDM 6 -1,000 0,245 0,425 -1,000 -1,000 

SHARP (JP) Incumbent IDM 6 0,046 -0,096 -0,234 0,547 -1,000 

SIEMENS (DE) Incumbent IDM 6 0,046 -0,096 0,107 -1,000 -1,000 

HONEYWELL (US) Incumbent IDM 5 0,274 -0,005 -1,000 -1,000 -1,000 

SEIKO EPSON (JP) Incumbent IDM 5 -0,390 0,597 -1,000 -1,000 -1,000 

SEMICOND. ENERGY 

(JP) 

Incumbent NGRO 5 -0,065 0,329 -0,147 -1,000 -1,000 

 
Table 33: SRTA for the top Taiwanese, Korean and Singaporean players (1996-2000) 

Company New Inn vs 

Inc 

Type #Patents Break-

through 

Disruptive Early  

growth 

Mature Renewing Exhausting 

TSMC (TW) Incumbent Foundry 92 -0,429 -0,310 -0,018 0,004 0,361 -1,000 

UMC (TW) Incumbent Foundry 77 -0,725 -0,653 0,089 -0,248 0,101 0,748 

SAMSUNG (KR) Incumbent IDM 31 -0,117 -1,000 0,029 0,636 -0,033 -1,000 

CHARTERED (SG) Incumbent Foundry 29 -0,224 -0,284 -0,151 0,231 0,385 0,804 

VANGUARD (TW) New 

innovator 

Foundry 25 -1,000 -1,000 0,160 -1,000 0,075 -1,000 

LG ELEC. (KR) Incumbent IDM 21 0,187 -0,130 -0,122 0,377 0,161 -1,000 

HYUNDAI ELEC. (KR) Incumbent IDM 17 -0,470 -1,000 0,184 -1,000 -0,402 -1,000 

ACER (TW) New 

innovator 

IDM 13 -1,000 0,426 0,065 -1,000 0,055 -1,000 

TITRI (TW) Incumbent GRO 9 -0,190 -1,000 -0,045 -1,000 0,415 -1,000 

MOSEL VITELIC (TW) New 

innovator 

IDM 6 0,011 -1,000 -0,098 -1,000 0,415 -1,000 

WINBOND (TW) Incumbent IDM 5 0,102 -1,000 -0,007 -1,000 0,184 -1,000 

 
Table 34: SRTA for the top US and Japanese players (1996-2000) 

Company New Inn vs 

Inc 

Type #Patents Break-

through 

Disruptive Early  

growth 

Mature Renewing Exhausting 

AMD (US) Incumbent IDM 93 -0,117 -0,704 0,029 0,332 0,111 -1,000 

MICRON (US) Incumbent IDM 66 0,011 -0,606 0,068 0,169 -0,205 -1,000 

NEC (JP) Incumbent IDM 49 0,239 -0,504 -0,031 -0,027 -0,059 -1,000 

IBM (US) Incumbent IDM 37 0,140 -0,392 0,053 0,113 -0,436 -1,000 

TEXAS INSTR. (US) Incumbent IDM 36 -0,190 -1,000 0,086 0,126 0,004 -1,000 

MOTOROLA (US) Incumbent IDM 35 0,102 -1,000 -0,007 0,598 -0,093 -1,000 

TOSHIBA (JP) Incumbent IDM 25 -0,010 -1,000 0,084 -1,000 -0,069 -1,000 

MITSUBISHI (JP) Incumbent IDM 21 0,078 -1,000 0,046 -1,000 0,018 -1,000 

MATSUSHITA (JP) Incumbent IDM 18 0,463 -1,000 -0,098 0,441 -1,000 -1,000 

NATIONAL SEMICOND. 

(US) 

Incumbent IDM 17 0,433 -1,000 -0,128 -1,000 -0,079 -1,000 

LSI LOGIC (US) Incumbent Fabless 16 -1,000 -1,000 0,244 -1,000 -1,000 -1,000 

SHARP (JP) Incumbent IDM 15 0,241 -1,000 -0,007 -1,000 -0,016 -1,000 

INTEL (US) Incumbent IDM 12 0,343 -1,000 -0,292 -1,000 0,415 -1,000 

LUCENT (US) New 

innovator 

User 12 -1,000 -1,000 0,202 -1,000 -0,246 -1,000 
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Company New Inn vs 

Inc 

Type #Patents Break-

through 

Disruptive Early  

growth 

Mature Renewing Exhausting 

SONY CORP (JP) Incumbent IDM 11 0,252 -1,000 0,023 0,617 -1,000 -1,000 

HITACHI (JP) Incumbent Equipm. 10 -0,240 0,236 0,070 -1,000 -0,159 -1,000 

VLSI TECH (US) Incumbent IDM 9 0,154 -1,000 0,046 -1,000 -0,107 -1,000 

SEMICOND. ENERGY (JP) Incumbent NGRO 7 -1,000 -1,000 0,244 -1,000 -1,000 -1,000 

YAMAHA (JP) Incumbent IDM 7 -0,066 -1,000 -0,031 -1,000 0,349 -1,000 

SIEMENS (DE) Incumbent IDM 6 0,508 0,459 -0,570 0,771 -1,000 -1,000 

APPLIED MATERIALS (US) Incumbent Equipm. 5 0,421 -1,000 -0,007 -1,000 -1,000 -1,000 

UNIV CALIFORNIA (US) Incumbent University 5 -1,000 0,528 -0,007 -1,000 0,184 -1,000 

SANYO ELECTRIC (JP) Incumbent IDM 5 0,102 0,732 -0,207 -1,000 -1,000 -1,000 

AMERICAN 

SUPERCOND.(US) 

New 

innovator 

User 5 -1,000 0,883 -1,000 -1,000 -1,000 -1,000 

FOVEONICS (US) New 

innovator 

User 5 -1,000 -1,000 0,244 -1,000 -1,000 -1,000 

 
Table 35: SRTA for the top Taiwanese, Korean and Singaporean players 

(2001-2006 - Main component of  the network of main paths) 

Company New Inn vs Inc Type #Patents Disruptive Mature Renewing Exhausting 

TSMC (TW) Incumbent Foundry 13 0,196 0,397 -0,165 -1,000 

SAMSUNG (KR) Incumbent IDM 9 -1,000 0,540 0,095 -1,000 

CHARTERED (SG) Incumbent Foundry 4 -0,017 0,580 -0,125 -1,000 

UMC (TW) Incumbent Foundry 4 0,318 -1,000 -0,125 -1,000 

HYUNDAI ELEC. (KR) Incumbent IDM 3 -1,000 -1,000 0,217 -1,000 

VANGUARD (TW) Incumbent Foundry 1 0,589 -1,000 -1,000 -1,000 

HYNIX (KR) New innovator IDM 1 -1,000 -1,000 0,217 -1,000 

 
Table 36: SRTA for the top US and Japanese players 

(2001-2006 - Main component of the network of main paths) 

