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1 Cardiovascular disease 

Cardiovascular diseases (CVD) form a group of diseases that affect 

components of the cardiovascular system: the heart, blood or blood 

vessels. Examples of these diseases are atherosclerosis (1), 

hypertension (2), thrombosis (3) and haemophilia (4). CVD are the 

most common cause of death worldwide (5) and only in the United 

States there are an estimated number of 62 million people diagnosed 

with CVD (2). Records show that in 2008 around 17.3 million people 

died from CVD and it is estimated that 23 million people will die from 

CVD by 2030 annually worldwide (5, 6) according to the World 

Health Organization (WHO). Various risk factors for CVD exist, both 

genetically determined and acquired, such as age (7), air pollution 

(8), unhealthy diet (8-10), sex (11), lack of exercise (12), stress (13), 

genetic factors (14) and alcohol consumption (15). For normal 

homeostasis, blood coagulation is required and the coagulation 

factors, being proteins, should be properly expressed and functional 

otherwise it may lead to the development of thrombotic (3, 16) or 

bleeding disorders (4).  

The cardiovascular system and immune system The 

cardiovascular system interacts with the immune system (17, 18). An 

Illustration for this interaction can be found not only in the fact that 

the two systems have evolved from a common ancestor system (19) 

but also in the observation that some diseases develop from the 

dysfunctioning of both systems (20). On one hand, certain pathogens 

or toll-like receptors are reported to be involved in the development 

of cardiovascular diseases by triggering a prothrombotic response or 
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by the induction of platelet aggregation (21, 22). On the other hand, 

coagulation processes are able to physically immobilize and catch 

invading pathogens in fibrin clots (23). Some coagulation factors are 

even directly involved in the innate immune system. For example, 

thrombin and factor X (FX) have pro-inflammatory properties as they 

induce the release of the several cytokines (24-27); the most notable 

case is that of the protease-activated receptors (PARs), which are 

able to mediate the inflammatory functions of a series of blood 

coagulation proteases, including thrombin (20, 28). Blood coagulation 

and host defense are thus intrinsically intertwined and both 

processes have been studied in the current work.  

2 Introduction of In silico approaches 

Besides the so-called wetlab experiments, in silico approaches are 

relatively new methods in the CVD field. In silico approaches are a 

common denominator for techniques and technologies that require 

computation and given the presence of silicium-based 

processors/computer chips, are referred to as “in silico”. These 

techniques are very diverse and include methodologies applied for 

database buildings, virtual ligand screening (VLS) and drug design, 

3D structure prediction and optimization, binding energy calculations 

and molecular dynamics (MD) and many more (Table 1.1). The 

following sections briefly introduce the in silico methods that have 

been applied in this dissertation. 

Structural determinations 

Biological functions of proteins are determined by their three-
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dimensional (3D) structures (29-31). In order to perform their 

functions, proteins have to fold correctly into their specific 

conformations, and protein folding is driven by a number of non-

covalent interaction forces including Van der Waals (VdW) forces, 

electrostatics forces, ionic interactions, hydrogen bonds, and 

hydrophobic packing (32-36).  

 

Figure 1.1 the numbers of 3D structures stored in RCSB protein data bank up 
to 14-01-2014. 88.6% of the total structures were identified by x-ray 
crystallography, 10.65% and 0.75% were identified by NMR and EM respectively.  

Therefore, to rationally analyze protein functions, protein interactions, 

antigenic behavior, or the rational design of drugs (compounds) 
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against a protein target, a 3D structure of a target of interest is 

necessary. Experimental methods for structural determination are 

currently mainly X-ray crystallography, NMR spectroscopy and Cryo-

electron microscope (EM). 

The public repository of freely accessible protein structures, the 

Protein Data Bank or PDB (37) contains more than 96626 protein 

structures up to 14 January, 2014. Of these, around 88.6%, 10.65% 

and 0.75%, have been determined by X-ray crystallography, NMR 

spectroscopy and EM, respectively (Figure 1.1).  

Homology modeling 

Several factors limit the application of experimental methods to 

determine a protein's structure: 1, the methods are time consuming 

and costly, which is true for crystallography, NMR spectroscopy and 

Cryo-Electron Microscopy). 2, the structures of not all proteins can be 

studied by means of experimental structure determination, usually 

because of size- or stability limitations or a failure to find proper 

crystallization conditions. 3, failure to express proteins to sufficiently 

large amounts needed for structure determination. 4, the error in 

deciphering of experimental data into 3D model is usually inevitable, 

which urges new technologies to study proteins’ structures. Besides, 

numerous proteins in nature require less time consuming techniques 

to determine the 3D structures. 

Homology modeling is an in-silico approach that is able to generate 

3D structure models of atomistic resolution for a desired target 
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(mostly a protein) based on the primary sequence (the amino acid 

sequence) and its relation to one or more homologous proteins of 

known 3D structures of (38). Thus, homology modeling is a 

supplementary method to obtain structural information that is useful 

in especially those cases when experimental methods fail. The 

concept of homology modeling is on the basis of two observations: 1, 

the primary sequence determines the secondary and tertiary protein 

structure (39). 2, between homologous proteins, the tertiary structure 

is more conserved than the primary sequence (40). A homology 

model can be considered trustworthy when the sequence identity 

between a given protein and its template fall in the “safe homology 

modeling zone” shown in Figure 1.2.  

 

 

 

 

 

 

 

 

Figure 1.2 homology modeling quality control curve by the sequence identity 
and sequence length. The homology model is mostly trusted if the sequence 
alignment falls in the “Safe homology modeling zone” otherwise the template 
should not be used for homology modeling. The figure is taken from Hanka 
Venselaar, CMBI and the quality curve was derived from the work by Sander, C. 
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and R. Schneider in 1991(40, 41). 

To construct a high quality homology model, one has to follow 6 

procedures: 1 Template recognition. To identify a proper template, a 

query sequence is aligned with each sequence of all the known 

structures in the PDB database (42) by a sequence alignment 

program, such as BLAST (43). Multiple sequence alignments may 

help to increase the correctness of the alignment between the query 

and the template sequence since extra information can be obtained 

from the other related sequences. 2 non-loop backbone 

generation. The protein backbone structure of a model can be 

generated when the alignment information is present. When two 

aligned residues are identical, the 3D coordinates of the template 

residue including those of the side chain are copied from the 

template to the model’s residue, while when two aligned residues 

differ, only the backbone coordinate is assigned to the aligned 

residue in the model. Notably, the 3D structure information from the 

PDB database may contain errors, and one has to be careful when 

deal with the template information. The PDB_redo database (44) 

aims to store protein 3D structure information in standardized 

formats, with improved R values and for optimized 3D structures, so 

it is advisable to obtain a template from PDB_redo database if 

possible. 3 loop modeling. This is the most difficult part in homology 

modeling since loops are highly flexible, and can be classified into 56 

groups according to their Ramachandran angles (45, 46). Two 

approaches are used to address loop structures: knowledge based 

loop prediction and energy based ab-initio loop prediction. 

Knowledge based loop prediction builds a loop model by similarity 
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search of known loop-conformations in the PDB database, followed 

by optimization of the model loop. Energy based ab-initio loop 

prediction builds a number of random loop conformations from 

scratch (ab initio) to sample the potential conformational space of a 

loop and then energy functions are used to evaluate the quality and 

likelihood of those loops. The best model can be further improved by 

methods like Monte Carlo energy minimization (47) and/or molecular 

dynamics (MD) simulations (48). 4 side chain modeling. It is 

reported that similar residues share a similar Cα-Cβ bond angle or 

even Cγ angle in a conserved region, so called “rotamer” (49, 50). 

Therefore, a side chain model can be built based on “rotamer” 

libraries and in most case this method is able to provide satisfactory 

results (51-53). 5 model optimization. A correct side chain 

conformation prediction requires an accurate backbone 

conformation, which is in turn influenced by the side chain 

conformations. Therefore, one has to iteratively model the side 

chains and backbone conformations. For example, in chapter 4 and 5 

we firstly built the backbone conformation of human IRAK-M death 

domain and then side chain conformations followed. In a second 

round, an optimized backbone conformation was built based on the 

side chain conformation, and then an improved side chain 

conformation was modeled based on an optimized backbone 

conformation. The procedure is performed iteratively until a 

satisfactory model, as estimated by model validation (see step 6) 

emerges. 6 model validation. Several factors make the validation of 

a protein model structure a crucial procedure: a, the structure of the 

template may contain errors. b, the query sequence differs from the 
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template sequence which introduces uncertainty in model structure. 

c, rotamers of a residue mostly differ in their different backbone and 

local environments. d, the flexibility of loop regions require more 

validation rather than energy terms. e, the minimum state of an 

energy function does not always coincide with the best conformation 

of a given model. Many programs have been developed to evaluate a 

structure. These methods include various factors such as backbone 

packing quality, non-bonded interaction quality, 1D-3D profile 

consensus, atomic volume and bond angle/dihedral quality (Table 

1.2) and can be used to judge the quality of a model structure. 

Virtual ligand screening (VLS) 

In drug discovery, high-throughput screening (HTS) has been 

successfully used to identify active compounds that are intended to 

interfere with the function of the protein target. Such molecules can 

be discovered after screening millions of compounds for a desired 

target. The screening efficiency of high throughput screening (HTS), 

which was introduced in the existing drug discovery pipelines in the 

1980s, is relatively low as it required almost one year originally to 

screen 10,000 compounds against one target. With the development 

of the HTS, and automated laboratory methods, the screening time 

became faster and faster (54, 55) and in the 1990s, one week was 

enough to screen 10,000 compounds. In 21st century especially after 

2010, a new design for HTS is able to increase the screening time 

over 1,000-fold. However, at the same time, more and more 

compounds are available from commercial vendors, with 

currently >35 million compounds available (Zinc database d.d. 17-3-
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2014). With this large number of available molecules time 

considerations in HTS screening have become of lesser importance 

than the cost of screening itself and the selection of which 

compounds to include in the HTS campaign. Moreover, a specific 

HTS method needs to be developed for every new target. Thus to 

allow HTS to function optimally in the 21st century, including the new 

technologies currently available, complementary techniques have 

been developed.   

Virtual ligand screening (VLS) is without doubt an ideal 

complementary technology to HTS. The in-silico approach is able to 

screen all compounds from a chemical compound database in order 

to obtain a pre-selection compounds which are most likely to bind to 

a target of interest (56-59). Two kinds of VLS approach in rational 

drug design can be distinguished: ligand-based VLS (LBVLS) and 

structure-based VLS (SBVLS) (60, 61).  

Ligand-based VLS (LBVLS) If a list of ligands has been functionally 

studied (known active or inactive), the ligands’ properties such as the 

molecular descriptors, 1D, 2D or 3D structural information can be 

used to select other compounds from an compound database (62, 

63), which can be performed by various different algorithms such as 

similarity searching (64), pharmacophore mapping (65, 66) and 3D 

shape matching (67). Given a set of structural diverse ligands of a 

protein, it is possible to develop a quantitative structure activity 

relationship (QSAR) model, which can be used to define which parts 

of a model contribute to the function, and then identify even higher 

active compounds (68).  
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Structure-based VLS (SBVLS) SBVLS show its value when a 3D 

structure of the target protein is known (69), which enables small 

molecules to be docked into a defined binding pocket. The docked 

poses of every compound are evaluated by VLS scoring functions 

and the most likely ligands from the compiled list of docked and 

scored compounds can be selected for functional investigation. 

SBVLS can be further divided into two different docking methods: 

rigid and flexible docking methods. In rigid body docking, both ligand 

and receptor cannot change their conformations, which in turn 

require relatively little intensive computations (70, 71). In flexible 

docking, the compounds and/or the receptor are allowed to change 

their spatial shapes to fit their docking partners, which theoretically 

increases the docking accuracy but also increases the computational 

burden. Both docking approaches have their advantages and 

disadvantages and both docking approaches have generated some 

success stories (72-79). 

Many software packages (Table 1.3), both commercial and non-

commercial, are used for virtual ligand screening (VLS). The 

performances of docking programs, indispensable for performing any 

VLS campaign, have been compared in the literature (80) and each 

of these packages has its advantages and disadvantages (80). A 

general method that performs optimal on every target is currently not 

at hand. To approach the VLS docking campaign pragmatically, multi-

step VLS protocols such as a combined FRED-Surflex docking 

procedure have been applied to obtain overall better results than with 

application of any of the docking tools individually (81). However, 

how to best combine both methods is a question that has not 
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sufficiently been addressed yet and which is systematically dealt with 

in Chapter 2. 

Molecular dynamics (MD) simulation The level of maturity of a 

scientific field is reflected by the prominence of mathematics applied 

within that field. MD simulation is based on mathematics, physics and 

chemistry to study the properties of a molecular system by 

calculation of atomic interactions over time (by simple application of 

Newton’s law or by a combination of quantum mechanics (QM) and 

molecular mechanics (MM)). It is only possible to conduct MD 

simulation after the target molecules properties, such as the 

composition, atom volume, mass and interaction parameters have 

been determined. If for all atoms of a given system the mass, 

position, and velocities are known, then MD simulation is able to 

calculate and simulate the motion of all atoms from the respective 

position coordinates and velocities for any atom at any time point 

during the simulation, resulting in the generation of  a trajectory over 

time (82, 83). Historically, MD simulation can be tracked back to the 

1950’s, when Berni Alder published an article about MD simulation 

on a hard sphere system in J. Chem. Phys. It was not until 1974 that 

for the first time MD simulation was applied on the study of cell 

membrane pores and a solvent diffusion coefficient value could be 

calculated that was similar to an experimentally determined value 

(84). In 1977, the method was firstly applied to study a bovine 

pancreatic trypsin inhibitor published in Nature (85) and in the 

1980s’, the method was further applied to study ion transport across 

membranes (86), DNA molecules (87), water movement (88) and 

membrane-peptide interactions (89). The theoretical background of 
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the MD simulation is derived from the Newtonian equation for the 

motion of a particle: 

Assuming that the number of atoms in a system is N, there are 2* 

((N-1)!) calculations for only non-bonded interactions. However, the 

non-bond energy drops to almost 0 if the distance of two atoms is 

beyond a value (e.g 1.2 nm), this threshold is used in many 

molecular dynamics force fields and described as “cutoff”. A proper 

cutoff is able to significantly decrease the calculation burden and 

does not impair the simulation accuracy.  

Another time-consuming component of a MD calculation is the 

frequency to evaluate the force/energy, which refers to another 

important factor in simulation parameter setup: the time step. 

Theoretically, the smaller time step, the higher the simulation 

accuracy, but at a cost of more intensive calculation. Different MD 

simulation force fields may recommend different time steps for 

appropriate calculations, for example, for an atomistic MD simulation, 

the time step is generally around 1-3 femtosecond (fs) (90, 91).The 

calculation power of computer systems nowadays has been 

increasing enormously with the continuous development of computer 
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hardware, as well as though the advances in software. For example, 

the calculation time to simulate a system of 500 atoms for 9.8 

picosecond (ps) in 1977 was 50,000 times longer than the same 

work done already in 2002 (82), and according to the Moore’s law, 

400,000 times longer than the calculation time in 2014. However, to 

study complicated biological systems such as proteins in the 

presence of lipid bilayers in an explicit solvent environment, protein-

DNA complexes or enzyme complexes, it is not uncommon to 

simulate hundred thousand atoms or more simultaneously. Moreover, 

in most cases, the biological process of study requires longer 

timescales (e.g. microseconds or even milliseconds) rather than 10 

ps. In fact, the gap of time scale and system size scale between 

biological processes (experimental measurements) and atomistic MD 

simulation remains one of the main hurdles to take in MD simulation.  

A possible solution to decrease the gap is offered by a technique 

called coarse graining, which results in so-called “coarse-grained MD 

simulation”. The coarse grained simulation applies a modified 

molecular dynamics force field in which the systems are represented 

by a reduced number of components and lesser number degrees of 

freedom. Due to its approximation of atomistic details, a coarse 

grained simulation requires less computational calculation expense 

as compared to atomistic simulations. The time steps in coarse 

grained simulation can range from 20-40 femtoseconds (fs) (92), 

which is another reason which makes that coarse grained 

simulations are less computationally expensive than atomistic 

simulations. As a result, a 1,000 fold improvement can be achieved in 

simulation time and system size when going from atomistically 
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detailed to coarse grained MD simulations. Usually, but depending on 

the research question, a coarse grained simulation expands both the 

simulation time from nanosecond scales to microsecond scale and 

the simulation system to hundreds thousands atoms. The approach 

enables the study of large complexes of biomolecules such as the 

interaction of G protein coupled receptors (GPCRs) with membranes 

(93-96), which are difficult to study by means of 

experimental/functional methods because of low yields of expression 

and practical difficulties in protein purification (97, 98). A non-

exhaustive list of MD simulation packages has been presented here 

(Table 1.3). 

3 Applications of in-silico approaches on cardiovascular 

diseases 

As more and more proteins and other biomolecules and their 3D 

structures that are involved in the cardiovascular system are being 

identified, researchers now are interested in studying their structure-

function relationships. Besides providing a rational explanation for 

the proper functioning of proteins, it is of interest to describe in 

atomistic details how these proteins and biomolecules interact with 

each other and then to translate such novel knowledge into novel 

drugs to interfere with protein function, as a potential means of 

therapy. While  so-called wetlab experiments are in most cases able 

to provide useful insights into elucidation of structure-function 

relationships,  this kind of experimentation usually gives indirect 

answers because of the complexity of the cardiovascular system. 

Financial considerations can form another drawback of more 
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traditional experimentation, for example, the generation, housing and 

analysis of transgenic animals, though extremely useful in many 

instances, is not always affordable for all laboratories. In-silico 

approaches such as homology modelling, virtual ligand screening, 

MD simulation have become popular tools that may assist in the 

study of cardiovascular diseases as a complementary to wetlab 

experiments (99). The number of publications that use in-silico 

approaches to study cardiovascular related targets is numerous, 

which makes it is impossible to present all of them in this section. 

Instead, several examples were chosen to illustrate the successful 

use of several methods. A recent study by Neculai and coworkers 

published in Nature (100) describes the structure of scavenger 

receptor class B type I (SR-BI) and CD36 by homology modeling 

approach, based on a crystal structure of lysosome membrane 

protein 2 (LIMP-2). SR-BI, CD36 and LIMP-2 are members of the 

CD36 superfamily, which is an important regulator of lipid metabolism 

and distinguish normal and modified lipoproteins, as well as 

pathogen-associated molecular pattern (PAMP) molecules. LIMP-2 

contains 478 amino acids (101, 102) and the x-ray structure of LIMP-

2 S36-I429 was identified, which is a beta-barrel motif with 15 helix 

and 17 strands. The sequence identity between human SR-BI and 

human LIMP-2 is 34% and the sequence identity between human 

CD36 and human LIMP-2 is 33%. The homology models prepared 

for SR-BI and CD36 feature two conserved disulfide bridges 1: 

(C312-C318 (LIMP-2), C321-C323 (SR-BI), C313-C322 (CD36); 

2:C274-C329(LIMP-2), C280-C334(SR-BI), C272-C333(CD36)) that 

exist in all CD36 superfamily members. CD36 was proposed to 
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contain an additional disulfide bridge (C243-C311). Study of the 

homology models reveals clearly different electrostatic potential 

surfaces for the three members studied and may explain the 

respective biological functions. Other examples of the application of 

in-silico approaches can be found in the published works from our 

group (103), where 9 novel molecules were identified which are able 

to specifically inhibit the binding of the FVIII C2 domain to a model 

membrane by applying a virtual ligand screening approach and 

several other computational approaches such as 3D structure 

analysis, drug like pocket identification, small molecules optimization 

and ADMEt filter. In this type of research, invariably an x-ray structure 

of was optimized and further used to find pockets (for small 

molecules to bind) by using a consensus pocket-finding approach. 

Finally, one pocket was selected for virtual ligand screening and from 

a large database of chemical compounds an in silico selection was 

made by application of a multi-step docking protocol (81, 104). Final 

selection and optimization involves functional characterization and 

direct binding analysis and iterative rounds of compound 

optimization. This protocol has been successfully applied in our 

laboratory on a variety of protein targets: FV, FVIII, APC and TRAF6 

(103, 105, 106). 

4 Coagulation factor VIII (FVIII) 

The coagulation pathway is one of the most conserved homeostatic 

systems throughout biology. Blood coagulation is aimed at the 

prevention of blood loss from damaged blood vessels through 

formation of blood clots, after injury to the blood vessel system. 
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Triggering of coagulation can occur through two independent 

processes: via the intrinsic- (involving Factor XII, XI, IX, VIII) and the 

extrinsic pathway (tissue factor, Factors VII) that culminate in a 

common pathway (involving fibrinogen, II, V, and X). These proteins, 

along with a series of anticoagulant proteins and inhibitors, work 

together in a carefully regulated and balanced set of biochemical 

reactions to maintain blood fluidity, but at the same time are capable 

of a rapid coagulant response after injury. Defects of any of these 

proteins can lead to bleeding tendencies (eg. Hemophilia A in case of 

FVIII deficiency) or excessive clotting (thrombosis, e.g. in case of 

deficiency of coagulation inhibitors).  

Blood coagulation factor VIII (FVIII) is a large plasma glycoprotein 

(107) and its gene, the F8 gene, locates at the X chromosome, which 

indicates the FVIII relevant disorders are sex-linked diseases (108). 

The F8 gene is one of the largest genes and comprises 26 exons, 

which encode a signal peptide and the primary protein.  

The protein is composed of 6 domains: A1-A2-B-A3-C1-C2 (from N 

to C terminus), containing 2332 amino acids. The A1, A2 and A3 

domains share approximately 40% sequential identity to each other 

(109, 110). The large interconnecting B domain contains 908 amino 

acids, is heavily glycosylated and is removed upon activation of FVIII. 

The carboxyl terminal C domains are involved in binding to another 

plasma protein, von Willebrand factor (vWF) and in binding to 

negatively charged membrane surfaces (111-115). Despite the similar 

nomenclature, the FVIII C domains are distinct from the C domains of 

signal-transduction proteins such as protein kinase C (116). Much 
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unlike other well-described membrane binding domains involved in 

blood coagulation, the FVIII C domains are not vitamin K-dependent 

domains, and C domains do not require Ca2+ to express their 

membrane binding properties (117). Eight disulfide bonds contribute 

the structural integrity, with two disulfide bridges located in the A1, 

the A2 and in the A3 domain and one located in each of the two C 

domains (118). 

Factor VIII is expressed by several different tissues including the 

spleen, the lymph nodes, the liver and kidney (119, 120), of which the 

liver and kidney are regarded as the primary sources of the FVIII 

production (121). Physiologically, non-activated FVIII circulates in a 

complex with vWF in the blood (122, 123), which prevents FVIII from 

being cleaved and from being taken out of circulation (109). 

In the presence of thrombin, several proteolytic cleavages occur at 

specific sites of FVIII (Figure 1.4): R372, R740, and R1689. 

Dissociation of vWF and FVIII occurs when R1689 is cleaved. The B 

domain is released when cleavage occurs at R740. A further 

proteolytic cleavage at R372 allows the A1 domain to separate from 

the A2 domain. Together these events result in the activation of FVIII 

to FVIIIa (124). FVIIIa serves as the non-enzymatic cofactor to the 

serine enzyme FIXa in the so-called intrinsic tenase complex. The 

tenase complex activates FX into FXa, one of the essential steps that 

ultimately lead to effective clot formation. 
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Figure 1.3 Primary domain organization of FVIII during proteolysis. The 
domain sizes are indicated by their box lengths. A1 and A2 form FVIII heavy chain 
and A3, C1 and C2 form the light chain. When thrombin presence, several 
proteolytic cleavages occur on specific sites of FVIII: R372, R740, and R1689. 
Dissociation of vWF and FVIII occurs after the cleavage of R1689. B chain is 
released when R740 is cleaved. Cleavage of R372 allows the A1 domain to 
separate from the A2 domain, which results in the activation of FVIII into FVIIIa 
(125). 

After activation, when there is no vWF to stabilize FVIII and in the 

absence of covalent bonding between the A1 and A2 domains, the 

FVIII activity is rapidly lost , a phenomenon which is functionally 

favorable in order to avoid over-activation of FXa (126). Moreover, to 

regulate FVIIIa activity, FVIIIa is proteolytically inactivated by 

activated protein C (APC), FIXa, FXa (124, 127, 128). 

For the expression of its cofactor activity, FVIIIa needs to bind to a 
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negatively charged membrane surface, and upon binding, the 

conversion of Factor X to factor Xa is enhanced over 100,000-fold 

(129). The C1 and C2 domains of FVIII are the main membrane-

binding regions of the cofactor, of which C2 binding has been 

hypothesized as most important (113-115, 130-134).  

5 IRAK family 

Immunology and haemostasis are distinct but very much intertwined 

processes. A well-described example comes from the observation 

that severe sepsis, a disease characterized by a systemic 

inflammation, is associated with disseminated intravascular 

coagulation (DIC) which can result in a life-threatening coagulopathy 

and in organ failure (135). In particular the recent findings that the 

anticoagulant protein APC and the procoagulant proteins thrombin 

and FXa have multiple biological effects in haemostasis as well as in 

inflammatory disease has led to the realization that what used to be 

regarded as different disease entities (CVD and inflammation) may 

reflect different sides of a same coin. Likewise, the pathogenesis of 

atherosclerotic disease has clear components from both haemostatic 

and immunological origin (136-138).  

The interleukin-1 receptor-associated kinase (IRAK) family belongs 

to the protein family of the protein kinases (139, 140). IRAK proteins 

serve as signal transducers for interleukin-1 (IL-1) and are involved in 

signaling innate immune responses from Toll-like receptors (TLR), a 

type of pattern recognition receptors. The IRAK family has four 

different members: IRAK-1, IRAK-2, IRAK-3 (IRAK-M) and IRAK-4. 
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IRAK-1 was first described by Croston and Cao in 1995 (141), who 

found that the IL-I receptor cannot activate NF-kappa B in the 

absence of IRAK-1. One year later, an IRAK-1 paper from the same 

group was published in Science (142), where it is  described that 

IRAK is a kinase associated with IL-1R, sharing similarity with Pelle, 

another protein kinase in Drosophila. Two years later, IRAK-2 has 

been identified by an expressed sequence tag (EST) database 

analysis (143). Four years later, another IRAK member was 

identified, the tissue specific IRAK-3, also called IRAK-M, since it 

mainly presents in cells of monomyeloic origin. In 2002, almost 7 

years after the first IRAK member being identified, Suzuki and his 

coworkers discovered a novel IRAK protein (IRAK-4) by analyzing 

gene targeting studies and further concluded the function of IRAK-4 

is to phosphorylate IRAK-1 and to regulate signal transduction (144). 

IRAK-1 and IRAK-4 contain active kinase subunits whereas IRAK-2 

and IRAK-M remarkably contain inactive kinase subunits.  

All IRAK members mediate activation of nuclear factor-kB (NF-kB) 

and mitogen-activated protein kinase (MAPK) via the TLR/IL-1 

pathway (145). The signal transduction pathways initiated by toll/IL-1 

receptor family members ultimately lead to the activation of 

transcription factors such as activator protein 1 (AP-1) or NF-kB, 

which contribute to the establishment of an immune response and 

also regulate target genes such as HO-1, COX-2, ecSOD, iNOS 

whose products are involved into myocardial protection (146).  

In the TLR pathway, IRAK family members interact with TLR adapter 

proteins such as myeloid differentiation primary response protein 
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(MyD88), and also with tumor necrosis factor receptor associated 

factor 6 (TRAF6) (Figure 1.3). Both IRAK-1 and IRAK-2 can bind to 

the Toll-like receptor (IL-1R) and trigger intracellular signaling 

cascades that lead to transcriptional up-regulation and mRNA 

stabilization. The formation of the IRAK-IL-1R complex requires the 

presence of IL-1RAcP and MyD88 (147, 148). IRAK-4 forms a 

complex with IRAK1 and the IL-1 receptor to improve the efficient 

recruitment of IRAK-1 and while doing so it also phosphorylates the 

IRAK-1 protein. IRAK-M is thought to inhibit the dissociation of IRAK-

1 and IRAK-4 from the Toll-like receptor signaling complex by either 

inhibiting the phosphorylation of IRAK-1 and IRAK-4 or by 

stabilization of the receptor complex. However, it appears as if IRAK-

M has more functions than only the inhibition of the formation of 

IRAKs-MyD88 complexes. For example, IRAK-M can form a unique 

complex with IRAK-4 and mediate the MEKK3 activation pathway 

(149). IRAK-M is then able to stabilize MKP-1 and further down 

regulate the non-canonical NF-kappa B pathway (150). It has been 

described that a lack of IRAK-M leads to vulnerability to bacterial 

pneumonia (151-153). There are many observations listed in 

literature that concern the involvement of IRAK related proteins in the 

cardiovascular system. To name only a few:  inhibition of IRAK-1 

protects the mouse and human small intestine against 

ischemia/reperfusion injury (154), TLR9 inhibition can protect the 

liver from ischemia-reperfusion injury (155), TLR4 is responsible for 

protection against intestinal ischemia reperfusion (156), down 

regulation of IRAK4 and NF-kappa B level may protect against 

hepatic ischemia-reperfusion injury (157). A general scheme (Figure 
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1.3) illustrates the functions of IRAK family members in the NF-κB 

pathway and further refers to myocardial protection. 

 

Figure 1.4 Schematic representation of the NF-κB pathway and myocardial 
protection. Stimulation of IL-1R/TLR triggers the association of myeloid 
differentiation primary-response protein 88 (MyD88), which in turn recruits IRAK4 
(IL-1R-associated kinase 4). IRAK1 and IRAK2 from complex with IRAK4. The 
complex of IRAK1, 2 and 4 then leaves from MyD88 after the phosphorylation and 
further form a new complex with tumor-necrosis-factor-receptor-associated factor 6 
(TRAF6), which phosphorylates transforming-growth-factor- -activated kinase 
(TAK1) and TAK1-binding protein 1 (TAB2), which further phosphorylates the 
inhibitor of nuclear factor- B (I B)-kinase complex (IKK- , IKK-  and IKK- ) 
complex, which then phosphorylate inhibitor of B (I B) and then destroy I B. It 
allows NF- B to translocate to the nucleus and induce the expression of its target 
genes, which result in transcriptional activation of iNOS, COX-2, HO-1, and 
ecSOD, leading to the synthesis of the respective proteins, which further protects 
the myocardium. IRAK-M is able to negatively regulate the NF-κB pathway by 
either prohibiting the formation of the complex of IRAK-M and IRAK1/2 or 
prohibiting the association of the complex of IRAK4 and MyD88. Directly binding to 
TRAF6 by IRAK-M suppresses TRAF6’s phosphorylation.  
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Table 1.1 Major research areas by in-silico approaches 

Major Field Successful example 

Sequence analysis Human genome project (158, 159); BLAST (43); 
haemophilus influenzae genome (160) 

Genome annotation Protein-coding genes searching (161, 162) 
Evolutionary biology Evolutionary models (163) 
Literature analysis Pubmed (164); Protein Data Bank (42); PDB_redo 

(44) 
Gene expression Post process of the gene expression data 
Analysis of regulation promoter analysis (165, 166)  
Analysis of protein 
expression 

Analysis of protein microarray and mass spectrometry 
data (167) 

Mutagenesis SNP detector (168) ; Mutation prediction (169) 
Comparative 
genomics 

orthology analysis (170) 

system biology The simulation of cellular processes ((171, 172) 
High-throughput  flow cytometry analysis (173) 
Structural 
bioinformatics 

Homology modelling (45); Virtual ligand screening (59, 
174, 175); Molecular dynamics (82) 

 

Table1.2 programs for protein structure evaluation 

Validation Tools Validation of 
PROCHECK backbone quality and Ramachandran value (176) 
ERRAT Non-bonded interaction quality (177) 
Verify3D; 3DCA 1D-3D structure profiles (178-180) 
PROVE Atomic volume check (181) 
PROSESS Packing quality, torsion angle, H-bonds (182) 
WHAT CHECK Packing quality check (183) 
PDBREPORT Packing quality check and database (183) 
SFCHECK;EDS R-value related check and database (184, 185) 
ProQ A neural network predictor (186) 
ANOLEA Atomic non-local mean force potential assessment (187) 
VADAR Volume, area, dihedral angle (188) 
PDBsum A combination of EDS and PDBREPORT (189) 

 

Table 1.3 a non-exhaustive list of commonly used programs, software and 

packages for molecular mechanics calculations. 

Package 
name 

Main 
Function 

Comments  License and 
References 

ICM HM, View, 
Min, PPI, PF, 

Multifunction packages Commercial 
(190) 
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VLS 
MOE HM, View, 

Min, MD, 
VLS, QSAR 

Multifunction packages Commercial 
(191) 

YASARA HM, View, Min, 
MD 

Based on what-if software Commercial 
(192) 

AMBER Min, MD A set of force fields and a 
MD simulation package 

Commercial 
(193) 

CHARM
M 

Min, MD Accelrys company Commercial 
(194) 

GROMA
CS 

Min, MD Fast, stable and variety 
force fields including 
coarse-grained simulation 

Free (90, 195) 

CPHmod
els 

HM Profile-profile alignment 
guided by secondary 
structure and exposure 
predictions. 

Online server 
(196) 

ChunkTAS
SER 

       HM An ab-initio predictor Online server 
(197) 

ROBETT
A 

HM Both ab-initio and 
comparative model predictor 
for small protein 

Online server 
(198, 199) 

ModBase HM A database of comparative 
models 

Free (200) 

HHpred HM Hidden Markov Models 
based predictor 

Online server 
(201) 

phyre HM Profile-profile matching 
algorithm 

Online server 
(202) 

SWISS-
MODEL 

  HM Hidden Markov Models 
based predictor 

Online server 
(203) 

Modeller HM Spatial restraint, 
optimization, multiple 
alignment, de novo 

Free (48, 204) 

ESyPred
3D 

HM Neural network sequence 
alignment 

Online server 
(205) 

SCWRL HM Kernel density estimate 
rotamer library; hydrogen 
bond function; soft vdW 
potential; 

Online server 
(206) 

PyMOL View The most popular 
visualization program with 
lots of plugin 

Commercial 
(207) 

VMD View a long trajectory can be 
visualized 

Free (208) 

COLORAD
O-3D 

    View Online visualization tools for 
structural features 
(combined with other 
programs) 

http://asia2.gene
silico.pl/colorado
3d/ 

ODA PPI Solvent accessibility Commercial 

http://asia2.genesilico.pl/colorado3d/
http://asia2.genesilico.pl/colorado3d/
http://asia2.genesilico.pl/colorado3d/
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(190) 
Cons-
PPISP 

PPI Neural network Online server 
(209) 

Struct2Ne
t 

PPI Primary sequence based Online server 
(210) 

PPI-Pred PPI Support vector machine 
algorithm 

Online server 
(211) 

FRED SBVLS Rigid; Fast License needed 
(212) 

Surflex SBVLS Flexible for ligand License needed 
(213) 

GOLD SBVLS Flexible for ligand and 
receptor 

Commercial 
(214) 

DOCK SBVLS Flexible for ligand and 
receptor 

License needed 
(215) 

Glide SBVLS Flexible for ligand and 
receptor 

Commercial 
(216) 

eHiTS SBVLS Flexible for ligand Commercial 
(217) 

HYBRID SBVLS Fast; ligand-guided License needed 
(218) 

LigandFit SBVLS CHARMM; Monte-Carlo; 
Rigid 

Commercial 
(219) 

Pharmer LBVLS Pharmacophore search; fast Free (220) 
FITTED SBVLS Genetic algorithm; Flexible 

for ligand and receptor 
Free (221) 

FlexX SBVLS Flexible for ligand; partial 
flexible for receptor 

License needed 
(222) 

Vina SBVLS Monte-Carlo; Flexible for 
ligand and side chains 

License needed 
(223) 

PocketFin
der 

PF Shape and 
physicochemical; 
Implemented with MolSoft 

Commercial 
(224) 

Qsitefind
er 

PF Energy function with VdW 
probe 

Online server 
(225) 

MetaPock
et 

PF Consensus  of LIGSITE, 
PASS, Q-SiteFinder, and 
SURFNET 

Online server 
(226) 

DogSiteSc
orer 

        PF Geometric and 
physicochemical matches 
with Gaussian function 

Online server 
(227) 

Notes: HM: homology modelling; View: molecular visualization tool; Min: 
energy minimization; MD: molecular dynamics simulation; PPI: protein-protein 
interaction prediction; PF: druggability pocket finder; LBVLS: ligand based 
virtual ligand screening; SBVLS: structure based virtual ligand screening; DB: 
database. 
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Abstract 

Use of multiple target conformers has been applied successfully in 

virtual screening campaigns; however a study on how to best 

combine scores for multiple targets in a hierarchic method that 

combines rigid and flexible docking is not available. In this study, we 

used a dataset of 59,479 compounds to screen multiple conformers 

of four distinct protein targets to obtain an adapted and optimized 

combination of an established hierarchic method that employs the 

programs FRED and Surflex. Our study was extended and verified by 

application of our protocol to ten different data sets from the directory 

of useful decoys (DUD). We quantitated overall method performance 

in ensemble docking and compared several consensus scoring 

methods to improve the enrichment during virtual ligand screening. 

We conclude that one of the methods used, which employs a 

consensus weighted scoring of multiple target conformers, performs 

consistently better than methods that do not include such consensus 

scoring. For optimal overall performance in ensemble docking, it is 

advisable to first calculate a consensus of FRED results and use this 

consensus as a sub-dataset for Surflex screening. Furthermore we 

identified an optimal method for each of the chosen targets and 

propose how to optimize the enrichment for any target.  

