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Abstract

This paper introduces a new generation of Early Warning Systems (EWS) which takes into

account dynamics within a system composed by binary variables. We elaborate on Kauppi

and Saikonnen (2008), which allows to consider several dynamic specifications and to use an

exact maximum likelihood estimation method. Applied so as to predict currency crises for

fifteen countries, this new EWS turns out to exhibit significantly better predictive abilities

than the existing models both within and out of the sample.
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1 Introduction

The recent subprime crisis has renewed the interest for Early Warning Systems (EWS).

In principle, they should be able to ring before the occurrence of a financial crisis letting

enough time for authorities to implement adequate rescuing policies to prevent or at least to

smooth the perverse effects of the turmoil. Unfortunately, the existing EWS have remained

silent at the edge of the recent financial crisis, leading researchers to renew their models. 1

This paper follows this objective emphasizing the importance of crisis dynamics for the new

generation of EWS.

At first sight, understanding why detecting a crisis appears so difficult is fastidious as

forecasting techniques have substantially improved over the last decades. This difficulty

actually lies in the specificity of EWS, that aim at accurately detecting the occurrence

of a crisis, which is by essence a binary variable taking the value of one when the event

occurs, and the value of zero otherwise. Hence, it is not possible to directly implement the

methods proposed in times series econometrics such as vector autoregression. Thus, following

Kaminski, Lizondo and Reinhart (1998) (hereafter KLR), the first EWS was elaborated

upon a signalling approach. Using a large set of potentially informative variables 2, they

identified a threshold beyond which a crisis is signaled. The properties of such an EWS

clearly depend on this cut-off point. KLR estimated it as the threshold value that minimizes

the ratio between the number of crises incorrectly and correctly detected, also called the

noise-to-signal ratio. 3 Once the variable specific threshold is determined, it is possible to

build an aggregate indicator as a weighted combination of the variables, where each weight

corresponds to the inverse of the associated noise to signal ratio. Hence, the so built EWS

should exhibit a positive trend as the occurrence of a crisis increases.

Berg and Patillo (1999) (hereafter BP) proposed to use a static panel probit model as

an alternative to the signalling approach. Hence, the binary crisis variable is treated as

endogenous and explained by a set of macroeconomic variables. Evaluation criteria, such as

the quadratic probability score (QPS) and the log probability score (LPS), indicate that their

EWS exhibit better forecasting abilities (within and out of the sample) than the KLR one.

Several extensions have been proposed: Kumar et al., (2003) advocate the use of panel logit

instead of panel probit. Fuertes and Kalotychou, (2007) and Berg et al., (2008) analyze the

presence of country clusters and their consequences for the EWS. Bussiere and Fratzscher

(2006) suppose that a post-crisis specific period may be present, and consider the crisis as a

ternary variable instead of a binary one, thus developing a multinomial logit EWS (Bussiere

1. See Rose and Spiegel (2010)
2. KLR consider 15 variables characterizing the domestic macroeconomic conditions, the external position

and the financial sector of the considered countries.
3. Alternative estimation methods are available. See Candelon et al. (2009) for a discussion of this point.
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and Fratzscher, 2006). Moreover, as the estimation methods for panel limited dependent

variables are quite standard and available in almost all econometric softwares, this type of

EWS has been extensively implemented in applied studies.

Nevertheless, both previous EWS are static and assume that the probability to exit a

crisis period depends only on a set of macroeconomic variables, representing the implemented

economic policies. This assumption is not supported by most empirical studies which show

that the longer a country is in a crisis period, the higher the probability to exit the crisis

will be, whatever the political reaction (see Tudela, 2004). Besides, Berg and Coke (2004)

showed that EWS are per nature autoregressive, as they should ring not only one period

before the occurrence of a crisis but during j periods, where j is the forecast horizon. Hence,

it appears difficult for a static model to reproduce such a property.

To overcome the absence of dynamics, another mainstream of the literature proposes

EWS elaborated on Markov-switching models (MS hereafter) (Abiad, 2003; Martinez-Peria,

2002; Fratzcher, 2003). This type of EWS can take into consideration dynamic processes

which are specific to the crisis or non-crisis regime. Nevertheless, as these models are shaped

for continuous variables, they cannot be used in case of the crisis binary variable, without

imposing another ad hoc threshold. Instead, they consider a market pressure index, which is

a continuous indicator of the stress faced by a country’s currency. Although this approach is

per se interesting, it has been shown by Candelon et al. (2009) that its predicting abilities

are lower compared to the BP EWS. Moreover, a panel version of MS model is, to the best

of our knowledge, not available.

Therefore, our paper proposes a new generation of EWS which reconciles the limited

dependent property of the crisis variable and the dynamic dimension of this phenomenon.