Company New Inn vs Inc Type #Patents Disruptive Mature Renewing Exhausting 

MICRON (US) Incumbent IDM 75 -0,276 -0,666 0,133 -1,000 

AMD (US) Incumbent IDM 31 -0,068 0,489 -0,141 0,509 

IBM (US) Incumbent IDM 22 -0,175 0,345 0,029 -1,000 

APPLIED MATERIALS (US) Incumbent Equipm. 17 0,494 -1,000 -0,691 0,578 

TEXAS INSTR. (US) Incumbent IDM 15 0,015 -1,000 0,065 -1,000 

MOTOROLA (US) Incumbent IDM 14 -0,567 0,036 0,142 -1,000 

SHARP (JP) Incumbent IDM 11 -1,000 -1,000 -0,005 0,841 

INFINEON (DE) Incumbent IDM 4 -0,017 -1,000 0,077 -1,000 

NOVELIUS SYSTEMS (US) New innovator Equipm. 4 0,487 -1,000 -0,440 -1,000 

LAM (US) Incumbent Equipm. 3 0,589 -1,000 -1,000 -1,000 

MATSUSHITA (JP) Incumbent IDM 3 0,126 -1,000 0,018 -1,000 

GENUS (US) New innovator Equipm. 3 -1,000 -1,000 0,217 -1,000 

 
  



 

 Appendices 171 

Table 37: SRTA for the top Taiwanese, Korean and Singaporean players 

(2001-2006 - Second component of the network of main paths) 

Company New Inn vs Inc Type #Patents Breakthrough Disruptive Mature Renewing Exhausting 

TSMC (TW) Incumbent Foundry 40 -0,700 0,100 -0,131 0,000 0,084 

SAMSUNG (KR) Incumbent IDM 18 0,594 -0,347 -1,000 -0,091 -1,000 

LG PHILIPS (KR) New innovator IDM 13 0,752 -1,000 -1,000 -1,000 -1,000 

UMC (TW) Incumbent Foundry 10 -1,000 0,024 -1,000 0,333 -1,000 

HYUNDAI ELEC. (KR) Incumbent IDM 9 -1,000 0,152 0,262 -0,286 -1,000 

CHARTERED (SG) Incumbent Foundry 7 -1,000 -0,001 0,374 -0,167 0,742 

HANN STAR (TW) New innovator IDM 5 0,752 -1,000 -1,000 -1,000 -1,000 

KETRI (KR) Incumbent GRO 3 -1,000 0,076 -1,000 0,250 -1,000 

MACRONIOX  (TW) Incumbent IDM 3 -1,000 0,076 -1,000 0,250 -1,000 

CHUNGHWA (TW) New innovator IDM 3 0,752 -1,000 -1,000 -1,000 -1,000 

HYNIX (KR) New innovator IDM 3 -1,000 -0,264 0,673 0,250 -1,000 

TITRI (TW) Incumbent GRO 2 0,559 -1,000 -1,000 -1,000 0,919 

VANGUARD (TW) Incumbent Foundry 2 -1,000 0,272 -1,000 -1,000 -1,000 

AU OPTRONIC (TW) New innovator IDM 2 0,752 -1,000 -1,000 -1,000 -1,000 

 
Table 38: SRTA for the top US and Japanese players 

(2001-2006 - Second component of the network of main paths) 

Company New Inn vs Inc Type #Patents Breakthrough Disruptive Mature Renewing Exhausting 

AMD (US) Incumbent IDM 81 -1,000 0,038 -0,026 0,152 0,401 

IBM (US) Incumbent IDM 73 -0,348 0,118 -0,226 -0,187 0,129 

TOSHIBA (JP) Incumbent IDM 33 -0,218 0,003 -1,000 0,250 -1,000 

TEXAS INSTR. (US) Incumbent IDM 23 -1,000 -0,046 0,335 0,270 -1,000 

SEMICOND. ENERGY (JP) Incumbent NGRO 18 0,725 -0,823 -1,000 -0,565 -1,000 

MICRON (US) Incumbent IDM 17 -1,000 0,061 -0,050 0,190 -1,000 

NEC (JP) Incumbent IDM 13 -0,296 0,193 0,084 -1,000 -1,000 

AMBERWAVE SYSTEMS (US) New innovator Equipm. 13 -1,000 0,147 -1,000 0,071 -1,000 

INTEL (US) Incumbent IDM 12 -1,000 0,186 -1,000 -0,412 0,595 

MITSUBISHI (JP) Incumbent IDM 9 0,404 -0,264 0,547 -0,286 -1,000 

SHARP (JP) Incumbent IDM 9 -0,120 -0,675 -1,000 0,591 -1,000 

MATSUSHITA (JP) Incumbent IDM 7 -1,000 0,272 -1,000 -1,000 -1,000 

FUJITSU (JP) Incumbent IDM 6 0,082 -0,264 0,673 -0,091 -1,000 

LSI LOGIC (US) Incumbent Fabless 6 -1,000 0,076 0,673 -1,000 -1,000 

MIT (US) Incumbent University 6 -1,000 -0,067 -1,000 0,429 -1,000 

CANON (JP) Incumbent User 5 -1,000 0,272 -1,000 -1,000 -1,000 

HITACHI (JP) Incumbent Equipm. 5 0,171 0,024 -1,000 0,000 -1,000 

HUGHES (US) Incumbent User 5 -1,000 0,272 -1,000 -1,000 -1,000 

MOTOROLA (US) Incumbent IDM 5 -1,000 0,024 0,509 -1,000 0,809 

FREESCALE (US) New innovator IDM 5 -1,000 0,166 -1,000 0,000 -1,000 

INFINEON (DE) Incumbent IDM 4 -1,000 0,134 0,587 -1,000 -1,000 

APPLIED MATERIALS (US) Incumbent Equipm. 3 0,650 -0,264 -1,000 -1,000 -1,000 

OKI ELECTRIC (JP) Incumbent IDM 3 -1,000 -0,264 -1,000 0,538 -1,000 

SONY CORP (JP) Incumbent IDM 3 -1,000 0,076 -1,000 0,250 -1,000 

AGERE SYSTEM (US) New innovator Fabless 3 -1,000 0,076 -1,000 0,250 -1,000 

E INK (US) New innovator IDM 3 0,752 -1,000 -1,000 -1,000 -1,000 
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HONEYWELL (US) Incumbent User 3 -1,000 0,272 -1,000 -1,000 -1,000 