Keywords virtual ligand screening, SB-VLS, ensemble docking, 

consensus scoring, drug design 
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Introduction 

Together with chemical synthesis and combinatorial methods, 

rational design and high-throughput methods have become essential 

to modern drug discovery (1, 2). Moreover, the currently more than 

20 million commercially available compounds, representing a 

reasonable diversity of the chemical space, greatly enhance the use 

of in silico screening methods (3). In fact, the first drugs that have 

been discovered through in silico techniques are now reaching the 

markets (4, 5). In virtual screening, small molecules are identified 

that are complementary in shape and charge to a biomolecular target 

to which they are intended to interact. Two kinds of virtual ligand 

screening methods in rational drug design can be distinguished: 

ligand-based methods and structure-based methods. In ligand-based 

methods, molecular descriptors, 1D, 2D or 3D structural information 

of active compounds are used to select other compounds from an in 

silico collection of compounds (5, 6). This selection process is 

performed by various methods that include: similarity and 

substructure searching (7), pharmacophore matching (8), 3D shape 

matching (9), electrostatic distribution similarity search (10) and 

shape-based screening approach such as ROCS (11) , Ultrafast 

Shape Recognition (USR) (12) and Phase Shape (13). Besides 

having an accurate search algorithm, the ligands need to be in 

comprehensive conformations and have correct protonation states to 

perform a successful ligand based screening (14). 

Structure-based virtual ligand screening on the other hand is used 

when the structure of the target protein is known or can be modeled 
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(15). This enables the molecular docking of small molecules into a 

defined binding pocket of the target. Generation and consecutive 

scoring of the binding pose for each compound from a large 3D 

database of compounds yields a ranked list of potential ligands 

bound to the target. Structure-based virtual ligand screening 

(SBVLS) methods can be generally divided into two different docking 

methods: rigid and flexible. During rigid body docking, both ligand 

and receptor are treated as rigid objects that cannot change their 

spatial shape during the docking process. Rigid body-based methods 

require relatively little intensive computations (16, 17). Using rigid 

body docking, numerous successful experiments have been 

performed e.g. refs (18, 19). During flexible docking, the 

conformations of the ligand and/or the receptor are altered or 

generated during the docking process to fit its docking partner. In 

recent years, flexible docking has been applied successfully in many 

cases (20, 21), despite the large number of degrees of freedom that 

has to be considered. 

Many software packages, both commercial and non-commercial, are 

used for virtual ligand screening (VLS); some examples are FRED 

(22, 23), Surflex (24) , Glide (25, 26), GOLD (27), ICM (28), and 

LigandFit (29), but many more are available (30). Each of these 

packages have their advantages and disadvantages, more details of 

each molecular docking program can be found in a recent review by 

Yuriev (31). Even though many docking new programs are being 

developed, most docking programs still have common problems, for 

example with protein flexibility, the solvation effect, and the treatment 

of waters or metal at the binding pocket. Moreover, binding modes 
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and binding affinities of compounds are predicted based on docking 

scores which mostly are a simple linear equation generated by using 

focused data sets. Although force field-based scoring function is 

applied in some docking programs, the entropy change upon ligand 

binding is not included in the scoring function. Furthermore it is often 

found that there is no correlation between docking score and binding 

affinities of compound. Therefore, some limitations for the application 

of molecular docking in the drug discovery process still exist and a 

general method that performs optimal on every target is however 

presently not at hand. Inevitably concessions are made in each 

approach to find a balance between the accuracy of the method and 

the required CPU time consumption when screening large collections 

of virtual molecules.  

To approach the docking problem pragmatically, multi-step VLS 

protocols have been applied in which consecutive screenings are 

used to narrow down a large database of molecules. One such fast 

multi-step protocol by Miteva et al.(32) has been applied with 

considerable success (33, 34). The protocol allows fast screening by 

a combination of rigid body docking using FRED with two flexible 

docking tools, DOCK and Surflex, to obtain overall better results than 

with application of any of the docking tools individually. However, how 

to best combine both methods is a question that has not sufficiently 

been addressed yet and which is systematically dealt with in this 

paper. 

Much like their ligands, proteins are dynamic by nature and can 

adopt different conformations (35, 36). Therefore, in a SBVLS 
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approach, a single conformation of a receptor might not be 

representative for the encounter conformation of a receptor that 

binds a given ligand. Thus, multiple conformations of a target can be 

selected for a SBVLS study (37, 38) at the expense of the 

introduction of a larger total number of degrees of freedom and a 

significant increase of the computational burden (39, 40). In 

ensemble docking, different conformations of the target protein can 

be obtained from different X-ray structures (41)-(42), from snapshots 

of a molecular dynamics simulation (43) or from normal mode 

analysis (44). To integrate results for different conformations, a 

consensus scoring must be applied. A good consensus score 

function is able to reduce the number of false positive docking results 

and increase the predicted binding affinity in a structure-based virtual 

ligand screening (45, 46). Previous works have explored the optimal 

ensemble size, 4-5, from crystallographic structures and 

demonstrated the optimal structures used for ensemble should be 

those with the largest ligands in their pockets (36, 47, 48). In this 

work however, we choose to use structures from normal mode 

analysis, which have somewhat different features than X-ray 

structures (49). Therefore we have investigated the ensemble size 

from normal modes (see Figure 1 and Figure 2) and chose to 

generate eight conformers for each target to screen the small 

molecule dataset in order to sample binding pocket flexibility. 

Application of such ensemble docking however implies that one has 

to decide on how to optimally combine the results from multiple 

conformers into the multi-step VLS protocol. 

We have performed an in silico study, using a dataset of 59,479 
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compounds that was seeded with 289 actives, retrieved from the 

directory of useful decoys (DUD) (50) (directory of useful decoys, 

http://dud.docking.org/) and extended and verified the study by 

application of our protocol to ten different data sets from the DUD. 

With this study we have addressed the following research questions:  

1. Is the use of multiple protein conformations better than the use of 

a single protein conformation for the combined FRED-Surflex virtual 

ligand screening procedure used here?  

2. How to process those multiple protein conformations to obtain an 

overall better enrichment for structurally diverse protein targets, while 

applying a consensus docking score to optimally combine a rigid and 

a flexible docking programs (FRED and Surflex) respectively? 
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Figure 1. Analysis of the combined FRED-Surflex VLS by including different 
numbers of conformers for each target and with the decoys retrieved from 
the Chembridge database. The performances are indicated by the area under the 
ROC curves at 5% FPR fraction when different numbers (i) of target conformations 
are used. X-axis indicates the numbers (i) of conformers used in VLS (0<i<9). Y-
axis, the weighted AUC value indicates the virtual screening performance at 5% 
FPR fraction for each ensemble size. Four targets have been tested in this 
experiment (A: TK, B: NA, C: FXa, D: TH). Consensus method concom was used 
with the Smean method. 

Methods 

Target Selection and Preparation  

Four different protein targets were selected according to the diversity 

of their binding-site properties (Table 1), the availability of a high 

resolution protein-small molecule complex structure and the 

availability of a number of confirmed ligands to the intended target 

binding pocket. The 3D crystal structures of thymidine kinase (TK, 

PDBID: 3F0T), neuraminidase (NA, 3O9K), coagulation factor Xa 

(FXa, 2XBV), and thrombin (TH, 2ZFQ) were retrieved from the PDB-

redo database (http://www.cmbi.ru.nl/pdb_redo/) and ligands were 

removed. To generalize the potential binding mode and mimic a 

situation of compound selection with no prior knowledge of the mode 

of binding or of a role of waters in binding, we removed any crystal 

water molecules. This step is supported by the fact that waters in the 

binding pockets are not conserved in the crystallographic complexes 

for the proteins considered for this study (e.g. thrombin structures 

2ZFQ.pdb and 3U9A.pdb).  

Proteins were prepared by using the ICM-convert module 

implemented in with ICM-Pro (Version 3.4.6) (51). Hydrogen atoms 

were added to the protein structures according to the protonation 
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state at pH=7 which means that all acidic residue (Asp and Glu) are 

deprotonated and all basic residue (Lys and Arg) are protonated. 

Next, eight different conformers were generated for each target using 

the software NORMA (49) to apply a simplex simulated annealing 

minimization of the four targets. Subsequently, normal mode analysis 

(NMA) (52) was used to generate a list of 'large' conformationally 

changed modes for TK, NA, FXa and TH which were selected based 

on the degree of collectivity of movement, and the overlaps of 

conformations (53) and the range of RMSD values between different 

conformations of each protein are summarized in Table 2. The 

number of eight conformers was chosen after an initial analysis in 

which we determined for a varying number of conformers for each of 

the targets, at the initial percentage of the compound database (0-

5%), the corresponding enrichments and whether inclusion of 

additional conformers would result in overall improvement or not 

(Figures 1 and 2). The pockets to which ligands were bound in the 

co-crystallized complexes were selected as target pockets for virtual 

ligand screening using FRED and Surflex and the pocket volume, 

docking inner and outer contours and mutable residues were 

calculated (see Table 1). 
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Figure 2. Analysis of the combined FRED-Surflex VLS by including different 
numbers of conformers for each target and with DUD decoys. The 
performances are indicated by the area under the ROC curves at 5% FPR fraction 
of each VLS when different numbers (i) used. X-axis indicates the numbers (i) of 
conformers used in VLS (0<i<9). On the Y-axis, the weighted AUC value indicates 
the virtual screening performance at 5% FPR fraction for each ensemble size. Ten 
targets have been tested in this experiment. Consensus method concom was used 
with the Smean method. 

Compound Dataset 

Active ligands of TK, NA, FXa and TH were retrieved from the 

Directory of Useful Decoys (DUD, Version 2) (54). The number of 

active ligands used for each of the targets was 22, 49, 146, and 72 

respectively, and these ligands can be clustered in several groups 

based on their chemical diversity (Table 3). Since the numbers of 

decoys available from DUD for some targets is relatively small (e.g 

891 decoys in TK), and we wished to mimic as well as possible a real 
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virtual screening campaign we stochastically retrieved compounds 

from the ChemBridge database, December 2010 (55). Next, we 

verified the quality of the decoy data set and we found no overlap of 

compounds between the active and decoy data sets. The decoy data 

set contains a total amount of 59,479 (~10% of ChemBridge 

database) unique molecules. We verified for several key physico-

chemical molecular properties that the dataset and known actives are 

similar (see Figure 3). Since one of the aims of our work is to 

compare the performance of virtual screening when using single and 

multiple conformations of protein, we used the same database for all 

screening steps.  

 

 

Figure 3. Physico-chemical properties of the Chembridge dataset selected in 
this work. 59,479 compounds were analyzed by their molecular weight (a), 
partition coefficient (logP, b), polar surface area (PSA, c), rotatable bonds (d), 
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hydrogen bond donors (HBD, e) and Rings (f). The curves in each sub-figure are 
the probability density function of the active ligands and the bars indicate the 
numbers of decoy compounds in the given range (x-axis). The figure was 
generated by R. 
 

The program Omega (ver2.1.0) (16) was used to convert all 

compounds into 3D multi-conformers and to add hydrogen 

atoms/Gasteiger partial charges. For rigid body docking with FRED, 

the generation of multi-conformer structures for each compound was 

required to sample the conformational space for the small molecules. 

Omega was run with the RMSD threshold value set to 0.8 Å, the 

energy window set to 10.0 kcal/mol and a maximum conformations 

per compound of 50. These settings resulted in a total of 1,128,676 

structures with an average of 19 conformations per unique 

compound.  

We used 4 different data sets (active compounds TK, NA, FXa and 

TH from the DUD combined with decoys selected from ChemBridge 

database) to mimic a real virtual screening campaign. However, to 

substantiate our finding that multiple conformations and a combined 

FRED-Surflex docking approach can result in better overall 

performance as compared to use of a single conformation and using 

FRED or Surflex alone, we extended our study by inclusion of actives 

and decoys from the well-defined and unbiased DUD data set for TK, 

NA, FXa and TH as well as 6 additional target proteins (GART - 

glycinamide ribonucleotide transformylase, CDK2 - Cyclin dependent 

kinase 2, Trypsin, COMT - Catechol O-methyltransferase, ER - 

Estrogen receptor and INHA - Enoyl ACP reductase).  
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Rigid body docking 

FRED (Fast Rigid Exhaustive Docking Open Eye Scientific Software 

Inc., Version 2.2.5) (22, 23, 56, 57) is a rigid protein-ligand docking 

program which can generate an ensemble pose, and is able to rank 

and optimize these ensembles by means of a scoring function. 

During the docking process, FRED treats all molecules as rigid body 

objects which cannot change their spatial shape. In this work, 

binding-sites were selected on basis of the crystal structures from the 

PDB-redo database (58) (http://www.cmbi.ru.nl/pdb_redo/). The 

binding-site boxes were detected by using the "FRED_receptor" 

module with the molecule site detection method and a site shape 

potential was generated with medium quality control (22). Detailed 

binding-site information of the four targets' conformers are given in 

Table 1. The multi-conformer compound dataset was docked onto 

each of the eight conformers per target and the docked poses were 

scored using FRED's scoring functions, OEChemscore (59) and 

Shapegauss (22). FRED further generated a default consensus 

score of OEChemscore and Shapegauss. Each score was generated 

with the 3D conformation of the corresponding ligand-receptor 

complex as well as of the undocked compounds.  

Flexible docking 

Surflex (BioPharmics LLC, Version 2.514) relies on a surface-based 

molecular similarity using a re-parameterized empirical scoring 

function (24). Since however the overall receptor conformation is 

essentially unchanged in Surflex docking, we used multiple 
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conformations of the four target proteins (TK, NA, FXa, and TH) 

during Surflex docking. In this study, we selected the residues 

surrounding a binding-site (see Table 1) to define the protomol, the 

pseudo-molecule which serves as the target in Surflex. The optimal 

protomol should well describe the pocket shape and can be varied by 

the number of atomic probes (Proto_bloat) and the degree of 

buriedness with the surrounding residues (Proto_thresh); the 

parameters proto_thresh and proto_bloat together determine the 

quality of a protomol. Taking into account the diverse properties of 

the four target pockets, proto_thresh was set to 0 and proto_bloat to 

0 for the buried pocket of TK. For the deeper pockets of FXa and NA, 

proto_thresh was set to 0.5 and proto_bloat to 1. Since thrombin has 

a relatively open/shallow pocket, proto_thresh was chosen as 1 and 

proto_bloat as 3. Protomols were visualized with the PyMOL 

Molecular Graphics System (Version 1.2R1) (60) to ensure proper 

coverage of the desired binding-site area. Parameters of value1 and 

value2 of each target in the command line for the protomol 

generation: “Surflex proto_thresh value1 proto_bloat value2 resproto 

residue-list protein.mol2 log were obtained through prior optimization 

experiments. The complete set of compounds (59,479 compounds) 

was docked using this method. 

Docked poses were generated and scored as described (61) and 

pose scores were post-processed using thresholds of 1.0 for polarity, 

of 100 for rotation and a crash threshold of -1.0. This resulted in 8 

docking lists per target.  

Data Analysis 
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Prerequisites Definitions 

Using FRED and Surflex, two times eight ranked docking lists were 

produced for each target, which were further processed in Matlab 

(Version R2010A) and R (62). Out of the multiple conformations of a 

single compound in each docking list generated by FRED, only the 

conformer with the best score was selected for further processing 

and the rest were discarded. The threshold for inclusion for further 

processing was treated as an unknown variable, see also below. We 

addressed the variability of compound scores for the different target 

conformations and the possibility of outlier scores to influence a 

consensus score for a compound. Seven consensus methods, called 

SMean, STrimMean, S1, S2, S3, S4, and Sopt, were used in this study to 

identify an optimal consensus scoring protocol. The different 

consensus scoring methods were defined as follows,  

 

Where: 
vi is the ranked value of a compound which is docked in a target conformer i, 
Q is any compound of the dataset, 
σ is the standard deviation of v1, ..., vi, 
μ is the mean/average of the scores v1, ..., vi of one compound, 
û is the 25% trimmed mean of the scores v1, ..., vi of one compound (i.e., leaving 
out the highest and lowest score when computing the mean in the case of 8 
scores), 
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S is the final score of one compound after weighting the compound ranked values 
in different protein conformers. 

The parameters p1-p9 in the formula of Sopt above, are computed 

from the results of a mathematical optimization problem. Here, the 

goal is to find values p1 to p9 that maximize the performance defined 

in terms of the enrichments of both FRED and Surflex 

simultaneously. The Levenberg-Marquardt algorithm of the 

Fminsearch function in Matlab is applied to generate the parameters 

for Sopt. This algorithm implements an iterative unconstrained 

technique that locates the minimum of a function that is expressed as 

the sum of squares of nonlinear functions. One could see the Sopt 

consensus list as a weighted mean consensus list, where the 

standard deviation is also taken into account (for the normal mean 

SMean it holds that p1-p8=1, p9=0). Note that one should recompute 

the values p1-p9 for every experiment since they depend on the 

actual values vi, a procedure that takes a few seconds.  

Comparison of FRED and Surflex docking performance 

The enrichment factor (EF), defined as the number of active 

compounds found in a certain percentage of a dataset can be 

calculated to assess the quality of the virtual screening method (63). 

The EF was computed at the 1% of the ranked database, and the 

highest EF at this considered point is equal to 100 indicating that all 

active compounds are obtained.  

Moreover, the performance of each virtual screening and scoring 

approach was investigated by plotting the receiver operator 

characteristic (ROC) curves which show the ability to discriminate 
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known-active compounds from decoys. Docking results were sorted 

according to the docking score of the compounds and consequently 

the true positive rate (TPR) and the false positive rate (FPR) were 

computed using the equations below;  

       and  , 

where N<actives> and N<decoys> represent the number of known 

actives and decoys. Docking solutions that have a better or equal 

score to a particular compound are considered as positive solutions. 

Thus, active compounds at the considered point are true positive 

(TP) whereas decoys at the same point are false positive (FP). The 

perfect ROC curve should show a steep rise at the beginning to 

reach the maximum y value and then continue parallel to the x-axis 

which means that all the known-active compounds are recovered 

during early screening. Moreover, the area under the ROC curve 

(AUC) of each docking and scoring method was calculated. AUC 

represents the overall quality of each screening/scoring method and 

also indicates the probability to rank a randomly chosen active higher 

than a randomly chosen inactive.  

A statistic p-values matrix was applied in the study to evaluate the 

differences between 7 consensus scoring methods for all the protein 

targets in FRED, Surflex and combined FRED-Surflex. The 

calculation of p-values (41) can be described as follows: 
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here |ΔAUC| is the absolute of the AUC values from any two scoring 

methods. Where SEΔ is derived from formula  

 

where Nactives and Ndecoys are the number of active ligands and 

decoys respectively in a dataset, while VarΔa, and VarΔd are derived 

from formula,  

 

 

Where TPRi is the true positive rate at decoy position i and FPRi is 

the false positive rate at the active position i. With the statistical p-

value, the virtual screening performance of any two methods can be 

quantified to be similar or different. Two methods are treated as 

statistically different when the p-value <0.05 in a 95% confidence 

interval (CI), or the p-value < 0.1 in a 90% CI. For both FRED and 

Surflex, we calculated the enrichment lists for every conformer of the 

four protein targets, resulting in four times eight lists from which 

consensus lists (by means of methods SMean, STrimMean, S1, S2, S3, S4, 

and Sopt) for the four protein targets were calculated. In order to yield 

the combined FRED-Surflex enrichments, we used two different 

methods (see also Figure 4) to combine the results from FRED and 

Surflex. As described, eight ranked compound lists are generated by 

FRED docking scores for each protein conformer. The FRED ranked 

lists LI-L8 of conformer i are to be used as the input dataset for 

subsequent Surflex docking of the corresponding conformer i, which 
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will produce eight combined FRED-Surflex ranked lists called SDLi 

(0<i<9). This method will be called the separation combination 

(sepcom).  

 

Figure 4. A flow chart depicting two different methods to the combined 
FRED-Surflex VLS. Left (Sepcom): FRED screened lists (L1, L2, ..., L8) for each 
conformer (C1, C2, ..., C8) are used as input compounds dataset only for its 
relevant conformer in subsequence Surflex screening, and then eight Surflex 
screened lists (SDL1, ..., SDL8) will be produced. Right (concom): consensus list 
is calculated from FRED docking lists (L1, L2, ..., L8), and it is then used as the 
input compounds dataset for all the eight conformers in the subsequence Surflex. 

Alternatively, the eight FRED ranked lists LI-L8 are first combined 

into a consensus ranked list (via one of the consensus methods 

described above) and then the consensus list serves as an input 

dataset for each of the eight conformers in subsequent Surflex 

docking; resulting in eight combined FRED-Surflex ranked lists called 
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SDLi. This latter method we called the consensus combination 

(concom).  

Stepwise improvement of FRED and Surflex combination 

The amount of compounds commonly selected after FRED docking 

that is used for consecutive Surflex docking (typically 30-60 % of the 

initial scores) in our VLS protocol is based on empirical observation 

(32). In order to further rationalize this percentage, we measured the 

stepwise improvement of the FRED and Surflex combination by 

variation of the amount of compounds that is allowed to proceed from 

FRED to Surflex. If the top X1 % ranked FRED result and top Y1 % 

ranked Surflex list contain a number of 'A' active ligands, and in the 

top X2 % (FRED) and top Y2 % (Surflex) of the total ranked list 

contains a number of 'A+1' actives, then, the stepwise improvement 

Z is defined as: 

 

Z is defined as a value to describe the improvement of each step by 

Surflex. A positive Z score indicates that Surflex improves overall 

enrichment at this particular percentage. Improvement curves (Z 

curves) were generated by application of the seven consensus 

methods mentioned above (SMean, STrimMean, S1, S2, S3, S4, and Sopt) for the 

combined FRED-Surflex in the four targets. 

Results 

Pocket Characteristics 
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Pocket characteristics, average CPU times for the four different 

targets are shown in Table 2. A correlation between the pocket 

volume and calculation time was observed for TK, FXa and TH when 

FRED was used (Pearson correlation coefficient of 0.52; 0.18; 0.97 

and 0.79 respectively), no such correlation was observed for any of 

the targets when Surflex was used. 

Figure 5. Receiver operating characteristic (ROC) curves for target Thymidine 
Kinase (TK). Fig. A1/A2: ROC curves by a rigid body docking program FRED for 
eight individual conformers (i) (gray) and seven consensus curves (SMean served as 
the benchmark in A2). Fig. A3/A4: analogous to A1/A2 these are ROC curves 
calculated after Surflex docking. Fig. B1-B4, the same data set and docking 
protocols as (A1-A4) focusing on the first 5% of the ROC curve. The black line 
(Random) represents random performance. 

FRED and Surflex performance 

Figure 5 describes the ROC curves for the eight individual 

conformers when either FRED (Figure 5A1,5A2) or Surflex (Figure 

5A3,5A4) were used for target TK. FRED docking results (Figure 
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5A1) show that all of the active compounds were retrieved at 0.25 

and 0.22 of the FPR by using SMean and STrimMean.  

FRED steadily detected increasing numbers of active ligands in 

these conformers with nearly 80 to 90% of the total number of active 

ligands found within the top 0.2 to 0.6 of the FPR. From the ROC 

curve (Figure 5B1) it can be concluded that at the beginning, TPR 

derived from SMean and STrimMean were rising steeply which indicates that 

the consensus methods SMean and STrimMean overall performed better (p-

value=0.07) than the other methods which were used with the eight 

individual conformers (Figure 5A1, Table 4).  

Comparison to the enrichments of the other consensus methods 

(Figure 5A2) shows that Sopt yielded the best enrichment curve with 

an AUC value of 0.969 (Table 5), while SMean and STrimMean were best at 

the early screening as demonstrated in Figure 5B2.  

Figures 5A3 and 5A4 describe the ROC curves based on the Surflex 

docking results. The consensus methods SMean and STrimMean gave the 

best enrichments and AUC values (Table 5) as compared to the eight 

individual conformers (Figure 5A3). As was the case for FRED, the 

consensus methods Sopt, SMean and STrimMean yielded the best 

enrichments in the entire database (Table 4, Table 5). The methods 

S2, S4 were similar to the benchmark (SMean), whereas S1 and S3 

performed worse than benchmark (Figure 5A4, Table 4, Table 5). 

The ROC curves of the individual conformers and 'multiple' 

conformers for the targets: NA, FXa and TH have been calculated 

and analyzed as presented here for target TK. Overall, the optimal 
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performance of consensus methods Sopt, SMean and STrimMean is observed 

also for these targets (Figures 6, 7, 8). 

Figure 6. Receiver operating characteristic (ROC) curves for target 
Neuraminidase (NA). Fig. A1/A2: ROC curves by the rigid body docking program 
FRED for eight individual conformers (i) (gray) and seven consensus curves (SMean 
served as the benchmark in A2). Fig. A3/A4: ROC curves by Surflex. Fig. B1-B4, 
the same data set and docking protocol as (A1-A4) focusing on the first 5% of the 
ROC curve. The black line (Random) represents random performance.  

Typically, the compounds at 1% of a ranked database are screened 

experimentally. Therefore besides the ROC curve, we chose to 

analyze additionally the various enrichment factors (EF) at 1% of the 

database for each of the eight conformers of the four protein targets 

and for Sopt, SMean and STrimMean via FRED and Surflex. Generally, 

Sopt, SMean and STrimMean resulted in the best or second best 

enrichment at 1% during different targets either FRED or Surflex 

(Table 6).  
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Figure 7. Receiver operating characteristic (ROC) curves for target FXa. Fig. 
A1/A2: ROC curves by the rigid body docking program FRED for eight individual 
conformers (i) (gray) and seven consensus curves (SMean served as the benchmark 
in A2). Fig. A3/A4: ROC curves by Surflex. Fig. B1-B4, the same data set and 
docking protocol as (A1-A4) focusing on the first 5% of the ROC curve. The black 
line (Random) represents random performance.  

FRED and Surflex consensus performance 

The FRED-Surflex combined ROC curves for the eight conformers of 

the four protein targets, TK, NA, FXa and TH, were calculated via two 

different methods: sepcom and concom (Figure 9, 10, 11, 12). With 

the method concom, eight conformers shared the same dataset after 

FRED and produced eight enrichment curves after Surflex (red 

curves in Figure 9). The concom method performed better than 

sepcom for the entire dataset in all conformers of TK (Figure 9).  
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Figure 8. Receiver operating characteristic (ROC) curves for target Thrombin 
(TH). Fig. A1/A2: ROC curves by the rigid body docking program FRED for eight 
individual conformers (i) (gray) and seven consensus curves (SMean served as the 
benchmark in A2). Fig. A3/A4: ROC curves by Surflex. Fig. B1-B4, the same data 
set and docking protocol as (A1-A4) focusing on the first 5% of the ROC curve. The 
black line (Random) represents random performance.  

 

Figure 9. Comparison of ROC curves for concom (Red) and sepcom (Blue) 
consensus protocols for the target TK. X-axis: FPR: false positive rate as 
defined in de Methods; Y-axis: TPR: true positive rate as defined in the methods 
section. The dotted curve (Control) represents random performance. For concom, 

method SMean was employed here.   
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Similar analyses were performed for targets NA, FXa and TH (see 

Figures 10, 11, 12). For NA, overall, the ROC curves corresponding 

to the concom method were better than the sepcom curves except in 

conformer 2, where the concom is similar to sepcom. For target FXa 

the concom method performed better in six conformers, yet in the 

other two conformers, concom and sepcom perform similarly. 

Likewise, for target TH, the performance of concom was better than 

that of sepcom for all conformers throughout the entire database. 

 

Figure 10. ROC curves for two different consensus protocols: concom (Red) 
and sepcom (Blue) in the target NA. TPR: True Positive Rate and FPR: False 
Positive Rate. 

When the data for the individual target conformers were combined, 

using either methods SMean, S1, S2, S3, S4, or Sopt, we obtained the 

results as shown in Figure 13. In the ROC curves in Figure 13A1-A4, 

the SMean curve serves as benchmark. For TK, the methods Sopt and 

S4 performed better than the benchmark, with Sopt being the best 
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(with around 0.85 of TPR at the top 1% of the database), while S1 

and S3, performed worse than the benchmark (Figure 13B1 and 

Table 4). Notably, at 1% of the compound database, the combination 

of FRED and Surflex, while taking into account the results from 

different individual conformers (Figures 5 and 13A1,13B1) for target 

TK resulted in a net improvement of several folds as compared to 

FRED or Surflex only.  

 

Figure 11. ROC curves for two different consensus protocols: concom (Red) 
and sepcom (Blue) in the target FXa. TPR: True Positive Rate and FPR: False 
Positive Rate. 
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Figure 12. ROC curves for two different consensus protocols: concom (Red) 
and sepcom (Blue) in the target TH. TPR: True Positive Rate and FPR: False 
Positive Rate. 

 
 

Figure 13. Receiver operating characteristic (ROC) curves by “concom” 
combined FRED-Surflex VLS approach for four targets by using the different 
consensus methods to screen the whole compound dataset. A1: TK, A2: NA, A3: 
FXa, A4: TH., and Figure B1-B4, the same data set and docking protocol as (A1-
A4) focusing on the first 5% of the ROC curve. The black line represents random 
performance.  
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Figure 13A2 shows a similar analysis for target NA. Consensus 

methods S2, S4 and Sopt performed similar to the benchmark (Table 4, 

Table 5), in particular at the lowest percentages of the database 

(Figure 13B2). Method S1 and S3 performed worse than the 

benchmarks in 1% FPR fraction for this target (Figure 13B2, Table 4). 

The ROC curve for FXa is shown in Figure 13A3. All consensus 

methods performed comparable to the benchmark (p-value shown in 

Table 4). At 5% FPR fraction (Figure 13B3), S1, S3, and Sopt 

underperformed while S2, S4 were similar as the benchmark (Smean). 

Overall, the method performance was comparable for all methods for 

this protein target. For TH (Figures 13A4 and 13B4), Sopt performed 

the best with the AUC value as 0.756. The TPR around 0.5 was 

retrieved at 4% of the dataset and up to 0.8 of the TPR at 40% of the 

database.  

Stepwise improvements of combining FRED and Surflex 

To obtain an insight into the improvement introduced in the overall 

method when applying Surflex subsequent to FRED-docking, and to 

study the improvements by variable top ranked lists of FRED being 

subjected to Surflex docking, we calculated stepwise improvement 

curves. The stepwise improvement curves showed the enrichment 

improvements per percentage step of the database when both FRED 

and Surflex were combined via concom. This was calculated for the 

entire database and for each of the four protein targets (Figure 14). 

The results are most obvious for target TK and show that for the 

majority of the curves (SMean/STrimMean, S1, S2, S3, S4, and Sopt) 

calculated (Figure 14A), a high frequency of improvement was 



77 

reached within the first 20-30% of the database, with the 

improvement (Z) ranging from 50 to 100%. Notably Sopt resulted in 

lower frequencies of improvement as compared to the other curves. 

Some curves exhibited negative Z values with the exception of S1, 

S3, and Sopt. The overall trend in frequencies is from high (within the 

top 10% of the database) to low (10~30% of the database) and zero 

(beyond 30% of the database) with the exception of S1 and S3, which 

indicates that in particular in the lower percentages of compound 

database tested, the combination of FRED and Surflex is beneficial. 

Figure 14B shows the enrichment improvements for target NA. 

Independent of the consensus method applied, Surflex increased the 

enrichments, as judged from overall positive Z values calculated. All 

curves in Figure 14B show a high frequency of improvement within 

the first 25~45% of the database with improvements (Z) ranging from 

50 to 100%. Only S1 appeared to be distributed over the complete 

range of percentages tested, albeit with highest frequency 

concentrations between 0% and 40% of the database. Some curves 

have negative Z values, representing an overall lower quality at a 

particular percentage of the database due to the combination of the 

rigid and flexible methods, with S4 having the most. 

Figure 14C shows the enrichment improvement graphs for FXa. For 

all methods analyzed here, inclusion of Surflex in the protocol overall 

increased the enrichments. For this protein, the majority of curves 

showed a high frequency of improvement throughout the entire 

database with improvements (Z). Remarkably, negative Z values 

were calculated exclusively between 0 and 40% of the database. 

Enrichment improvement graphs for target TH are shown in Figure 
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14D. Like in target FXa, Surflex appeared to increase the enrichment 

for the entire set of methods tested. All curves in target TH (Figure 

14D) show high frequencies of improvement throughout the entire 

database with the improvement (Z) ranging from 50 to 100%. 

Negative Z values appeared mostly at the beginning of the database 

(0-40%).  

 

Figure 14. Stepwise improvement by combining Surflex to FRED for four 
targets by seven different consensus methods. A positive value at X % means 
that the overall combined FRED-Surflex procedure is improved whereas a negative 
value indicates that FRED only performs better than that from the combined 
procedure at the region between X % to (X+1) %. X-axis indicates percentage of 
the total database (0-100%), while Y-axis shows the degree of improvement. A: 
TK, B: NA, C: FXa, D: TH, concom was used to combine ranked lists. 

Screening of directory of useful decoys (DUD) data sets 

Although the new protocol was tested on four diverse targets: TK, 

NA, FXa, TH we also applied the protocol to 6 other targets: GART, 

CDK2, Trypsin, COMT, ER and INHA to ascertain the wider 
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applicability of the method. The compound datasets (active and 

decoys) applied for virtual screening for these 10 targets were 

obtained from the DUD dataset. The number of actives / decoys and 

the diversity of those actives are shown in Table 3 (64). 

First, the performance of the docking protocol by using either single 

or multiple conformations was compared. The use of 8 different 

conformers, as was determined from data shown in Figure 1, 

appears valid given that AUC do not drop by inclusion of eight 

conformers, instead for targets thrombin, ER and 1NHA, use of eight 

structures appears optimal with the given data sets from the DUD for 

these targets (Figure 2). FRED docking yielded comparable the area 

under the ROC curve (AUC) values (Table 5) for both single and 

multiple conformations in some cases, such as TK, Thrombin, COMT 

and INHA. However, by inspecting the entire ROC curves for all 

targets as shown in (Figure 15, 16, 17, 18), multiple conformations 

performed better than using single conformation for FRED docking. 

On the other hand, AUC values (Table 5) derived from the single 

conformation using Surflex docking are mostly lower (p-value <0.05; 

Table 7; Figure 19, 20, 21, 22)  than those obtained from applying 

multiple conformations for docking, indicating that the use of multiple 

conformations can result in higher enrichment than use of single 

conformation for Surflex docking.  
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Figure 15. Receiver operating characteristic (ROC) curves to compare 
multiple conformers (Blue, Red) and single conformers (gray). 10 Targets 
were tested with their corresponding DUD dataset by FRED docking. Each target 
contains eight conformers, which are shown as gray ROC curves. Calculated Mean 
(Blue) and TrimMean (Red) are shown to indicate the multiple conformations. TPR: 
True Positive Rate and FPR: False Positive Rate.  

Next, the performance of the docking using either FRED or Surflex 

alone was compared with the combined FRED-Surflex method. The 

AUC (Table 5) and ROC curves (Figure 23, 24) of these 10 targets 

derived from the DUD data sets show that the combined 

FRED/Surflex methods performed better than using FRED docking 

only, whereas the combined FRED-Surflex methods gave 

comparable results to the Surflex docking (p-value >0.05). However, 

docking by using the combined method is much faster than using 

Surflex docking alone because some false positive compounds were 

first filtered out by using the fast FRED docking protocol and in a 
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typical virtual ligand screening campaign, the dataset being used for 

Surflex docking can be geometrically filtered by FRED. Therefore, in 

order to speed up calculations and save computational costs, the 

combined FRED-Surflex method is suggested to be applied for 

screening large compound databases. Finally the different 

consensus scorings (SMean, STrimMean, S1, S2, S3, S4, and Sopt) were 

compared. Results as demonstrated by the AUC, ROC curves and p-

value indicate that Sopt outperformed the other consensus scoring 

methods. 

 

Figure 16. Receiver operating characteristic (ROC) curves at the 5% false 
positive fraction to compare the multiple conformers (Blue, Red) and single 
conformer (gray). 10 Targets were tested with their corresponding DUD dataset 
by FRED docking as in Figure 15. Each target contains eight conformers, which 
are shown as gray ROC curves. Calculated Mean (Blue) and TrimMean (Red) are 
shown to indicate the multiple conformations. TPR: True Positive Rate and FPR: 
False Positive Rate. 
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Figure 17. Receiver operating characteristic (ROC) curves to compare 7 
consensus methods. 10 Targets were tested with their corresponding DUD 
dataset by FRED docking. SMean and STrimMean served as the benchmark TPR: 

True Positive Rate and FPR: False Positive Rate. 

 

Figure 18. Receiver operating characteristic (ROC) curves at the 5% false 
positive fraction to compare 7 consensus methods.  
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Figure 19. Receiver operating characteristic (ROC) curves to compare the 
multiple conformers (Blue, Red) and single conformer (gray). 10 Targets were 
tested with their corresponding DUD dataset by Surflex docking. Each target 
contains eight conformers which are shown in gray. Calculated Mean (Blue) and 
TrimMean (Red) are shown to indicate the multiple conformations. TPR: True 
Positive Rate and FPR: False Positive Rate. 

 

Figure 20. Receiver operating characteristic (ROC) curves at the 5% false 
positive fraction to compare the multiple conformers (Blue, Red) and single 
conformer (gray).  



84 

 

Figure 21. Receiver operating characteristic (ROC) curves to compare 7 
consensus methods. 10 Targets were tested with their corresponding DUD 
dataset by Surflex docking. SMean and STrimMean served as the benchmark 

TPR: True Positive Rate and FPR: False Positive Rate. 

 

Figure 22. Receiver operating characteristic (ROC) curves at the 5% false 
positive fraction to compare 7 consensus methods.  
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Figure 23. Receiver operating characteristic (ROC) curves to compare 7 
consensus methods. 10 Targets were tested with their corresponding DUD 
dataset by combined FRED-Surflex docking. SMean and STrimMean served as 

the benchmark TPR: True Positive Rate and FPR: False Positive Rate. 

 

Figure 24. Receiver operating characteristic (ROC) curves at the 5% false 
positive fraction to compare 7 consensus methods.  
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Discussion 

In VLS, one wishes to achieve an optimal trade-off between highest 

possible compound specificity, target-affinity, time requirement of in 

silico hit identification and a lowest possible effort for actual in vitro 

activity testing. This implies that a compromise will have to be 

reached to obtain an optimal overall method for hit identification. In 

this study we particularly explored the use of ensemble docking and 

how to combine results from multiple target conformers into a 

consensus ranked list for an existing hierarchic VLS method that 

combines two docking approaches, FRED and Surflex.  

The rigid body docking software FRED was used to rapidly screen a 

test compound database of 59,479 molecules. Essentially the use of 

rigid body docking software works as a first filter, comparable to a 

pharmacophore filter, to reduce the number of potential molecules for 

flexible docking. With the current progress in flexible docking, 

inclusion of rigid body docking may be disputed, however, especially 

in the absence of known ligands (e.g. for new targets) use of such 

rigid body docking filters may prove beneficial to overall method 

efficiency. 

As might be expected, the CPU time of FRED appeared to correlate 

with the size of the protein target's pocket, except for target NA 

(Table 2). Surflex running times did not correlate with the pocket 

sizes of the conformer targets (Table 2). This represents the fact that 

in case of flexible docking not only pocket size, but also other pocket 

properties such as shape and hydrogen bonds are factors that 



87 

influence the Surflex docking time (24).  

To evaluate the combined use of FRED and Surflex, we first 

calculated enrichment performances of FRED and Surflex separately. 

For target TK (Figures 5A1-A4 and 5B1-B4), FRED yielded better 

enrichments than Surflex. The enrichment by Surflex only is better 

than by FRED only for target NA (Figure 6) and to a lesser extent for 

TH (Figure 8). For target FXa (Figure 7) the ROC curves were similar 

for Surflex and FRED. From these diverse results, we conclude that 

flexible docking programs are not by definition better than rigid ones 

in VLS and that the properties of the target site have a major 

influence on this (17). Chance ranked list outliers do not appear to 

influence overall enrichments considerably, since the method SMean 

performed always better in ROC curves than method STrimMean. At the 

practically important early enrichment of ROC curve (typically 0-5% 

of the ranked database) the averaging of enrichments over the eight 

conformers would yield a priori higher percentages of actives than if 

any of the single conformers would randomly have been chosen. 

Few individual curves, both for FRED and Surflex, presented 

percentages higher than SMean or STrimMean (see e.g. Figures 5A1 and 

5A3, 6A1, 6A3, 7A1, 7A3, 8A1 and 8A3), however in the absence of 

prior knowledge about the correct target conformation it is impossible 

to select the conformation which will yield the highest number of 

actives to be identified (48). Interestingly, the SMean, STrimMean 

processed data for target TH yielded comparatively much better 

enrichments than that in any individual conformer (Figures 8A1 and 

8A3). Since for all targets the consensus curve is overall better than 

the ones from single conformations, multiple conformations should 



88 

be selected in order to perform a SBVLS as reliably as possible. This 

may not only reflect a biological relevance (65, 66), but is also based 

on statistical improvement of the enrichment of a screening program.  

After having established that use of multiple conformations of a target 

is optimal for the current VLS protocol, the selection of an optimal 

consensus method to integrate the information from the different 

conformations is a crucial factor for overall docking quality. We have 

used seven methods for the calculation of a consensus score. These 

methods are based on the docking scores for each compound in 

different conformers, taking into account the standard deviation (σ) of 

scoring which is imposed into the methods. The different consensus 

methods studied yield different ROC curves. SMean, S2, S4, and Sopt 

have improved enrichments while S1 and S3 show only a modest 

influence on the enrichment. As compared to the benchmark (SMean), 

the method Sopt performed best, followed by method S4 for all the four 

targets, whereas the methods S1 and S3 do not result in improvement 

of ROC curves over those of the benchmark (Figures 5A2 and 5A4, 

6A2, 6A4, 7A2, 7A4, 8A2, 8A4). Therefore methods S1 and S3 are 

not further included in the discussion.  

For all targets used in our study, an increasing interval between two 

active ligands (represented by peak interval in Figure 14) indicates 

an improvement of the FRED-processed database by subsequent 

Surflex docking. The improvement as a function of database size, as 

shown in Figure 14, is an important parameter for cut-off selection. 

For example, in target TK a meaningful cut-off would be the top 18% 

of FRED results (Sopt and S4) or the top 20% of FRED results (S2). 
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For target NA the cutoff would be 25% (S4), 42% (Sopt, S3) and 50% 

(S2). For targets NA and TH (Figures 14B and 14D), use of Sopt 

appears optimal with cut-offs at ~43% of the total database. Overall, 

inclusion of Surflex in the docking protocol improved the enrichments 

at most but not all of the steps. However, since the number of 

positive peaks is more than the number of negative peaks, Surflex 

improves the enrichment of the combined FRED-Surflex process as 

a whole. Interestingly, at some steps Surflex worsened the 

enrichment curves. We cannot exclude that some compounds in our 

dataset are false negatives, which in fact represent unknown active 

ligands.  

When multiple conformers are chosen for rigid/flexible docking, two 

methods can be applied to select compounds from FRED results for 

consecutive Surflex docking as described in the methods section 

(see also Figure 4). The enrichments of concom are better than the 

ones of sepcom in all targets TK, NA, FXa and TH. Therefore we 

propose that in particular for the proteins tested here, as a model for 

the class they represent, it is advisable to use the consensus 

combination method (concom) for the combined FRED-Surflex VLS 

approach.  

The combined FRED-Surflex enrichments have been calculated 

while employing several consensus methods. The combined FRED-

Surflex results for targets TK, NA, FXa and TH (Figures 13A1, 13A2, 

13A3 and 13A4 respectively) are better than FRED only results 

(Figures 5A2, 6A2, 7A2, 8A2). For targets TK, FXa and TH, but not 

NA the combined results are better than Surflex only results (Figures 
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5A4, 6A4, 7A4, 8A4). The considerable improvement in ROC curve 

that is achieved by combination of conformers in case of Surflex 

makes it questionable to include FRED in the protocol for NA. 

Likewise, the improvement by averaging multiple conformers rank 

lists for this particular target is more evident than for the other protein 

targets. In the case of FXa, the combination of FRED and Surflex did 

not result in clear enrichment improvements, while neither FRED nor 

Surflex showed good enrichment for this target. This would suggest 

that a FRED-Surflex combination cannot result in an improved 

enrichment curve as compared to FRED or Surflex only if a first 

FRED docking step does not result in a reasonable enrichment 

during a first VLS step (Figures 13C and 7). By using our data sets 

(active from DUD combined with decoys from ChemBridge) we found 

that inclusion of FRED as a first filter is however beneficial in 3 out of 

4 targets tested here and by itself computationally not intensive, 

whereas it allows the exclusion of part of the small molecule 

database that need not be tested via the computationally more 

intensive flexible method. 

The number of positive peaks exceeds that of the negative peaks in 

the stepwise improvement performance (Figure 14) which indicates 

that the enrichment of the combined FRED-Surflex is better than that 

of either FRED or Surflex alone. In terms of the stepwise 

improvement by easily calculatable SMean, the efficient cut-off of the 

ranked FRED results may be used as input for Surflex, with cut-offs 

of 25% in TK, 47% in NA, 61% in FXa, 52% in TH. For the better 

performing Sopt method these percentages are 17%, 42%, 47% and 

43% respectively. We conclude that ideally the cut-off for any type of 



91 

target (with its characteristic pocket properties) is determined, 

however, in the absence of information on an individual target, an 

average 46% (using SMean) of the ranked FRED results may be used 

as an input for Surflex screening. 

Finally, we have tested our virtual screening protocol by using actives 

and decoys derived from the standard DUD data sets for 10 targets 

(TK, NA, FXa, TH, GART, CDK2, Trypsin, COMT, ER and INHA). In 

general, results obtained from these DUD data sets are similar to the 

results which were obtained from the 4 targets (TK, NA, FXa, and 

TH) using decoys from Chembridge database. Multiple 

conformations showed better performance than using single 

conformation (see Figures 15, 16, 19, 20). Therefore in the absence 

of information about which protein conformation should be used in 

docking, the multiple conformations method is suggested. The 

combined FRED/Surflex docking performed better than using FRED 

or Surflex docking alone as indicated by the AUC and ROC curves 

(compare Figures 17, 18, 21, 22 and 23, 24 and Table 5). However, 

the performance of the combined methods depends on the docking 

results of FRED as discussed above. In this study we used general 

standard FRED docking parameters for all target proteins while it is 

possible to first optimize and validate parameters in FRED docking 

for a specific target protein which can help to improve the enrichment 

of screening. When comparing consensus scoring methods, we can 

summarize that Sopt apparently outperforms the other consensus 

scoring methods, and S4 is better than SMean which is the benchmark 

for evaluating the consensus methods. Hence, in the case where no 
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active compounds are available for generation of Sopt, use of S4 

consensus scoring is advisable.   

Conclusion 

We have screened a database of 59,479 compounds by a novel 

method, that uses a combination of the programs FRED and Surflex 

in a parallel computational environment, taking into account results 

from multiple target conformations. In this study, four different targets 

(TK, NA, FXa and TH) with each eight conformations were selected. 

Although the enrichment results varied for the different targets, 

reflecting the chemical properties and size of these different target 

pockets, they indicate that the use of multiple conformers for a given 

target is preferable, while we realize that the chosen four targets do 

not fully represent the wide variability that exists with respect to 

targetable pockets. To optimally combine the results of the eight 

different conformers, it is advisable to apply a consensus of the 

FRED results for the different conformers and from that generate a 

sub dataset for consecutive Surflex screening, (so-called “concom" 

method in this paper). The cut-off of the ranked FRED results which 

are further applied as input for Surflex is a key step for a successful 

virtual screening.  For the targets chosen here, no general standard 

cut-off value can be given, and this value must be first investigated 

for each target protein. We have demonstrated however that the 

stepwise improvement is a useful method to detect the optimal cutoff 

of a FRED docked list, for further processing by Surflex docking.  

We also applied our virtual screening protocol on 10 different targets 
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(TK, NA, FXa, TH, GART, CDK2, Trypsin, COMT, ER and INHA) 

using active and decoys from the DUD data sets. Results obtained 

from these data sets are in agreement with our findings for the 4 

targets discussed before.   

The quality of FRED enrichments appears crucial to achieve an 

improved result for the combined FRED-Surflex VLS approach. 

Therefore, before using the combined method, one may consider to 

design an appropriate FRED screening protocol. In this study, we 

present a new consensus method, Sopt, based on the results of an 

optimization problem. This method is designed to produce consensus 

lists for a protein target with an optimal enrichment for both FRED 

and Surflex but requires prior knowledge about confirmed actives. In 

the absence of such knowledge, use of the easily accessible 

methods SMean and S4 is advisable.  
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Table 1. Pocket information of protein conformers (4 * 8). The mutable 
residues heavily influence the docking accuracy and are potential hydrogen donors 
/acceptors. The structural diversity of the conformers is indicated by their pocket 
size, outer and inner contours which are used for FRED docking and served as 
references for further Surflex docking are listed.   

Conformer Mutable Residues Volume of 
Box 
(Å

3
) 

Outer 
Contour 

(Å
3
) 

Inner 
Contour 

(Å
3
) 

TK1 H14, T1:T22, S30, 
Y36, T42, Y43 

9271 1960 33 

TK2 H14, T19:T22, Y36, 
T42:Y43, Y57, Y88 

7726 1914 43 

TK3 H14, T19:T22 4646 1014 91 

TK4 Y9, H14, T21:T22 7591 1761 48 

TK5 Y9, H14, T19, 
T21:T22, Y36, 
T42:Y43, Y57 

6355 1609 51 

TK6 H14, T19:T22, Y36, 
T2b:Y3b, Y17b, 

H28c, Y50e, S53e 

6959 1535 55 

TK7 Y7b, H12b, T17b, 
T19:T20b, Y34b, 
T40:Y41b, Y55b, 

Y86b, Y61c 

5288 1517 61 

TK8 H12b, T18:T20b, 
Y34b, T40:Y41b, 

Y86b, Y19c 

4991 1556 72 

NA1 N3b, Y118b 2400 1292 91 

NA2 T34b, T81b, 
Y118:S119b 

3888 1574 54 

NA3 N3b, T34b, T81b, 
Y118:S119b, S40e 

4418 1538 74 

NA4 N3e, T34e, T13f, 
Y50:S51f 

4116 1477 85 

NA5 N3c, T34c, T81c, 
Y118:S119c, H20d, 

T133e 

5039 1628 70 

NA6 N3e, Y22j 2589 1332 88 

NA7 N41c, N3e, Y76f, 
H20g 

3394 1503 80 
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NA8 Y50j 2089 1194 88 

FXa1 N20, H42, Y19b, 
S119b, Y7c 

4347 1602 72 

FXa2 H42, T18:Y19c, 
S49d, S68d, Y3e 

2059 979 99 

FXa3 H42, Y19b, S3e, 
S22e, Y33e 

3678 1535 75 

FXa4 Y19b, H9e, Y12e, 
Y7h 

4128 1574 73 

FXa5 H20b, T18:Y19d, 
S8g, Y3h 

3334 1183 90 

FXa6 H42, Y6e, H11f 1906 936 82 

FXa7 H42, Y45, 
T18:Y19b, S11g, 

Y22g 

3966 1634 68 

FXa8 T12c, T25e, N27e 1717 1034 50 

TH1 Y41b, S22:T23e, 
Y8f, T12f, H17h, 

T21h 

4616 1680 35 

TH2 N4b, Y36b, H38b 2983 1315 95 

TH3 Y41:N42b, N46b, 
H17f, T12g, N14g 

4986 1518 66 

TH4 H43, Y47, Y10e, 
S7g 

4391 1448 86 

TH5 Y37b, N1e, T23g, 
T28g 

2406 1206 99 

TH6 H8b, Y12b, T2i, 
S46i 

3083 1404 83 

TH7 H8e, Y11:N12c, 
N1d, T6e, N2g, 

S15i, Y8j, Y11:H13j, 
T4l, H7l, Y11c 

10524 1741 69 

TH8 H6d, Y10d, N1f, 
T23h, T4i, N6i, 
S48i, T63i, N1j 

7189 1769 50 

 
 

 



96 

Table 2. Pocket characteristics and CPU time consumption for the four 
protein targets.   

Target 
ID 

FRED Surflex* -fold 
difference

Pocket 
RMSD 
Range 

Avg Pocket 
size (Å3)

Avg box 

size (Å3)

S.C. FRED S.C. 
Surflex 

TK 19.5±4.05302.0±10.7 15.5 0.32-0.52 396 6603 r = 0.52 N.S. 

NA 19.8±4.00224.8±13.0 11.4 0.53-1.17 321 3491 r = 0.18 N.S 

FXa 15.4±3.88228.5±13.5 14.9 1.02-1.96 362 3141 r = 0.97 N.S. 

TH 20.8±5.53245.1±17.5 11.8 1.25-2.65 443 5022 r = 0.79 N.S. 

# Givens are times in hours±1SD, n= 8; the –fold difference indicates the ratio 
Surflex CPU time/ FRED CPU time; The pocket heavy atom RMSDs for eight 
conformers ranges are shown in column 5.; S.C. indicates size-time correlation as 
indicated by the Pearson coefficient (r) with 0.0<r<0.09 indicating no correlation; 
0.1<r<0.3 weak correlation; 0.3<r<0.5 moderate correlation and 0.5<r<1.0 
indicating strong correlation; N.S. not significant  

* Sequential time on the cluster is indicated here. 

 
Table 3. The number of DUD ligands and decoys used in this study. The 
ligands for each target have been clustered by their physico-chemical diversity (67).   
 

Target Total ligands Total decoys Clusters of Ligands 
TK 22 891 7 

GART 40 879 5 
Thrombin 72 2456 14 

cdk2 72 2074 32 
FXa 146 5745 19 
NA 49 1874 7 

Trypsin 49 1664 7 
COMT 11 468 2 

ER 39 1448 8 
INHA 86 3266 23 
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Table 4. p-Value matrix for 7 consensus methods by calculation of ROC 
curves and AUC values for 4 targets with the Chembridge decoy data set 
after FRED or Surflex docking. ‘Single’ was calculated as the median of 8 
individual ROC curves. Values below 0.1 are in bold to emphasize significance at 
the 90% level. 

 
 
 
TK 
FRED 

 Mean TrimMean S1 S2 S3 S4 Sopt 

Single 0.057 0.018 0.551 0.016 0.751 0.090 0.005 

Mean  0.835 0.042 0.864 0.316 0.860 0.705 

TrimMean   0.048 0.964 0.340 0.778 0.664 

S1    0.046 0.432 0.038 0.028 

S2     0.330 0.798 0.677 

S3      0.298 0.254 

S4       0.753 

 
 
NA 
FRED 

Single 0.024 0.020 0.843 0.024 0.145 0.011 0.462 

Mean  0.944 0.040 0.989 0.428 0.777 0.130 

TrimMean   0.034 0.955 0.388 0.832 0.113 

S1    0.039 0.208 0.019 0.591 

S2     0.420 0.788 0.127 

S3      0.282 0.471 

S4       0.072 

 
 
FXa 
FRED 

Single 0.104 0.110 0.232 0.110 0.148 0.186 0.074 

Mean  0.979 0.666 0.978 0.859 0.762 0.874 

TrimMean   0.685 0.999 0.880 0.782 0.853 

S1    0.685 0.799 0.897 0.555 

S2     0.880 0.782 0.853 

S3      0.900 0.737 

S4       0.644 

 
 
TH 
FRED 

Single 0.066 0.199 0.957 0.199 0.671 0.035 0.003 

Mean  0.582 0.075 0.581 0.159 0.786 0.243 

TrimMean   0.219 0.999 0.391 0.410 0.086 

S1    0.219 0.710 0.040 0.003 

S2     0.391 0.410 0.086 

S3      0.093 0.010 

S4       0.371 

 
 
TK 
Surflex 

Single 0.200 0.175 0.644 0.177 0.469 0.133 0.042 

Mean  0.939 0.081 0.944 0.577 0.826 0.452 

TrimMean   0.068 0.995 0.526 0.886 0.499 

S1    0.069 0.236 0.049 0.013 

S2     0.530 0.881 0.496 

S3      0.437 0.190 

S4       0.595 

 Single 0.010 0.012 0.018 0.009 0.035 0.020 0.005 
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NA 
Surflex 

Mean  0.946 0.823 0.982 0.623 0.788 0.806 

TrimMean   0.876 0.929 0.671 0.840 0.754 

S1    0.805 0.788 0.964 0.638 

S2     0.607 0.771 0.823 

S3      0.823 0.460 

S4       0.607 

 
 
FXa 
Surflex 

Single 0.340 0.393 0.333 0.393 0.331 0.693 0.025 

Mean  0.921 0.989 0.921 0.986 0.576 0.199 

TrimMean   0.910 0.921 0.906 0.645 0.166 

S1    0.910 0.997 0.566 0.204 

S2     0.906 0.646 0.167 

S3      0.564 0.206 

S4       0.065 

 
 
 
TH 
Surflex 

Single 0.031 0.070 0.041 0.031 0.014 0.408 0.002 

Mean  0.732 0.913 0.995 0.771 0.186 0.317 

TrimMean   0.816 0.727 0.527 0.326 0.179 

S1    0.907 0.689 0.225 0.267 

S2     0.776 0.183 0.320 

S3      0.106 0.477 

S4       0.020 

 
 
TK 
Combined 

Mean  0.654 0.028 0.971 0.195 0.540 0.182 

TrimMean   0.031 0.908 0.225 0.447 0.159 

S1    0.025 0.076 0.022 0.010 

S2     0.171 0.606 0.202 

S3      0.152 0.063 

S4       0.236 

 
 
NA 
Combined 

Mean  0.473 0.984 0.966 0.874 0.504 0.739 

TrimMean   0.460 0.447 0.576 0.165 0.293 

S1    0.982 0.858 0.517 0.754 

S2     0.840 0.531 0.771 

S3      0.408 0.622 

S4       0.737 

 
 
FXa 
Combined 

Mean  0.921 0.989 0.920 0.985 0.576 0.403 

TrimMean   0.909 0.999 0.906 0.645 0.349 

S1    0.909 0.996 0.566 0.411 

S2     0.906 0.645 0.349 

S3      0.563 0.413 

S4       0.163 

 
 
TH 
Combined 

Mean  0.858 0.112 0.899 0.638 0.982 0.067 

TrimMean   0.159 0.958 0.771 0.875 0.045 

S1    0.144 0.263 0.117 0.001 

S2     0.731 0.917 0.051 



99 

S3      0.654 0.021 

S4       0.064 

 
Table 5. AUC Metrics of different methods by FRED, Surflex, and combined 
FRED-Surflex for 10 targets. The highest value and Sopt value are shown in bold.  
 

Chembridge  
decoys 

Single Mean 
Trim 
Mean 

S1 S2 S3 S4 Sopt 

 
TK 

FRED 0.865 0.940 0.943 0.817 0.940 0.880 0.951 0.969 

Surflex 0.803 0.835 0.843 0.594 0.835 0.763 0.862 0.937 

Combined  0.970 0.944 0.840 0.957 0.932 0.905 0.906 

 
NA 

FRED 0.799 0.859 0.864 0.714 0.860 0.803 0.879 0.752 

Surflex 0.814 0.917 0.913 0.906 0.917 0.894 0.904 0.927 

Combined  0.854 0.797 0.853 0.854 0.845 0.882 0.867 

 
FXa 

FRED 0.691 0.748 0.743 0.733 0.748 0.747 0.730 0.753 

Surflex 0.583 0.651 0.638 0.673 0.651 0.670 0.614 0.753 

Combined  0.687 0.682 0.665 0.687 0.688 0.668 0.695 

 
TH 

FRED 0.586 0.697 0.685 0.613 0.700 0.669 0.700 0.753 

Surflex 0.604 0.771 0.744 0.762 0.771 0.793 0.668 0.848 

Combined  0.614 0.603 0.541 0.614 0.597 0.603 0.756 

 

DUD decoys 
Sing 
le 

Mean 
Trim 
Mean 

S1 S2 S3 S4 Sopt 

 
TK 

FRED 0.526 0.518 0.516 0.501 0.518 0.510 0.521 0.639 

Surflex 0.514 0.526 0.537 0.500 0.511 0.514 0.538 0.632 

Combined  0.515 0.515 0.498 0.515 0.508 0.518 0.640 

 
GART 

FRED 0.652 0.671 0.668 0.536 0.671 0.628 0.702 0.832 

Surflex 0.797 0.879 0.889 0.581 0.715 0.857 0.867 0.892 

Combined  0.850 0.860 0.558 0.689 0.826 0.839 0.861 

 
TH 

FRED 0.553 0.534 0.551 0.573 0.534 0.567 0.518 0.639 

Surflex 0.917 0.944 0.944 0.772 0.879 0.926 0.944 0.938 

Combined  0.643 0.631 0.609 0.568 0.636 0.696 0.719 

 
CDK2 

FRED 0.601 0.608 0.610 0.586 0.608 0.605 0.607 0.746 

Surflex 0.726 0.766 0.784 0.551 0.606 0.743 0.774 0.707 

Combined  0.613 0.612 0.585 0.606 0.602 0.637 0.766 
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FXa 

FRED 0.565 0.583 0.577 0.491 0.583 0.554 0.596 0.639 

Surflex 0.870 0.907 0.918 0.628 0.750 0.893 0.911 0.918 

Combined  0.587 0.580 0.496 0.589 0.578 0.594 0.636 

 
NA 

FRED 0.533 0.544 0.548 0.493 0.544 0.534 0.544 0.764 

Surflex 0.807 0.863 0.863 0.118 0.415 0.709 0.937 0.983 

Combined  0.649 0.666 0.500 0.585 0.614 0.655 0.823 

 
Trypsin 

FRED 0.520 0.514 0.513 0.521 0.514 0.513 0.515 0.612 

Surflex 0.988 0.995 0.995 0.913 0.975 0.993 0.988 0.985 

Combined  0.982 0.980 0.891 0.957 0.982 0.962 0.967 

 
COMT 

FRED 0.513 0.502 0.492 0.440 0.502 0.481 0.510 0.933 

Surflex 0.517 0.534 0.530 0.475 0.433 0.507 0.550 0.655 

Combined  0.688 0.702 0.570 0.720 0.752 0.618 0.968 

 
ER 

FRED 0.678 0.700 0.687 0.602 0.700 0.663 0.716 0.775 

Surflex 0.515 0.507 0.510 0.521 0.510 0.508 0.515 0.625 

Combined  0.837 0.787 0.656 0.820 0.834 0.801 0.847 

 
INHA 

FRED 0.515 0.506 0.506 0.468 0.506 0.499 0.512 0.883 

Surflex 0.569 0.591 0.592 0.466 0.486 0.546 0.605 0.648 

Combined  0.567 0.584 0.527 0.685 0.609 0.550 0.904 
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Table 6. The enrichments of FRED and Surflex for different single target 
conformations and and combined enrichments) calculated via SMean, SrimMean, 
Sopt at 1 % of the total database. 

 TK_F NA_F FXa_F TH_F TK_S NA_S FXa_S TH_S 

Conf1 13.6 14.3 4.2 1.5 9.1 0 1.4 1.5 

Conf2 9 16.3 5.6 1.5 9.1 61.2 1.4 1.5 

Conf3 0 2 5.6 1.5 4.5 53.1 4.2 13.8 

Conf4 13.6 22.4 8.4 6.2 13.6 0 7 9.2 

Conf5 36.4 6.1 3.5 3.1 9.1 59.2 4.2 3.1 

Conf6 36.4 8.2 0 3.1 9.1 10.2 0 16.9 

Conf7 13.6 12.2 7.7 3.1 9.1 32.7 2.1 1.5 

Conf8 9 12.2 1.4 1.5 9.1 0 2.1 3.1 

SMean 27.3 20.4 7.7 7.7 18.2 57.2 3.5 23.1 

STrimMean 27.3 20.4 7 9.2 18.2 59.2 3.5 21.5 

Sopt 31.82 22.45 4.23 12.31 27.27 65.31 7.75 20 

TK_F: FRED screened in TK; TK_S: Surflex screened in TK. SMean, STrimMean, Sopt: 
The enrichment of the docked values of eight conformers by method SMean, STrimMean 

and Sopt respectively. Conf1 to 8: The enrichment of the docked value for the 
individual conformers 1 to 8. SMean, STrimMean, Sopt: The enrichment of the combined 
docked values of eight conformers by method as calculated by SMean, STrimMean and 

Sopt respectively. 

 
Table 7. p-Value matrix for 7 consensus methods by calculation of ROC 
curves and AUC values for 10 targets and decoys from the DUD. ‘Single’ was 
calculated as the median of 8 individual ROC curves. Values below 0.1 are in bold 
to emphasize significance at the 90% level. 
 

 
 
 
TK 
FRED 

 Mean Trim 
Mean 

S1 S2 S3 S4 Sopt 

Single 0.72 0.807 0.868 0.677 0.633 0.863 0.095 

Mean  0.837 0.981 0.869 0.808 0.692 0.084 

Trim 
Mean 

  0.954 0.771 0.725 0.766 0.089 

S1    0.948 0.832 0.778 0.091 

S2     0.853 0.665 0.082 

S3      0.602 0.079 

S4       0.096 

 
 
GART 
FRED 

Single 0.194 0.178 0.117 0.195 0.696 0.127 0.045 

Mean  0.888 0.053 0.965 0.303 0.404 0.123 

Trim 
Mean 

  0.055 0.901 0.318 0.385 0.116 

S1    0.053 0.107 0.034 0.012 

S2     0.304 0.402 0.122 

S3      0.181 0.059 

S4       0.215 
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TH 
FRED 

Single 0.604 0.836 0.254 0.605 0.401 0.279 0.03 

Mean  0.672 0.197 0.978 0.304 0.368 0.024 

Trim 
Mean 

  0.237 0.674 0.378 0.3 0.028 

S1    0.198 0.478 0.112 0.08 

S2     0.304 0.367 0.024 

S3      0.166 0.049 

S4       0.014 

 
 
CDK2 
FRED 

Single 0.72 0.986 0.219 0.721 0.642 0.702 0.011 

Mean  0.677 0.279 0.985 0.867 0.913 0.009 

Trim 
Mean 

  0.226 0.679 0.66 0.694 0.01 

S1    0.278 0.313 0.28 0.003 

S2     0.864 0.911 0.009 

S3      0.941 0.008 

S4       0.007 

 
 
FXa 
FRED 

Single 0.992 0.966 0.024 0.996 0.218 0.298 0.085 

Mean  0.97 0.024 0.972 0.217 0.3 0.086 

Trim 
Mean 

  0.023 0.964 0.213 0.305 0.087 

S1    0.024 0.063 0.012 0.004 

S2     0.218 0.3 0.086 

S3      0.097 0.032 

S4       0.185 

 
 
NA 
FRED 

Single 0.703 0.728 0.265 0.698 0.512 0.825 0.006 

Mean  0.909 0.337 0.972 0.685 0.922 0.005 

Trim 
Mean 

  0.318 0.901 0.634 0.975 0.006 

S1    0.338 0.402 0.333 0.003 

S2     0.688 0.918 0.005 

S3      0.694 0.005 

S4       0.006 

 
 
Trypsin 
FRED 

Single 0.899 0.898 0.508 0.908 0.824 0.836 0.007 

Mean  0.987 0.538 0.949 0.901 0.903 0.007 

Trim 
Mean 

  0.538 1 0.891 0.899 0.007 

S1    0.533 0.564 0.569 0.01 

S2     0.893 0.895 0.007 

S3      0.997 0.007 

S4       0.007 

 
 
COMT 
FRED 

Single 0.742 0.834 0.43 0.766 0.663 0.445 0.011 

Mean  0.819 0.39 0.926 0.565 0.507 0.012 

Trim 
Mean 

  0.408 0.851 0.607 0.471 0.011 

S1    0.396 0.534 0.267 0.007 

S2     0.574 0.502 0.012 

S3      0.374 0.01 

S4       0.016 

 
 
ER 
FRED 

Single 0.822 0.98 0.09 0.828 0.282 0.499 0.17 

Mean  0.786 0.1 0.966 0.318 0.427 0.158 

Trim 
Mean 

  0.092 0.792 0.284 0.489 0.172 

S1    0.1 0.204 0.058 0.023 

S2     0.317 0.43 0.159 

S3      0.182 0.074 

S4       0.263 

 
 

Single 0.884 0.964 0.194 0.883 0.548 0.565 0 

Mean  0.873 0.209 0.994 0.58 0.514 0 
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INHA 
FRED 

Trim 
Mean 

  0.199 0.872 0.548 0.549 0 

S1    0.209 0.288 0.136 0 

S2     0.58 0.514 0 

S3      0.363 0 

S4       0 

 
 
 
TK 
Surflex 

Single 0.500 0.542 0.378 0.461 0.417 0.865 0.082 

Mean  0.803 0.583 0.715 0.702 0.616 0.120 

Trim 
Mean 

  0.528 0.648 0.626 0.721 0.112 

S1    0.732 0.752 0.418 0.163 

S2     0.943 0.502 0.141 

S3      0.498 0.141 

S4       0.094 

 
 
GART 
Surflex 

Single 0.058 0.012 0.061 0.270 0.421 0.206 0.091 

Mean  0.806 0.019 0.082 0.566 0.786 0.761 

Trim 
Mean 

  0.018 0.077 0.501 0.681 0.857 

S1    0.122 0.025 0.021 0.017 

S2     0.108 0.091 0.071 

S3      0.738 0.455 

S4       0.584 

 
 
TH 
Surflex 

Single 0.030 0.011 0.023 0.275 0.723 0.212 0.209 

Mean  0.934 0.007 0.078 0.485 0.778 0.960 

Trim 
Mean 

  0.007 0.078 0.491 0.831 0.930 

S1    0.041 0.01 0.008 0.003 

S2     0.121 0.093 0.034 

S3      0.585 0.391 

S4       0.822 

 
 
CDK2 
Surflex 

Single 0.285 0.061 0.038 0.098 0.814 0.222 0.559 

Mean  0.535 0 0.002 0.375 0.717 0.065 

Trim 
Mean 

  0 0.002 0.259 0.887 0.042 

S1    0.069 0.001 0 0.003 

S2     0.005 0.002 0.021 

S3      0.34 0.212 

S4       0.046 

 
 
FXa 
Surflex 

Single 0.058 0.048 0.329 0.826 0.082 0.053 0.042 

Mean  0.937 0.004 0.095 0.879 0.966 0.887 

Trim 
Mean 

  0.003 0.080 0.817 0.970 0.950 

S1    0.232 0.007 0.004 0.003 

S2     0.129 0.087 0.070 

S3      0.846 0.769 

S4       0.921 

 
 
NA 
Surflex 

Single 0.172 0.178 0 0.002 0.807 0.029 0.007 

Mean  0.892 0 0 0.02 0.132 0.047 

Trim 
Mean 

  0 0 0.021 0.126 0.046 

S1    0.002 0 0 0 

S2     0.002 0 0 

S3      0.005 0.002 

S4       0.215 

 
 
Trypsin 
Surflex 

Single 0.605 0.617 0.667 0.799 0.609 0.747 0.709 

Mean  0.778 0.023 0.256 0.956 0.273 0.399 

Trim 
Mean 

  0.025 0.28 0.92 0.293 0.444 
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S1    0.052 0.022 0.052 0.036 

S2     0.24 0.723 0.46 

S3      0.297 0.372 

S4       0.733 

 
 
COMT 
Surflex 

Single 0.801 0.797 0.602 0.322 0.635 0.883 0.086 

Mean  0.978 0.730 0.404 0.608 0.814 0.189 

Trim 
Mean 

  0.732 0.403 0.601 0.799 0.189 

S1    0.443 0.950 0.603 0.192 

S2     0.530 0.324 0.331 

S3      0.540 0.240 

S4       0.159 

 
 
ER 
Surflex 

Single 0.900 0.969 0.629 0.991 0.981 0.844 0.094 

Mean  0.855 0.563 0.862 0.924 0.776 0.101 

Trim 
Mean 

  0.635 0.980 0.955 0.868 0.095 

S1    0.612 0.605 0.738 0.075 

S2     0.971 0.857 0.094 

S3      0.855 0.099 

S4       0.089 

 
 
INHA 
Surflex 

Single 0.752 0.747 0.331 0.447 0.882 0.627 0.383 

Mean  0.960 0.020 0.039 0.198 0.472 0.158 

Trim 
Mean 

  0.020 0.039 0.198 0.485 0.163 

S1    0.399 0.060 0.014 0.005 

S2     0.115 0.028 0.008 

S3      0.134 0.04 

S4       0.312 

 
 
TK 
Combin
ed 

Mean  0.683 0.299 0.44 0.507 0.463 0.018 

Trim 
Mean 

  0.255 0.365 0.423 0.573 0.016 

S1    0.526 0.465 0.196 0.034 

S2     0.850 0.269 0.026 

S3      0.312 0.024 

S4       0.013 

 
 
GART 
Combin
ed 

Mean  0.671 0.001 0.014 0.364 0.606 0.518 

Trim 
Mean 

  0.001 0.012 0.296 0.470 0.683 

S1    0.025 0.001 0.001 0.001 

S2     0.023 0.017 0.010 

S3      0.560 0.246 

S4       0.343 

 
 
TH 
Combin
ed 

Mean  0.831 0 0.011 0.193 0.658 0.181 

Trim 
Mean 

  0 0.012 0.205 0.711 0.191 

S1    0.003 0 0 0 

S2     0.031 0.012 0.032 

S3      0.227 0.818 

S4       0.207 

 
 
CDK2 
Combin
ed 

Mean  0.28 0 0 0.112 0.424 0.007 

Trim 
Mean 

  0 0 0.052 0.745 0.003 

S1    0.008 0 0 0 

S2     0 0 0.001 

S3      0.067 0.037 

S4       0.004 

 
 

Mean  0.339 0 0 0.182 0.497 0.191 

Trim   0 0 0.099 0.587 0.391 
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FXa 
Combin
ed 

Mean 

S1    0 0 0 0 

S2     0 0 0 

S3      0.125 0.060 

S4       0.283 

 
 
 
NA 
Combin
ed 

Mean  0.782 0 0 0.001 0.020 0.003 

Trim 
Mean 

  0 0 0.001 0.019 0.003 

S1    0 0 0 0 

S2     0 0 0 

S3      0 0 

S4       0.062 

 
 
Trypsin 
Combin
ed 

Mean  0.741 0.001 0.080 0.914 0.189 0.211 

Trim 
Mean 

  0.001 0.086 0.867 0.205 0.229 

S1    0.003 0.001 0.002 0.001 

S2     0.090 0.436 0.227 

S3      0.213 0.240 

S4       0.617 

 
 
COMT 
Combin
ed 

Mean  0.939 0.399 0.119 0.398 0.632 0.030 

TrimMe
an 

  0.409 0.122 0.408 0.601 0.030 

S1    0.229 0.867 0.276 0.053 

S2     0.203 0.094 0.135 

S3      0.309 0.047 

S4       0.024 

 
 
ER 
Combin
ed 

Mean  0.730 0.355 0.757 0.835 0.575 0.017 

TrimMe
an 

  0.417 0.962 0.904 0.717 0.015 

S1    0.399 0.388 0.526 0.010 

S2     0.932 0.695 0.015 

S3      0.681 0.016 

S4       0.013 

 
 
INHA 
Combin
ed 

Mean  0.910 0.001 0.002 0.047 0.238 0.027 

TrimMe
an 

  0.001 0.002 0.046 0.246 0.028 

S1    0.184 0.008 0 0 

S2     0.022 0.001 0 

S3      0.021 0.003 

S4       0.071 
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Abstract 

The C-terminal C domains of activated coagulation factor VIII (FVIIIa) 

are essential to membrane binding of this crucial coagulation cofactor 

protein. To provide an overall membrane binding mechanism for 

FVIII, we have performed simulations of membrane binding through 

coarse-grained molecular dynamics simulations of the C1 and C2 

domain, and the combined C-domains (C1+C2). We have found that 

the C1 and C2 domain have different membrane binding properties. 