RENESAS ELECTR. (JP) New innovator IDM 3 -1,000 -0,264 0,673 0,250 -1,000 
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APPENDIX TO CHAPTER 5 

A.5.1 Ranking of observations by knowledge depth 

Table 39: top 10% observations by ln(KD) 

Time period Company label Country Business cat. ln(KD) KD KB PC 

1995 MOTOROLA US IDM -2.467234 0.0848191 0.9521546 45 

1990 TEXASINST US IDM -2.827807 0.0591424 0.9250826 56 

1995 ANALOGDEV US IDM -2.942266 0.052746 0 1 

1995 FUJITSU JP IDM -2.958791 0.0518816 0.8963358 14 

1995 AMD US IDM -3.080825 0.0459213 0.7635733 6 

1995 SPRAGUE US IDM -3.116289 0.0443213 0 1 

1995 TEXASINST US IDM -3.262161 0.0383055 0.9281647 43 

2000 AMD US IDM -3.466486 0.0312266 0.905466 93 

2000 UMC TW Foundry -3.493906 0.030382 0.8842815 77 

1985 EATON US User -3.521066 0.0295679 0.2231109 4 

1990 TOSHIBA JP IDM -3.535164 0.029154 0.9613467 74 

1995 MITSUBISHI JP IDM -3.635369 0.0263742 0.8210678 33 

1995 KE&T KR Res.prov. -3.748003 0.0235648 0.6802697 4 

1985 IBM US IDM -3.760301 0.0232767 0.8622844 96 

1995 MICRON US IDM -3.983842 0.018614 0.8571347 41 

1995 HYUNDAI KR IDM -4.020535 0.0179434 0.8265074 8 

1995 UMC TW Foundry -4.050233 0.0174183 0.8781988 32 

2000 MICRON US IDM -4.120855 0.0162306 0.9006752 66 

1990 MOTOROLA US IDM -4.195992 0.0150558 0.9330899 35 

1985 RCA US IDM -4.212543 0.0148087 0.8940903 28 

1995 TSMC TW Foundry -4.299595 0.0135741 0.7682303 8 

2000 TSMC TW Foundry -4.333607 0.0131201 0.9048561 88 

1995 LG KR IDM -4.33592 0.0130898 0.8020592 9 

2000 CHARTERED SG Foundry -4.474548 0.0113954 0.9203129 29 

1985 AT&T US IDM -4.487476 0.011249 0.8634174 42 

1995 IBM US IDM -4.487646 0.0112471 0.8455559 36 

1985 TOSHIBA JP IDM -4.52588 0.0108252 0.8843337 57 

1995 NEC JP IDM -4.596872 0.0100833 0.784089 23 

1985 FUJI_XEROX JP User -4.653471 0.0095285 0 1 

1995 LSILOGIC US Fabless -4.697524 0.0091178 0.6320425 7 

1995 TOSHIBA JP IDM -4.763703 0.0085339 0.8766038 35 

1990 HITACHI JP Supplier -4.765155 0.0085216 0.9206975 43 

1990 NCR US User -4.809824 0.0081493 0.620767 9 

1985 HITACHI JP Supplier -4.83981 0.0079086 0.9408442 24 
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A.5.2 Empirical conditional probabilities of survival 

To provide preliminary insights about the strength and functional form of the association be-

tween the probability of survival and our explanatory variables we computed the empirical con-

ditional probabilities of survival for each of our variables. We broke continuous variables (KB, 

KD, PC) into bins and calculated the survival rate (i.e. the ratio between the number of survivors 

and the number of observations) within each bin. The conditional probability of survival for cat-

egorical variables is straightforward and computed as the survival rate within the given catego-

ry. Figure 55 shows the results.  

 The conditional probability of survival for knowledge breadth follows a very irregular trend 

up to the fifth bin (i.e. up to KB<0.4). This might be an interesting insight in itself or, contrarily it 

might be purely induced by the scarcity of observations for values of KB in the range 0≤KB<0.4 

(i.e. bins 2-4). Indeed from the fifth bin onwards P(S|KB) follows an upward sloping trend, with 

the exception of bin 9, in which it mildly decreases. The irregular trend poses some challenges in 

terms of the estimation of the functional form of the relationship between diversification and 

survival, particularly because we cannot safely rely on the information provided within the 0-0.4 

range of KB.  

 
Figure 55: Empirical conditional probabilities of survival 

 

The relationship between survival and knowledge accumulation seems to be clearer. However 

also in this case some of the bins have too little observations to provide sound conjectures. 

These are bins 1, 2 and 10, in which there are only 7, 6 and 11 observations respectively. If we 

do not consider those bins, the observed probability of survival conditional to the level of 

knowledge accumulation seems to show a similar dynamic as for the knowledge breadth, with a 

clear increasing trend appearing only after a given threshold, which happens to be once again 

the fifth bin. 

 The size of the technological knowledge base seems to positively affect survival. In this case, 

given that the distribution of PC is highly skewed to the left we computed log-bins (i.e. bins of 

increasing width), in order to obtain more reliable and meaningful survival rates. The second 
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row of subplots of Figure 55 shows that larger values of both KB and KD seem to be associated 

with higher survival rates. Indeed the upper right corner of the KB-KD knowledge space has sur-

vival rates of 100% or close. Note that white spots in the figure indicate lack of observations in 

that region of the knowledge space. The business model followed and the years of experience 

does not seem to have any effect on survival chances. Furthermore, contrary to what expected a 

clear relationship between survival and knowledge persistence does not emerge if we only look 

at the empirical conditional probability observed in our sample. 