The C1 domain uses hydrophobic spikes 3 and 4, of its total of four 

spikes, as major loops to bind the membrane, whereas all four of its 

hydrophobic loops of the C2 domain appear essential for membrane 

binding. Interestingly, in the C1+C2 system, we observe cooperative 

binding of the C1 and C2 domains such that all four C2 domain 

spikes bound first, after which all four loops of the C1 domain 

inserted into the membrane, while the net binding energy is higher 

than that of the sum of the isolated C domains. Several residues, 

mutation of which are known to cause Haemophilia A, were identified 

as key residues for membrane binding. In addition to these known 

residues, we identified residues from the C1 and C2 domains which 

are involved in the membrane binding process, that have not been 

reported before as a cause for haemophilia A, but which contribute to 

overall membrane binding and which are likely candidates for novel 

causative missense mutations in haemophilia A. 

Keywords Coarse-Grained Molecular Dynamics (CGMD), 

Coagulation FVIII, C domains, membrane, haemophilia A   
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Introduction 

Blood coagulation factor VIII (FVIII) is the procofactor of FVIIIa, the 

non-enzymatic cofactor of the intrinsic factor Xase complex. FVIII has 

a mosaic structure and consists of 6 domains: A1-A2-B-A3-C1-C2. 

The A1, A2 and A3 domains share 40% sequence similarity while the 

C1 and C2 domain are 54% similar (1). The carboxyl terminal C 

domains are involved in binding to von Willebrand factor (VWF) and 

to negatively charged membrane surfaces (2-6). The C domains are 

homologous to each other and to the coagulation factor V (FV) C 

domains (7).  

In blood, FVIII circulates in complex with VWF and thrombin-

catalyzed activation of FVIII is associated with limited proteolysis of 

FVIII at R372, R740, and R1689. After cleavage at R1689, VWF 

dissociates from FVIII whereas the B chain is released after cleavage 

at R740 (8). FVIIIa forms the intrinsic tenase complex with activated 

coagulation factor IX (FIXa) on a phospholipid surface and converts 

coagulation factor X (FX) to its activated form (FXa). Deficiency of 

FVIII is defined as haemophilia A, a sex-linked disease. FVIIIa 

binding to negatively charged membrane surfaces enhances the 

conversion of FX to FXa by over 200,000-fold (9-11).  
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Figure 1. Model of membrane-bound FVIIIa. FVIIIa contains five different 
domains that are organized from N-to C terminus: A1-A2-A3-C1-C2. The 3D 
representation of FVIIIa was based on the crystallographic structure of human 
recombinant FVIII deposited as pdb entry file 2R7E.pdb. FVIIIa is composed of a 
heavy chain (the A1 (Green) and A2 (Red) domains) and light chain (A3 (Cyan), C1 
(Gray) and C2 (Yellow) domains). FVIIIa binds to activated membranes via its C1 
and C2 domains with the FVIIIa A domains here positioned on the top of the C 
domains.  

The FVIIIa C1 domain (residue C2021-C2169) and C2 domain 

(residue L2171-Q2329) are the main membrane-binding regions of 

the cofactor (Figure 1), of which the C2 domain has been 

hypothesized as being most important (2-6, 12, 13). The homologous 

FVIII C1 and C2 domains are highly similar in 3D structure (Figure 2): 

both of them are typical beta barrels, where anti-parallel sheets are 

linked by four hydrophobic spikes (shown and defined in Figure 2), 

which are hypothesized to bind to the membrane (13-15). Both C-

domains are basic, their pI being 9.96 and 9.43 respectively and it is 

believed that the membrane approach is facilitated by electrostatic 

interactions between the positively charged C-domains and the net-
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negatively charged membrane (14).  

 

 

The exact binding mechanism of the FVIII C domains remains 

unknown. Several studies illustrated the likelihood of the membrane 

interaction interface being formed by the C1 and the C2 domain (16-

18), while others indicated that the C2 domain is the sole membrane-

binding motif (19). Crystal structures have been solved that provide 

detailed information on the 3D structure of the C1 domain, the C2 

Figure 2. Sequence- and 3D-structural 
similarity of FVIIIa C1 and C2 domain. (top)  
Amino acid sequence alignment between C1 
and C2 domains. The C2 numbering is 
indicated above the sequences and the scale 
is shown below. Alpha Strands are indicated 
by labeled black arrows and identical or 
similar residues are indicated by blue boxes. 
Spikes 1 to 4 are indicated by black circles. 
Cysteine residues involved in disulfide bonds 
are indicated by green numbers. (right) 
Structural superposition of C1 and C2 
domains. The C domains form barrel motifs. 
Four hydrophobic spikes are indicated by red 
colored ribbons in the C2 domain and the 
residues from the spikes are shown with their 
side chain (gray for C2 domain and black for 
C1 domain).  

 
Four spikes for the FVIII C1 and C2 domains can be defined: spike 1, G2044-
Q2045; spike2, Y2055-I2059; spike3, K2092-F2093 and spike4, I2158-R2159 
in the FVIII C1 domain and spike 1, M2199-F2200; spike2, Q2213-S2216; 
spike3, L2251-M2255 and spike4, W2313-H2315 for the C2 domain. 
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domain and on the structure of a complete human factor VIIIa 

molecule. The latter structure suggests that the C1 and C2 domains 

are juxtaposed on a membrane surface (16-18). Cryo-electron 

microscopy (EM) presented an alternative model of FVIIIa, in which 

only the C2 domain is bound to the membrane while the C1 domain 

is superpositioned to the C2 domain (19). Autin and co-workers 

employed homology modeling to build ten representative models of 

the FIXa-FVIIIa complex. In their most representative model 5, the 

C1 and A3 domains positioned in one plane parallel to the membrane 

surface and the C2 domain binding to the membrane (20). Later, Ngo 

and coworkers proposed a homology model of the FIXa-FVIIIa 

complex with both C1 and C2 domains and a loop (C1899-C1903) 

from the A3 domain to interact with the membrane (16). Stoilova-

McPhie and co-workers applied 2D electron microscopy to study the 

membrane-bound FVIIIa structure and concluded that the A3, C1 and 

C2 domains were near the membrane surface, with the C2 slightly 

inclined to the surface while the C1 orientation was constrained 

during the EM experiments (21). Study of the C domain structures of 

FVIII (7, 16), has resulted in the hypothesis that hydrophobic spikes 

(as shown in Figure 2) play an important role in membrane binding. 

The importance of the hydrophobic spikes has been experimentally 

confirmed by mutagenesis studies (13, 22). Several causative 

mutations for haemophilia A have been described to reside in the 

FVIII C-domains. In fact, 13.9 %, of all hemophilia A -associated 

missense mutations, as collected in the haemophilia A database 

(HAMSTeRS, ref (23) originate from the C domains. These mutations 

link the membrane binding properties of FVIII to haemophilia A. A 



 118 

number of studies have experimentally addressed causal 

relationships between C-domain missense mutations and 

haemophilia A (24, 25), these studies can be hampered however by 

failure to express sufficient recombinant FVIII, as in the case of a 

W2313R mutation (19, 26, 27). However, a general mechanism that 

explains all hemophilia-associated C-domain missense mutations 

and is able to predict functional ramifications of novel mutations is 

currently not available.   

To advance our understanding of the mechanism of FVIIIa C domain-

mediated membrane binding, we have applied coarse-grained 

molecular dynamic simulations (CGMD) (28) of the FVIII C domains, 

as a model for the overall FVIIIa membrane binding process. With 

this study we aim to study the membrane-binding mechanism of the 

C domains and to identify key residues from C1 and C2 domain 

which play important roles in membrane binding.  

We have analysed the binding mechanism of solely C1 and C2 

domains and also C1 together with C2 domain, in order to investigate 

a potential cooperativity between these two domains in the 

membrane binding process. To our knowledge, this is the first study 

focusing on the membrane binding mechanism of both C domains of 

FVIII by means of CGMD. The results derived from our work provide 

a detailed molecular framework for the membrane binding process of 

FVIII. We have identified key residues for membrane binding, some 

of which have been described in haemophilia A patients, and others 

which we propose to be candidates for novel causative mutations in 

haemophilia A carriers. 
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Materials and Methods 

Coarse grained model construction  

The 3D structures of the FVIII C1 and C2 domains were retrieved 

from the Protein Data Bank (PDB Code 3CDZ) and the 

YASARA/Whatif twin package  (29) was used to add hydrogen atoms 

according to the protonation state at pH = 7 and to generate C1/C2 

mutants (M2199W/F2200W (C2-spike1 mutant A), 

M2199W/F2200W/L2252S (C2-spike1/3 mutant A), L2252S (C2-

spike 3 mutant), W2313R (C2-spike4 mutant), 

M2199A/F2200A/L2251A/L2252A (C2-spike 1/3 mutant B) and 

K2092A/F2093A (C1-spike 3 mutant) in which selected amino acids 

were swapped. To create the A2201 deletion mutant, we deleted 

amino acid A2201, and built a homology model based on the FVIII 

C2 3D structure (retrieved from 3CDZ). All models were optimized by 

a 3 ns MD simulation with the yasara2 force field in water  (29). The 

coarse-grained models of C domains and their mutants were 

generated by the martinize script version 2.3 

(http://md.chem.rug.nl/cgmartini/index.php/downloads/tools/204-

martinize) combined with DSSP2.0.4 (30, 31) and elastic networks 

(32).  

Coarse-grained molecular dynamics (CGMD) simulation 

The C domain coarse-grained models were combined with 

phospholipid membranes of variable composition, in solution at an 

initial distance of 30 Å to the membrane. To investigate the influence 

of the DOPS/DOPC membrane ratio on FVIIIa C2 membrane 
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binding, we have simulated 8 systems in which the FVIIIa C2 domain 

was allowed to interact with DOPC membranes containing a varying 

percentage of DOPS of 0%, 2%, 5%, 10%, 15%, 20%, 30% or 

50%.To gain insight into the binding mechanism of C1, C2 and the 

potential cooperativity of C1 and C2 for binding with membrane, we 

have set up simulations for the isolated C1 or C2 as well as C1 

together with C2 domain (C1+C2) under the same conditions (10/90 

DOPS/DOPC (mol/mol) membrane). The correctness of our 

simulation approach was validated by inclusion of several FVIII-C2 

variants that are known to bind differently to phospholipid 

membranes. To this end we selected mutants from several of the 

spikes from the C1 and C2 domain involved in membrane binding as 

summarized in Table 1. We selected FVIII variants that possess both 

improved or reduced membrane binding properties. Also, we 

included W2313R (C2-spike 4 mutant), a molecule which has been 

implicated in haemophilia A, but the functional characterization of 

which could not be addressed experimentally (27). 

CGMD simulations of the abovementioned simulation systems (18 in 

total) were carried out as follows. The Martini v2.2 force field (33) 

implemented in the Gromacs-4.5.3 package was applied for proteins 

and membrane. The area of each membrane was set to 0.65 nm2 per 

lipid and the height of the simulation box was 180 Å. Counter ions 

(Na+ or Cl-) were added to neutralize the systems. Prior to the CGMD 

simulations, energy minimization was performed to remove bad 

contacts which may cause unstable simulations. Next, 50,000 steps 

of steepest descent with position constraint (1000 kJ/mol) assigned 

to all protein atoms were applied in this step. Subsequently, 
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equilibrated MD simulations were performed for 200 ns with 20 

femtoseconds (fs) time steps. The temperature was kept constant at 

325K by application of Berendsen coupling methods. A semi-isotropic 

coupling with a compressibility of 1e-5 bar-1 was used to maintain the 

pressure of the system at 1 bar. A position constraint of 1000 kJ/mol 

was assigned to all protein atoms and motion of center of mass of 

membrane was removed. Finally, free CGMD simulations were 

performed for 2 µs using the NPT ensemble. For some systems, e.g. 

the C1 system in which this domain did not bind the membrane 

during up to 2 µs, the simulation was prolonged till 4 µs. A time step 

was set at 20 fs and the temperature was maintained at 325 K by 

using Berendsen coupling methods as in the equilibrated MD phase. 

The pressure in all the simulations was coupled by a semi-isotropic 

Berendsen method, with a compressibility of 3e-4. Coordinates and 

energy of the systems were collected every 5000 steps of 

simulations. The electrostatics interaction and van der Waals (vdW) 

interaction were calculated with a shift cutoff (33-35) approach and a 

Lennard-Jones potential was used for vdW calculation. The multiple 

body cut-off distance was set to 1.5 nm (32, 33, 35).  In short, after 

an initial equilibration step (0.2 µs), we performed a 2-8 µs simulation 

of the different C domains in solution, in the presence of a membrane 

surface of chosen composition, while controlling the pH, temperature 

and ionic strength of the simulation cell. The MD simulations allowed 

us to calculate the energy of binding between C domains and the 

membrane. The binding free energy (ΔGbind) of each system was 

derived from the potential of mean force (PMF) which was calculated 

from a series of umbrella sampling simulations. An umbrella sampling 
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simulation as described in literature (35-37) was performed by a 10 

ns steered molecular dynamics simulation, where a constant force 

(7000kJ/mol/nm) was applied to harmonically pull C domains away 

from the membrane. From the reaction coordinate, approximately 35 

conformations of the C domain and membrane complexes were 

extracted for umbrella sampling simulation. Those 35 samples 

located at a center of mass (COM) distance of 6 Å along the reaction 

coordinate. The 35 samples were further simulated by 10 ns 

conventional molecular dynamics simulations. The potential mean 

force (PMF) for each system was composed from 35 samples by 

means of WHAM algorithm (35, 38). With a constant pulling force 

and 35 samples, the sample windows overlapped such that the PMF 

curve could be constructed. The derived PMF curve represents the 

free energy profile along the reaction coordinate, thus in this case the 

binding free energy (ΔGbind) can be approximately calculated as the 

difference of energy between minimum point and the plateau region 

of the PMF curve. We verified that the initial orientation of the C 

domain towards the membrane surface did not influence the binding 

mechanism and that the binding process itself was reproducible. All 

simulations were repeated at least 3 times.  

Analysis of the membrane binding process 

During the simulation, the location of every residue was monitored. 

The distance of a C domain to the membrane is defined as the 

minimum distance of any coarse-grained ‘atom’ in the domain to any 

of the membrane atoms. We defined binding events to occur when 

the minimum distance between a C domain and the membrane was 
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less than 5 Å and the corresponding simulation time as the 

membrane-binding time. The orientation of C1, C2 and C1+C2 was 

monitored by measurement of tilting angles as defined in Figure 3. 

The tilting angle of each system (C1, C2 or C1+C2) was calculated 

by averaging the angles from the last 50 snapshots of the 

simulations. To calculate the free energy between individual residues 

during membrane binding and the membrane, each residue term was 

put in the option “energygrps” in the parameter file. The energy state 

was saved every 100 ps. The free energy calculations were divided 

into two groups. One is in the approaching stage, where the 

importance of individual residues to drive the C domains to the 

membrane can be detected. The second group is in the anchored 

stage, where the importance of individual residues for interaction with 

the membrane can be detected.  

Figure 3. Angle definitions. A. alpha (α) angle is defined as the angle between 
the line which is perpendicular to the membrane surface and the line through the 
alpha carbons of F2093 (F2200) and I2145 (P2299) in C1 (C2) domain. B. beta (β) 
angle is defined as the angle between four alpha carbons of residues (S2094, 
S2173, C2174 and T2253). 
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Results 

Influence of initial C domain orientation on membrane binding 

and reproducibility of binding 

To test whether the membrane binding process is influenced by the 

initial C domain orientation, we simulated a series of systems (n= 8) 

where the wild type C2 domain was positioned 30 Å above the 10% 

DOPS lipids containing membrane. In these systems, the initial 

orientations of C2 domains were 0°, 45°, 90°, 135°, 180°, 225°, 270° 

and 315° respectively (α angle as defined in Figure 3) as shown in 

figure 3. During the approaching phase, the C2 domains underwent a 

series of rotations and translations. We observed no common mode 

for C2 domain movement during the approaching phase. Notably, the 

membrane-binding time for the C2 domain was similar (~1 

microsecond) for all different initial orientations tested. We 

furthermore observed that at some time points during the 

approaching phase, several areas of the C2 domain touched the 

membrane surface but the domain did not anchor to the membrane 

(Figure 4B). The hydrophobic spikes 1 and 3 were always the first to 

anchor into the membrane regardless of the initial orientations of C2 

domain. In all simulations, when the spikes1 and 3 were anchored, 

the C2 domain tilted, which facilitated the access of spike4 to the 

membrane surface.  
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Figure 4. Influence of membrane composition in binding of the FVIII C2 
domain. A. C2 domain binding in the absence of DOPS. B. C2 domain binding to 
DOPC membranes containing 10% DOPS. C. Top view on membrane, showing 
uniform distribution of DOPS (red) in DOPC (blue). D. Cluster formation of DOPS 
(red) when the C2 domain (The hydrophobic spikes shown in yellow) was bound to 
the membrane. E. membrane binding time of C2 domain in different DOPS 
contents in the membrane (0%, 2%, 5%, 10%, 15%, 20%, 30%, 50%). Shown are 
averages ± SD, n = 3. 

The membrane and system's properties of the simulation 

systems Plasma membranes are mainly comprised by phospholipids 

that exist in all eukaryotes to maintain the integrity of the cell or 

organelles through their unique physiological functions such as semi-

impermeable barrier, asymmetric distribution of phospholipids. The 

phospholipids are comprised of a polar headgroups (PC, PE, PS) 

and two hydrophobic tails (35, 39, 40). Following the martini model's 

parameters in terms of membrane quality, we used parameters that 

are within the allowed ranges, the density of the membrane surface 

should be in the range of 0.6-0.7 nm2, the membrane thickness 

should be 4.83-5.13 nm, the lateral diffusion is 1e-7cm2/sec (35, 41, 
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42) and the lateral order is -0.5 (anti-alignment) to 1 (perfect 

alignment) (41-44). After the 200 ns NPT simulation, the system's 

overall properties were evaluated including temperature, pressure 

and potential energy retrieved from the NPT trajectory from 150 ns to 

200 ns. The properties that define the quality of a simulation system 

were calculated including the density, thickness, lateral diffusion and 

order of the lipids. All properties are consistent with the experimental 

data and within the acceptable ranges as defined by the martini force 

field (33, 35), see also Table 2.  

Influence of membrane composition on C2 domain membrane 

binding  

To test the influence of DOPS lipids on the FVIII C domain 

membrane binding process and to validate our molecular simulation 

model, we studied the binding time for C2 domain membrane binding 

at variable DOPS. As shown in Figure 4A, the C2 domain did not 

bind to the membrane in the absence of DOPS during the 2 µs 

simulation. Binding was not observed even when the simulation time 

was extended to 4 μs. When 10% DOPS was present in the 

membrane, the C2 domain bound to the membrane after around 1μs 

(Figure 4B). We observed that binding of the C2 domain influenced 

the distribution of DOPS lipids in the membrane layer contacting the 

C2 domain. In the absence of protein, DOPS is distributed evenly 

over the membrane layer (Figure 4C), but in the presence of the C2 

domain, DOPS appeared to cluster in the membrane-binding area 

around the C2 hydrophobic spikes 1 and 3 of the C2 domain (Figure 

4D). We have tested the membrane-binding time of C2 domain at 



 127 

varying DOPS percentages (Figure 4E) and found that binding times 

decreased from 0 to 5% DOPS. At DOPS values >5%, the binding 

times prolonged slightly until an apparent plateau at 2 µs was 

reached.  

 

Figure 5. Membrane binding time for different FVIII C domain systems. All 
graphs show mean ± SD for 3 independent simulation experiments, statistical 
significance was tested using one way analysis of variance (ANOVA) with Dunnett 
post hoc test, * P<0.05, ** P<0.01, *** P<0.001. Significance in times was 
calculated by ANOVA and a star above the bar indicates significance. C2 domain 
and C1+C2 domain had a comparable binding time. The other systems were 
significantly different from the C2 system (significance calculated by ANOVA). C1, 
C1-spike3 mutant, C2-spike1 mutant B and C2-spike1/3 mutant B had about ~2, ~3, 
~5, ~7 fold longer binding times respectively while C2-spike1 mutant A, C2-spike3 
mutant, C2-spike1/3 mutant A and C2-spike4 mutant had faster membrane 
association abilities. 

Initial membrane approach and binding of C domains  

Comparison of membrane binding times (Figure 5), for 10% DOPS / 

90% DOPC membranes, revealed that the binding time of C1+C2 

was comparable to that of C2 alone, while C1 presented with an 



 128 

almost 2-fold longer time than C2 or C1+C2. In the C1 domain 

system, we observed that spike 3 and 4, which contain bulky 

residues, bound to the membrane and anchored into the membrane. 

Next, the C1 domain tilted and residues located near spike 1 

interacted with the membrane DOPS lipids. Interaction between 

Y2105 and K2110 and DOPS lipids caused the isolated C1 domain to 

tilt nearly 80° (α=79°) as shown in Figure 6A.  

 

Figure 6. α, β angle movements during FVIII C domain membrane binding for 
different C domain variants tested. A. α angle for the wild type C1 system. B. α 
angle for the wild type C2 system. C. α angle for the wild type C1+C2 system 
(Black: C1 domain; Red: C2 domain). D. α angle in C2 spike1 mutant A. E. α angle 
in C2 spike3 mutant. F. α angle in C2 spike1/3 mutant A. G. α angle in C2 spike4 
mutant. H. α angle in C1 spike3 mutant. I. α angle in C2 spike1/3 mutant B. J. α 
angle in C2 spike1/3 mutant B. K. β angle in C1+C2. The average angles from the 
last 50 snapshots are: wild type C1: 79°; wild type C2: 71°; C1 in C1+C2: -46°; C2 
in C1+C2: -50°. C2 spike1 mutant A: 57°; C2 spike3 mutant: 70°; C2 spike1/3 
mutant A: 58°; C2 spike4 mutant: 48°; C1 spike1 mutant B: 45°; C2 spike1/3 
mutant B: 12°; C2 spike1/3 mutant B: 48°; β angle: 63° 
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It has to be noted that the interaction between these two residues 

(Y2105 and K2110) with the membrane was observed temporarily 

only in the isolated C1 domain. In the combined C1+C2 domain 

where the orientation of the C1 domain is restricted by the presence 

of the C2 domain these two residues cannot interact with the 

membrane. In the C2 domain system, the initial bound conformation 

had a tilting angle (α) of 24° with the region of A2201-S2206 touching 

the membrane and spike1 anchored into the membrane (Figure 6 

and 7). The tilting angle (α) increased until spike3 and H2315 located 

at spike 4 were membrane-anchored. The isolated C2 domain 

anchoring in addition induced interaction between residues located 

near these 4 spikes (Y2195, T2197 and N2198, located nearby spike 

1; R2215, V2223, N2224, K2227 located nearby spike 2; K2249 

located nearby spike 3 and H2315) and the membrane. Finally, 

spike2 together with spike 3 were attracted by three DOPS lipids, 

which stably re-orientated the C2 domain conformation to 71° (α). 

In the C1+C2 system, the C2 domain touched the membrane first, 

mediated through its four hydrophobic spikes at around 1 μs and next 

the C2 domain stabilized and anchored in membrane. This anchoring 

of C2 preceded the approach and binding of the C1 domain (see 

Figure 7C). Finally, the C1 and C2 were bound to the membrane at 

1.7 μs with a corresponding increased β angle (as defined in Figure 

3).  
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Figure 7. Membrane burial of FVIII C domains for each MD system tested. The 
x-axis indicates the simulation time while the y-axis indicates the residue 
numbering in the FVIII C domains, residues are indicated from N- to C-terminus. 
The four hydrophobic spikes were labeled and indicated by dotted lines for both C1 
and C2 variants. 

Three C2 domain mutants: C2 spike 1 mutant A, C2 spike 3 mutant 

and C2 spike 1/3 mutant A which have been described before (45), 

were analysed in order to further validate our molecular simulation 

model. For all of these 3 mutants, we confirmed, through 

independent computational method, their improved membrane 

binding, as can be estimated from the reduced binding times (Figure 

5), that were previously determined for the corresponding variant 

proteins in vitro (45). Moreover, these mutants showed a similar 

binding mechanism as was observed for the wild type C2 domain 

(Figure 7). For mutants C1 spike 3 mutant, C2 spike 1/3 mutant B 

and C2 spike 1 mutant B, we observed a reduced membrane 
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binding, in agreement with functional characterization studies of the 

corresponding FVIII molecules (13, 25, 46, 47) thereby further 

supporting our approach.  

We found that charged residues, such as K2065,  K2072, K2110 and 

R2150 in the isolated C1 domain and R2215, R2220, K2249 in the 

isolated C2 domain (shown in Figure 8A and 8D, respectively) play 

an important role as electrostatic driving forces for the C domain 

membrane approach, prior to membrane binding. For the combined 

C1+C2 domain, key residues that play a crucial role for this process 

are mostly from the C2 domain as demonstrated in Figure 8C. 

Moreover, we found that the interaction per residue of K2249 in the 

C2 spike 4 mutant (Figure 8H) was increased as compared to the 

wild type C2 which causes the reduced binding time of this system. 

Our simulations demonstrated that electrostatic interactions play an 

important role during the approaching stage, which was further 

strengthened by the observation that mutation from neutral to 

positively charged residue (W2313R) in the C2 spike 4 mutant 

resulted in a reduced binding time, or on the other hand mutation 

from positively charged to neutral residue (K2092A/F2093A) in the 

C1 spike 3 mutant increased the binding time. 
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Figure 8. Electrostatic interaction (kJ/mol) between each FVIII C domain 
residue and the membrane during the approaching stage for different C 
domain variants. The X-axis indicates FVIII C domain residue numbering, the Y-
axis indicates the electrostatic interaction which is calculated from the simulation 
trajectory in the approaching stage as described (48, 49). A, wild type C1. B, C1 
spike3 mutant. C, wild type C1+C2 (domain boundary indicated). D, wild type C2. 
E, C2 spike1 mutant A. F, C2 spike3 mutant. G, C2 spike1/3 A mutant. H, C2 
spike4 mutant. I, C2 spike1 mutant B. J, C2 spike1/3 B mutant.  

Membrane-buried residues  

To identify which amino acids are buried in the membrane during the 

membrane insertion phase, we analyzed the position of each 

individual amino acid side chain of the C1, the C2 and the C1+C2 

domains during the simulations (Figure 7 and 9).  
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Figure 9. Depth of membrane-burial per each FVIII C domain. The X-axis 
indicates FVIII C domain residue numbering, the Y-axis indicates the distance 
between the anchored residues to the surface of the membrane (monitored by the 
NC3 group of DOPC lipids). The vertical dotted lines indicate the position of spikes 
1-4 respectively. A. wild type C1 system. B. C1 spike3 mutant. 6C. C1+C2 (Divided 
by solid line). D. wild type C2. E. C2 spike1 mutant A. F. C2 spike3 mutant. G. C2 
spike1/3 mutant A. H. C2 spike4 mutant. I. C2 spike1 mutant B. J. C2 spike1/3 B 
mutant.  

In the C1 system (Figure 7A), spike1 and spike 2 did not substantially 

contribute to membrane insertion. On the other hand, spikes 3 and 4 

and the intermediary residues (e.g. S2094, S2095, Y2097) were 

stably buried inside the membrane, with F2093 being dominantly 

buried in the membrane. In the FVIII C2 system (Figure 7D), we 

noted that in particular spikes 1 and 3 were inserted into the 

membrane.  

When analysing the binding of the C1 + C2 domain pair (C1+C2), we 

observed a cooperative binding between the C1 and C2 domains 
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during membrane penetration (Figure 7C). Figure 7C shows that 

burial of the four C2 domain spikes at 1 μs precedes burial of all four 

C1 domain spikes at 1.7 μs. Binding of all four spikes of both the C1 

and C2 in this combined system in addition induced interaction of 

F2290, W2313 and I2317, which are located near spike 4, with the 

membrane. The identified interactive residues in this study are thus 

well in agreement with reported experimental data which have 

attributed important functions to these spikes and individual amino 

acids(3, 4, 19, 21).  

For 4 mutant C2 systems tested, a similar general pattern as for the 

wild type C2 domain was observed, yet binding occurred already at 

short binding times (cf. Figure 7 D-H). However, we found that spike 

4 of the C2 spike 4 mutant and of C2 spike 1/3 mutant A cannot bury 

deeply into the membrane as shown in Figure 9. It was reported that 

mutants C1 spike 3, C2 spike 1/3 mutant B and C2 spike 1 mutant B 

can cause haemophilia A because the causative mutations 

presumably reduce the membrane binding ability (13, 25, 46, 47). 

Our simulations revealed (Figure 7, and 9) for these mutant C 

domains, that membrane binding as mediated by the C domain 

spikes deviates from that observed for the wild type domains, 

resulting in reduced membrane binding . 

Binding Free Energy  

We calculated the binding free energies for all simulation systems 

described here (Figure 10). C1 domain presented with a relatively 

low binding energy to the membrane of -35.39±0.42 kcal/mol, while 
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C2 binding was characterized by a -77.36±0.90 kcal/mol binding free 

energy. When C2 bound together with C1, the total binding free 

energy for the two domains binding to the membrane was -

198.69±6.78 kcal/mol indicating the cooperative binding of the two 

domains, in agreement with experimental data (50), reporting that the 

C2 domain is of likely greater importance to membrane binding than 

the C1 domain, however the C1 domain is indispensable for overall 

binding. 

 

Figure 10. Membrane binding energy (ΔGbind) of FVIII C domains during 
membrane binding. Binding free energies for wild type and mutant domains are 
calculated by the potential mean force (PMF) as described (36, 37). The 
membrane contains 10% DOPS / 90% DOPC lipids. The binding energy for each 
system was compared to that of the wild type C2 domain. All graphs show mean ± 
SD, n=3 and statistical significance was tested using one way analysis of variance 
(ANOVA) with Dunnett post hoc test, * P<0.05, ** P<0.01, *** P<0.001. 

The C2 spike 1 mutant A had an apparently ~2-fold higher binding 

energy than wild type C2, whereas average binding energies for C2 
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spike 3 mutant and C2 spike 1/3 mutant A were much comparable to 

that of the wild type C2 domain (Figure 10). These results are in 

agreement with an experimentally determined KD for the wild type C2 

domain of 0.46 ± 0.03 µM and a KD for C2 spike 1 mutant A, C2 spike 

3 mutant and C2 spike 1/3 mutant A of 0.19 ± 0.03 µM, 0.33 ± 

0.03µM, and 0.19 ± 0.05 µM, respectively (45).  

 

Figure 11. Binding free energy per residue in the membrane anchored stage. 
The X-axis indicates FVIII C domain residue numbering, and the Y-axis indicates 
membrane binding free energy in kJ/mol. A. wild type C1. B. C1 spike3 mutant. C. 
C1+C2 (Divided by solid line). D. wild type C2. E. C2 spike1 mutant A. F. C2 spike3 
mutant. G. C2 spike1/3 mutant A. H. C2 spike4 mutant. I. C2 spike1 mutant B. J. 
C2 spike1/3 B mutant. 

Our simulations further revealed that mutation at M2199 and F2200 

in the C2 spike 1 mutant A and C2 spike 1/3 mutant A variants 

resulted in increased binding because the mutated spike 1 residues 

can bind to the membrane stronger than their wild type counterparts 
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as demonstrated in Figure 11D, E and G. Binding free energies of 

other mutant systems (C2 spike 4 mutant, C2 spike 1/3 mutant B, C2 

spike 1 mutant B, and C1 spike 3 mutant) were significantly lower 

than for wild type C2 (Figure 10). These results indicate that these 

mutations can cause haemophilia A because these mutations reduce 

the efficiency of membrane binding.  

During the simulated membrane binding of the C1, C2 or C1+C2 

domains, three distinct phases could be discriminated: 

1. approach phase; during which electrostatic attraction between the 

basic C domains and the net negatively charged membranes occurs. 

This phase ends when the minimum distance between the C domain 

and the membrane is stably less than 5 Å. 

2. binding and anchoring phase; during binding, the hydrophobic 

spikes interact with the membrane via mainly van der Waals forces, 

hydrophobic residues are buried inside the membrane layer during 

this phase and a clustering of negatively charged lipid around the 

bound protein is observed. This phase ends when the when the tilting 

angle (α) of the C domain remains stable. 

3. consolidation phase; during this phase conformational changes 

and C1+C2 domain reorientations occur which result in a stable 

binding conformation.  

Discussion 

We studied the influence of membrane composition on the 
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membrane binding process by CGMD simulation and used the 

isolated FVIII C2 domain as a model system, since it was reported 

before as the main membrane-binding motif (2), (12), (13). Our 

simulation results show that interaction with DOPS lipids is a 

prerequisite for FVIII C domain membrane binding. Residues at and 

around four hydrophobic spikes interact with DOPS lipids during the 

simulation, which is consistent with the general view on the absolute 

requirement for a net negatively charged membrane surface to 

support coagulation protein complexes (51). Importantly, the 

observation that DOPS is needed in our simulations represents a 

valuable validation of our simulation setup along with the data 

obtained for known FVIII mutants with altered membrane binding 

properties. We observed that membrane binding of the C2 domain 

influences the formation of DOPS lipid clusters as demonstrated in 

Figure 4D. Binding of the C2 domain thus appears an interplay 

between both lipid and protein: the negatively charged lipid is able to 

exert an attractive force on the protein that allows the translocation of 

protein from solution to the membrane surface, while, when bound, 

the protein induces a clustering of negatively charged lipids.  

The membrane-binding time at varying DOPS content (Figure 4E) 

observed by us is in line with experimental results by Engelke et al. 

(52), who reported a similar pattern between the ratio of DOPS and 

FVIII's membrane-binding by calculation of the FVIII binding affinity 

(KD). Since 10% of DOPS in the membrane, closely resembles the 

percentage of DOPS in an activated platelet (10%, (53)) we selected 

this lipid for our further simulation studies.  
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To access an optimal membrane binding interface, the C domains 

perform a series of rotations, translations, binding- and dissociation-

interactions, while probing several different binding areas until the 

four hydrophobic spikes of the C domains bound initially to the 

membrane. As the FVIII C1 domain lacks bulky residues in its spike 1 

and 2 that may serve to anchor these loops in the membrane, spikes 

3 and 4 of the C1 domain play important roles as to initially tether the 

C1 to the membrane (Figure 7A). This is in contrast to binding of the 

C2 domain, where mainly spikes 1 and 3 mediate residue burial, with 

minor contributions from spikes 2 and 4 (Figure 7D). In case of the 

C1+C2 system, first the C2 domain bound followed by the C1 

domain. The binding times of C domains (Figure 5) showed that C2 

and C1+C2 bind to the membrane nearly at the same simulation time 

whereas the C1 domain requires more time. This result suggests that 

binding of the C2 domain is a dominant event in the FVIII C-domain 

mediated membrane binding process. 

For the C2 mutants of known improved binding tested, we found that 

all four spikes bound to the membrane much like in the wild type C2 

domain, yet at shorter binding times (Figure 5 and 4). Our 

simulations showed that mutation of K2092A/F2093A (C1 spike 3 

mutant) and deletion of A2201 (C2 spike1 mutant B), which cause 

haemophilia A, resulted in reduced membrane binding ability (Figure 

5 and 7). Moreover, we found that the tilting angles, α, of the C1 and 

C2 wild type and the mutant systems that cause haemophilia A are 

different (Figure 6), potentially adding to the loss in membrane 

binding. Our simulation results revealed that the optimal  angle 
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between C1 and C2 of the C1+C2 system in the membrane-bound 

phase was 63°, which is different from the unbound state of the 

crystallized FVIII structures (53°) (16-18). This difference may 

indicate that the crystallographic structure of FVIIIa, does not fully 

represent its membrane-bound conformation. 

We identified which key residues contribute to the membrane 

interaction (Figure 12 and Table 3). It has been hypothesized that 

Q2213 and N2217 located at C2 spike 2 interact with a PLS head 

group (54). Our simulations illustrate that N2217 indeed interacts with 

the membrane but does not become inserted into the membrane, 

instead the neighboring residue Q2213 becomes buried in the 

membrane. Foster et al showed that when the region T2303 to 

Y2332 is blocked, the membrane binding ability of the C2 domain 

was lost by up to 90% (55). Results derived from our simulations 

confirm that residues from this same area, such as Q2311, W2313 

(spike 4), V2314 (spike 4), H2315 (spike 4), R2320, are directly 

involved in the membrane binding process. In addition, spike 4 was 

found to be buried in the membrane during the simulation, which may 

explain why the compound 005B10, that binds to residues at spike 4 

(W2313, V2314, H2315), can inhibit FVIII membrane-binding activity 

(4, 21). The involvement of W2313 in membrane binding, as 

discovered here, is a valuable addition to the explanation of the mild 

haemophilia A in carriers of the W2313R mutation. All the more since 

earlier attempts to recombinantly express this variant for functional 

studies, have failed (27), again showing added value of these 

simulation studies. Our simulation provides further molecular 

explanation as to why mutation W2313R can cause haemophilia A 
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because R2313 cannot bury deeply into membrane and thus the 

tilting angle α of this system is different from that of the wild type C2. 

This can result in a lower overall binding affinity for this mutant 

system as illustrated by the calculated binding free energy of this 

mutant (-54.65 ±1.28 kcal/mol) as compared to C2 wild type (-77.22 

± 1.01 kcal/mol) (Figure 10) (21). Moreover, the interaction energy 

per residue during the anchoring stage (Figure 11) showed that 

W2313 (-2.34 kcal/mol) can interact with the membrane stronger 

than the mutant R2313 (-0.12 kcal/mol). 

 

Figure 12. FVIII C domain residues involved in membrane-binding. C domain 
residues predicted to be involved in membrane binding either by contributing to the 
membrane approach, the interaction with the membrane or to membrane-
anchoring, corresponding to the data in Table 3. The blue colored residues are 
confirmed haemophilia A associated while red colored residues are involved in 
membrane-binding but have not been identified in the context of haemophilia A. 

The membrane-burial depth for each residue was studied (see Figure 
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7 and 9 for details) for wild-type and mutant C domains. In the wild 

type C1 domain, spikes1-4 and F2126 become inserted into the 

membrane, with spikes 3 and 4 penetrating deepest.  

 

Domains Spike1 Spike2 Spike3 Spike4 

C1 FV G1902-Y1903 N1913-Y1917 Y1956-C1960 A2020-N2022 

C1 FVIII G2044-Q2045 Y2055-I2059 K2092-L2096 Y2156-I2158 

C2 FV W2063-W2064 Q2078-N2082 L2116-S2117 W2180-Q2182 

C2 FVIII M2199-F2200 Q2213-S2216 L2251-M2255 W2313-H2315 

Figure 13. Sequence similarity of the C domains between human FVIIIa and 
FVa. The sequence alignment was generated by the ESPript Web server. Human 
FVIII and FV share 48% (65%) sequence identity (similarity) in the C1 domain and 
43% (65%) sequence identity (similarity) in the C2 domain. The FVIII numbering is 
indicated above the sequences and the scale is shown below. Identical or similar 
residues are indicated by blue boxes. The four conserved spikes are indicated by 
black circles and also defined in the table. 
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In the wild type C2 domain, residues from spike1 and 3 were deeper-

buried than other residues, followed by the spike 4 and 2. The C2 

mutants such as C2-spike 1 mutant A and C2-spike 3 mutant 

followed a similar pattern while in C2-spike 1/3 mutant A and C2-

spike 4 mutant (W2313R), the burial depth of spike4 (W2313-H2315) 

was decreased. In the C1+C2 system, membrane burial resembled 

that for the isolated domains.  

While we did not explicitly study the binding of FV C domains, given 

the high degree of structural and functional homology between FVIII 

and FV, and the presence of paralogous spikes 1-4 in FV (Figure 13) 

we hypothesize that also the binding process of FV might follow an 

analogous path as observed here for FVIII. This assumption is 

supported by the observations made by us for C2-spike 1 mutant A, 

C2-spike 1/3 mutant and C2-spike 3 where in fact spikes in FVIII 

have been replaced by the homologous spikes from FV. Whereas 

these variants showed improved binding in terms of the time required 

for binding (Figures 6 and 7), the binding pattern was in fact similar to 

that of the WT FVIII C2. Thus, the membrane binding mechanism 

observed here by us for the C domains of FVIII could represent a 

conserved mode of calcium independent membrane binding. A 

separate experiment in which we have simulated the binding of the 

FV C2 domain confirms our hypothesis. 
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Figure 14. General membrane binding mechanism of the FVIIIa C domains. 
Simplified cartoons illustrate the different steps involved in membrane binding, as 
observed in this study. A. Initial approach of the C1+C2 domains to the membrane 
by electrostatic interaction between the net positively charged C domains and a 
negatively charged PS exposing cell surface (the latter indicated as red dots). B. 
Anchoring of the C2 domain in the DOPS containing membrane, which increases 
the angle between the C1 and C2 domain. C. Rearrangement of orientation of the 
C2 domain towards the membrane facilitates the approaching of the C1 domain to 
the membrane surface while spike interaction will anchor both domains in the 
membrane. D. Both the C2 and the C1 domain are anchored into the membrane 
resulting in stable binding of the C1 and C2 domains, with the C1 and C2 domains 
at non-perpendicular angles to the membrane.  

615 FVIII missense mutations have been reported to cause 

haemophilia A (HAMSTeR database, Feb 2013) while causal 

relationships between haemophilia A and missense mutations are 
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variable (24, 45, 56). We have listed C domain residues which are 

involved in haemophilia A and identified residues that are important 

for membrane binding of the combined FVIII C1 and C2 domains in 

Table 3. Mutation of several FVIII C domain residues can result in 

defective phospholipid binding. As illustrated in Figure 12, we have 

correctly identified through in silico simulation, residues which are 

involved in membrane binding and which are related to haemophilia 

A. Moreover, additional residues which participate in the membrane 

binding process but which have not been reported earlier in 

haemophilia A were identified and we propose that these residues 

are prime candidates for novel haemophilia A causing mutations. 

Based on our simulations we can provide information about individual 

residues that cause haemophilia A. For example, we identified that 

the presence of A2201 is important for membrane binding. Further, it 

was reported (57) that mutation of R2150H results in impaired FVIII 

binding to VWF and thus can cause mild-moderate haemophilia (57). 

Our simulations indicate that residue 2150 is important for membrane 

binding as well (Table 3). Mutation of Q2311P can cause severe 

haemophilia A but the functional cause was not yet identified (57). 

Our results now reveal that Q2311 is involved in membrane binding. 

In conclusion, we have applied CGMD to study the binding 

mechanism of the C1, C2 and C1+C2 domain of FVIII to phospholipid 

membranes. From our simulations we propose a general mechanism 

for the combined binding of the C1 and C2 domain to a membrane 

(Figure 14), where the C2 domain will bind first and becomes 

anchored to the membrane surface. Such anchoring is accomplished 

by penetration of hydrophobic spikes into the lipid layer. Next, the C2 
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domain facilitates a C1 membrane binding interaction which results in 

a conformational change of the C1+C2 dimer: the angle between the 

C1+C2 domains changes as compared to the unbound state, 

ultimately resulting in a bound C1+C2 dimer. 

Our results indicate that binding of the C2 domain is a main driving 

event for the binding of the C1+C2 dimer to the membrane. Moreover, 

we have found that electrostatic interactions are the main driving 

force to drive the C domain towards the membrane and we identified 

the residues involved in FVIII C-domain mediated membrane binding. 

These data provide a likely rationale that can help to explain 

phenotypes observed in haemophilia A, both for known mutations as 

well for yet undiscovered C-domain mutations.    
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Table 1. Human FVIII C domain mutants. 7 mutants which have been in-silico 
studied are described with their names, location and the desired residues to be 
mutated. 
 

Mutant Name 
C1-
Spike 3 

C2-
Spike1 

C2-
Spike 3 

C2-
Spike 4 

Function and 
Properties 

Ref. 

C2-spike 1 
mutant A 

 
M2199W
F2200W 

  
Improved 
binding  

(45) 

C2-spike 1/3 
mutant A 

 
M2199W
F2200W 

L2252S  
Improved 
binding 

(45) 

C2-spike 3 
mutant 

  L2252S  
Improved 
binding 

(45) 

C2-spike 1/3 
mutant B 

 
M2199A;  
F2200A 

L2251A
L2252A 

 
Reduced 
binding 

(13) 

C2-spike 1 
mutant B 

 
deletion 
of A2201 

  
Reduced 
binding 

(25) 

C1-spike mutant 
3 

K2092A; 
F2093A 

   
Reduced 
binding 

(46) 

C2-spike mutant 
4 

   W2313R 

Mutation 
cannot be 
made 
experimentally  

(27, 
58) 

 
Table 2. The table presents the parameters that describe the quality of the 
molecular dynamics simulation systems used in this study. 
 

 C1 system C2 system C1+C2 system 

Nrs DOPC/DOPS 178/20 240/24 352/38 

Temperature (K) 324.31 324.57 324.54 

Area of lipid 
(nm2/lipid) 

0.697 0.700 0.69 9 

Thickness (nm)  4.97 4.946 4.96 

Lateral diffuse 
( 1e-7cm2/sec) 

3.29 6.0 6.92 

Alignment order 0.315 0.300 0.31 
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Table 3. Residues predicted to be involved in membrane-binding are presented 
and categorized according to the type of contribution they provide to the overall 
membrane binding process. Approaching Force: these residues contribute by 
means of electrostatic interaction; Interaction: these residues contribute by means 
of electrostatic and van der Waals forces, and Membrane-buried: these residues 
become buried in the lipid layer and act as anchors. (23). We arbitrarily set the 
threshold for approaching interactions at < -0.7 kJ/mol as “Y”, and all energies >-
0.7 kJ/mol as “N”, for the interaction the threshold was set at -20 kJ/mol and the 
membrane burial threshold was set at 5 Å. Resides that are known to contribute to 
haemophilia A are indicated in the last column. 
 

Residues 
number 

electrostatics 
interaction 

interaction 
energy 

membrane 
buried >5A 

Haemophilia A 

C1 domain     
W2046 N N Y Y 
Y2055 N N Y N 
W2062 N N Y Y 
K2065 Y N N Y 
E2066 N Y N Y 
P2067 N Y N N 
F2068 N Y Y N 
W2070 N Y Y Y 
K2072 Y N N N 
R2090 N N Y Y 
K2092 Y N Y N 
F2093 N N Y N 
Y2097 N N Y N 
D2108 Y N N N 
K2110 Y Y Y Y 
K2111 Y N N N 
W2112 N Y Y Y 
R2116 Y N N Y 
T2122 N Y N Y 
Y2148 N N Y N 
R2150 Y Y N Y 
H2152 N Y N Y 
H2155 N Y Y Y 
Y2156 N Y Y N 
R2159 Y N N Y 
C2 domain     
F2196 N Y Y N 
T2197 N Y N N 
N2198 N Y Y N 
M2199 N Y Y N 
F2200 N Y Y N 
A2201 N N Y Y 
W2203 N Y Y Y 
K2207 Y N N N 
Q2213 N Y N Y 
R2215 Y Y Y N 
N2217 N Y Y N 
R2220 Y Y N N 
K2249 Y Y Y N 
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S2250 N Y Y N 
L2251 N Y Y N 
L2252 N Y Y N 
T2253 N Y Y Y 
S2254 N N Y N 
Q2311 N Y Y Y 
W2313 N Y Y Y 
V2314 N Y Y N 
H2315 N Y Y N 
R2320 Y N N Y 

 
C1+2 domain pair     

Y2055 N N Y N 
R2090 Y N N Y 
K2092 Y N N N 
F2093 N N Y N 
R2163 Y N N Y 
     
F2196 N Y N N 
T2197 N Y N N 
N2198 N Y N N 
M2199 N Y Y N 
F2200 N Y Y N 
A2201 N Y N Y 
T2202 N Y N N 
W2203 N Y N Y 
K2207 Y Y N N 
Q2213 N Y N Y 
G2214 N Y N N 
R2215 Y Y Y N 
S2216 N Y N N 
N2217 N Y N N 
R2220 Y N N N 
Q2222 N Y N Y 
V2223 N Y N Y 
N2224 N Y N N 
K2249 Y Y N N 
S2250 N Y N N 
L2251 N Y Y N 
L2252 N Y Y N 
T2253 N Y N Y 
S2254 N Y N N 
Y2256 N N N Y 
K2258 Y N N N 
D2288 N N N Y 
F2290 N Y N N 
W2313 N N N Y 
V2314 N Y N N 
H2315 N Y N N 
Q2316 N Y N N 
R2320 Y N N Y 
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Abstract 

IRAK-M is an IRAK-4 dependent inhibitor of Toll-like receptor 

signaling in monocytes and macrophages. Lack of IRAK-M in mice 

greatly improves the resistance to nosocomial pneumonia and lung 

tumors. The rational design of IRAK-M inhibitors, which could 

potentially improve innate immunity in vulnerable patients with 

immunoparalysis, has thus far been impossible due to a virtual 

absence of detailed structure-function knowledge of IRAK-M. Since 

N-terminal death domain’s (DD’s) provide the primary interactions of 

IRAK molecules we generated a 3D structure model of the human 

IRAK-M-DD, to guide mutagenesis studies and predict protein-

protein interaction points. Characterization of IRAK-M variant 

molecules indicated that both W74 and R97 in the DD are important 

for the NF-κB and ERK activating activity of IRAK-M as well as for 

the inhibitory action of IRAK-M on TLR induced release of cytokines. 

Furthermore, residues R70 and D19-A23 are specifically involved in 

ERK activation and protein levels of IRAK-M. W74 and R97 are 

located on opposite sides of the IRAK-M-DD and we hypothesize that 

IRAK-4-DD’s will be sandwiched by R97-IRAK-M-DD and W74-IRAK-

M-DD type interactions. 

Keywords IRAK-M, inflammation, Death Domain, structure-function, 

TLR 
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Introduction 

Interleukin-1 receptor-associated kinase M (IRAK-M) is a member of 

the IRAK protein family that is crucially involved in signaling initiated 

by IL-1, IL-18 or Toll-like receptor activation (1, 2). Activation of the 

receptors leads to dimerization of the adaptor MyD88 and 

subsequent recruitment of IRAK-4 and other IRAK’s to form 

multimers (myddosomes) by homo- and heteromeric interactions of 

the death domains (3, 4). Binding and phosphorylation events 

triggered by IRAK-4 result in hyper- and auto-phosphorylation of 

IRAK-1 and formation of IRAK-1/TRAF-6 complexes which dissociate 

from the receptor to activate TAB2/3 and TAK-1 (5). TAB/TAK/TRAF6 

activity leads to IκBα phosphorylation and ubiquitination culminating 

in nuclear factor-kB (NF-κB) activation and transcription of 

inflammatory genes (5). IRAK-2 hyperphosphorylation and 

TAB/TAK/TRAF6 activity leads to specific IRAK-2 dependent mRNA 

stabilization and translational control of pro-inflammatory mediators 

(6-8). Structurally, IRAK-M consists of a kinase domain (KD) flanked 

by an N-terminal death domain (DD) involved in binding to other 

IRAK family members and an unstructured C-terminal domain (CTD) 

with a TRAF6 binding motif. Just recently it was shown for murine 

IRAK-M that it is redundant with IRAK-1/2 in respect to NF-kB 

activation by a unique IRAK-4/IRAK-M mediated MEKK3 activation 

pathway (9). IRAK-1 and IRAK-4 contain active kinase subunits, in 

contrast IRAK-M and IRAK-2 lack the critical active site aspartate 

residue and are devoid of kinase activity (1, 10). All IRAK family 

members, mediate activation of NF-κB and MAPK (1) the phenotype 

of IRAK-1, IRAK-2 and IRAK-4 deficient mice or cells is one of 
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decreased production of inflammatory mediators (5). In contrast, 

IRAK-M deficient mice or cells display an increased inflammatory 

response (10). IRAK-M expression is induced upon TLR stimulation 

and IRAK-M inhibits cytokine and chemokine expression (9, 11). At 

first it was hypothesized that IRAK-M functioned by stabilizing the 

IRAK-1/IRAK-4 complex with MyD88 thereby preventing formation of 

IRAK-1/TRAF6 complexes (11), however other mechanisms have 

been put forward by which IRAK-M may inhibit inflammation in a 

more active manner. Among these are IRAK-M dependent 

stabilization of MKP-1 (12), down-regulation of the non-canonical NF-

κB pathway (13), the specific induction of other negative regulators 

that are not regulated by mRNA stabilization such as A20, IκBα, 

SOCS-1 and SHIP by IRAK-M (9), and inhibition of IRAK-2 

dependent mRNA stabilization/translation of cytokines and 

chemokines (9). Increased host responses caused by lack of IRAK-M 

are favorable for outcome in bacterial pneumonia (14-16) but also in 

tumor models (17) and bone marrow transplantation (18) which 

implies that inhibition of IRAK-M might have therapeutic potential. 

Different from the other IRAK’s, IRAK-M expression is rather 

restricted to certain cell types such as monocytes/macrophage and 

lung epithelial cells (1, 19) where it is up-regulated under 

inflammatory conditions (20).  

The W74 residue in the death domain of murine IRAK-M was shown 

to be crucial for the interaction with IRAK-4 and NF-κB activation (9). 

In this study we investigated the structure-function relationships of 

the death domain of human IRAK-M based on unbiased prediction of 

protein interaction sites and mutagenesis. We found that there are 
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two IRAK-4 binding sites involved in the NF-κB activating activity of 

IRAK-M with W74 and R97 as crucial residues which are both 

important for the inhibition of cytokine production by IRAK-M in 

monocytes. An area located in between W74 and R97 appears to be 

involved in another type of inhibition which is displayed in TLR 

mediated chemokine production by lung epithelial cells. The latter 

inhibitory action is provided by the stretch D19-A23 and R70 which is 

predicted to be involved in IRAK-M/IRAK-2 interaction. Intriguingly, 

neither W74 nor R97 appeared to be involved in this IRAK-M function 

in lung epithelium. Thus, we generated a high quality structure model 

of the death domain of IRAK-M that enables guided structure–

function studies of human IRAK-M.  

Results  

Homology model of the human IRAK-M death domain  

We generated a model for the death domain of human IRAK-M 

(IRAK-M-DD) by homology modeling based on the crystal structure 

of the death domain of mouse IRAK-4 (PDB 2A9I (21), which has 

28.7% sequence identity to the human IRAK-M DD) as described in 

the Methods section. The generated IRAK-M-DD structure (Fig.1A) 

with 6 helical bundles forms a hydrophobic core that is decorated 

with a charged outer layer. An anti-parallel beta sheet, not seen in the 

template structure is formed by one strand from the N-terminus and 

another strand N-terminal of helix 5. An anti-parallel sheet located in 

between helix2 and helix3 in the template structure is absent in the 

DD of IRAK-M, instead a beta turn is made here by two serines in our 
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model. Unconstrained molecular dynamics simulation for 100 

nanoseconds (ns) indicated good stability of this structure (Fig.2) and 

the quality of the structure was further verified by means of the total 

energy, root mean square deviation (RMSD) and the number of 

hydrogen bonds in the DD domain. Residues predicted to be 

involved in protein-protein interactions were identified as described in 

the Methods section. The identified interactive residues are gathered 

in two separate binding patches: one is formed by the N-terminal of 

helix1, the C-terminal of helix4 and the loop between helix4 and 

helix5, and a second patch is located in helix6 (Fig.1B).  

 

Figure 1. 3D structure model of the human IRAK-M death domain (DD). (A) 
The template 2A9I (Orange) was superimposed to the model (Blue). Sequence 
alignment of hIRAK-M-DD and mIRAK-4-DD. The sequence identity was 28.7%. 
Secondary structures such as alpha-helical and beta-strand of mIRAK-4-DD (2A9I) 
were denoted underneath the sequences (Red bar: alpha-helix: Purple bar: 
unstable helix; Green arrow: beta-strand). (B) Interactive surface prediction of 
hIRAK-M-DD. Space filling model with predicted interactive residues in red. (C) The 
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residues which were mutated in this study are shown with side chain and residue 
number in the back bone model and organized in patch number 1 (red) and patch 2 
(blue). 

 

Figure 2. Analysis of 100 ns molecular dynamics (MD) simulation of hIRAK-
M-DD model. (A) The total energy of DD during MD simulation. (B) RMS 
deviations of Ca (blue), backbone (red) and heavy chain (yellow). (C) The number 
of hydrogen bonds in DD during the simulation. (D) The backbone RMS fluctuation 
of each residue of DD was calculated, on the X-axis the residue number from R8 to 
P111. The predicted residues contributing to protein interaction were less flexible 
(RMSF ~ 2 Å) and are shown in the red boxes. 

Mutation/deletion of IRAK-M-DD 

Based on our IRAK-M-DD model we probed potential interactive 

residues via structurally conservative mutagenesis of full-length 

human IRAK-M (Table 1). The selected residues for mutation are 

surface exposed and do not form intra-molecular contacts. Mutated 

residues are depicted with side chains in Fig.1C. In the first binding 

patch formed by helix1/helix4+loop we constructed a F18A mutant, 

generated a combined D19N-L20A-P21A mutant and a combined 
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P22A-A23S mutant, and R70Q, W74A and Q78A single mutant 

molecules. We verified that all mutants were expressed in 293T cells 

at a comparable level by evaluation of their expression levels with an 

antibody against the C-terminus of IRAK-M (Fig.3A). We next 

determined the capacity of human IRAK-M variants to activate NF-κB 

when overexpressed in 293T cells as described (1). As shown in 

Fig.3B human WT IRAK-M induces NF-κB in 293T cells, this function 

is fully dependent on the death domain since complete deletion of the 

death domain reduced this capacity to control level. Mutation of only 

F18 or D19-P21 only moderately affected the capacity of IRAK-M to 

induce NF-κB activity. Mutation of P22-A23 and Q78 caused a 

marked reduction in NF-κB. Single mutation of W74 completely 

abolished the capacity of IRAK-M to induce NF-κB in agreement with 

the study of Zhou et al (9) of murine IRAK-M. Combined mutation of 

F18/D19-P21 did not result in a further reduction of NF-κB compared 

to the single mutants (Fig.3B). Notably, the combined mutation of 

D19-P21/P22-A23 resulted in a mutant that regained its full NF-κB 

activating capacity as compared to the P22-A23 mutant, indicating 

that the D19-A23 stretch may harbor a negative control element. 

Combined mutation of F18/Q78, adjacent residues in the 3D 

structure, resulted in a mutant that essentially lost its NF-κB 

activating capacity (Fig.3B). Thus it seems that W74 and F18/Q78 

interactions are pivotal in the NF-κB activating capacity of IRAK-M in 

293T cells and that the D19-A23 stretch has a regulatory role in this.  

Mutations in the predicted second interactive patch formed in helix6 

by R97 and Y105, revealed that also R97 is of major importance in 

the NF-κB activating activity of IRAK-M while single mutation at Y105 



164 

results in only minor reduction (Fig.3B). However, combined 

R97/Y105 mutation reduced NF-κB to the level of the death domain 

deletion mutant which identifies these residues as a second crucial 

binding site for the NF-κB activating activity of IRAK-M (Fig.3B).  

 

Figure 3. Expression and functioning of human IRAK-M-DD mutants in 293T 
cells. (A) Transient expression of IRAK-M and mutants by transfection in 293T 
cells by Western blotting performed on cell lysates with an antibody directed to the 
C-terminal of IRAK-M. (B) Effect of IRAK-M-DD mutations on NF-κB activation by 
overexpression in 293T cells. N=4, mean±SEM. * indicates difference with WT 
IRAK-M P<0.05. Shaded bars depict results of IRAK-M molecules with 
combinations of mutated residues/stretches within the same patch.  (C) Potential 
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sandwich of one IRAK-4-DD tetramer by 2 IRAK-M-DD tetramers by W74 and R97 
mediated interactions. The respective predicted IRAK-4 interaction points are 
shown in detail. (D) Effect of IRAK-M-DD mutations on IL-8 production by 
overexpression in 293T cells. N=4, mean±SEM. * indicates difference with WT 
IRAK-M P<0.05. Shaded bars depict results of IRAK-M molecules with 
combinations of mutated residues/stretches within the same patch. (E) Docking of 
mutant IRAK-M-DD predicts increased IRAK-4 interaction with the IRAK-M R70Q 
mutant through an extra hydrogen bond formed between Q70 in IRAK-M and R54 
in IRAK-4. 

 

Figure 4. Interaction of IRAK-M and IRAK-4 tetramers. A. IRAK-M-DD 
interaction points predicted to be important for IRAK-M/IRAK-4 interaction by 
unbiased docking of the IRAK-M tetramer (Yellow) on the top surface of IRAK-4 
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tetramer (Purple). The residues involved in the interaction are shown with their side 
chains, of which the residues from IRAK-M are labeled with residue name and 
number. Two interaction types (I and II) were involved in the interaction and in the 
type I the residues involved are L20, P21, P22, A23, R70 while in the type II the 
residues involved are L16, F18, W74, S75, Q78. 63% of the 100 best docked 
modes maintained this binding mode. B. IRAK-M-DD interaction points predicted to 
be important for IRAK-M/IRAK-4 interaction by unbiased docking of the IRAK-M 
tetramer (Yellow) on the bottom surface of IRAK-4 tetramer (Purple). The residues 
involved in the interaction are shown with their side chains, of which the residues 
such as R97 involved for the interaction. 37% of the 100 best docked modes 
maintained this binding mode.  

  

Figure 5. IRAK-M-DD interaction points predicted to be important for 
homomeric tetramer formation based on the crystallographic model of 
human MyD88/IRAK-4/IRAK-2 complex (3MOP). The binding sites of one IRAK-
M momomer (purple) to two other IRAK-M monomers (yellow and grey) in the 
IRAK-M tetramer.    

The observation that both W74 and R97 are pivotal for the IRAK-M 

activity towards NF-κB prompted us to model the interaction of our 

IRAK-M-DD structure with IRAK-4 (Fig.4) based on the earlier 

experimentally determined myddosome structure containing 

homomeric tetramers of IRAK-4 and IRAK-2 (3MOP.pdb (3)). In this 

structure, a tetramer of IRAK-4-DD’s interacts with a tetramer of the 

DD’s of MyD88 on one side, and a tetramer of IRAK-2-DD’s on the 
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other side (3). In analogy to this constellation, and as suggested by 

the authors (3), the IRAK-M-DD’s may also form homomeric 

tetramers as predicted based on its homology with IRAK-4 as well as 

IRAK-2 in the 3MOP structure.  

From study of our model structure (Fig.1) we propose that IRAK-M-

DD tetramers probably form by interaction of F18, P22, P23, L25, 

G26 and R70 of one IRAK-M-DD to L53, K60, Q64 and G65 of 

another DD (Fig.5). Unbiased in silico protein docking of the IRAK-M-

DD tetramer onto the IRAK-4-DD tetramer side which interacts with 

IRAK-2 in 3MOP displays the W74 dependent interaction of IRAK-M 

with IRAK-4 (Fig.4A) in accordance with the reported W74 

importance for IRAK-4 binding (9). However no interaction point is 

predicted for R97 in this type of interaction given that R97 is in fact 

located at the opposite side of the W74 interacting tetramer surface. 

Unbiased docking of the IRAK-M tetramer to the free side of the 

IRAK-2 tetramer in 3MOP also indicated the W74 side as interactive, 

without involvement of R97 (Fig.6A).  
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Figure 6. Interaction of IRAK-M and IRAK-2 tetramer. (A) IRAK-M-DD 
interaction points predicted to be important for IRAK-M/IRAK-2 interaction by 
unbiased docking of the IRAK-M tetramer on the free side of the IRAK-2 tetramer in 
the myddosome (3MOP) (B). In A part of the composite binding site of the IRAK-2 
tetramer is shown with three IRAK-M molecules. The contact residues are shown 
with their side chain. The residues involved in the interaction from IRAKM are 
labeled. Three interaction types (I, II and III) were involved in the interaction. 

However when the R97 exposing side of the IRAK-M tetramer was 



169 

docked unbiased at the top side of the IRAK-4 tetramer (Fig.4B) 

there was significant binding and good affinity prediction with R97 

interacting with IRAK-4 residues W74, T77, C79 and D83 (Fig.3C). 

When IRAK-M tetramers were docked on IRAK-4 tetramers 

completely without any restriction, we observed two different overall 

docking poses: 63% of the binding events were with the W74 

exposing site (see Fig.4A) and 37% with the R97 site (see Fig.4B). 

Furthermore, this suggests that IRAK-4 tetramers may actually form 

a complex with two IRAK-M tetramers on either side as depicted in 

Fig.3C. This sandwich hypothesis appears as most likely working 

model consistent with the notion that both W74 and R97 are crucial 

for the NF-κB activating activity of IRAK-M.   

Overexpression of IRAK-M in 293T cells induced IL-8 secretion 

which involves NF-κB activation and postranscriptional regulation. 

The IL-8 production induced by the different DD-mutants (Fig.3D) 

occurred analogously to the NF-κB activity (Fig.3B), however with a 

few exceptions. The moderate effects of single mutation of F18 or 

D19-A21 on NF-κB were not associated with a further decrease of 

NF-κB in case of combined F18/D19-A21 mutation, while IL-8 

production by the F18/D19-A21 mutant was markedly lower as 

compared to the single mutants. Furthermore, the R70Q mutant 

displayed hyperactivity with regard to IL-8 production compared to 

WT IRAK-M. Structure analysis of the DD-model indicated that the 

R70Q variant may actually form an extra hydrogen bond with R54 in 

IRAK-4 (Fig.3E). R70 is also involved in the interaction with IRAK-2 

but different from IRAK-4 the Q70 mutant has no capabilities to form 

an extra hydrogen bond with IRAK-2, in contrast the Q70 mutant is 
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predicted to loose part of its interaction with IRAK-2. These results 

indicate a regulatory role of F18/D19-A21 and R70 in the way IRAK-

M influences transcription/translation downstream or beside NF-κB.        

Mutation/deletion of the C-terminal domain of IRAK-M 

IRAK-M dependent NF-κB activation proceeds in IRAK-1/IRAK2 

double deficient cells through a unique MEKK3 pathway (9). Taking 

this into account it could be hypothesized that IRAK-4/IRAK-M 

complexes recruit MEKK3 and activate TRAF6 in a specific manner 

that is dependent on a putative TRAF6 binding motif in the IRAK-M 

C-terminal domain (CTD) that extends from the inactive kinase 

domain. Because no experimental data existed yet on the functional 

involvement of the CTD (amino acid S445-E596) of IRAK-M, we 

generated an IRAK-M variant truncated at position S445 that lacks 

the entire CTD (CTD-∆). Furthermore we mutated the P478VEDDE483 

TRAF6 binding motif (10) in the CTD by introduction of a P478G 

substitution and generated a mutant that lacks the C-terminal part of 

the CTD by truncation at position K526. The P478G mutant was 

expressed similar as WT-IRAK-M, and consistently the CTD deletion 

and truncation mutant were not recognized by antibodies directed 

against the very C-terminus of IRAK-M (Fig.3A). A polyclonal 

antibody raised against full-length IRAK-M showed the expression of 

these CTD mutants (Fig.7A). Deletion of the complete CTD resulted 

in a major reduction of the NF-κB activating capacity of IRAK-M when 

overexpressed in 293T cells, while mutation P478G in the TRAF6 

binding motif led to only a subtle if any reduction in NF-κB (Fig.7B). 

Truncation of the CTD at position K526 did not affect NF-κB activity 
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which indicates location of an important motif between position S445 

and K526. These experiments indicate a major involvement of the 

CTD in the NF-κB activating capacity of IRAK-M, which seems 

independent of the TRAF6 binding motif at P478.  

The importantly reduced capacity of the IRAK-M CTD-∆ mutant to 

activate NF-κB was associated with an almost complete loss of IL-8 

production (Fig.7C). Interestingly, the TRAF6 binding motif at P478 

appeared essential for IL-8 production by IRAK-M while NF-κB was 

hardly affected by the P478G substitution (Fig.7B-C). For comparison 

the DD-mutants D19-A21 and P22A-A23S mutant were studied 

simultaneously. These mutants showed similarly decreased NF-κB 

levels as respectively the P478G mutant and CTD-∆ mutant, 

however the CTD mutants displayed a much larger effect on IL-8 

production compared to these DD-mutants. The minor effect of the 

P478G mutation on NF-κB and the large effect on IL-8 production 

indicate important other and distinct functions of the TRAF6 binding 

site in IRAK-M besides the function of the CTD in NF-κB activation.   

IRAK-M is a MEKK3 pathway activator (9) and, consistent with the 

notion that MEKK3 activates NF-κB and ERK1/2 specifically in 293T 

cells (22), we also observed ERK1/2 activation upon overexpression 

of IRAK-M in these cells. We determined ERK1/2 phosphorylation for 

cells transfected with the IRAK-M-DD and CTD mutants as an 

indication of MEK activation (Fig.7D). The DD-mutants that were 

virtually devoid of NF-kB activating activity also failed to activate 

ERK1/2 (Fig.7D). However the DD mutants that were relatively 

hyperactive towards NF-κB (D19-A23) and IL-8 (R70Q) were 
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hampered in their capacity to activate ERK1/2 (Fig.7D). Also the 

TRAF6 binding motif P478G mutant showed a marked reduction in 

phospho-ERK1/2 generation. Complete deletion of the CTD resulted 

in a major decrease of ERK1/2 activation while CTD truncation at 

position K526 was without effect. These results indicate a special 

involvement of R70, D19-A23 and P478 in the MEK activating activity 

of IRAK-M towards ERK1/2.  

 

Figure 7. Expression and functioning of IRAK-M C-terminal tail mutants and 
IRAK-M-DD mutants in 293T cells. (A) Transient expression of IRAK-M and C-



173 

terminal tail mutants by transfection in 293T cells by Western blotting performed on 
cell lysates with an antibody directed to full length IRAK-M. (B) Effect of IRAK-M C-
terminal truncation and mutation compared to IRAK-M-DD mutation on NF-κB 
activation by overexpression in 293T cells. N=4, mean±SEM. * indicates difference 
with WT IRAK-M P<0.05. (C) Effect of IRAK-M C-terminal truncation and mutation 
compared to IRAK-M-DD mutation on IL-8 expression by overexpression in 293T 
cells. N=4, mean±SEM. * indicates difference with WT IRAK-M P<0.05. (D) Effect 
of DD and C-terminal mutation on the ERK1/2 activating activity of IRAK-M by 
overexpression in 293T cells. Westernblotting on cell lysates with anti-pERK1/2.  

 

Potency of IRAK-M-DD mutants to inhibit TLR signaling in 

macrophages 

IRAK-M is expressed in monocytes/macrophages and in lung 

epithelial cells and IRAK-M is an important factor to down-regulate 

the host defense in bacterial pneumonia models (1, 14-16, 19). In 

order to study the potential pro- and anti-inflammatory effects of 

human WT IRAK-M and the DD mutants on TLR mediated 

cytokine/chemokine release we stably introduced them in human 

monocytic cells (THP-1) and in human bronchial lung epithelial cells 

(H292). Coding sequences of WT and mutant IRAK-M were stably 

introduced by a lentiviral system in trans with eGFP that enabled 

FACS-sorting of eGFP positive cells of the same high intensity to 

obtain identical and homogeneous transcription of WT and mutant 

transgenes. Most mutants showed comparable or somewhat higher 

protein levels than WT IRAK-M upon stable expression in THP-1 and 

H292 cells (Fig.8A and 9A), however the hyperactive mutant R70Q 

displayed lower expression, and the D19N-A23S mutant displayed 

markedly lower steady state protein levels. Identical levels of IRAK-M 

mRNA were observed for the R70Q and D19N-A23S mutants as WT 
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(Fig.10), and since all mutants showed similar protein expression 

upon transient expression in 293T cells (Fig.3A) it appears that the 

R70Q and D19N-A23S mutants are prone to increased protein 

turnover in a more proficient cell type. 

Inhibition studies with proteasome inhibitor MG-132 or an IRAK-1/4 

inhibitor did not normalize expression of these mutants. Thus the 

mechanism underlying the high turnover and/or low protein 

expression level of these mutants remains elusive, although it seems 

to correlate with their relative observed hyperactivity.      

Overexpression of IRAK-M in macrophages significantly inhibited 

TLR2 and TLR4 induced TNF and IL-6 production in a death domain 

dependent manner (Fig.8B). Mutations in interactive patch 1 formed 

by residues F18, D19-P21, P22-P23, W74 and Q78 resulted in 

partially or completely restored cytokine production in macrophages 

(Fig.8B). Mutations in the predicted interactive patch 2 in IRAK-M 

formed by R97 and Y105 also released the restriction on TLR2 and 4 

mediated IL-6 production, while R97 and Y105 were not, or less 

implicated in the inhibitory action of IRAK-M on TNF production. 

Although the steady state level of the hyperactive D19-A23 mutant is 

low in macrophages (Fig.8A) this mutant still reduces LPS mediated 

TNF and IL-6 production (Fig.8B). These results indicate that IRAK-M 

actively inhibits cytokine production in macrophages with W74 and 

R97 as key residues.  
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Figure 8. Effect of human IRAK-M and death domain mutants in 
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macrophages. For stable overexpression with IRAK-M and DD-mutants in 

monocytes/macrophages the human monocytic cell line THP-1 was transduced 

and FACS-sorted on EGFP positivity which is expressed in trans with WT IRAK-M 

and DD-mutants in the transgene by an IRES. THP-1 cells were matured to 

macrophage before stimulation as described in Methods. (A) IRAK-M expression 

was evaluated by western blotting. (B) The effect of stable IRAK-M expression and 

IRAK-M mutants was determined on TLR2 (PAM3CSK4) and TLR4 (LPS) mediated 

TNF and IL-6 production (B) after stimulation for 6 hour. Shaded bars depict results 

of IRAK-M molecules with combinations of mutated residues/stretches within the 

same patch. N=4, mean±SEM. * indicates difference with WT IRAK-M P<0.05.  