A.5.3  Kolmogorov-Smirnof, Anderson-Darling and Student’s T tests of the 
associations of knowledge breadth and depth with innovative survival 

Here we assess whether diversification and knowledge accumulation alone are associated with 

survival, without controlling for other explanations or determine the functional form of the rela-

tionship. This boils down to evaluate the correlation between the binary variable Survival and 

the continuous variables KB and KD. The simplest way to do it is to test whether the probability 

to observe larger values of KB or KD in the sample of innovators that survive is statistically larg-

er than for the sample of innovators that exit. The top panels of Figure 56 plot the empirical cu-

mulative distribution functions (ECDFs) of KB and the logged-KD for the two samples. The ECDF 

computes the observed probability of finding values of the given variable lower or equal than a 

given level. It does so by calculating the left-cumulated frequency of observations. For this pur-

pose, we run two tests, the two-sample Kolmogorov-Smirnoff test and the Anderson-Darling test 

to assess whether the difference between the distributions of the two groups is statistically sig-

nificant. The distribution of KB and KD for the survival group might be inflated by the values of 

the two variables for those players that survive for several periods. In order to assess whether 

this effect biases the results we first perform the tests for the distributions of KB and KD ac-

counting for all observations and giving them equal weight. Then we do the same but this time 

computing a distribution in which each player (not each observation) has equal weight. In other 

words, we first calculate the average values of KB and KD for surviving players and then com-

pute the ECDFs for the average values. Obviously the average values of KB and KD for players 

that survive for only one period is trivially equal to the values scored in that period. These EC-

DFs are plotted in the bottom panels of Figure 56. 
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Figure 56: Empirical left-cumulative distribution functions of KB and KD for surviving and exiting core 

innovators 

 

In all four panels, we can see that, for the whole range of values the distribution of knowledge 

breadth and logged-depth for the survival group is stochastically dominated by the distribution 

of the exit group. This means that the probability to find larger values of KB and KD is higher for 

the survival group than for the exit group, for any value of KB and KD larger than zero. For in-

stance, one can immediately see from the upper-left panel that larger values of knowledge 

breadth are more likely to be found in the survival group, where about 40% of the observations 

have a value of KB larger than 0.5, whereas this holds for only less than 20% of the observations 

in the exit group. Moreover, the crossing point with the vertical axis for the ECDF of KB shows 

that the probability to find fully specialized core innovators (i.e. with KB=0) is only about 35% in 

the survival group and nearly 60% in the exit one. This holds whether we filter the effect of long-

lasting survival or not. We computed the probabilities to find observations with values of 

knowledge breadth and depth above the arithmetic and geometric mean26 of the distribution 

respectively. They further confirm the visual impression that the distribution of knowledge 

depth is more skewed than the one of knowledge breadth. Fifty-three percent of all observations 

have a value higher than the arithmetic mean of KB and sixty percent higher than its geometric 

mean. To the contrary, only 19% of the observations have a value larger than the arithmetic 

mean of knowledge depth and 54% have a KD larger than the geometric mean. This means that 

for a randomly selected core innovator is easier to outperform the average competitor in terms 

of knowledge breadth than depth. We compute the same distributions for PC but not plot them 

here for the sake of synthesis. We perform three tests, the two-sample Kolmogorov-Smirnof test, 

the Anderson-Darling test and the t-test of paired differences, to compare whether the differ-

ences between the survival and exit group in terms of KB and KD are statistically significant. The 

                                                             
26 The geometric mean is the mean of the log-transformed distribution 
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tests confirm that surviving innovators are statistically more likely to have broader and deeper 

knowledge base than exit ones. Table 40 summarizes the results for the two-sample Kolmogo-

rov-Smirnoff test (KS-test). The null hypothesis of the KS-test is that the two groups belong to 

the same population, i.e. that there are no statistically significant differences between the ECDFs 

of the survival and exit group. The alternative hypothesis is that the ECDFs of the survival group 

is statistically smaller than the ECDF of the exit group (i.e. that the right tail of the distribution is 

heavier for the survival group than for the exit one). Fs(x) stands for the cumulative distribution 

function of the survival group, i.e. the share of observations in the survival group with a value 

lower or equal than x. Fe(x) is the cumulative distribution of the exit group. The t-statistic of the 

test corresponds to the highest difference found between the two curves. This is compared to 

the highest difference that could be found if one would randomly select two groups out of the 

same population. The value x* corresponds to the value (of KB, KD, KB*KD or PC) for which the 

largest possible difference Fe(x*)-Fs(x*) is found. The value s* is equal to the ratio x*/max(x) and 

is helpful to assess how large x* is.  The KS-tests confirms that surviving core innovators are 

more likely to have large values of KB and KD than exiting ones. 

 We perform the same kind of analysis with the Anderson-Darling test (AD test). The KS test 

does not take into account at which level of the variable under consideration the highest differ-

ence in the two ECDFs is achieved. Since by definition the two curves have to converge to one, it 

is unlikely for x* and s* to have a large value. For our purposes, the AD test has the important 

advantage to give more weight to differences between the curves happening closer to the con-

vergence point. The AD test results are reported in Table 40. They confirm the findings from the 

KS test. 

 Finally, we performed one last test based on a different approach. So far, we have compared 

probabilities to observe diversification and knowledge accumulation across surviving and exit-

ing core innovators. However, there might be firm-specific effects that we are not capturing with 

the KS and AD tests. We therefore want to compare exiting core innovators with themselves at 

the time of survival. In other words, the control group is made by the same players and we can 

test whether exit can be explained by the fact that the given player has reduced its knowledge 

breadth or depth. We now consider core innovators that survived at least one period and exit at 

some point. We then compute the difference between their value of KB and KD and plot the dis-

tribution of these differences. The test becomes a one-sample t-test of paired differences with 

the null hypothesis that the data has zero mean and the alternative hypothesis that the data 

comes from a population with a mean greater than zero. Table 40 reports the results. The test 

confirms what found so far for diversification but rejects findings for knowledge accumulation. 

This means that exiting innovators had a significant lower value of diversification at the period 

before exit than in periods before survival.   
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Table 40: Statistical tests for differences in the empirical cumulative distributions of 

knowledge breadth and depth between survival and exit groups 

 

 

 

A.5.4 Regression results using probit models 

In the following, we report the analogous probit estimation of the logit models presented in the 

paper. The same findings discussed in the paper holds.   

 
Table 41: Pooled and panel data probit model estimation 

PROBIT 

MODEL 

(1) 

Pooled clust.VCE 

PC<24 

(2) 

Pooled clust.VCE 

All obs. 

(3) 

Panel Ran.Eff. 

PC<24 

(4) 

Panel Ran.Eff. 

All obs. 