Potency of IRAK-M-DD mutants to inhibit IL-1 and TLR5 

signaling in lung epithelial cells 

IRAK-M has been reported to be present in lung epithelial cells (19). 

Lung epithelial cells are relatively unresponsive to TLR2 and TLR4 

agonist, but react potently to MyD88/IRAK dependent IL-1 receptor 

and TLR5 stimulation ((23), and own observation in H292 cells). 
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Figure 9. Effect of human IRAK-M and death domain mutants in lung 
epithelial cells. For stable overexpression with IRAK-M and DD-mutants the 
human bronchial lung epithelial cell line H292 was transduced and FACS-sorted on 
EGFP positivity expressed in trans with WT IRAK-M and DD-mutants in the 
transgene by an IRES as described in Methods section. (A) IRAK-M expression 
was evaluated by western blotting. (B) The effect of stable IRAK-M expression and 
IRAK-M mutants was determined on IL-1β and Flagellin (TLR5) mediated IL-8 
expression in the supernatant after 6 hour stimulation. Shaded bars depict results 
of IRAK-M molecules with combinations of mutated residues/stretches within the 
same patch. N=8, mean±SEM. * indicates difference with WT IRAK-M P<0.05.  

Most prominent inflammatory mediator produced by these cells is IL-

8 and IL-8 mRNA is already relatively abundant in non-stimulated 

lung epithelium (24). Especially TLR5 mediated IL-8 production in 

epithelial cells is regulated via posttranscriptional mechanisms (25). 

TLR5 is activated by Flagellin derived from the flagella of certain 

Gram-negative bacteria such as P. aeruginosa. In this respect it is 



178 

noteworthy that IRAK-M-/- mice are protected from P. aeruginosa 

pneumonia under immunocompromised conditions caused by cecal 

ligation and puncture (14). TLR5 mediated IL-8 production by H292 

lung epithelial cells was significantly inhibited by WT IRAK-M 

(Fig.9B).  

The inhibition of TLR5 mediated IL-8 production by IRAK-M was 

completely death domain dependent since the DD-deletion mutant 

showed no effect on IL-8 production. Mutation of R70 partially 

restored IL-8 production and mutagenesis of the D19-A23 stretch 

resulted in complete restoration of chemokine production. 

Interestingly mutation of key residue W74 did not influence the 

inhibitory effect exerted by IRAK-M on TLR5 mediated IL-8 

production, and mutation of R97 and Y105 even enforced this 

inhibitory capacity compared to WT IRAK-M (Fig.9B), an effect that 

was also observed for some patch 1 mutants. Remarkably, IL-1β 

stimulated IL-8 expression by H292 lung epithelial cells was 

enhanced by WT IRAK-M (Fig.9B), which is however consistent with 

the notion that IRAK-M may substitute for IRAK-1 in IL-1β signaling 

(1). Most DD-mutants did not show this stimulatory effect, 

interestingly however the DD-deletion mutant which lacks the entire 

DD also stimulated IL-1β driven IL-8 expression. 
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Figure 10. Stable expression of 
R70Q and D19N-A23S mutants in 
H292 cells as evaluated at the 
mRNA level by RT-qPCR. Mutants 
are transcribed equal to WT IRAK-M 
upon stable overexpression. The 
low observed protein levels upon 
stable expression in proficient cells 
is not due to lower transcription. 

 

 

 

 

To evaluate whether the dampening of TLR5 mediated IL-8 

production by IRAK-M was caused by increased expression of 

negative feedback inhibitors such as A20 as described (9) we 

determined A20, SHIP-1 and SOCS-3 expression in H292 cells that 

overexpressed WT or mutant IRAK-M proteins after 3 hours of 

stimulation. IRAK-M however decreased flagellin induced A20 and 
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SOCS-3 expression in H292 cells (Fig.11), and while IRAK-M 

upregulated basal SHIP-1 levels this function was retained by the 

DD-deletion mutant that did not inhibit IL-8 release. Thus it appears 

that IRAK-M regulates TLR5 mediated responses in lung epithelial 

cells by inhibition of the forward signaling to IL-8 induction, not by 

increase of negative feedback inhibitors. It should be noted however 

that IL-1β induced A20 expression was increased in the case of the 

W74A mutant compared to WT IRAK-M while A20 expression was 

reduced for the R97 and R97/Y105 mutants. Also flagellin stimulated 

A20 production was importantly higher for the W74 mutant compared 

to WT and the R97Q mutant. Thus it appears that A20 expression is 

increased when the R97 dependent interaction of IRAK-M is favored. 

These results indicate that residue R97 may be implicated in the 

IRAK-M dependent expression of negative regulators of inflammation 

such as A20.     

The mechanism by which IRAK-M inhibits TLR5 mediated IL-8 

responses in lung epithelial cells (Fig.9B) is apparently different from 

the mechanism by which IRAK-M inhibits TLR2 and TLR4 mediated 

TNF and IL-6 production by macrophages (Fig.8B) since different 

residues are involved in the inhibitory function as shown by these 

mutagenesis experiments. IRAK-2 dependent stimulation of 

translation is potentially crucial for TLR5 mediated IL-8 production by 

epithelial cells (25) which will be inhibited by IRAK-M (9), according 

to our protein docking experiments, in a R97 independent manner. 

Since the R97Q mutant will be less occupied with IRAK-4 it is not 

unlikely that more of this mutant will be available for IRAK-2 binding 

and consequently may exert a more pronounced effect on IL-8 
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production.   

 

 

Figure 11. Effect of over expression of the different IRAK-M death domain 
mutants in H292 cells on the expression of other negative regulators. H292 
cells were stimulated for 3 hours with IL-1b (2 ng/ml) or flagellin (25 ng/ml) for 3 
hours and mRNA expression was evaluated by RT-qPCR as described under 
materials and methods. 

Effect of IRAK-M mutants on TRAF6 expression 

To evaluate potential effects of IRAK-M mutation on TRAF6 function 

we co-expressed IRAK-M with HA-tagged TRAF6 in 293T cells. 

IRAK-M co-expression increased TRAF6 protein levels (Fig.12). This 
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function was strongly enhanced when the IRAK-M death domain is 

deleted, but apparently independent of the deemed pivotal P478 

residue in the TRAF6 binding consensus (Fig.12). While expression 

of the death domain deletion mutant itself does not lead to IL-8 

production, it does so when co-expressed with low amounts of 

TRAF6 vector (Fig.12), indicating that this phenomenon may 

increase pro-inflammatory signaling. These results indicate positive 

effects of IRAK-M expression on TRAF6 stability that is independent 

of the DD. This influence of IRAK-M on TRAF-6 and the exaggeration 

of this effect by deletion of the DD can be in part explanatory to the 

observed increase in IL-1β stimulated IL-8 production in H292 cells 

by the DD-deletion mutant (Fig.9B). Potentially TRAF6 levels are a 

limiting factor for IL-8 production upon stimulation of IL-1β of H292 

cells and TRAF6 protein levels may have been increased in these 

cells by the DD-deletion mutant. Together these results indicate that 

death domain-less IRAK-M is not an inert molecule but may actually 

stimulate pro-inflammatory reactions when TRAF6 is a limiting factor. 

This effect may be well of physiological relevance because the death 

domain of IRAK-M can be cleaved of at D135 by caspase-6 when 

monocytes/macrophages contact activated neutrophils (26).  
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Figure 12. Coexpression of IRAK-M with HA tagged TRAF6 in 293T cells 
stabilized TRAF6 protein and deletion of the death domain enhanced this 
effect. A total of 1000 ng plasmid DNA was transfected, (-) is transfection with 
control pUNO plasmid only. Coexpression of the DD-deletion mutant with TRAF6 
also resulted in IL-8 production with the TRAF-6 / DD-del cotransfection at a low 
TRAF6 vector concentration that generates no IL-8 when transfected alone. 

Discussion 

We generated a structure model for the death domain of human 

IRAK-M, a member of the IRAK protein family involved in IL-1/Toll-

like receptor signaling. The model for the hIRAK-M-DD was analyzed 

by a consensus approach of several structural bioinformatics 

techniques in order to predict the most likely interaction areas that 

are involved in IRAK-M ligand binding and we identified 2 areas 

(Fig.1B) on the IRAK-M-DD that are primary protein-protein 
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interaction regions. The model was used to rationalize the targeted 

mutagenesis of IRAK-M in order to obtain novel structure function 

information. Mutations in either of the predicted interaction regions 

led to alteration of function of the mutated IRAK-M proteins when 

expressed in HEK293T cells, monocyte/macrophage cells (THP-1) 

and bronchial lung epithelial cells (H292). Residue W74 in patch 1 

was found to be crucial for NF-κB activation while R97/Y105 were 

found essential for activity towards NF-κB provided by patch 2. 

Interestingly W74 and R97 are predictably located on opposite sides 

of the IRAK-M tetramer when IRAK-M forms homomeric tetramers 

via its DD in structural analogy to the experimentally determined 

quarternary structures of the DD of IRAK-4 and IRAK-2 in the 

myddosome (3). Because IRAK-M activity towards NF-κB is IRAK-4 

dependent (7), we hypothesized that IRAK-M tetramers will interact 

with IRAK-4 in a W74 and R97 dependent manner. Protein docking 

experiments with a predicted IRAK-M-DD tetramer indicated that the 

W74 and R97 sides of an IRAK-M tetramer may bind respectively to 

the bottom and top side of an IRAK-4 tetramer (bottom and top as 

defined in Ref.3). Since both W74 and R97 are essential for the NF-

κB activating activity upon overexpression in 293T cells it appears 

that it is actually the IRAK-M/IRAK-4/IRAK-M sandwich that 

generates the NF-κB activity in this system. Importantly, analysis of 

IRAK-M variants also showed that both W74 and R97/Y105 were 

involved in the IRAK-M mediated inhibition of TLR2 and TLR4 driven 

IL-6 production by human macrophages. Furthermore, IRAK-M 

residue W74 appeared essential in down-regulation of TNF, but R97 

not. W74 and R97 were not implicated in the inhibition by IRAK-M of 
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TLR5 mediated IL-8 production by lung epithelial cells which could be 

consistent with the notion that TLR5 mediated IL-8 production is 

regulated postranscriptionally (25) and posttranscriptional regulation 

by IRAK-M is effectuated by its action on IRAK-2 (9). In contrast, the 

region located in between W74 and R97 was important for this 

function, specifically R70 and D19-A23. Interestingly increased A20 

expression was not associated with the inhibitory effect of IRAK-M in 

lung epithelial cells as reported (9), however A20 expression 

appeared to be associated with the R97 type of interaction of IRAK-

M.  

Further inspection of the functionality of the IRAK-M mutants involved 

ERK1/2 phosphorylation which is driven by the MEK pathways. 

Human IRAK-M activates ERK1/2 upon overexpression in 293T cells, 

and all DD-mutants that were hampered in their NF-κB activating 

activity and IRAK-4 binding were also hampered in ERK1/2 

activation. However R70 and D19-A23 seem to be specifically 

involved in ERK1/2 activation since mutation of these residues 

showed equal NF-κB activation but greatly reduced phospho-

ERK1/2. Also the TRAF6 binding site (P478) in the CTD seems 

specifically involved in ERK1/2 phosphorylation and not in NF-κB. 

Thus it appears that the area in between the pivotal residues for NF-

κB activation, namely R70 and D19-A23 are specifically involved in 

mediating the P478 dependent ERK1/2 signaling. This potentially 

requires specific binding or orientation of MEK kinase by the 

R70/D19-A23 area of IRAK-M.  

From the overexpression experiment in 293T cells it could be 
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concluded that residues D19-A21 and P22-A23 are involved in both 

positive and negative effects on signaling events. This is consistent 

with our finding that the D19-A21 as well as the P22-A23 mutant 

proteins lack capacity to inhibit cytokine expression in macrophages 

(Fig.8B).   

Interestingly, the relative NF-κB hyperactivity of the D19-A23 IRAK-M 

mutant (Fig.3B and 7B) is associated with lower protein levels in 

proficient cells (Fig.8A and 9A). For IRAK-1 it has been suggested 

that an intramolecular interaction of the death domain with the end of 

its CTD keeps IRAK-1 in a silent mode before phosphorylation 

events trigger its activation (27). IRAK-1 that lacks the end of its CTD 

is easily activated and instable (27). In the context of IRAK-M one 

could hypothesize a role of the D19-A23 stretch in the stability of 

IRAK-M either by interaction with its own CTD or specific 

interaction/repelling with/of other IRAK or associated molecules. The 

lower observed steady state protein levels of the IRAK-M mutant with 

the modified D19-A23 stretch (Fig.8A and 9A) would be consistent 

with faster turnover through increased kinetics of activation and 

subsequent degradation events. In this respect, blotting experiments 

with the IRAK-M K526stop mutant that lacks the C-terminal epitope 

recognized by the used C-terminal anti-IRAK-M antibody, showed 

clearly that both the low and high molecular bands observed upon 

expression of IRAK-M are specific IRAK-M derived products. These 

products appear to display the continuous modification and 

degradation of WT IRAK-M as well as the mutants (Fig.3A, 8A, 9A).  

We compared the homologues residues involved in the action of 
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IRAK-M on the structures of other IRAK’s (Fig.13). It appeared that 

the stretch F18-A23 in IRAK-M, which is involved in NF-κB and 

ERK1/2 activating activity as well as inhibitory activity and protein 

levels (Fig.3,7,8,9), displays the least homology with the other IRAK’s 

(Fig.13). Major difference with IRAK-2 is that A23 in IRAK-M is a 

tryptophan in the homologous residue in IRAK-2 (W11) which 

provides a bulky mass to the exterior of binding patch 1 which is 

lacking in IRAK-M (Fig.13). Furthermore the negative charge 

provided here in IRAK-M by D19 is lacking in IRAK-2 (Q7). In IRAK-4 

this negative charge is also lacking at the homologous position 

(C13), instead a positive charge is provided in IRAK-4 in this area by 

R12 in the homologous position of the aromatic phenylalanine (F18) 

in IRAK-M (compare Fig.13 B-1 and B-3). Undoubtedly these 

differences will contribute to the divergent functions of IRAK-M and 

the other IRAK’s. The residues in the D19-A23 stretch are predicted 

IRAK-M interaction points with IRAK-M itself (A23, P22), with IRAK-4 

(L20, P21, P22, A23), and IRAK-2 (D19, P22) (Fig. 4-6).   

A naturally occurring P22L mutant is reported to be associated with 

early onset asthma (19). Residue P22 is predicted to be involved in 

IRAK-2/4 and M interactions as mentioned above. The enhanced 

propensity of individuals with the P22L mutation to develop asthma is 

in line with the observed decreased capacity of IRAK-M with 

mutations in this region (P22A-A23S mutant) to downregulate IL-6 

expression in macrophages upon TLR2/4 stimulation (Fig.8B).   
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Figure 13. Comparison of the hIRAK-M Death Domain interactive surface with 
IRAK-2 and IRAK-4 DD’s. Upper panel: Comparison of the defined interactive 
patches 1 (red) and 2 (blue) of the  Death Domain of IRAK-M (A) to their 
homologous residues on human IRAK-2 (B) and human IRAK-4 (C). Death 
Domains that were placed in a similar orientation by 3D structural overlay. In D the 
multipe sequence alignments. The residues involved in patch 1 and patch 2 are 
shown in red and blue boxes, respectively. Superposition of IRAK members with 
the colored F19-A23 stretch (E). F18-A23 stretch and homologous residues shown 
in detail (E1-4). E-1:hIRAK-M, E-2:hIRAK-2, E-3:hIRAK-4, E-4:mIRAK-4.   
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Mutation of predicted interactive residues of the second binding site 

on the death domain of IRAK-M revealed that R97 plays a crucial 

role in this region and an additional role for Y105. R97 is conserved 

in IRAK-2, not in IRAK-4. Y105 appears to be unique for IRAK-M, 

and may be involved in the specific functionality of IRAK-M (Fig.13). 

A low frequent naturally occurring R97Q mutant has been reported 

(rs185025028). Here we show that the R97 residue is dominantly 

involved in NF-κB, ERK1/2 and inhibition of TLR elicited cytokines by 

macrophages. It will be interesting to see whether this genotype is 

associated with altered disease phenotype or outcome.  

Zhou et al (9) showed that W74 is involved in IRAK-4 binding and 

NF-κB activating activity of IRAK-M when macrophages are 

stimulated with viral type TLR7 agonist. Here we show that the 

capacity of IRAK-M to reduce TLR2 and TLR4 mediated cytokine 

release depends on both W74 and R97. To our knowledge this is the 

first demonstration that W74 and R97 are involved in the inhibitory 

action of IRAK-M.  

In vivo IRAK-M may be destroyed as an inhibitor by cleavage through 

caspase-6 at residue D135 which causes the complete removal of 

the death domain (26). Indeed, here we found that death domain-less 

IRAK-M no longer functions as an inhibitor. In contrast, we observed 

that IL-1 induced IL-8 production was significantly stimulated by 

death domain-less IRAK-M. In line we noticed that IRAK-M stabilizes 

TRAF6 when co-expressed and that this effect is enhanced in the 

absence of the death domain (Fig.12). Thus while removal of the 

death domain by cleavage at the residue D135 by caspase-6 may 
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inactivate certain activities of IRAK-M, it may at the same time 

stimulate other processes by increasing the TRAF6 concentration. 

That IRAK-M without the DD still displays some activity is consistent 

with our finding that the C-terminal domain of IRAK-M is fully 

functional and required for NF-κB and ERK1/2 activation (Fig.7).  

It should be mentioned that we modeled the interactions of IRAK-M 

with the other IRAK’s as if IRAK-M forms homotetramers and 

interacts as such with homotetramers of IRAK-4 and IRAK-2. This is 

based on the homotetramer formation observed for the isolated 

death domains of MyD88/IRAK-4/IRAK-2 when co-crystallized (3). 

Full-length proteins may however interact differently which is already 

exemplified by the importance of the intermediate domains 

immediately extending from the DD of MyD88 and IRAK-1 (28, 29). 

The mechanism by which IRAK-M exerts its special inhibitory actions 

will also depend on specific binding events and the differential 

activation and inhibition of TAK, TAB, MEKK and TRAF6 compared to 

the other IRAK proteins as outlined by Zhou et al (9) and again 

schematically represented in Fig.14 with our new findings 

incorporated. Elucidation of the binding sites important for IRAK-

4/IRAK-M/MEKK3 interaction and the involvement of TRAF6 in 

activity of this complex will be key to understand how these 

mediators come to the specific inhibitory effect of IRAK-M. 
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Figure 14. Working mechanism of IRAK-M as inhibitor based on specific residues 
of its death domain and C-terminal domain.  

In conclusion, the present study elucidates a large part of the 

structure function relationships of the DD of IRAK-M. Our findings 

may guide targeting of the DD of human IRAK-M in efforts to 

generate treatment strategies to prevent bacterial pneumonia in 

immunocompromised patients.    
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Methods 

Homology modeling and interactive surface prediction  

Template Selection and Alignment 

The primary sequence of human IRAK-M consists of 596 amino 

acids. In order to determine the domain boundaries of the death 

domain and in order to include the complete domain region, we 

applied multiple sequence analysis of IRAK-M from different species. 

The death domain could be modeled from C5 to G119 and potential 

templates for the IRAK-M death domain were selected through PSI-

BLAST of the protein data bank (PDB) (30). PSI-BLAST (PSSM: 

0.005) results showed that there were 12 coordinate files available, 

with sequence identities between 24% and 30% with the IRAK-M 

death domain sequence. Based on sequence alignment score and 

structure quality of potential template structures (resolution and R-

factor) the final template was selected. We selected 2A9I (DD of 

mouse IRAK-4, Ref.8) as a template, based on its sequence identity 

(28.7%). Moreover, 2A9I describes the crystal structure of the death 

domain of IRAK-4 with a high resolution at 1.7 Å which was 

optimized by PDB_REDO server with a structural quality of 0.619. 

The alignment between template and the IRAK-M sequence was 

performed by ICM-Pro (MolSoft) (31) with default scoring parameters 

and refined based on secondary structure prediction, amino acid 

features and the 3D structure of the template (Fig. 1A and Table 2). 

Backbone Generation and Loop Modeling 
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For the initial construction of the models we employed the ICM Pro 

molecular modeling package Molsoft (31) as well as LOOPY (32). 

ICM-Pro was used to generate the backbone coordinates for the 

models, from the refined sequence alignment between template and 

query structure, except in several variable (loop) regions, for which 

we used LOOPY. If the template and target had identical residues 

also the side chain coordinates could be included. Side chains were 

minimized by steepest descent and simulated annealing minimization 

with a fixed backbone conformation and next optimized without any 

restraint using the ICM Pro package. 

MD simulation and Quality Check 

The optimized model structure was further refined using a short MD 

simulation in explicit water (density 0.997, pH 7.0) for 500 

picoseconds, employing the Yasara-Whatif twin package. The 

YAMBER3 force field was used, periodic boundaries and long range 

Coulomb interactions were included with a cutoff of 7.86Å. Every 25 

ps, a simulation snapshot was saved, and in total, 20 snapshots were 

produced. Every snapshot and template were submitted for online 

structure quality check at http://nihserver.mbi.ucla.edu/SAVES_3/, 

using PROCHECK, WHATIF, VERIFY-3D, ERRAT and PROVE. The 

snapshot with the best total energy was selected as the starting point 

for a 100 ns MD simulation, with the AMBER03 force field periodic 

boundaries and long range Coulomb interactions were included with 

a cutoff of 7.86 Å in explicit water (Density 0.997, pH 7.0, NaCl 

0.9%). The resulting energies, RMSD, residues' flexibility, hydrogen 

bonds and Ramachandran plots from the MD simulation were 
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calculated.  

Evaluation of the structural quality (Table 3) of the final death domain 

model indicated that 92.1% of the residues were located in most 

favored zones and the remaining 7.9% were present in allowed 

regions as analyzed by inspection of a Ramachandran plot. 

Conformation Z-scores of both the model and the template were low, 

though the model’s side chain planarity and inter atomic distances 

were good. The structure’s non-bonding interactions were qualified 

as good in both the model and the template. The residues’ 

environment in the model is not better than that in template, but both 

of them are qualified as reasonable. A 100 ns MD simulation was 

performed to analyze the structural stability, amino acid fluctuation, 

and potential energy changes of the IRAK-M death domain (Fig.2). 

During the MD simulation, the total energy (combined by bond, 

angle, planarity, coulomb, VdW) was stable while the conformation of 

the model changed during the simulation until 10 ns and then 

stabilized. The fluctuation of each residue during the MD simulation 

was calculated, and we observed that the loop between helix3 and 

helix4 was flexible. The number of hydrogen bonds, known to be 

important for protein stability and function (33), was generally 

consistent in the model during the simulation. A107 and N104 form 

hydrogen bonds with each other and this way connect helix 6 with 

the C-terminal loop. 

Prediction of protein-protein contacts 

A consensus approach was used to predict protein-protein interaction 
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for the model structure generated by application of several structural 

bioinformatics methods. We employed: Optimal Docking Area (ODA) 

(34), Cons-PPISP (35) and PPI-Pred (36). For each of these 

methods, a prediction score was obtained for all residues in the 

death domain of IRAK-M and a consensus was generated from the 

different methods applied, taking into account the accessibility of the 

residue. Several important residues for the interaction between the 

IRAK-4 death domain and the MyD88 death domain have been 

predicted on basis of an earlier published model of the death domain: 

Q29, E92, F93, F94 at the surface of helix 2 and helix 5 (37). 

Furthermore, residues which potentially interact with IRAK-1 in the N-

termini and the end of the helix 4: R12, C13, E69, D73, T76 were 

also predicted using PPI-Pred (36). T66 in the death domain of IRAK-

1 is critical for interaction with signaling molecules reported by 

Neumann and coworkers (38). In our model of the IRAK-M death 

domain, the following residues in the homologous positions were 

found: C35, R47, E59, D63, T69, Q78, D85, R96, R97 respectively. 

Taking into account their flexibility and accessibility (Fig.1A), the 

residues, Q78, F18, D19, P21, P22, A23, W74, L20, R70, S75, R97, 

Y105, A77, L101, in order of likelihood, were predicted as potential 

sites of interaction with IRAK-M ligands.  

Combined with residue fluctuations as determined from MD 

simulation, hydrogen bond network analysis and homologue 

analysis, we proposed the mutagenesis of selected residues which 

we hypothesized to be involved in protein-protein interaction 

(Fig.1C). 
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The formation of IRAK-M-DD tetramer and the preparation of 

IRAK-4-DD tetramer, IRAK-2-DD tetramer and the complex of 

IRAK-2–IRAK-4–MyD88 

Four IRAK-M-DD modules were superimposed to either IRAK-2 (3D 

packing quality: -1.231) or IRAK-4 (3D packing quality: -1.241) DD 

tetramer respectively in the crystallographic model (3MOP, (3)) by 

utilizing ICM-Pro Molsoft. The coordinates of four superimposed 

IRAK-M-DD were 

merged into one 

coordinate of IRAK-

M-DD tetramer. The 

two obtained IRAK-

M-DD tetramers 

were highly similar 

(Fig. 15) with an all 

atom RMSD value of 

1.05 Å.  

  

 

Figure 15. Superposition of the IRAK-M-DD tetramers based on IRAK2-DD 
tetramer in 3MOP (gray) and IRAK-4-DD tetramer in 3MOP (Black). The 3D 
structure of those tetramers were highly similar and the all atom backbone root 
mean standard deviation (RMSD) between them was 1.05 Å.  

With the slightly higher 3D packing quality we used the IRAK-2-DD 

derived tetramer for further protein-protein docking studies. We first 

analyzed the atomic interactions (contact distance <=4 Å) between 
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the individual IRAK-M monomers in the IRAK-M-DD tetramer (Fig. 5). 

Next, IRAK-4 tetramer, IRAK-2 tetramers and IRAK-2–IRAK-4–

MyD88 complex were retrieved from the crystallographic model 

3MOP (3), with all hydrogen atoms added according to the 

protonation state at pH=7, which means that all acidic residues (Asp 

and Glu) are deprotonated and all basic residues (Lys and Arg) are 

protonated. 

Protein-protein docking 

Hex protein docking (39) was applied to dock the IRAK-M-DD 

tetramer to IRAK-4-DD tetramer, IRAK-2-DD tetramer and IRAK-2–

IRAK-4–MyD88 complex respectively. We analyzed 100 docking 

events for IRAK-4-DD tetramer binding to IRAK-M-DD and found that 

63% of the docked poses were to the W74 exposing side of the 

IRAK-M-DD tetramer and 37% to the R97 exposing side of the IRAK-

4-DD tetramer. The IRAK-M-IRAK4-DD complex was then docked 

with another IRAK-M-DD tetramer and the docked results showed 

that the sandwich IRAK-M-IRAK-4-IRAK-M complex was formed, 

where the W74 exposing site of IRAK-M tetramer docked with the top 

surface (IRAK-2-tetramer binding surface in 3MOP) of IRAK-4-

tetramer and the R97 exposing site of IRAK-M tetramer docked with 

the bottom surface (MyD88 binding surface in 3MOP) of IRAK-4 

tetramer.  

Docking of the IRAK-M-DD tetramer to the IRAK-2-DD tetramer 

indicated that in the vast majority (83%) this would lead to a W74 

exposing side (IRAK-M-DD tetramer) interaction and only in 17% in 
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an interaction with the R97 exposing side. The IRAK-M-DD tetramer 

was docked to the top surface (consistent with the nomenclature in 

3MOP (3) of the IRAK-2-DD tetramer from the IRAK-2–IRAK-4–

MyD88 complex (Fig. 6B). The atomic interactions (contact distance 

<=4 Å) between IRAK-M-DD tetramer and the 3MOP structure were 

analyzed and three main binding areas were identified in green, pink 

and black (Fig. 6B). 

Mutagenesis and expression of human IRAK-M mutants 

Human IRAK-M and IRAK-1 mammalian expression vectors (pUNO) 

containing a blasticidin resistance element and the HA-TRAF6 vector 

were obtained from Invivogen (Toulouse, France). IRAK-M mutants 

were generated by site-directed mutagenesis with the QuickChange 

kit (Stratagene, La Jolla, CA) as recommended by the manufacturer 

with primers containing the desired mutations. Creation of an IRAK-M 

mutant which lacks the entire Death Domain was accomplished by 

introduction of a second SacII site (aaacta -> ccgcgg) in the ORF at 

codon position 103-105. SacII restriction of this mutated plasmid 

releases a fragment by cleavage at the introduced site and at the 

endogenous SacII site in codon 7-9 of the ORF. Ligation of the 

plasmid generates an ORF that encodes for amino acid 1-9 

connected to 105-596 without introduction of additional amino acids. 

Constructs were subjected to DNA sequencing to confirm the 

mutations and check of the appropriate CDS. 293T cells, maintained 

in DMEM containing 10% FCS, were transfected using Lipofectamine 

2000 (Invitrogen) as recommended by the manufacturer with the 

plasmids for protein expression and induction of NF-κB activation 
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and IL-8 release essentially as described (1). Lentiviral expression 

was obtained by introduction of WT IRAK-M in the pHEF vector and 

virus production in 293T cells as described (40, 41). The different 

IRAK-M Death Domain mutations were introduced in the constructed 

lentiviral human IRAK-M / IRES-eGFP expression system by 

restriction digestion of the pUNO-IRAK-M mutants with AgeI and 

BstB1 to obtain the mutated region which was ligated in the pHEF-

IRAK-M vector which was digested with Xma1 (compatible overhang 

with Age1) and BstB1 to open up and remove the WT sequence. 

Non-replicating lentivirus production for transduction and expression 

of these mutants in cells was performed according to standard 

procedures (40). Cell lines were transduced with the generated 

lentiviral constructs by standard procedures (41) with addition of 

polybrene. After lentivral transduction with only eGFP as control, WT 

IRAK-M or the mutants, the populations of cells expressing the 

transgene were selected by cell sorting using the GFP signal as 

described (26).  

The monocyte cell line THP-1 and transduced cultures were 

maintained in RPMI with 10% FCS and pen/strep matured to 

adherent macrophages and stimulated as described under conditions 

that will induce LPS tolerance after a previous exposure to LPS (42). 

The bronchial type lung epithelial cell line H292, which is devoid of 

IRAK-M transcripts, was maintained as well as the transduced 

cultures in IMDM with 10% FCS and pen/strep. 

Western blotting  
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Westernblotting for IRAK-M was performed with 1 μg/ml 

monospecific rabbit anti-human IRAK-M antibodies directed against 

the C-terminal (Cell Signaling) or polyclonal mouse anti-full length 

human IRAK-M (Abnova) essentially as described (20). 

Westernblotting for phospho-ERK1/2 was performed using 1 μg/ml 

rabbit anti-pERK-1/2 (Cell Signaling). Western blotting for HA-TRAF6 

was performed with 1 μg/ml anti-HA (Thermo Scientific).   

NF-κB activation 

Activation of NF-κB was determined 24 hours after transfection by 

cotransfection of a Firefly Luciferase NF-κB driven reporter construct 

and a Renilla Luciferase CMV driven construct on cell samples lysed 

with lysis buffer supplied with the DualGlo kit (Promega) used to 

determine the Firefly and Renilla luciferase activity in the same 

sample as recommended by the manufacturer.    

IL-8 expression  

For IL-8 expression by transfected 293T cells, the cells were washed 

24 hours after transfection and fresh culture medium was placed on 

the cells and supernatant was harvested 24 hours later and stored at 

-20oC for ELISA. Transduced H292 cells were plated in 96-wells cell 

culture plates (50.000 cells/well) and grown to confluency in 3 days 

and the medium was refreshed 24 hours before stimulation. 

Immediately before stimulation cells were washed again with medium 

again and cells were stimulated with 2 ng/ml IL-1 (Miltenyi Biotec) or 

25 ng/ml Flagellin (Invivogen) for 6 hours and supernatant was 

collected and stored at -20oC for ELISA. IL-8 was determined using 
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the duoset capture and biotinylated detecting antibody as 

recommended by the manufacturer (Invitrogen).  

TNF and IL-6 

The monocyte cell line THP-1 and transduced cultures were 

maintained in RPMI with 10% FCS and pen/strep matured to 

adherent macrophages and stimulated as described under conditions 

that will induce LPS tolerance after a previous exposure to LPS (39). 

Supernatant of matured THP-1 cells stimulated with 1 ng/ml LPS 

(ultrapure, Invivogen) or 500 ng/ml PAM3CSK4 (Invivogen) for 6 hour 

was collected and stored at -20oC for determination of TNF and IL-6 

by CBA (BD Biosciences) as described (43).   

A20, SHIP and SOCS-3 expression 

Negative regulators of inflammation were determined at the mRNA 

level by RT-qPCR as described (20).   

 
Table 1. Predicted effect of the mutations in IRAK-M death domain. 

Residue  
substitution 

Change in 
solvent 
accessibility 

Pseudo 
ΔΔ G  (kcal mol-
1) 

Predicted effect on 
protein stability 

F18A -12.10% 2.36 No effect 

D19N-L20A-
P21A 

38.7% -0.5 No effect 

P22A-A23S 14.6% 2.16 No effect 

R70Q -2.4% -0.26 No effect 

W74A -12.1% 2.36 No effect 

Q78A 4.3% 0.99 No effect 
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F18A-P21A 26.6% 1.86 No effect 

D19N-A23S 53.3% 1.66 No effect 

F18A/Q78A -8.1% 3.35 No effect 

R97Q -8.3% -0.07 No effect 

Y105A -1.6% 2.22 No effect 

R97Q/Y105A -9.9% 2.15 No effect 

 
Predicted effect of IRAK-M death domain mutations on structural stability. 
The mutations studied in the present include 11 individual residues: F18, D19, L20, 
P21, P22, A23, R70, W74, Q78, R97, and Y105. The 3D model of the wild type 
IRAK-M death domain was in silico mutated at these 11 residues by the 
YASARA/WhatIf twinpackage, followed by a 3 nanoseconds molecular dynamic 
simulation with the yasara2 force field in water to optimize the structure. The 
mutated model structures were next evaluated by the online server SDM 
(http://www-cryst.bioc.cam.ac.uk/~sdm/sdm.php) to predict the structural stability 
by the mutation [49]. This method applies a statistical potential energy function to 
calculate the pseudo ΔΔ free energy by using properties such as environment-
specific amino acid substitution frequencies from the targeted protein homologous 
families. This value is comparable to the free energy difference between wild type 
and the mutant. From the server, five parameters: secondary structure of the 
mutated residue, solvent accessibility changes, hydrogen bond changes, pseudo 
ΔΔG and predicted effect on protein stability are generated for each single amino 
acid mutation. The solvent accessibility changes were the difference of the solvent 
accessibility (%) of the mutated residue and the wild type residue. F18A and W74A 
lost around 12% of the solvent accessible area and highly stabilized the structures 
while D19N and P21A gained 17.7% and 21.2% of the solvent accessible area.  
 
The predicted effect of the multiple mutations on structural stability and the change 
in solvent accessibility of multiple mutations were calculated by the sum of the 
values from corresponding individual mutation values. The mutants with which 
experiments were performed in our work are shown in the table. These mutants 
were predicted to stabilize or did not affect the death domain structure. Meanwhile, 
the multiple mutants D19N-L20A-P21A, P22A-A23S, F18A-P21A, D19N-A23S 
increased the solvent accessible area.    
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Table 2. The structural quality of the template (2A9I from PDB_REDO (32)) 
used to build human IRAK_M model.   

R Value  0.17 Backbone conformation1 -0.82 

1st  

packing1 
-0.81 Bond length RMS Z-score2 0.48 

2nd  

packing1 
-1.02 Bond angle RMS Z-score2 0.70 

Ramachan
dran 

0.82 Total number of bumps3 8 

Chi-1/Chi-

21 
-0.18 Unsatisfied H-bond 

donors/acceptors3 
3 

1 Higher is better; 2 Should be lower than 1; 3 Fewer is better; Full WHAT_CHECK 
results of the template can be viewed in 
http://www.cmbi.ru.nl/pdb_redo/a9/2a9i/wf/index.html. 

 

Table 3. Quality check of IRAK-M-DD model and the template by programs 
PROCHECK, WHATIF, VERIFY-3D, ERRAT and PROVE. 