VARIABLES survival survival survival survival 

     

Specialized  -1.036  -2.180 

  (0.968)  (1.849) 

KB bin category 

KB bin 7 (0.6≤KB<0.7)  0.978*** 

(0.369) 

 1.348** 

(0.670) 

 

KB bin 8 (0.7≤KB<0.8) 1.469** 

(0.602) 

 2.359** 

(1.062) 

 

KB bin 9 (0.8≤KB<0.9) 0.994** 

(0.414) 

   

Restricted cubic spline (knots at KB = 0, 0.48, 0.89) 

r.c.s. KB1  -3.423  -7.643 

  (2.940)  (5.667) 

r.c.s. KB2  5.213*  10.44* 

  (2.892)  (5.903) 

ln(KD) -0.215 -0.189 -0.484 -0.464 

 (0.248) (0.251) (0.389) (0.383) 

ln(KD)2 -0.0159 -0.0147 -0.0344 -0.0336 

 (0.0142) (0.0144) (0.0228) (0.0225) 

PC -0.00533 0.00272 -0.0253 0.00156 

 (0.0363) (0.0142) (0.0590) (0.0347) 

Model Variable Ns Ne Result p-value significance test statistic x* s* Fs(x*) Fe(x*)

KB 116 73 H1: Fs(x) < Fe(x) 0.0002 *** 0.299 0.6208 0.6208 0.3534 0.0548

KD 116 73 H1: Fs(x) < Fe(x) 0.0000 *** 0.378 0.000 0.0076 0.7069 0.3288

All core innovators                

(all periods)

Two-sample Kolmogorov-Smirnoff Test

Model Variable Ns Ne Result p-value significance rank statistics std. rank stat

KB 116 73 H1: Fs(x) ≠ Fe(x) 0.0000 *** 11.039 13.316

KD 116 73 H1: Fs(x) ≠ Fe(x) 0.0000 *** 14.066 17.332

All core innovators                

(all periods)

Anderson-Darling Test (adjusted for ties)

Model Variable N Mean St.Dev Skewness st.error of difference p-value significance t-stat df

KB 56 0.1006 0.326 0.204 0.3263 0.0124 ** 2.3068 55

KD 56 0.0001 0.010 -3.570 0.0103 0.4659 0.086 55

All core innovators                

(all periods)

One sample T-test of Paired Differences

Survival-Exit One-sample t-test of paired differences
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PROBIT 

MODEL 

(1) 

Pooled clust.VCE 

PC<24 

(2) 

Pooled clust.VCE 

All obs. 

(3) 

Panel Ran.Eff. 

PC<24 

(4) 

Panel Ran.Eff. 

All obs. 

VARIABLES survival survival survival survival 

Experience (base = new entrants) 

  1 period 0.754*** 0.704*** -1.276** -1.257** 

 (0.224) (0.221) (0.528) (0.529) 

  2 periods -0.612** -0.548** -1.389* -1.415* 

 (0.277) (0.269) (0.716) (0.734) 

  3 periods -0.207 -0.197 -1.043 -1.093 

 (0.357) (0.350) (0.824) (0.838) 

  4 periods -0.363 -0.283 -1.444 -1.352 

 (0.401) (0.390) (1.004) (0.973) 

Business cat. (base = IDMs) 

  Fabless -0.154 -0.0595 -0.528 -0.400 

  (0.350) (0.361) (0.820) (0.818) 

  Supplier 0.547 0.564 0.738 0.796 

 (0.455) (0.438) (0.787) (0.798) 

  Res.provider -0.433 -0.429 -0.799 -0.762 

 (0.287) (0.280) (0.533) (0.531) 

  User -0.243 -0.319 -0.494 -0.566 

 (0.244) (0.240) (0.492) (0.496) 

RK Persistence  9.502** 9.923** 15.43* 16.59* 

(main traject.) (4.251) (4.356) (8.535) (8.573) 

Constant -0.664 0.406 -1.345 0.793 

 (1.243) (1.441) (1.904) (2.492) 

Observations 286 323 286 323 

Log-Likelihood -132.6 -136.3 -129.7 -133 

# of companies   122 126 

Sigma_u   1.276 1.336 

Rho   0.619 0.641 

Pseudo R2 0.189 0.216   

Notes: Robust standard errors in parentheses (errors clustered by company for the pooled data) 

Significance legend: *** p<0.01, ** p<0.05, * p<0.1. Vertical bars indicate joint significance of the variables reported to the left 

of the bar(s) (||| p<0.01, || p<0.05, | p<0.1). Business category ‘Foundry’ (in all models) and KB bins 2 and 10 (in Model 9) 

were omitted from the regressions as they predicted survival perfectly. For Model 9 only KB bins whose coefficient is 

statistically significant are reported.  

 

Table 42: Pooled and panel data probit model estimation with split sample 

PROBIT 

MODEL 

(1) 

Pooled  

clust.VCE 

KB=0 

(2) 

Pooled  

clust.VCE 

KB=0 

(3) 

Pooled  

clust.VCE 

PC<24 & KB>0 

(4) 

Panel  

RandEff 

KB=0 

(5) 

Panel  

RandEff 

KB=0 

(6) 

Panel  

RandEff 

PC<24 & KB>0 

VARIABLES survival survival survival survival survival survival 

       

KB bin category (base = bin 5) 

KB bin 6  

(0.5≤KB<0.6) 

  0.391 

(0.332) 

  0.391 

(0.332) 

KB bin 7  

(0.6≤KB<0.7) 

  1.075** 

(0.472) 

  1.075** 

(0.472) 

KB bin 8  

(0.7≤KB<0.8) 

  1.779*** 

(0.600) 

  1.779*** 

(0.600) 
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PROBIT 

MODEL 

(1) 

Pooled  

clust.VCE 

KB=0 

(2) 

Pooled  

clust.VCE 

KB=0 

(3) 

Pooled  

clust.VCE 

PC<24 & KB>0 

(4) 

Panel  

RandEff 

KB=0 

(5) 

Panel  

RandEff 

KB=0 

(6) 

Panel  

RandEff 

PC<24 & KB>0 

VARIABLES survival survival survival survival survival survival 

KB bin 9  

(0.8≤KB<0.9) 

  1.406** 

(0.546) 

  1.406** 

(0.546) 

ln(KD) 0.0194 -0.470 0.885 0.0194 -0.470 1.094 

 (0.0673) (0.305) (0.657) (0.0673) (0.379) (1.032) 

ln(KD)2  -0.0267 0.0451  -0.0267 0.0539 

  (0.0169) (0.0390)  (0.0203) (0.0588) 

PC 0.0302 0.0561 -0.0576 0.0302 0.0561 -0.0822 

 (0.163) (0.158) (0.0361) (0.161) (0.164) (0.0878) 

Experience (base = new entrants) 

  1 period -0.963** -0.964** -0.570 -0.964*** -0.964*** -0.826 

 (0.377) (0.379) (0.394) (0.373) (0.371) (0.907) 

  2 periods -1.073** -1.050** -0.164 -1.073*** -1.050*** -0.301 

 (0.421) (0.431) (0.433) (0.404) (0.405) (0.751) 

  3 periods -1.101* -0.932 0.903 -1.102** -0.932* 0.968 

 (0.566) (0.569) (0.647) (0.530) (0.552) (0.944) 

  4 periods -0.894 -0.926 0.0352 -0.895 -0.926 -0.217 

 (0.600) (0.599) (0.607) (0.597) (0.602) (1.157) 

Business cat. (base = IDMs) 

  Fabless -0.375 -0.359 - -0.375 -0.360 - 

  (0.456) (0.454)  (0.500) (0.500)  

  Supplier 0.359 0.344 0.454 0.359 0.344 0.621 

 (0.704) (0.714) (0.661) (0.654) (0.654) (1.114) 

  Res.provider -0.00645 0.00900 -0.773** -0.00647 0.00899 -1.051 

 (0.353) (0.360) (0.356) (0.369) (0.370) (0.955) 

  User -0.353 -0.318 -0.458 -0.353 -0.318 -0.669 

 (0.324) (0.316) (0.349) (0.372) (0.370) (0.766) 

RK Persistence  23.21*** 22.45*** 0.168 23.21*** 22.45*** 1.880 

(main traject.) (6.959) (6.764) (6.562) (8.031) (7.941) (11.09) 

Constant -1.047 -3.149* 4.964* -1.047 -3.149 6.238 

 (1.138) (1.644) (2.941) (1.267) (2.069) (5.193) 

Observations 128 128 155 128 128 155 

Log-Likelihood -66.73 -65.81 -54.53 -66.73 -65.81 83 

Sigma_u    0.00120 0.00272 0.899 

Rho    1.43e-06 7.42e-06 0.447 

Pseudo R2 0.207 0.218 0.239    

Notes: Robust standard errors in parentheses (errors clustered by company for the pooled data) 

Significance legend: *** p<0.01, ** p<0.05, * p<0.1. Vertical bars indicates joint significance (||| p<0.01, || p<0.05, | p<0.1). 

Business category ‘Foundry’ (in all models), ‘Fabless’ and KB bins 2 and 10 (in Model 3 and 6) are omitted from the regressions 

as they predict survival perfectly. For Models 3 and 6 only KB bins others than 2, 3 and 4 are reported. Bin is 5 used as baseline.  
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A.5.5 Regression results using complementary log-log models 

In the following, we report the analogous complementary log-log estimation of the logit models 

presented in the paper.  

 
Table 43: Pooled and panel data complementary log-log model estimation 

C LOG-LOG 

MODEL 

(1) 

Pooled clust.VCE 

PC<24 

(2) 

Pooled clust.VCE 

All obs. 

(3) 

Panel Ran.Eff. 

PC<24 

(4) 

Panel Ran.Eff. 

All obs. 

VARIABLES survival survival survival survival 

     

Specialized  2.206  -2.180 

  (1.621)  (1.849) 

KB bin category  

KB bin 7 (0.6≤KB<0.7)  -1.476** 

(0.641) 

 -1.76** 

(0.869) 

 

KB bin 8 (0.7≤KB<0.8) -2.641** 

(1.225) 

 -3.35** 

(1.421) 

 

KB bin 9 (0.8≤KB<0.9) -1.461** 

(0.646) 

 -2.33 

(1.464) 

 

Restricted cubic spline (knots at KB = 0, 0.48, 0.89) 

r.c.s. KB1  7.470  -7.643 

  (5.027)  (5.667) 

r.c.s. KB2  -10.53**  10.44* 

  (5.182)  (5.903) 

ln(KD) 0.318 0.293 0.624 -0.464 

 (0.372) (0.373) (0.500) (0.383) 

ln(KD)2 0.0204 0.0191 0.0428 -0.0336 

 (0.0200) (0.0202) (0.0290) (0.0225) 

PC -0.00760 -0.0189 0.0358 0.00156 

 (0.0615) (0.0350) (0.0773) (0.0347) 

Experience (base = new entrants) 

  1 period 1.173*** 1.107*** 1.589** -1.257** 

 (0.343) (0.339) (0.638) (0.529) 

  2 periods 0.989** 0.952** 1.700** -1.415* 

 (0.414) (0.404) (0.862) (0.734) 

  3 periods 0.448 0.492 1.197 -1.093 

 (0.549) (0.536) (1.019) (0.838) 

  4 periods 0.648 0.613 1.690 -1.352 

 (0.572) (0.564) (1.237) (0.973) 

Business cat. (base = IDMs) 

  Fabless 0.272 0.182 0.621 -0.400 

  (0.429) (0.443) (1.007) (0.818) 

  Supplier -0.851 -0.816 -0.980 0.796 

 (0.771) (0.751) (1.033) (0.798) 

  Res.provider 0.438 0.487 0.922 -0.762 
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C LOG-LOG 

MODEL 

(1) 

Pooled clust.VCE 

PC<24 

(2) 

Pooled clust.VCE 

All obs. 

(3) 

Panel Ran.Eff. 

PC<24 

(4) 

Panel Ran.Eff. 

All obs. 

VARIABLES survival survival survival survival 

 (0.375) (0.363) (0.662) (0.531) 

  User 0.272 0.387 0.566 -0.566 

 (0.340) (0.328) (0.603) (0.496) 

RK Persistence  -16.60** -16.15** -20.4** 16.59* 

(main traject.) (6.688) (6.422) (10.41) (8.573) 

Constant 1.175 -1.161 1.537 0.793 

 (1.939) (2.262) (2.457) (2.492) 

Observations 286 323 286 323 

Log-Likelihood -131.7 -135.2 -129.7 -133.1 

# of companies   122 126 

Sigma_u   1.466 1.478 

Rho   0.566 0.571 

Significance of rho   0.023 0.019 

Notes: Robust standard errors in parentheses (errors clustered by company for the pooled data) 

Significance legend: *** p<0.01, ** p<0.05, * p<0.1. Vertical bars indicate joint significance of the variables reported to the left 

of the bar(s) (||| p<0.01, || p<0.05, | p<0.1). Business category ‘Foundry’ (in all models) and KB bins 2 and 10 (in Model 9) 

were omitted from the regressions as they predicted survival perfectly. For Model 9 only KB bins whose coefficient is 

statistically significant are reported.  