 IRAK-M-DD Model Template (2a9i) 

RMSD (Å)1 1.88 

3D Packing Quality2 -0.38 -0.07 

Surface Area (Å2) 7037.9 6987 

Ramachandran 
abnormal 

L39 - 

Chi1-Chi2 abnormal Y61 W76 L60 

Planarity abnormal W41 D73 

Bump  G65-K66 - 

1D-3D consensus2 87.38% 96.19% 

Errat2 99.00% 100.00% 

PROVE z-score2 0.4 (-5, 5) 0.153 (-5, 5) 

1 The backbone root mean square distance between IRAK-M-DD and the 

template. 2 The higher the better. Errat is to analyze the non-bonded interactions in 
protein 3D structures and generate confidence limits (0-1) to judge reliability of a 
protein's 3D structure [47]. PROVE is to check the atomic volume [48] and 
calculate the RMSD z-score between a given protein structure and the PDB 
dataset. The ideal PROVE z-score is expected as 0. A negative z-score means the 
atom volume smaller than average while a positive z-score means the atom 
volume greater than average.

http://www.cmbi.ru.nl/pdb_redo/a9/2a9i/wf/index.html
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Abstract 

Human Interleukin-1 receptor-associated kinase M (IRAK-M) is a 

member of the IRAK protein family and is mainly present in the 

marrow tissue. IRAK-M is an important regulator of inflammation in 

the innate immune system. The function of IRAK-M is related to 

many diseases such as asthma. IRAK-M consists of two important 

domains: a death domain (DD) and a kinase domain (KD). Homology 

models of the death domain and kinase domain were built based on 

the crystallographic structures (PDBID: 2A9I, 2NRU) of its homolog 

IRAK-4, with sequence identities being: 28.7% and 30% respectively. 

In the death domain, residues F18, D19, L20, P21, P22, A23, R70, 

W74, S75, Q78, R97, Y105, A107 were predicted to be at the 

protein-protein interaction interface, based on analysis of the mouse 

IRAK-4 and protein-protein interaction prediction (PPI) programs 

ODA (Molsoft), Cons-PPISP and PPI-Pred, combined with molecular 

dynamic properties such as residue flexibility and hydrogen bond 

networks. The identified residues form two distinct binding surfaces. 

From our model of the kinase domain of IRAK-M, we conclude that 

IRAK-M likely contains an inactive serine kinase domain that 

possesses several features that are common to kinase domains but 

essentially the IRAK-M kinase domain lacks a primary 

phosphorylation site. In the activation region (S333-Y340), serine 

residues have been substituted by threonine residues, which may 

influence the geometry of the activation loop. Moreover, the ATP 

binding pocket is narrow and does not have an efficient solvent 

shield as compared to its template IRAK-4 kinase domain. IRAK-M 
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residues L210, E214, L217, M314, H316, C326, T327 are predicted 

to be in direct interaction with antagonists or substrates such as ATP.   

The atomistic models represent possible 3D structures of the IRAK-M 

death domain and kinase domain. These structures can be used to 

decipher the structure function relationships of IRAK-M and may 

facilitate rational drug discovery to regulate the expression of IRAK-M 

activity. 

Keywords  IRAK-M, Homology Model, Kinase, MD simulation, 

protein-protein interaction (PPI) 
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Introduction 

Interleukin-1 receptor-associated kinases (IRAK) are intracellular 

signalling proteins involved in the innate immune system. The first 

described member of this family, IRAK-1, was described as a signal 

transducer for interleukin-1 (IL-1) (1). IRAK-mediated signaling is 

initiated through activation of a receptor from the interleukin-1 

receptor / Toll-like receptor superfamily, which in turn triggers the 

recruitment of myeloid differentiation primary response protein 

(MyD88) and IRAK complexes. When complexed, IRAK-4 can 

phosphorylate IRAK-1, which then results in recruitment of TNF-

association factor 6 (TRAF6), upon which through a series of 

signaling events NFκB is induced. (2). The IRAK family of protein 

kinases has four different members: IRAK-1, IRAK-2, IRAK-3 and 

IRAK-4. Both IRAK-1 and IRAK-2 can bind to the Toll-like receptor 

adaptor protein MyD88 and trigger intracellular signaling cascades 

that lead to transcriptional up-regulation and mRNA stabilization. 

IRAK-4 forms a complex with IRAK1, in a reaction that is most 

efficient when both IRAK-4 and IRAK1 are bound to MyD88, upon 

which IRAK-4 phosphorylates IRAK1. IRAK-3, also called IRAK-M, 

inhibits the dissociation of IRAK1 and IRAK4 from the Toll-like 

receptor complex through an as yet unclear mechanism, but which 

may involve inhibition of phosphorylation of IRAK1 and IRAK4 or 

stabilization of the complex between the receptor, IRAK-1 and IRAK-

4. IRAK-1 and IRAK-4 contain active kinase subunits whereas IRAK-

2 and IRAK-M do not possess kinase activity. All IRAK members 

mediate activation of nuclear factor-kB (NFκB) and mitogen-activated 

protein kinase (MAPK) via the TLR/IL-1 pathway (3). The signal 



214 

transduction pathways that are initiated by toll/IL-1 receptor family 

members ultimately lead to the activation of transcription factors such 

as activator protein 1 (AP-1) or NFκB, which on their turn contribute 

to the establishment of an immune response.  

The different IRAK family members have varying lengths: IRAK-1 is 

693 amino acids in length, IRAK2 625, IRAK-3 596, and IRAK-4 460. 

All IRAK family members have homologous overall multi-domain 

protein architecture, consisting of a conserved N-terminal death 

domain (DD) and a central kinase domain (KD) (1, 2, 4-6). The DD is 

a protein interaction motif, implicated in binding of IRAK proteins to 

the adaptor protein MyD88 (4, 7). Kinase domains contain an active 

site responsible for phosphorylation of specific substrates and a 

binding site for ATP. Amongst the IRAK family members, all forms 

have a functional ATP binding pocket with a conserved lysine (K239 

for IRAK1; K237 for IRAK2; K205 for IRAK3; K213 for IRAK4) as 

binding site in the kinase domain; only IRAK-1 and IRAK-4 contain a 

functional catalytic site that holds a critical aspartate residue (D340 

for IRAK-1, D311 for IRAK-4) (1, 8, 9). In IRAK-2 and IRAK-M this 

critical residue has changed into an asparagine or a serine, 

respectively, which renders their kinase domain inactive (2). 

However, further understanding of the non-functional IRAK-M kinase 

domain is needed. In between the DD and the KD is a region of 

unknown function that has a low sequence similarity when compared 

between different IRAK family members (UD as an abbreviation for 

this unknown domain). The UD of IRAK-1 has been demonstrated to 

be essential for IL-1-mediated induction of NFκB (10). The UD is rich 

in prolines, serines, and threonines and contains two so-called PEST 
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sequences (Proline-Glutamate-Serine-Threonine), which could be 

involved in the degradation of IRAK-1 upon IL-1 stimulation (11). 

IRAK-2 lacks a PEST motif in the UD, which may increase its stability 

upon IL-1 treatment, although this has not been investigated yet (9). 

IRAK-1, IRAK-2 and IRAK-M but not IRAK-4 further contain a C-

terminal stretch, which does not show any similarity to known protein 

motifs. (12, 13).  

Wesche and co-workers showed that IRAK-M can heterodimerize 

with IRAK-1 (2). Moreover, IRAK-M was found to perform a role as 

negative regulator in TLR/IL-1R signaling pathway, as was concluded 

from experiments with IRAK-M deficient mice that exhibit increased 

TLR/IL-1R signaling(14). Exactly, how IRAK-M inhibits TLR/IL-1R 

signaling is still speculative, but it was shown that IRAK-M enhances 

the binding of MyD88 to IRAK-1 and IRAK-4 and prevents IRAK-1 

phosphorylation. In this way, IRAK-M traps both IRAK molecules in 

the receptor complex, preventing the complex from dissociation. 

A detailed three-dimensional structure of atomistic detail is presently 

not available for IRAK-M. Neither X-ray nor NMR structures have 

been published so far. In an effort to facilitate the rational design of 

structure-function experiments we have employed comparative 

modeling techniques to obtain a three-dimensional model for IRAK-

M. As template structures we selected structures of IRAK family 

members that have been determined via X-ray crystallography or 

NMR spectroscopy. With these models we will be able to understand 

the intricate structure-function relationships of this molecule and 

rationalized targeted mutagenesis of IRAK-M will become possible. 
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Furthermore, if these structures contain druggable pockets, structure-

based drug design should become a reality to interfere with the 

activities of IRAK-M. 

Materials and Methods 

Template Selection and Alignment 

The primary sequence of IRAK-M consists of 596 amino acids. The 

exact definition of domain boundaries is however not unequivocal as 

different sources (Uniprot, NCBI, HPRD) define different domain 

boundaries. Thus, in order to include the complete domain region, we 

applied multiple sequence analysis of IRAK-M from different species 

(Wild Boar, Bovine, Dog, Human, Brown rat, Mouse, Zebrafish) 

(Figure 1) to verify the domain boundaries. The sequence used for 

modeling of the death domain was selected from C5 to G119 in this 

work. For the kinase domain, the sequence was chosen from E141 to 

L460. The potential templates for the IRAK-M death domain and 

kinase domain were selected through PSI-BLAST search of the 

protein database (PDB) (15) and the best template was selected as 

the final template, as judged by the sequence alignment score and 

structure quality (X-ray resolution and R-factor). The alignment 

between template and the IRAK-M sequence was performed by ICM-

Pro (MolSoft) (16) with default scoring parameters and refined based 

on secondary structure, amino acid features and the 3D structure of 

the template (Figure 2).  

Initial death domain model construction 
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The region from C5 to G119 in IRAK-M was selected as a query 

sequence to search for a potential template in the protein data Bank 

(PDB) (17). PSI-BLAST (PSSM: 0.005) results showed that there are 

12 coordinate files available, with sequence identities between 24% 

and 30% with the IRAK-M death domain sequence, which may 

qualify as a template structure. We chose 2A9I as a template, based 

on its sequence identity (28.7%), which was also evaluated by the 

multiple sequence alignments; moreover, 2A9I describes the crystal 

structure of the death domain of IRAK-4 at a high resolution at 1.7 Å, 

for which an optimized coordination file was available from the 

PDB_REDO server (18) with 0.619 as the Z-score of the 3D packing 

quality.  

Initial kinase domain construction 

A number of X-ray structures of protein kinase domains can be used 

for comparative modeling of the IRAK-M kinase domain, these are 

PDBID: 2OIB, 2OIC, 2OID, 2O8Y, 2NRU, 2NRY. These coordinate 

files describe the human IRAK-4 kinase domain deposited in the 

PDB as a tetrameric structure in different conditions such as in apo 

form or with various substrates/inhibitors. Since all these structures 

represent experimentally determined X-ray structures, they share the 

same sequence length of 304 amino acids, identical BLAST scores 

and equal sequence identity with the kinase domain sequence of 

hIRAK-M. Taking into account the quality of the structures, as judged 

by their resolution, R-Value, B-factor and bond properties, we 

selected 2NRU.pdb as the best template. The sequence alignment 

between the 2NRU sequence and the kinase domain of IRAK-M 
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(residues E141 to L460) shows a sequence identity of 30% and 

reveals four gaps which exist in loop regions of the 2NRU structure 

(Figure 2b).  

 

Figure 1. Multiple Sequence alignment of IRAK-M orthologs from “Wild Boar, 
Bovine, Dog, Human, Brown rat, Mouse, Zebrafish” by ICM-Pro package. The 
sequence of human IRAK-M was in green shade. The regions of the death domain 
and kinase domain were indicated by red and blue boxes respectively.  
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Figure 2. Sequence alignment between the human IRAK-M death domain and 
kinase domain and their templates. Fig. 2a, the death domains of human IRAK-
M (residue R8-P111) and mouse IRAK-4, the amino sequence identity was 28.7%. 
Fig. 2b, the kinase domains of human IRAK-M and human IRAK-4, which have a 
30% amino acid sequence identity. Residues K192, E212, Y241, P242, Y243, 
R252, A297 and D311 surrounding the ATP pocket are shown in light green. The 
activation loop and the P-loop were shown in light blue. The DGF motif was 
indicated by ‘*’ in IRAK-4 but DGA was in the IRAK-M kinase domain. The primary 
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phosphorylation site was indicated by ‘!’. The critical threonine T352 is indicated by 
‘X’ in IRAK-4. The important residues for substrate binding are shown in dark green 
shade and indicated by ‘¢’. Multiple serine residues are indicated by ‘X’ in IRAK-M. 

Unstructured Domain (UD) and C-terminus Region 

UD ranges from G120 to P140 and the C-terminal region is defined 

from R464 to E596. No model structure could be obtained for these 

two regions. This is due to the fact that these regions show either no 

or insufficient homology to other proteins of known 3D structure. 

Moreover, the alignment lengths were such that only incomplete 

models (the coverages were less than 60% of the whole regions) 

could be built for these IRAK-M segments. Collectively, too little 

information is available at present to allow a reliable 3D structure 

prediction for these parts of IRAK-M. 

Backbone Generation, Loop Modeling and side chain Sampling 

In the aligned regions, the ICM-Pro molecular modeling package (16) 

was utilized to build the backbone conformation of IRAK-M. In the 

loop regions, conformations were constructed by LOOPY (19), an 

energy-based ab initio prediction program, which is based on the 

algorithm of Random Tweak and Direct Tweak to filter steric clashes 

and evaluate structural qualities. Side chain conformations were 

firstly modelled by use of a rotamer library and for the non-identical 

residues, the side chain torsion angles were sampled by a biased 

probability Monte Carlo global optimization of the energy on the basis 

of surface properties, entropy, and electrostatics. The side chain 

conformations were further minimized by a steepest descent and 

simulated annealing minimization using the ICM Pro package 
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(Version 3.4.6). 

The Death Domain 

After refinement of the sequence alignment as described above, we 

used ICM Pro to build a model for the death domain of IRAK-M. The 

next step was loop modeling. The homologous positions of the loops 

at residues D30-W38 and at residues L48-W52 were surface 

exposed and we expected these to have flexible structures. Thus, we 

decided to use LOOPY to rebuild these loops in our model. Side 

chains were minimized by steepest descent method and simulated 

annealing minimization with a fixed backbone conformation and next 

optimized without any restraint using the ICM pro package (Version 

3.4.6). 

The Kinase Domain 

The kinase domain of IRAK-M could only be modeled between 

residues L148 and Q447 because of limitations in the template 

structure. This sequence includes five loop regions, which are the 

fragments from F169-G172, V284-I290, S334-M341, I346-G349, and 

K393-S398 respectively. In analogy to the method applied for the 

death domain modeling, we utilized ICM Pro and LOOPY to build the 

kinase domain backbone structure and then side chains were 

minimized by steepest descent method and simulated annealing 

minimization with a fixed backbone conformation, next the resulting 

kinase structure was optimized by use of the ICM Pro package 

(Version 3.4.6).  
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Molecular dynamics (MD) simulation and Quality Check 

Short MD simulations were performed to optimize the homology 

models by use of the Yasara-Whatif twin package (20, 21). The MD 

simulation systems contained explicit water (0.997 kg/L, pH 7.0), 

under the YAMBER3 force field, where the default Yamber3 cutoff for 

long range Coulomb interaction of 7.86Å was chosen and we 

employed periodic boundaries for the simulation boxes. The 

frequency of the simulation trajectory is 25 picoseconds (ps), and 

every snapshot from the trajectory was submitted for online structure 

quality check at the NIH institute (http://nihserver.mbi.ucla.edu/-

SAVES_3/), using PROCHECK (22), WHATIF (21), VERIFY-3D (23, 

24), ERRAT (24), PROVE (25). The best snapshot in terms of the 

total energy was selected as the starting point for a long MD 

simulation (100 nanoseconds (ns) for the death domain and 25 ns for 

the kinase domain), where AMBER03 force field, periodic boundaries 

and PME for electrostatics were used with the explicit water (0.997 

kg/L, pH 7.0, NaCl 0.9%). The resulting energies, RMSD, residue 

flexibility, hydrogen bonds and Ramachandran plots from the MD 

simulation were calculated by YASARA scripts and the VMD (26) 

program.  

Prediction of protein-protein contacts and mutations in IRAK-M 

Being a death domain, the DD of human IRAK-M is able to interact 

with other death domains, such as those present in MyD88 and other 

IRAK protein family members. Identification and description of 

potential protein-protein interaction areas therefore could be helpful 
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to study and explain the functions of IRAK-M. A consensus approach 

was used to predict protein-protein interactions for the DD model 

structure generated as described above. We employed several 

methods to do so: Optimal Docking Area (ODA) (27), Cons-PPISP 

(28) and PPI-Pred (29). For each of these methods, a prediction 

score was obtained for all residues in either the death domain or the 

kinase domain of IRAK-M and a consensus was generated from the 

different methods applied, taking into account the accessibility of the 

residue. 

Results and Discussion 

Homology modeling of the IRAK-M death domain 

We used PROCHECK, WHATIF, VERIFY-3D, ERRAT and PROVE to 

check the structural quality of the models that were generated for the 

death domain. Excluding the amino acids glycine and proline, 90% of 

residues (81 residues) were in the most favored zones after 

refinement and the remaining 8.9% (8 residues) located in allowed 

regions as analyzed by inspection of corresponding Ramachandran 

plot (Figure 3). The 3D packing quality was evaluated by WHATIF as 

-0.38 (acceptable range: (-2.5, 0)) (30), which indicates a good 

internal configuration of the model. The death domain presented a 

surface area of 7038 Å2. The inner atomic distances were in 

agreement with the reference X-ray structures (PDB database) 

except for a bump in a loop region, between G65 and K66. The non-

bonding interactions in the structure were qualified as “highly packed” 

by the ERRAT program (24). The high quality of the model was 
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supported by the residue environment assessments where 99% of all 

residues had statistically preferable non-bonded interactions. The 

atom volume quality was evaluated by PROVE (31) and showed the 

atom volume was slightly better than the averaged high resolution x-

ray structures in PDB database. 

 

Figure 3. Ramachandram plots of the human IRAK-M death domain (Fig. 3a) 
and kinase domain (Fig. 3b). The black dots indicate the individual amino acids. 
The red areas represent favorable regions, while yellow areas represent the 
acceptable regions and the white region the theoretically forbidden region. M93, 
T234, H323 and K336 are being studied for any special structure function 
relationship.  

The death domain of human IRAK-M (Figure 4a) folded into a 

protein-protein binding motif as is present in the structural template, 

mouse IRAK-4, with a 6 helical bundle forming a hydrophobic core 

that was decorated with a charged outer layer. K60 located at the C-

terminus of helix3 while E71, in the N-terminus of helix4, made the 

helix dipole force favorable. The intrinsic dipole potential of helix1 

influenced the side chain conformations of D36 and R42. In the 

IRAK-M DD model, a unique anti-parallel beta sheet was formed by 
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one strand from the N-terminus and another strand from the loop that 

precedes helix 5. An anti-parallel sheet located in between helix2 and 

helix3 in the template was replaced by a sharp turn (S50-S51) in our 

model. Two extra hydrogen bonds had been added into the model by 

flipping the histidine side chain (H57, H95). 

 

Figure 4. Homology model of human IRAK-M death domain. Fig. 4a, the death 
domain model was generated as described in the Methods section. The model was 
color-coded from N-terminus to C-terminus by Pymol (32). It contains 6 helices 
(H1-H6) and forms a typical beta barrel. A unique sharp turn is shown in magenta. 
H57 and H95 were flipped for optimizations. K60 and E71 enhance the helix dipole 
force (H3, H4). D36 and R42 are shown in the model. Fig. 4b, the residues which 
were predicted for protein-protein interaction are labeled in red and their side 
chains are solvent exposed. Fig. 4c, two interaction patches are shown in surface 
in the model (Patch 1: red and Patch 2: blue). Fig. 4d, Superimposition of the 
IRAK-M death domain model (rainbow) and its template (gray). The RMSD value of 
the aligned atoms is 1.088 Å. 

A 100 ns MD simulation was performed to study the total energy, the 
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structural stability, hydrogen bond network and amino acid fluctuation 

(RSMF), of the IRAK-M death domain (Figure 5). During the MD 

simulation, the total energy was stable at -3.66 * 10
5

 kJ/mol. 

Hydrogen bonds, known to be important for protein stability and 

function, were studied during the simulation (33). In the model, the 

number of the hydrogen bonds was stably kept as 19 during the 

simulation. The fluctuation of each residue during the MD simulation 

was calculated and we observed that the residues, which were 

predicted in PPI binding patches 1 and 2 (see also below), were 

stably presented to the solvent as the RMSF values in these patches 

were not very variable. In contrast, several loop regions, and in 

particular the loop (V62-K66) between helix3 and helix4 was flexible 

with N64 being most flexible. Residue M93 was analysed as being 

unfavorable in the Ramachandran check and it was observed that 

this residue appeared as one of the most flexible residues during the 

simulation. 

The IRAK-M death domain is reportedly involved in signaling 

processes that ultimately lead to programmed cell death by apoptosis 

(34, 35) and in down-regulation of the NFκB pathway by prevention 

of the dissociation of IRAK1/IRAK4/MyD88 complex (14). The death 

domain represents a protein-protein interaction motif which allows 

self-association and association between different death domain 

motifs (Figure 6).  
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Figure 5. Properties of the human IRAK-M death domain model. Fig. 5a, total 
energy was monitored during the simulation. Fig. 5b, root mean square deviation 
(RMSD) of the alpha carbon (Ca) (Blue), backbone (orange) and heavy atom 
(black) were calculated during the simulation. As the RMSD values of the backbone 
atoms are nearly identical to the RMSD values of the Ca atoms, therefore the 
orange line cannot be observed clearly. Fig. 5c, the total number of hydrogen 
bonds in the domain along the MD simulation. Fig. 5d, the backbone RMS 
fluctuation of each residue in the domain was calculated, the x-axis represents the 
residue number from R8 to P111. The residues F18, D19, L20, P21, P22, A23, 
R70, W74, S75, A77, Q78, R97, L101 and Y105 which form the predicted 
interaction patches are shown in colored rectangles (Patch 1 in blue and patch 2 in 
magenta). Two most flexible residues (N64 and M93) are indicated by residue 
name and red box.  
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Figure 6. Comparison of the death domain motifs in different proteins. The 
motif is generally comprised of 6 helices and brings the N- and C-terminus in close 
proximity. Fig. 6a, human IRAK-M. Fig. 6b, mouse IRAK-4 (PDBID: 2A9I). Fig. 6c, 
human TN receptor (1ICH). Fig. 6d, rat neurotrophin receptor (1NGR). Fig. 6e, 
drosophila pelle (1YGO). Fig. 6f, human nuclear matrix P84 (1WXP). 

In order to rationally design methods to interfere with death domain 

binding, it is helpful to predict which residues or regions are 

potentially involved in protein:protein interaction. Several important 

residues for the interaction between the IRAK-4 death domain and 

the MyD88 death domain have been confirmed on basis of an earlier 

published model of the death domain: Q33, E96, F97, F98 (36), 

which are at the outside of helix 2 and helix 5. Furthermore, residues 

which potentially interact with IRAK-1 at the N-terminus and at the C-

terminus of the helix 4: R16, C17, E73, D77, T80 were also predicted 

using PPI-Pred (29).  
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Figure 7. Multiple sequence alignment of the human IRAK-M death domain 
(DD), the human IRAK-4 DD and the mouse IRAK-4 DD. The residues, of which 
the homologous positions were confirmed as the protein-protein interaction regions 
in the IRAK-4 (29, 36), are shaded in light green.  

T70 in the death domain of IRAK-1 is critical for interaction with 

signaling molecules, as was reported by Neumann and coworkers 

(37). In our model of the IRAK-M death domain, the following 

residues in positions, homologous to those mentioned for IRAK-4 

and IRAK-1 were found: F18, D19, C35, R47, E59, D63, T69, Q78, 

D85, R96, R97 respectively (Figure 7). We employed a consensus 

protein-protein interaction prediction approach by application of 

several different methods to predict potential interaction residues: 

Optimal Docking Area (ODA) (27), Cons-PPISP (28) and PPI-Pred 

(29). The residues which were predicted by all the three programs 

were considered as potential sites for protein-protein interaction. 

These residues were further filtered by the residue flexibility derived 

from MD simulations (Figure 5d), the residues F18, D19, L20, P21, 

P22, A23, R70, W74, S75, A77, Q78, R97, Y105 were predicted as 

potential sites of interaction with IRAK-M ligands or modulators such 

as MyD88, IRAKs members. The selected residues are surface 
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exposed and do not form intra-molecular contacts (Figure 4b) by 3D 

structural analysis of our model structure.  

The death domain involves the biological functions by directly binding 

to other death domains. Mutagenesis experiment on the predicted 

residues mentioned above may interrupt the death domain’s 

functions. To guide a rational mutagenesis experiment, we applied a 

mutation prediction (38) based on a position specific rotamer and the 

prediction suggested that the mutations F18A, D19N, L20Q, P21A, 

P22N, A23K, R70Q, W74E, S75Y, Q78A, R97N, L101A Y105D do 

not impact the structural integrity and those mutated residues were 

predicted as the optimal solution, thus these mutations may be 

considered to study the function of the IRAK-M. Hydrogen bonds 

formed between N104 and A107 likely create an interaction between 

the C-terminal loop and helix 6. Breaking of the hydrogen bond 

probably results in a relief of conformational constraints for the C-

terminal loop, which is likely to occur when a mutation at N104 is 

introduced. Residues identified here form two binding patches: one is 

formed by the N-terminus of helix1, the C-terminus of helix4 and the 

loop between helix4 and helix5, whereas R97N, I102S and Y105Q 

are likely important residues that form a second patch (patch 2) in 

helix6 (Figure 4c). 

Homology modeling of the IRAK-M Kinase Domain 

Similarly as was done for the DD model, the quality was checked for 

the KD. The best KD model (Figure 8a) was obtained after a 500 ps 

MD simulation and the resulting structure was next evaluated. 83.3% 
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of residues (240 amino acids) were located in the most favored 

zones and 13.9% (40 amino acids) in allowed regions, 1.7% (5 amino 

acids) in generally allowed regions and 1% (T234, H323 and K336) 

in disallowed regions (Figure 3b). Similar results were obtained for 

the template 2NRU: 88.0% of residues in the most favored zones, 

9.8% in allowed regions, 1.9% in generally allowed regions, and 

0.4% in disallowed regions.  

 

Figure 8. Homology model of the human IRAK-M kinase domain. Fig. 8a, the 
kinase model was generated by use of the ICM-pro package, combined with 
LOOPY. The model is color-coded from N-terminus to C-terminus by Pymol 
software. It consists of two subunits which are linked by a hinge region at P242-
L249 (shown in magenta). The loop which is unique for IRAK-M is shown in red. 
Fig. 8b, the side chain was restricted by two ternary neighboring residues I290 and 
L351. Fig. 8c, the so-called gatekeeper residue Y241 forms three hydrogen bonds 
with A190 and E212. Fig. 8d, the proposed ATP binding pocket is shown in the 
presence of a pseudo substrate, an ATP molecule docked to the kinase model. Fig. 
8e, K336 rendered three hydrogen bonds with G292, T355 and S359. Fig. 8f, an 
enlarged pocket from Fig. 8d, where the gatekeeper Y241 is shown in green 
and the surrounding residues are shown in magenta. 
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A number of common deviations from the ideal structures were found 

by WHATIF (21) analysis, both for the model and template structure. 

However, the side chain planarity of H282 and H326 were suggested 

to be optimized. F317 had an abnormal Chi1-Chi2 rotamer, which is 

caused by a repulsive force from I290 and L351 (Figure 8b), whereas 

the gatekeeper residue Y241 had an unfavorable side chain planarity 

in the model since the gatekeeper residue was pushed by a pseudo 

substrate (Figure 8c), an ATP molecule docked to the kinase model. 

We studied the relationship between the amino acid sequence and 

the 3D structure of the kinase model by application of the verify3D 

program (39) and we found that the predicted structure for 73.5% of 

all residues is in agreement with their 3D structures as obtained from 

the 3D model. The non-bonded interactions between different atom 

types in the kinase domain were 99.2% in agreement with those of 

the template structure, 2NRU. The main quality improvement 

achieved by performing the MD, as indicated by the results of 

PROVE, is in the volumes of atoms. There were no steric clashes in 

the model, which indicates a high 3D packing quality of the model. A 

25 ns MD simulation was performed to analyze the IRAK-M kinase 

domain model with respect to its structural stability, amino acid 

fluctuation and potential energy changes (Figure 9).  



233 

 

Figure 9. Analysis of a 25 ns MD simulation of the IRAK-M kinase domain. 
Fig. 9a, total energy was monitored during the simulation. Fig. 9b, root mean 

square deviation (RMSD) of the alpha carbon (Ca) (Blue), backbone (orange) and 

heavy atom (black) were calculated during the simulation. As the RMSD values of 

the backbone atoms are nearly identical to the RMSD values of the Ca atoms, 

therefore the orange curve cannot be observed clearly. Fig. 9c, the total number of 
hydrogen bonds in the domain along the MD simulation. Fig. 9d, the backbone 
RMS fluctuation of each residue in the domain was calculated, the x-axis 
represents the residue number from E141 to P456. The residues K192, E212, 
Y241, P242, Y243, R252, A297 and D311 positioned near the ATP binding pocket 
are indicated by blue rectangles.  

During the MD simulation, the total energy of the kinase domain 

stabilized at -1.15 * 10
6

 kJ/mol while the conformation of the model 

changed during the simulation until ~15 ns (Figure 9b). The average 

number of hydrogen bonds was 53 in the trajectory, which contribute 

to the overall 3D structural integrity. The fluctuation of each residue 

during the MD simulation was calculated and the flexible regions 

occurred in loops, all of which were not in close proximity of the ATP 

pocket (Figure 9d). The human IRAK-M kinase (Figure 8a) is 

comprised of two subunits which were linked by a hinge region P242-



234 

L249 (PYMRNGTL), where N247-G248 is capable of forming an anti-

parallel sheet with the strand I299-D302 (ILLD). The so-called 

gatekeeper residue Y243 of the kinase domain is located just N-

terminal to the hinge region (Figure 8c). The kinase domain 

contained 9 alpha helix and 8 beta sheets. The proposed ATP-

binding pocket (Figure 8d) had a volume of 624.5 Å3, which is 

smaller than the ATP-binding pocket in IRAK-4 (752.1 Å3). The non-

spherical ratio of the proposed pocket was 1.56, which indicates that 

the pocket is narrow and deep (Figure 8d). The pocket was 

surrounded by residues K192, E212, Y241, P242, Y243, R252, A297 

and D311. These residues were similar to their homologous residues 

in IRAK-4 except for V263 of IRAK-4, which had changed into P242 

in IRAK-M (Figure 2b). Residue Y243 formed three hydrogen bonds 

with its neighbors A190 and E212. The kinase domain contains a 

unique loop M315- Y340, which is not found in other IRAK members. 

Residues T234 and H323 were solvent exposed in loop regions and 

K336 has three hydrogen bonds with G292, T355 and S359 (Figure 

8e), which could explain the unusual orientation of these residues 

and thus why these residues are located in an unfavorable region of 

the Ramachandran plot (Figure 3).  

The enzyme activity of a kinase involves the transfer of a phosphate 

group from ATP to a residue that contains a free hydroxyl group such 

as serine, threonine or tyrosine. Most kinases act on both serine and 

threonine residues, while others act on tyrosine only, or act on all 

three residues (dual-specificity kinases) (40). The kinase domain of 

human IRAK-4 was investigated from its crystal structure (41) and a 

number of important residues such as several glycine residues in the 
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P-loop, K213, Y264, D311 and T351 have been identified as being 

responsible for the kinase activity of human IRAK-4 (Figure 2a). In 

the majority of protein kinase structures, entry to the ATP binding 

pocket is blocked by amino acid side chains (for example F80 in 

CDK2, residues Q103/T106/M108 in most MAPK family members, or 

T315 in Abl kinase), and in IRAK-4, this so-called gatekeeper residue 

is a tyrosine (Y264). In the kinase domain of IRAK-M residue Y241 

appears to control kinase activity by controlling the access to the ATP 

binding pocket, at a similar location as in its template IRAK-4. In the 

putative active site of hIRAK-M, S293 is present instead of a 

conserved aspartate that is essential for enzymatic activity (at 

position 311 in hIRAK-4). The hinge region of the kinase domain of 

IRAK-M connecting strand 5 and helix 3, which is the bridge between 

two subunits of the kinase domain, maintains the ATP binding pocket. 

Two loops in IRAK-4 have been suggested to be important for the 

expression of catalytic activity in IRAK family members (41): the 

activation loop at T351-Y354 (TTAY) and the phosphorylation loop 

(P-loop) at residue number G193-G198 (GEGGFG). However, when 

we study our IRAK-M model structure, although an activation loop 

and a P-loop are located at similar positions in the IRAK-M structure, 

these are not fully conserved and have changed into S332-Y340 

(SSSSKHLWY) and G172-F177 (GEGEIF), respectively (Figure 2b).  
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Figure 10. Loops in the IRAK-M kinase domain. The P loop (G172-F177) is 
shown in green; the activation loop (S332-Y340) in blue; the unique loop in red. 
The so-called loop 3 is shown in orange, loop 4 in cyan and loop 5 in light orange. 
The hinge region is shown in magenta. The proposed ATP binding pocket is filled 
with a pseudo substrate shown as a CPK representation. The side chain of 
gatekeeper residue Y241 is shown as stick type in red.  

The presence of serine or threonine in the activation loop is required 

for active kinases. The presence of multiple serine residues (S333-

S335) (Figure 2b) in the unique loop M315-Y340 in IRAK-M makes 

the geometry and polarization of the activation loop different from 

those in IRAK-4 because serine points outwards to the solvent and 

threonine points inwards to the core region of the kinase. The 

distance between loop3 (D168-L170) and loop4 (C255-P263, see 

Figure 10) is larger than that of IRAK-4, and therefore cannot 
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contribute to formation of catalytic activity. Loop 5 (Figure 10) which 

is in between two helices 5 and 6 of IRAK-M extends outward of the 

C-terminal lobe and points to the N-terminal lobe, forming a shield to 

the solvent.  

Most kinases have a gatekeeper residue to control access to an 

internal ATP binding pocket (42). It is reported that nearly 20% of 

kinases in the human kinome possess the small residue threonine as 

a gatekeeper, 40% of them have methionine, of intermediate size, 

and nearly 15% have a large residue phenylalanine (43). However, a 

gatekeeper need not necessarily be threonine, methionine or 

phenylalanine, but it also can be one of the large hydrophobic 

residues such as isoleucine, valine, and tyrosine (43). The 

gatekeeper in IRAK-M is tyrosine (Y241). Around Y241, a big 

hydrophobic sphere is formed by F194, F209, L213, V215, L216, 

F312, A313. The distance between residue C238 and I299 

represents the diameter of the pocket, 18.4 Å and a direct contact 

between these residues is not possible. However, these two residues 

still might be important for the stabilization of the ATP binding pocket, 

because Y241 is in between them. The distance from Y241 (Y262 in 

IRAK-4) to the ATP-binding site (K192), is at least 9.7 Å, whereas the 

distance in IRAK-4 is 9.0 Å. 

Several other notable structural features are present in IRAK family 

members: A DFG motif is conserved amongst IRAK family members 

that are responsible for the coordination of Ca2+ or Mg2+ (43) and the 

third residue C-terminal of the DFG motif usually is an arginine (e.g. 

R334 in IRAK-4) (Figure 2b). The residue C-terminally to the primary 
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phosphorylation site (e.g. T345 and S346 in IRAK-4) is an arginine 

(e.g R347 in IRAK-4) (Figure 2b). The residue after the critical 

threonine (T352 in IRAK-4) in the P+1 pocket is tyrosine or histidine 

(41) (Figure 2b). In IRAK-M, however, the DFG motif of the active 

segment has changed into DFA (D311-F312-A313), and the third 

residue downstream of the motif is a histidine (H316) instead of 

arginine. The activation segment of IRAK-M does not have a serine 

phosphorylation site and next an asparagine is present instead of 

arginine (Figure 2b). The P+1 pocket shifts out of the center of the 

groove in IRAK-M because four consecutive serine residues are 

inserted here at the end of the P+1 pocket, even though the last 

residue is still tyrosine, like is the case in IRAK-4 (Figure 2b). For 

comparison, in the P+1 pocket of IRAK-4, there are many residues 

that contribute to substrate binding, such as R310, D311 and R334, 

by promotion of the correct orientation and electrostatic environment, 

or residues for the catalytic site, such as K313, or conserved 

threonine (T351) in kinase enzyme (Figure 2b). However, none of 

those residues is found in IRAK-M, which indicates that IRAK-M is an 

inactive kinase (Figure 2b).  

Even though the architecture of the kinase domain of IRAK-M 

appears incompatible with the presence of kinase activity, it still is 

plausible that the IRAK-M kinase domain is involved in the down-

regulation of NFκB dependent signaling since a region that is 

opposed to the ATP binding pocket was predicted as a potential 

interaction patch by three independent and basically different PPI 

programs (ODA, Cons-PPISP and PPI-Pred). The consensus ranked 

scores indicate a potential importance of residues L210, E214, L217, 
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M314, H316, C326, T327 for interaction with IRAK-M ligands or 

modulators. Thus, through means of a competition mechanism, 

IRAK-M may be able to bind to IRAK-ligands, thereby influencing 

binding equilibria.  

The predicted residues have potential to interact with other proteins. 

Mutations on those residues may interfere with the IRAK-M functions. 

In order to conduct a rational mutagenesis experiment, we predicted 

the optimal residues to be mutated to and mutation prediction (38) 

suggested that the guided mutations L210K, E214S, L217N, M314D, 

H316F, C326N, T327S have potential to alter the IRAK-M interaction 

but not damage the structural integrity. 