 
Table 44: Pooled and panel data complementary log-log model estimation with split sample 

C LOG-LOG 

MODEL 

(1) 

Pooled  

clust.VCE 

KB=0 

(2) 

Pooled  

clust.VCE 

KB=0 

(3) 

Pooled  

clust.VCE 

PC<24 & KB>0 

(4) 

Panel  

RandEff 

KB=0 

(5) 

Panel  

RandEff 

KB=0 

(6) 

Panel  

RandEff 

PC<24 & KB>0 

VARIABLES survival survival survival survival survival survival 

       

KB bin category (base = bin 5) 

KB bin 6  

(0.5≤KB<0.6) 

  -1.600** 

(0.785) 

  -1.961 

(1.347) 

KB bin 7  

(0.6≤KB<0.7) 

  -2.884** 

(1.193) 

  -3.824 

(2.669) 

KB bin 8  

(0.7≤KB<0.8) 

  -1.982** 

(0.839) 

  -2.851 

(2.426) 

KB bin 9  

(0.8≤KB<0.9) 

     -1.961 

(1.347) 

ln(KD) -0.00843 0.603* -1.558 -0.00842 0.603 -1.736 

 (0.0901) (0.331) (1.193) (0.0826) (0.408) (1.487) 

ln(KD)2  0.0330* -0.0832  0.0330 -0.0854 

  (0.0182) (0.0690)  (0.0216) (0.0853) 

PC -0.0343 -0.0550 0.0715 -0.0343 -0.0550 0.131 

 (0.191) (0.176) (0.0651) (0.189) (0.186) (0.142) 

Experience (base = new entrants) 

  1 period 1.492*** 1.514*** 0.913 1.492*** 1.514*** 1.338 
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C LOG-LOG 

MODEL 

(1) 

Pooled  

clust.VCE 

KB=0 

(2) 

Pooled  

clust.VCE 

KB=0 

(3) 

Pooled  

clust.VCE 

PC<24 & KB>0 

(4) 

Panel  

RandEff 

KB=0 

(5) 

Panel  

RandEff 

KB=0 

(6) 

Panel  

RandEff 

PC<24 & KB>0 

VARIABLES survival survival survival survival survival survival 

 (0.578) (0.577) (0.686) (0.574) (0.575) (1.489) 

  2 periods 1.606** 1.576** 0.282 1.606*** 1.576** 0.492 

 (0.633) (0.643) (0.720) (0.608) (0.615) (1.264) 

  3 periods 1.548** 1.436** -1.148 1.548** 1.436** -1.360 

 (0.726) (0.726) (1.296) (0.697) (0.723) (1.500) 

  4 periods 1.326* 1.421* 0.305 1.326* 1.421* 0.529 

 (0.750) (0.753) (1.111) (0.765) (0.776) (1.761) 

Business cat. (base = IDMs) 

  Fabless 0.479 0.534 -0.516 0.479 0.479 - 

  (0.505) (0.522) (1.141) (0.612) (0.612)  

  Supplier -0.492 -0.437 1.085* -0.492 -0.492 -0.910 

 (1.205) (1.211) (0.596) (1.157) (1.157) (1.925) 

  Res.provider 0.0294 0.0197 0.621 0.0293 0.0293 1.617 

 (0.430) (0.439) (0.596) (0.438) (0.438) (1.666) 

  User 0.451 0.389 1.661 0.451 0.451 1.106 

 (0.379) (0.386) (11.93) (0.415) (0.415) (1.284) 

RK Persistence  -35.41*** -33.31*** -8.813 -35.41*** -35.41*** -4.539 

(main traject.) (11.53) (10.75) (5.522) (12.40) (12.40) (19.90) 

Constant 1.396 3.905** 155 1.396 1.396 -10.29 

 (1.559) (1.919) -54.91 (1.735) (1.735) (7.596) 

Observations 128 128 -0.516 128 128 155 

Log-Likelihood -65.79 -64.65 (1.141) -65.79 -64.65 -54.68 

# of companies    84 84 83 

Sigma_u    0.000740 0.00173 1.573 

Rho    3.33e-07 1.83e-06 0.601 

Significance or rho    1 0.498 0.251 

Notes: Robust standard errors in parentheses (errors clustered by company for the pooled data) 

Significance legend: *** p<0.01, ** p<0.05, * p<0.1. Vertical bars indicates joint significance (||| p<0.01, || p<0.05, | p<0.1). 

Business category ‘Foundry’ (in all models), ‘Fabless’ and KB bins 2 and 10 (in Model 3 and 6) are omitted from the regressions 

as they predict survival perfectly. For Models 3 and 6 only KB bins others than 2, 3 and 4 are reported. Bin is 5 used as baseline. 
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A.5.6 Scatterplot of core innovators in the KB-KD space 

 
Figure 57: Core innovators’ location in the knowledge breadth and depth space between 1986 and 1990 

 

 
Figure 58: Core innovators’ location in the knowledge breadth and depth space between 1991 and 1995 
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Figure 59: Core innovators’ location in the knowledge breadth and depth space between 1996 and 2000 

 

 
Figure 60: Core innovators’ location in the knowledge breadth and depth space between 2001 and 2006 

A.5.7  The linkage between micro- and macro-diversification strategies 

In this section, we present the results of the analysis of how countries achieve technical 

knowledge diversification. Aggregate diversification can be the results of two different scenari-

os. At any given level, aggregate knowledge breadth, can be achieved through the sum of firms’ 

individual non-overlapping specialization patterns in different domains or through pooling to-

gether partly or fully overlapping firms’ areas of specialization. Figure 61 shows the sources of 

aggregate technical knowledge diversification for S.Korea, Taiwan, Japan and US. On the vertical 

axis we report values of aggregate knowledge breadth, computed using the same formula intro-
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duced in equation 5.9, where the knowledge genetic heritage of a country in a given domain is 

calculated using all patents granted to firms from the given country. The horizontal axis reports 

values of the knowledge uniqueness index. This index measures to which extent aggregate 

knowledge breadth is the result of overlapping firms’ specialization patterns. The index takes a 

value of one (i.e. full knowledge uniqueness at the firm level) when a country’s knowledge in 

each of the domains in which it is active is entirely concentrated within one firm. It takes a value 

of zero when in each domains knowledge is equally spread across firms. The index is calculated 

as follows. 
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(A.5.1) 

Where, C is the country index, i goes from 1 to the number of firms in country C (Nc), J goes from 

1 to the number of technology domains (K) and proximityij is the amount of genetic proximity of 

firm i in area j, computed using equation 5.8. It is worth noting how the uniqueness index is  

normalized by the maximum possible value attainable if the sum of a country’s genetic proximity 

in each given domain would be randomly distributed across firms from the given country. 

Therefore it effectively control for the number of patenting entities in a country. 