Conclusion 

A model has been built for the death domain and kinase domain of 

human IRAK-M, a member of the IRAK protein family involved in toll-

like receptor signaling. The models for both the hIRAK-M death 

domain and kinase domain have been analyzed by a consensus 

approach of several structural bioinformatics techniques in order to 

predict the most likely interaction areas that are involved in IRAK-M 

ligand binding and we have identified several areas on IRAK-M that 

we propose to be involved in protein-protein interaction. Several 

features of our models support the available functional data on IRAK-

M. The absence of a typical active site and changes in the substrate 

binding pocket of the kinase domain of IRAK-M are in agreement 

with reports in literature that fail to associate this protein to kinase 

activity. At the center of the ATP-binding site, Y241, a so-called 
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gatekeeper may control access of small compounds to the 

hydrophobic pocket. Y241, as being exclusive gatekeeper to the 

IRAK family of kinases, interacts with E212 and then disturbs the salt 

bridge of E212 with K192. Combined with residue fluctuations as 

ascertained by MD simulation, hydrogen bond network analysis and 

homologue analysis, we propose mutagenesis of selected residues 

such as to alter the IRAK-M protein function while keeping the overall 

protein structure intact. These models are currently being used for 

the rational design of structure function studies through targeted 

mutagenesis of this important protein. 
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In-silico experimentation in current biomedical sciences 

With the development of computer sciences and of advanced 

algorithms for biophysical modeling, and born from a need to handle 

the ever-increasing amount of genetic and biological data that are 

being produced, application of in-silico approaches in the biomedical 

arena have become indispensable (1, 2). These technologies allow 

the construction of large data collections with well-known examples 

of such “big data” being the Protein Data Bank (PDB), the Zinc 

database, BindingMOAD, and even plausible biological resources 

like gene ontology (GO) and Online Mendelian Inheritance in Man 

(OMIM), which have established themselves as being fundamental to 

21st century biomedical research (3). Programs such as FAFDrugs, 

ALOGPS, ToxPredict help researchers to filter or optimize large 

compound libraries prior to a HTS experiment by absorption, 

distribution, metabolism, excretion and toxicity properties (ADMEt) 

(4), thereby preventing the purchase and functional testing of non-

drug-like compounds. While the availability of useful programs and 

software is not regulated and no true benchmarks appear to exist yet, 

initiatives by government funded agencies like the US-based 

National Institutes of Health (NIH) or the European Bioinformatics 

Institute (EBI) strive for harmonization and validation of methods. 3D 

structure models can assist experimentalists to understand the 

structure of target proteins such as to effectively screen compound 

databases (5). Knowledge of homology modeling may help 

experimentalists who employ NMR spectroscopy, x-ray 

crystallography or electron microscopy to elucidate 3D structures. In 

fact, modelling programs are an integrated part of the experimental 



 248 

structure determination techniques and protein modeling has been 

developed to build 3D atomic structures within experimentally 

determined X-ray crystallographic density maps (6). Model building 

also provides the structural rational to assist experimentalists to 

perform mutagenesis studies, as a part of structure-functional 

analysis study (7, 8). Virtual ligand screening (VLS) methods, 

methods to discover new molecules with activities against a defined 

target, are widely used in the primary stages of drug discovery 

campaigns (9), and inclusion of VLS may result in considerable R&D 

budget reduction. Analysis of quantitative structure activity 

relationship (QSAR model) is being broadly applied for lead 

optimization (10-12) and is indispensable to modern drug design 

studies. Other structural bioinformatics techniques such as molecular 

dynamic simulation has the capacity to describe atomic properties 

such as protein structure formation, the binding process between 

drugs and their targets, protein conformational changes or cross-

membrane transport , which are able to accelerate drug discovery, to 

provide the generation of new hypotheses or support the unraveling 

of mechanisms involved in biological processes (13-17). 

The gap between in-silico and experimental results  

Even though in-silico approaches have been booming in 21st century 

and are being routinely used by biomedical experimentalists, the 

methods are still under-exploited, mainly because of unawareness 

and because in silico techniques still are greeted with caution by 

some experimentalists (18). Bridging the gap between in-silico data 

and experimental results is not easy, unless both qualitative and 
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quantitative biological information is available and provided sufficient 

computational power is available. More so, information flow needs to 

be translated into human understandable language and there 

appears to be a language border between bioinformaticians and 

biomedical experimentalists, with the former tending to have a more 

biophysically/mathematically oriented and theoretical focus, while the 

latter have a biological/medical and much more pragmatic focus. For 

instance, for an experimental researcher or a medical doctor, an 

interesting value that refers to binding affinities should be a Kd value 

rather than a calculated binding energy, the latter seems to be too 

sophisticated and, while being scientifically sound and correct, is an 

over-abstraction of the description of a binding process and cannot 

be directly compared to experimental results. However, in molecular 

dynamics simulations, the binding energy is commonly used to 

interpret binding strength. Moreover, the gap between an 

experimental system and an in-silico system cannot be ignored. In an 

in-vitro experiment, a protein-protein interaction process may occur 

at a specific temperature, pressure, pH value, ionic strength, in 

buffer, in the presence of carrier protein and always in the presence 

of gravity. However, in an in-silico system, it is not possible to mimic 

all possible experimental conditions because of the limitation of 

computational power, or because of shortcomings in the technology 

itself. This consequently influences the difference between an MD 

simulation result and an experimental result. Limitations both from 

algorithms and applications exist in each in-silico approach, and a 

model that perfectly represents an experimental processes is 

currently not available, which in itself turn will maintain the gap 



 250 

between in-silico results and experimental outputs (19). The difficulty 

of data integration from different data resources adds to the 

complexity of in silico experimentation, even though data 

combination is crucial for successful implementation of in silico 

methods in biomedicine and in drug discovery and design campaigns 

(20). Realization that there still exists a gap between in silico and in 

vitro/in vivo experimentation is crucial, and clear indication of 

limitations of technologies and interpretations, from both sides, in 

combination with translation of bioinformatics/biophysical data into 

human-understandable language, is key to successful synergy 

between in silico methods and more experimental biomedical 

techniques. 

Optimization of combined VLS approaches 

We addressed the question of how information about multiple target 

conformations can be included into a hierarchical structure-based 

virtual ligand screening (SBVLS) approach in the chapter 2 of this 

thesis. To do so, we used a multi-step protocol introduced by Miteva 

et al. in 2005, which in the case of the present study combines FRED 

and Surflex. Starting from a small database of ~60,000 molecules, 

we performed SBVLS on 10 different targets for which 8 

conformations were prior generated for each target. We evaluate the 

SBVLS results in terms of enrichments and use 7 different methods 

of consensus scoring to rank the compounds. In addition, we 

evaluated two alternatives for how to optimally combine FRED and 

Surflex docking in a hierarchical manner. As we know, assembling 

the ligand dataset for evaluation of a VLS performance is essential. 
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To avoid a ligand dataset selection bias, a Directory of Useful Decoys 

(DUD) is commonly utilized to evaluate the quality of a VLS 

approach. However, the drawback of using the DUD is that the size 

of the compound database is rather small, it is intended for training 

and validation purposes and cannot be compared to commonly used 

commercial databases such as the Chembridge database (900,000) 

or ZINC databases (~35 millions). For example, the number of 

verified decoys for targets FXa, thrombin, TK and NA is 5745, 2456, 

891 and 1874 respectively. In Chapter 2, we evaluate our VLS 

approach via two distinct approaches in order to provide a 

compromise with respect to both the ligand dataset selection bias 

and the dataset size. In the first approach, regarding the assembly of 

the ligand dataset, we use active ligands from DUD. Unconfirmed 

negative controls were retrieved from the ChemBridge database 

using random selection (~10% of the total compounds). This resulted 

a dataset with ~60,000 compounds. The dataset bias in this 

approach may exist if compared with 'standard decoys' from DUD. 

However, in this test, the goal is to find if the combined use of 

multiple conformers of a target perform better than single target 

structures when tested with the same dataset. So, in this respect, the 

dataset is unbiased to this aim. A drawback of the use of this 

approach however is that a quantitative performance of each 

approach cannot be identified. To this end, we used a second 

approach, in which we used the DUD dataset for the preparation of 

the active and inactive compounds, this set then can be used to 

calibrate the performance of our approaches and to compare our 

results with other VLS methods.  
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Amongst 7 consensus scoring methods, Sopt score was found to 

generally perform best. Sopt is a linear combination of the rank values 

of compounds with respect to the 8 conformations per protein target. 

However, in order to obtain Sopt, 9 parameters have to be fitted which 

makes the application of Sopt practically complex. Therefore, use of 

Sopt can only advised for well described targets and docking protocols 

and a simplified scoring function should be derived from Sopt method 

for more commonly encountered consensus scoring. 

Keeping or removing water molecules in a binding pocket of a protein 

target is presently a much debated topic in HTS screening (21). It 

has been demonstrated that water molecules are important for 

molecular recognition (21). Moreover, it has been shown that water 

molecules in binding pockets influence the binding process 

significantly but that the effect of water on the docking process is not 

easily predicted, especially in HTS screening. In other words, the 

water molecule is important for target-ligand recognition, but 

inclusion of water in a binding pocket can make a HTS screening 

either better or worse. To this end, we consistently removed all the 

waters from the protein targets. During the development of scoring 

functions for water in VLS programs, such as GOLD, AUTODOCK-

vina, water can be considered as a cofactor for VLS.  

MD simulation of FVIIIa C domains 

Activated biomembranes are of crucial importance for blood 

coagulation (22). For example, activation of the central enzyme 

thrombin by the prothrombinase complex (composed of FXa, FVa 

and membranes) is roughly 150,000 fold enhanced as compared to 
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activation by the complex of FXa, FVa in the absence of a 

membrane. In the homologous intrinsic tenase complex, the function 

of FIXa in the activation of FX and supported by the cofactor protein 

FVIIIa can be accelerated by >200,000 fold in the presence of 

phosphatidylserine containing membranes (23). Many studies have 

focused on the membrane binding domains of coagulation factors, 

either by experimental determination of protein 3D structures (24), by 

homology modeling and protein-protein docking (25), mutagenesis 

studies (26, 27) or by directly binding affinity measurements (28). 

Molecular dynamics (MD) is able to monitor the velocity of atoms, 

their interactions and energies in time. Therefore, provided there is 

an accurate force field, MD may provide accurate time-dependent 

data of atomistic detail for binding processes on a nanosecond or 

picoseconds time scale, which are difficult to be obtained via 

experiments methodologies. However a limitation of MD simulations 

is their time scale, currently nanoseconds level are mostly used (29). 

Many biological processes however require longer time scale. For 

example, protein folding requires hundreds of nanoseconds to 

minutes to complete, depending amongst others on protein size (29, 

30). To expand simulation time scales, coarse-grained MD 

simulations have become attractive approaches to observe 

complicated biomolecular processes (31, 32), such as the 

interactions between the FVIII C domains and lipid membranes as 

described in chapter 3 of this thesis. In the chapter 3, by using the 

Martini coarse-grained MD simulation approach (33), we were able to 

observe how the FVIII C domains bind to a membrane, to describe 

which residues are important for membrane binding and investigate 
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the differences between wild type C domains and mutated variants 

thereof. Approximation of a biomolecular system by coarse-graining 

has its limitations. Conformational changes in a protein domain can 

be important during biological processes such as protein binding 

recognition, transportation and assembly (34-36). However, 

conformational changes cannot be observed in coarse-grained MD 

simulations because elastic network (EN) (37) are being applied in 

coarse-grained models to maintain the overall structure integrity, 

which inevitably restricts the conformational changes of a single 

domain model. In the multiple domain system (C1+C2), we removed 

all elastic network bonds between atoms which are in different 

domains (38), which however made it possible to measure the 

interdomain changes occurring between the C1 and C2 domains.  

Since coarse-grained simulation greatly increases the time scale by 

simplification of a system, it reaches a less accurate description of 

free energy as compared to an MD simulation of atomistic detail. 

(31). The membrane binding energies calculated in the chapter 3 

cannot be converted directly into binding affinity (Kd) since the 

binding energies of the C domains were notoriously low. The 

energies calculated in this chapter are however as such already 

suitable for a parallel comparison of the C domains and C-domain 

variants for which binding energies were derived by application of the 

same approach. A way to convert the current binding energies for the 

C-domain binding processes into experimental binding affinities has 

to be optimized.  

It is reported that the FVIII A3 domain may contribute the FVIII 
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membrane binding process as well as C domains (25). We did 

however not include the A3 domain in our simulations and 

interpretation of our data does not allow us to comment on these 

earlier experimental studies and also was not the scope of our 

present study in which we specifically wished to address the binding 

of the FVIII C-domains to a membrane. From our results, we could 

see a synergy between the C1 and C2 domain upon membrane 

binding, which render a further question: whether there is a synergy 

between A3, C1 and C2 domains for the membrane binding? If the 

computational capability is allowed, a future direction should be the 

simulation of A3+C1+C2 membrane binding process or even the 

intact FVIIIa membrane binding process following a similar approach 

as was taken by us in the present case for only the binding of the C-

domains.  

IRAK-M project 

In the chapters 4 and 5 of this thesis, we propose the location of 

interaction surfaces on the inflammatory adapter/mediator protein 

IRAK-M. This prediction was based on a homology modeling study 

using mouse IRAK-4 as a structural template. The proposed IRAK-M 

model is the basis for a series of site-directed mutants that are used 

to investigate the structure/function relationships of the IRAK-M 

death domain by stable expression in several cell types. The 

expression levels of wild type IRAK-M and those of the mutants have 

been measured after transfection of expression vectors for IRAK-M in 

HEK cells, so as to get an indication of overall correct folding. 

Meanwhile, we analyzed protein stability of a small selection of IRAK-
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M death domain variants by MD simulation. Though our current 

results are sufficient to address our scientific goals, further MD 

simulations of several key mutants (such as F18, D19-A23 mutant, 

W74, R97 mutants) would be required to explore the conformational 

stability of these variant domains. In particular in case of the D19-

A23 mutant, such information may support the interpretation of its 

reduced expression. From our mutagenesis results we observed that 

several mutants had differential effects on the capacity of IRAK-M to 

inhibit cytokine/chemokine production, dependent on cell type and 

stimulus. The complex results make the data interpretation difficult, 

which is why include “mild”, “moderately” and “major” terms to 

address the effects of IRAK-M mutants on NF-κB activity. In its turn 

this may increase the difficulty to understand these observations. 

Overall, we have studied the structure-function relationship of human 

IRAK-M death domain and identified the binding patches and the 

important residues for NF-κB signaling. Our results provided a 

structural context that helps in the understanding of the complex 

structure-function relationships of this protein that is involved in both 

CVD and in immune responses and the generated structures may 

contribute to future development of small drug-like molecules to 

interfere with the function of IRAK-M in NF-κB signaling.  
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Valorisation 

Cardiovascular diseases (CVD) are one of the main causes of death 

worldwide and it is estimated that 23 million people will die in 2030 

from the diseases if no major breakthroughs in the development of 

CVD related drug discovery and treatments are to be made in the 

near future. Wet lab experimentation provides a major arena to study 

the pathological mechanisms of these diseases and to further 

explore ways for treatments. However, several reasons exist that 

push scientists looking for alternative methodologies to overcome 

shortcomings which exist in the research in the wet lab. For example, 

the traditional way to search for drug candidates from chemical 

databases is time consuming; therefore a financial budget is usually 

extremely high to conduct such researches in the regular drug 

discovery track. In addition, current technologies in the wet lab 

cannot reflect all biological reaction types; for example biological 

phenomena happening within femtosecond time scales. In our 

research, we have applied a so-called dry lab methodology, also 

popular known as in-silico approaches to the cardiovascular disease 

related area. 

As a bioinformatician, one has to well understand not only the 

algorithms of the in-silico programs but also how to answer biological 

puzzles by application of these programs and further to bring 

achievement to our society. In the dissertation, we have provided an 

optimized virtual ligand screen (VLS) protocol aiming to speed up the 

drug discovery process, which will provide useful to the 

pharmaceutical industry or anyone who works in the drug discovery 
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field.  

Drug discovery is a complicated, time consuming, expensive and 

ineffective process. In the pharmaceutical industry, people keep 

seeking novel approaches to cope with the steady increase of the 

number of disease-related proteins. High throughput screening (HTS) 

has become a routine method to filter chemical compounds in many 

labs. However, with the increased availability of protein structures 

and synthetic small compound databases, HTS does not work 

effectively for screening huge compound libraries. Therefore, in order 

to deal with the increased sets of compounds, rational improvements 

are needed to find a way to save time and control costs. To this end, 

virtual ligand screening (VLS) has been developed, such as to 

narrow down a huge compound library into a more manageable one 

at an early stage of drug discovery.  

VLS is designed to speed up the drug discovery process, but which 

may be most beneficial in those instances where currently no 

pharmaceutical intervention/treatment is at hand but where VLS may 

be potentially applied. Continuously new drugs are needed, not only 

in cases where no drugs are available currently, but also to provide 

better alternatives that may be tailored to the needs of specific 

patient (sub)populations, such as for specific age-groups or for 

patients of differing genetic backgrounds.  

In the present global economy, people, organisms and foods are 

easily transported to any corner of the world, which increases the risk 

of spreading of infectious diseases such as SARS, influenza or 
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ebola. The prevalence of these diseases has the potential to trigger 

social disasters if the infectious diseases are out of control. Novel 

medications are a major way to prevent epidemics, but sometimes 

the conventional drug discovery lags behind the spreading of 

diseases, such as the breakout of severe acute respiratory syndrome 

(SARS) in 2002 or the current outbreak of ebola in Western Africa. 

The application of VLS which accelerates the process of drug 

discovery has the potential to support the measures that are taken to 

prevent large-scale spreading of these diseases, by providing an 

expedited means of producing novel or improved drugs to treat the 

diseases, provided that enough information is at hand to perform this 

type of rationalized drug discovery and design. 

Considering the diversity in protein structures, it is hardly possible to 

provide a generic and routine method that performs optimal for every 

protein target for a VLS campaign. Thus, numerous programs have 

been developed to execute a VLS campaign with respect to various 

requirements. In this respect, the combination of several different 

VLS programs more and more becomes common practice and a 

novel method called ‘stepwise improvement’, which is presented in 

our research can be used to improve speed and accuracy for VLS in 

drug discovery. The optimized protocols and the main suggestions 

made by us should be applicable to many flexible protein targets, but 

especially for the targets tested in the work: viz. thymidine kinase, 

neuraminidase, coagulation factor Xa, thrombin, glycinamide 

ribonucleotide transformylase, Cyclin dependent kinase 2, Catechol 

O-methyltransferase, Estrogen receptor and Enoyl ACP reductase.  
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Haemophilia A is a genetic disease caused by a deficiency of 

coagulation factor VIII (FVIII). The incidence of haemophilia A is 

nearly 1 in 10,000 males and the patients may suffer from bleeding, 

bruising and haematoma. A conventional treatment of haemophilia A 

is to replenish FVIII protein and to adjust FVIII plasma concentrations 

such that patients no longer bleed. However, immune resistance 

against FVIII is a major complication, which requires other solutions 

to manage the haemophilia A disease. In order to understand the 

function of Factor VIII and haemophilia A development, the 

mechanism of FVIII cofactor expression and regulation during blood 

coagulation has been well studied. We have unraveled the 

mechanism of the membrane binding of FVIII, which is a crucial step 

in coagulation pathway. The research has potential impact on 

haemophilia A drug discovery as it may allow development of small 

compounds to alter and improve Factor VIII membrane binding 

affinity. Likewise, our findings may proof useful for the development 

of novel antithrombotics, which may act through the inhibition of 

membrane binding of Factor VIII. In our research, we have predicted 

a list of membrane-binding residues, which may guide a gene 

therapy clinical trial designed for haemophilia A.  

Our research on IRAK-M could have an impact on treatment of 

pneumonia, which occurs in 15% of the patients in the intensive care 

unit (ICU), of which 50% of the patients with pneumonia die. 

However, currently little progress has been made in this field and 

improved therapies are needed to overcome this problem. It is 

reported that IRAK-M is a down-regulator in immunoparalysis, which 

causes the secondary nosocomial pneumonia. Our research 
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provides a 3D map that may be used to rationally inhibit the activity 

of IRAK-M, which may potentially provide a long sought effective 

therapy for patients with temporary but life threatening 

immunoparalysis in the ICU.  
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Summary 

Over the last decades, the application of in-silico approaches in 

cardiovascular research has been increasing. In this thesis, we 

describe the development of an optimal protocol to perform a virtual 

ligand screening campaign. We also applied various in-silico 

approaches to guide and support the structure-function study of 

IRAK-M. Further, we have conducted coarse-grained molecular 

dynamic simulation to study and simulate the membrane-binding 

process of FVIIIa, the haemophilia A protein. 

In chapter 2 of this thesis, we have developed a new method to 

perform structure based VLS and validated our approach by a 

stochastic compound database. We combined two structure based 

VLS programs FRED and Surflex in a parallel computational 

environment, aiming to accelerate the docking time while insuring the 

enrichment of hit molecules. Multiple conformations for each of a 

total of 10 protein targets have been generated so as to sample the 

conformational space that is available to the target as a result of 

intrinsic protein flexibility. We found that the use of multiple 

conformers for a given target is preferable over that of the use of a 

single target conformation. It is advisable to apply a consensus of the 

FRED docking results for consecutive Surflex screening. We have 

presented a novel approach (stepwise improvement) that is useful to 

detect the optimal cut-off from a rigid docking, as is FRED, to a 

flexible docking, like Surflex. To generate an optimal consensus 

result from eight conformations, we tested 7 different methods and 

we present a new consensus method, which is named Sopt, which is 
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designed to produce consensus lists for a protein target with an 

optimal enrichment for both FRED and Surflex. As described in 

chapter 2, we have tested the VLS performance on several 

cardiovascular related protein targets, including FXa, thrombin, 

tyrosine kinase and propose the optimal approach for a VLS 

campaign for those targets. Moreover, several other homologous 

targets, that are of relevance to the cardiovascular system, can now 

be more optimally studied, guided by the findings of our studies. In 

chapter 3 of this thesis, an in-silico study has been performed to 

understand the membrane-binding mechanism of human FVIII, and 

more in particular that of the binding of the FVIII C domains to 

membranes containing phosphatidylserine. We constructed coarse-

grained models for the C1, C2 and C1+C2 domains and also for 

seven variant domains for which have been studied experimentally 

before. By performing MD simulations we were able to study 

membrane binding times (the time it takes for a domain to stably bind 

to the membrane), to identify the individual residues that are involved 

in membrane binding and which of these residues become buried in 

the membrane including mode of membrane-burial, the depth of 

buried residues, the tilting of the domains, the C1+C2 angle 

movement and the membrane-binding energies. We also studied the 

relationship between 1,2-Dioleoyl-sn-glycero-3-phosphoserine 

(DOPS) lipid content in the membrane and the membrane-binding. 

We found that the C1 and C2 domains show different membrane 

binding properties. Some C domain variants had abnormal 

membrane-binding modes compared to that of the wild type. The C1 

domain membrane binding was two times slower than that of the C2 
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domain, while the C1+C2 domain bound similarly to the C2 domain. 

The C domain variants which were experimentally confirmed to 

possess a higher binding affinity we found to bind faster than wild 

type C2 domain for binding. We concluded that the membrane 

binding speed is dependent on electrostatic interactions and 

identified the important residues for membrane-binding time. The 

tilting of the C domains, after they have been bound to the 

membrane, is likewise important for membrane-binding. The 

simulation results showed that 5% of DOPS lipids in the membrane is 

optimal for membrane-binding. Through analysis of the compiled 

contributions of electrostatic and van der Waals interactions and the 

identified membrane-buried residues, we present a list of residues 

which we identify as key residues for FVIII membrane binding. The 

results help to explain the molecular causes for haemophilia A, in 

those instances where membrane-binding is compromised, and 

predict likely candidates for novel causative missense mutations in 

haemophilia A.   

In chapter 4 of this thesis, we describe the structure-function 

relationship of the death domain of IRAK-M by analysis of mutant 

variants of this protein which have been rationally designed after 

creation and analysis of a 3D model for the IRAK-M death domain. 

The toll-like receptor (TLR) signaling inhibitor IRAK-M is a major 

player involved in the proper functioning of monocytes and 

macrophages. We generated a high quality 3D structure model for 

the IRAK-M death domain and identified two most likely interaction 

areas that are involved in IRAK-M ligand/modulators binding. These 

areas were then targeted by means of structure-guided mutagenesis. 
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We provided firstly a list of residues and/or combinations of several 

residues that are most likely to be involved in the interaction of the 

IRAK-M death domain with other protein ligands in the TLR pathway. 

We then prepared a series of recombinant IRAK-M mutants 

according to the in-silico prediction in different cell lines allowing the 

study of the function of these IRAK-M variant molecules. 

Furthermore, we proposed a structure for a tetramer of the IRAK-M 

death domain based on the X-ray structure of IRAK-4/2 tetramers 

(3MOP.pdb). The models and mutagenesis results showed that the 

NF-κB activating activity of IRAK-M is dependent on two different 

sites on the DD, with respectively W74 and R97 as critical IRAK-4 

binding residues. Residues W74 and R97 may interact with IRAK4 

and prevent the formation of the IRAK-4-IRAK-2-MyD88 complex and 

further inhibit the TLR2 and TLR4 mediated TNF and IL-6 production 

in human monocytes. Our results suggest that the tetramers may 

sandwich an IRAK-4-DD tetramer between the R97-exposing surface 

and the W74-exposing surface that are situated at respectively the 

top and bottom of the IRAK-4 tetramer. Residues W74 and R97 are 

also important for NF-κB and ERK activation as well as for the 

inhibitory action of IRAK-M on TLR induced release of cytokines. 

Residue R70 and the stretch D19-A23 are specifically involved in 

ERK activation and IRAK-M expression levels. Our study provides 

novel insights in the molecular mechanisms of IRAK-M by differential 

use of its death domain. This may channel a way for the rational 

design of IRAK-M inhibitors, which may be applied in future treatment 

strategies and which could potentially improve innate immunity in 

vulnerable patients or CVD patients. 
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In the chapter 5 of this thesis, we expanded the in-silico approaches 

from chapter 4 to the kinase domain of IRAK-M. In this chapter, we 

analyzed the IRAK-M protein solely via bioinformatics methods. By 

homology modeling and data analysis, we confirmed that the likely 

reason that causes the kinase domain to be inactive. For example, 

the kinase domain lacks a primary phosphorylation site, followed by a 

histidine instead of an arginine at the P+1 site. Serine residues are 

missing in the activation region and the ATP binding pocket is too 

narrow to accommodate ATP substrate although tyrosine (Y241) is 

present as the gatekeeper residue in the pocket. The chapter 5 

provides a more extensive description of the 3D structure of the 

death domain as compared to chapter 4 and moreover describes the 

3D structure of the kinase domain. The quality of the structures is 

discussed after evaluation by means of different evaluation factors 

such as 3D packing quality, bond quality, hydrogen bonding and 

structural stability. The IRAK-M kinase model structure is compared 

to that of other active kinase domains. Finally, residues which are 

most likely to interact with the kinase substrates are predicted.  
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Samenvatting 

De toepassing van onderzoek dat expliciet gebruik maakt van 

computers, ook wel in silico methoden genoemd,  heeft gedurende 

de laatste tien tot twintig jaar ook binnen het cardiovasculaire 

onderzoeksveld een vlucht genomen.   In dit proefschrift wordt de 

ontwikkeling van een optimaal protocol beschreven dat gebruikt kan 

worden voor het vinden van kleine moleculen die binden aan een 

bepaald doeleiwit door middel van zogenaamde virtuele ligand 

screening. Verder hebben wij in silico methoden toegepast om de 

structuurfunctie studie van IRAK-M te sturen en te ondersteunen. 

Tenslotte hebben wij grofschalige moleculaire dynamica simulaties 

uitgevoerd, om daarmee de binding van FVIIIa, het hemofilie A eiwit, 

aan een lipide membraan te kunnen simuleren en te kunnen 

bestuderen. 

Hoofstuk 2 beschrijft de ontwikkeling van  een nieuwe methode  om 

struktuurgedreven virtuele ligand screening te bedrijven. Hierbij zijn 

twee bestaande programma's, FRED en Surflex, in een parallelle 

rekenomgeving toegepast, met als doel om de totale tijd van de 

screening te versnellen en de doelmatigheid van de gehele 

procedure te verhogen. Hierbij zijn er tien model eiwitten gebruikt om 

onze nieuwe methode mee op te zetten. Door gebruik te maken van 

verschillende conformaties van eenzelfde doeleiwit verkregen wij 

betere resultaten dan wanneer wij slechts een enkele conformatie 

van dit eiwit gebruikten. Om te bepalen hoe het beste de beide 

programma's, in combinatie met het gebruik van meerdere doeleiwit 

structuren konden worden gecombineerd, hebben wij zeven 
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verschillende methodes getest. Eén van deze methoden, Sopt 

genaamd, presteerde beter dan de andere consensus methoden.  

Hoofdstuk 3 van dit proefschrift beschrijft een in silico studie die is 

uitgevoerd  om de membraan bindende eigenschappen van de 

humane stollingsfactor VIII te bestuderen, en meer in het bijzonder 

de binding van de carboxy-terminale C-domeinen van factor VIII aan 

modelmembranen die het fosfolipide molecuul fosfatidylserine 

bevatten. Door middel van grofschalige moleculaire dynamica 

experimenten waren we in staat de bindingstijden te berekenen die 

behoren bij de binding van een C1 domein, een C2 domein of een 

C1+C2 domein aan een lipidelaag. Hierbij waren we in staat 

individuele aminozuren te identificeren die betrokken zijn bij het 

bindingsmechanisme en meerdere individuele parameters te 

kwantiteren die de binding van C-domeinen aan de membraan 

beschrijven. 

Naast de gesimuleerde wildtype domeinen, werden er ook enkele 

gesimuleerde varianten van de C-domeinen getest ter controle van 

de juistheid van de door ons gebruikte in silico methoden. In alle 

gevallen waren de gevonden resultaten in overeenstemming met 

data uit de literatuur. Dit hoofdstuk wordt afgesloten met een voorstel 

dat het bindingsmechanisme beschrijft waarmee C-domeinen op 

calcium onafhankelijke wijze kunnen binden aan negatief geladen 

membranen.   

Met dit hoofdstuk presenteren wij niet alleen een algemeen 

mechanisme voor binding waarbij individuele aminozuren kunnen 
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worden aangewezen die van groot belang zijn voor de membraan 

binding van factor VIII. Deze informatie en de door ons toegepaste in 

silico simulaties kunnen gebruikt worden om een moleculaire 

verklaring te geven voor de bloedingsneiging die bij hemofilie A 

patiënten bestaat, zowel in geval van bekende mutaties, maar ook 

voor nieuw ontdekte mutaties. 

Hoofdstuk 4 van dit proefschrift geeft een beschrijving van de 

structuurfunctie relaties van het zogenaamde death domein van 

humaan IRAK-M, een eiwit dat deel is van het menselijk 

immuunsysteem. De manier waarbij we hier onderzoek hebben 

verricht is door het maken van een 3D homologie model voor dit eiwit 

domein en dit model vervolgens te gebruiken om voorspellingen te 

doen over potentiële interactie gebieden tussen IRAK-M en zijn 

bindingspartners. Deze informatie is op zijn beurt gebruikt om op 

rationele wijze mutaties aan te brengen in het IRAK-M. Door 

functionele analyse te doen van, tot expressie gebrachte 

recombinante varianten van het IRAK-M, is er waardevolle informatie 

verkregen over de functie van dit eiwit. Belangrijke aminozuren zijn 

geïdentificeerd en voorts is er een voorstel gedaan over een 

mogelijke quaternaire structuur waarin het IRAK-M een remmende 

rol zou kunnen vervullen door complexering met IRAK-4. 

Hoofdstuk 5 beschrijft een uitbreiding van de in silico studies die 

gedaan zijn aan IRAK-M door ook expliciet het kinase domein van 

humaan IRAK-M te bestuderen. Het betreft hier uitsluitend de 

toepassing van bioinformatica methodes waarbij een 3D model is 

gemaakt voor het kinase domein van IRAK-M. Bestudering van dit 
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model, en een vergelijk met andere kinase structuren geeft ons een 

beter inzicht in de functionaliteit van dit domein, en geeft met name 

een verklaring waarom dit kinase inactief is. Tenslotte beschrijft dit 

hoofdstuk een uitgebreide analyse van de 3D structuur van het 

IRAK-M death domein, die voortbouwt op de reeds in hoofdstuk 4 

genoemde resultaten. 
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总结 

在过去的几个十年中，生物信息学方法广泛的应用于心血管基础

医学领域。在该部论文中，我们优化了计算机辅助药物筛选(virtual 

ligand screening, VLS)的算法；运用结构生物信息学和点突变来研

究免疫蛋白 IRAK-M 的结构与功能；运用分子动力学计算模拟研究血友

病 A型相关凝血因子 FVIIIa并阐释其与细胞膜结合的机理。  

在本论文的第二章中，我们优化了基于结构 VLS 的算法，并通过

随机选取小分子数据库来验证此算法。该算法加快了筛选时间，同时

也提高了筛选准确率。本实验选取十个靶蛋白并且使每个蛋白分子产

生八个构象以便于模拟蛋白质高级结构的可变性。我们发现，使用多

种构象做虚拟筛选的效果优于仅仅使用单一构象。我们推荐使用整合

后的 FRED 结果然后进而运行 Surflex 筛选。我们提出了一种新的方法

（逐步提高检测法）对刚性筛选结果的选择是有效的。为了得倒最佳

筛选效果，我们测试了七种不同的方法。其中最佳的组合方法被命名

为 Sopt。正如第二章所述，我们已经在多个心血管疾病相关蛋白分子，

例如凝血因子 Xa，凝血酶，酪氨酸激酶上面做了实验验证，并为这些

蛋白靶点提供了最佳筛选参数。第 3 章描述了结构生物信息学在研究

人类凝血因子 FVIII 的膜结合的生物学机制。我们构建了 FVIII 蛋白

分子 C1，C2，C1 + C2 结构域和七个突变体的三维模型。通过进行分

子动力学模拟，我们能够计算这些模型结合到细胞膜上所需的时间

（结合时间），并且能够鉴别出直接作用于细胞膜结合的具体氨基酸

残基，插入到细胞膜的深度，结构域的最佳结合角度以及结合能。我

们还研究了在细胞膜中 1,2 - 二油酰基-sn-甘油基-3 - 磷酸丝氨酸
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（DOPS）脂质含量和膜结合之间的关系。我们发现，C1 和 C2 结构域

具有不同的膜结合特性。相比于野生型中的 C 结构域，有些 C 结构域

的突变体有异常膜结合模式。C1 结构域的膜结合时间比的 C2 结构域

慢 2 倍，而 C1 + C2 结构域的结合时间基本类似于 C2 结构域。实验验

证具有比野生态结合能高的突变体也具有比野生态更短的结合时间。

我们推论 C 结构域的膜结合特性依赖于静电相互作用，并鉴定出与结

合时间相关的重要氨基酸残基。当结合到细胞膜后，C 结构域的倾斜

被认为对其结合能力产生重要影响。研究结果表明，当细胞膜里面含

有 5％的 DOPS，C 结构域的膜结合效果最佳。结合静电和范德华相互

作用的因素，我们预测出一系列参与到细胞膜结合的氨基酸残基。该

研究结果有助于从分子水平解释血友病 A的致病原因。  

在本论文的第四章中，我们通过分析所构建的 IRAK-M death 

domain 三维结构的模型，并结合点突变实验研究了其结构与功能的关

系。Toll 样受体（TLR）信号传导抑制剂 IRAK-M 是参与单核细胞和巨

噬细胞的正常运作的主要蛋白。我们构建了高品质的 3D 结构模型，并

预测了两个配体结合区域。我们在这些区域研究其氨基酸定点突变。

我们得出了一系列最有可能参与到分子互作的氨基酸。此外，基于模

板晶体结构，我们构建了 IRAK-M death domain 的四聚体的结构。该

模型和点突变研究结果表明，IRAK-M 在 NF-κB 激活途径依赖两个不

同的位点，W74 和 R97 分别为关键氨基酸。氨基酸残基 W74 和 R97 可

与 IRAK4 相互作用并阻止 IRAK-4-IRAK-2-MyD88 的复合物的形成，并

进一步抑制 TLR2 和 TLR4 介导的 TNF 和 IL-6 的产生。研究结果表明该

四聚体可能夹裹 IRAK-4 四聚体。在 NF-κB 和 ERK 的激活途经中，氨

基酸 W74 和 R97 同样行使重要功能。R70 和 D19-A23 区域可能特异的
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参与到 ERK 活化过程和影响到 IRAK-M 表达水平。本研究揭示了 IRAK-

M 参与到多种生物途经的分子机制。本实验为针对 IRAK-M 为靶点的理

性药物研发提供了重要思路。这可能被应用到未来治疗心血管方面的

疾病或者改善患者的生活质量。  

在本论文的第五章中，我们将生物信息学的方法从 death domain

拓展至激酶结构域。我们从生物信息学方面分析了 IRAK-M 激酶结构域

没有活性的原因。例如，该激酶结构域缺乏主磷酸化位点，在随后的

位点上组氨酸代替精氨酸。激活区域缺失丝氨酸残基，并且 ATP 结合

区域太窄进而无法容纳 ATP 底物。本章详细的描述了 IRAK-M 的两个结

构域的三维结构信息并讨论了其三维模型的质量，例如分析其原子排

列质量，分子键，氢键和结构稳定性。研究对 IRAK-M 激酶 ATP 结合区

和潜在的催化位点做了充分的描述，并对比了其他具有活性的激酶。

最终，一些最有可能参与到其激酶底物结合的氨基酸被预测。 
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