 

 
Figure 61: Countries' knowledge diversification paths 

 

Dashed lines in Figure 61 are drawn to mark the average values of aggregate knowledge breadth 

and uniqueness across countries and time. The analysis highlights a big difference in the way 

former leaders (US and Japan) and successful latecomers (S.Korea and Taiwan) achieved tech-

nical knowledge diversification. US and Japan mainly followed a competing specialization pat-

tern, with large aggregate knowledge breadth attained through overlapping firms knowledge, 

even though Japan was diversily specialized in in the first half of the 1990s and of the 2000s. In 

contrast, Taiwan evolved from a narrow diversification pattern to a broad diversified specializa-
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tion, passing through a competing diversification stage. However, they are always located 

around the average boundaries of the space, therefore, we cannot exclude the possibility that 

this specialization pattern may be random. Korea has a clearer trajectory instead. They start 

from narrow diversified specialization, then evolved to broad diversified specialization but then 

reduced their knowledge breadth and uniqueness a little.  Singapore is not reported due to the 

limited number of firms within the country. 
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9 VALORISATION 

In accordance with article 23.5 of the Regulation governing the attainment of doctoral degrees at 

Maastricht University, this addendum discusses the valorization opportunities presented by this 

PhD thesis. I will first discuss the degree of innovativeness of the theories and methods present-

ed here and then elaborate on the socio-economic relevance of this work for several target 

groups.  

9.1 Degree of innovativeness 

This thesis presented a number of novel insights about technology dynamics and latecomers’ 

technological catching-up by developing a new theoretical and methodological framework to 

study the evolution of technology and firms’ inventive strategies. The theoretical contribution of 

this thesis is the introduction of a new way of looking at catching up and technology dynamics 

that is grounded on the interaction between prevailing and emerging engineering problems and 

the variety of approaches to solve them. We also argued how changes in problem-solving ap-

proaches can lead to solve technical bottlenecks and spark the rise of new products. Ultimately, 

this can lead to the emergence of new engineering challenges that need to be tackled. In the the-

sis, we also developed a theoretical framework that links the level of technical knowledge modu-

larity in an industry, the extent to which technical change is knowledge replacing and the urge of 

knowledge diversification for survival at the technological frontier. 

 This dissertation also contributes new methods to identify changes in engineering design 

trajectories, i.e. in the way engineering problems are solved and how their importance is per-

ceived relative to other problems. We also introduced an algorithm to classify inventions, firms 

(and, potentially, regions and countries) with respect to the exploitation-exploration spectrum 

of problem-solving approaches and their focus on prevailing or emerging engineering problems. 

In addition, we designed a methodological framework to identify technology domains and assess 

their life cycle stage. Another main methodological contribution of this thesis lays in the creation 

of an index of specialization at the country level that provides a more realistic micro-founded pic-

ture of inventing activities by firms in a country than previously available indices. Finally, we also 

developed a model to the predict a firm’s probability of persisting innovating at the frontier given 

its level of knowledge breadth, depth and the extent to which past knowledge is useful today. 
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9.2 Socio-economic relevance 

The theoretical and methodological framework presented in this thesis has important implica-

tions for several target groups. First and foremost, they are the first step of a rich research agen-

da whose ambitious goal is to quantitatively study technology evolution at the level of engineer-

ing problems and problem-solving approaches. We argued in the thesis how this may be the key 

to understand and, possibly, predict technology dynamics that lead to clustering of big innova-

tions in time and contributes to the formation of economic cycles. This area of research is poten-

tially very fertile and has been explored only partially. The rich admixture of concepts, theories 

and methods from evolutionary economics, complexity studies and strategy, which is found in 

this dissertation, also testifies how this new direction of theoretical thinking could affect several 

fields. For instance, one could use the same theoretical and methodological framework to ana-

lyse the knowledge evolution of specific scientific domains of interest, using publication instead 

of patent data. A unifying theory of knowledge evolution could be searched. Such theory would 

be based on the central notions defined in this thesis, namely that science and technology ad-

vance by solving problems and that problems are tackled by a variety of approaches. It would 

then need to be integrated with a sociological explanation of why the variety of approaches 

changes over time. Such theory could then be validated with data by applying the methods de-

veloped in this thesis.  

 Secondly, the theoretical and methodological contributions of this dissertation should be of 

interest to technology development practitioners. In fact, the research agenda that this thesis 

started can potentially lead to commercially viable and empirically grounded consultancy ser-

vices in the field of strategy and business intelligence for technology development. A number of 

similar consultancy companies have been developed in the last few years attempting to consult 

firms about their location in the technology landscape. To the best of the author’s knowledge 

(which is fairly limited in this area), none of these services are based on a dynamic perspective 

on technology. Rather, they take the technology space as given and consult firms on their current 

position. In contrast, the notions of a constantly evolving structure of the system of engineering 

problems and of the changing variety of existing problem solving approaches provide a much 

more accurate way of describing technology dynamics. This is enormously more appealing for 

business practitioners as it can provide detailed suggestions on the firm’s position in the prevail-

ing engineering trajectories and consult on the existence of alternative approaches. The core of 

such consultancy service could be based on the algorithms developed in this thesis to identify 

the main paths of engineering improvements in a given industry, detect technology domains, 

assess their life cycle stage, reveal companies’ comparative advantage across technology do-

mains and predict the probability that a company persist innovating at the technology frontier. 

Further refinement of these algorithms would focus on converting them in predictive tools to 

forecast the probability of an upcoming change in trajectory and assess how the firm is posi-

tioned in the technology space to take advantage or react to that. An additional service could ad-

dress the problem of identifying useful external sources of knowledge. This could take the form 

of suggesting possible partners, acquisition targets, or individual inventors to hire, that have ex-

pertise in the new design trajectory or in emerging technology domains. 

 Similarly, the same kind of analysis could be of great interest to regional policy makers. The 

strength of a region’s knowledge base in the industry of choice could be evaluated given the di-

rection of technology evolution in terms of the current prevailing engineering problems and 

problem solving approaches, and the position of the region’s firms or research lab in the tech-

nology space. High-resolution policy suggestions could be derived on how to steer the evolution 
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of the region’s knowledge base toward the desired targets. Based on our analysis emerging areas 

of the technology space could be detected and targeted to build an early comparative advantage. 

Tailor-made subsidies to incentivize research and development effort and collaborations across 

firms in a given technology domain could be designed. For instance, if a region lacks any in-

ventive activity in an emerging area of research in an industry that used to be strong in the re-

gion, one could identify possible external partners for collaborations based on knowledge com-

plementarity. Alternatively, our method could also identify possible efficient research avenues, 

for firms that are currently in the region, to navigate the technology space until the desired 

emerging area is reached. 

 The pursuit of the commercialization avenues sketched above is not the author’s current 

priority. However, being him a scholar interested in evolution, he recognizes that preferences, 

opportunities and paths can change in ways that are sometimes difficult to foresee. Yet, at the 

moment, the author intends to focus mostly on accomplishing the rich research agenda that 

started with this thesis and disseminating the results prevalently within academia. Perhaps this 

will actually lead to build a stronger recognition in this field that would facilitate future possible 

consultancies.  
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