Particular attention is given to the specification and the estimation of such models. Actually,

the dynamics of crises can be apprehended in several ways. First, it can be included as a

lagged binary crisis variable. Thus, the EWS to be estimated looks like an autoregressive

(AR) binary model, where the lagged binary variable summarizes all the past information of

the system. Second, dynamics can be introduced via the past probability of being in a crisis

regime. Finally, the two previous specifications should allow for the presence of past macro-

economic variables representing the economic policies experienced by a certain country. Given

all these different specifications, the estimation methodology proposed should be flexible

enough to allow for specification tests. It is the recent paper of Kauppi and Saikonnen

(2008) that proposes an exact Maximum Likelihood estimation fitted to all these model

specifications. 4 Beyond being easy to program in most common econometric softwares 5 and

not time intensive (results are obtained in a few second), this framework allows to detect

4. A previous attempt to estimate one specific dynamic specification has been proposed by Falcetti and
Tudela (2006) using a smoothly simulated likelihood estimation.

5. All Matlab program are available from the authors upon request.
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the best dynamic specification via the well-known information criteria. While Kauppi and

Saikkonen (2008) consider exclusively a time series framework, we extend it to a fixed effects

panel based EWS by elaborating on Carro (2007).

In an empirical analysis, we aim to build a currency crisis EWS for a sample of fifteen

emerging countries. The predictive abilities (within and out of the sample) of this new EWS

compared to a wide range of alternative EWS (in particular the MS and the static logit

models) are then investigated using the unified evaluation framework proposed by Candelon

et al. (2009). Anticipating on our results, it turns out that the dynamic model including

the lagged binary dependent variable outperforms (in-sample and out-of sample) most of

the other specifications. Moreover, it appears the the new EWS has incredibly good out-

of-sample forecasting abilities when the forecast horizon increases. Considering a 24 month

horizon, it identifies correctly almost all crisis and calm periods (more than 96% of the crisis

periods and more than 98.2% of the calm ones) whatever the country and the type of analysis

(time-series or panel). Finally, it turns out that the dynamic logit EWS outperforms its main

competitors: the static logit and the MS.

This paper is structured as follows: the new estimation methods used for dynamic limited

dependent EWS both in time-series and panel are presented in section 2. The database, the

currency crisis dating methods as well as the estimation results are scrutinized in section 3.

Section 4 proposes a comparison of the forecasting abilities of the models, while section 5

concludes.

2 A Dynamic Specification of EWS

In this section, the dynamic limited dependent EWS is presented both in its time-series

and panel version. To date, almost all EWS models are static and do not exploit the per-

sistence property of the crisis, captured by a lagged crisis index. This paper is the first one

to consider a dynamic version of EWS based on an exact maximum likelihood estimation.

Actually it was Kauppi and Saikkonen (2008) who showed that a maximum likelihood es-

timator (ML) can be implemented under appropriate regularity conditions (stationarity of

explanatory variables and normality of the random variables), and it has desirable large

sample properties. Moreover, within this framework it is possible to compare several dyna-

mic alternatives: for example, Kauppi and Saikonnen (2008), show that a dynamic model

including both the lagged value of the index and the one of the binary variable itself predicts

U.S. recessions better than a static model.
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2.1 Specification and Estimation

Let us consider first the time-series version of the dynamic limited dependent EWS. We

denote by yn,t, t ∈ {1, 2, ..., T} the currency crisis binary variable for country n, taking the

value of 1 if there will be at least a crisis in the following j months and 0 if not and by

xn,t the matrix of explanatory variables, whose first column is a unit vector. For ease of

computation, hereafter n will be omitted.

When using a logit model, the one-step-ahead dynamic specification accounting both for

the influence of the lagged binary variable and that of the lagged index takes the form of: 6

Pt−1(yt = 1) = Λ(πt) = Λ(απt−1 + δyt−1 + xt−1β), (1)

where Pt−1(yt = 1) is the conditional probability given the information set we have at our

disposal at time t− 1 and πt is the index at time t.

Actually, this is the first representation of Kauppi and Saikonnen (2008) applied to EWS

models. The main advantage of this general framework is that it allows to estimate and

then compare different alternative specifications. More precisely, we first consider the pure

static model, in which the occurrence of currency crises is explained only by exogenous ma-

croeconomic variables. Second, a dynamic model including the lagged value of the binary

dependent variable yt−1 is proposed. Third, a dynamic model including the lagged index πt−1

is implemented. Finally, the most complex dynamic model, including both the lagged de-

pendent variable yt−1 and the lagged index πt−1 is estimated. Given the maximum-likelihood

framework, these dynamic time-series models are easy to implement using any existing eco-

nometric software. 7 Besides, the ML estimators have the desired large-sample properties. In

fact, the log-likelihood function takes the general form of:

LogL(θ) =
T∑
t=1

lt(θ) =
T∑
t=1

[ytlogΛ(πt(θ)) + (1− yt)log(1− Λ(πt(θ)))], (2)

where θ is the vector of parameters.

Nevertheless, one should not loose sight of the fact that since in the last two models α

is an autoregressive parameter, it has to satisfy the usual stationarity condition, i.e., the

roots of the corresponding polynomial lie outside the unit circle. To tackle this problem, a

constrained maximum likelihood estimation 8 is implemented and described in Appendix 1.

6. It can be noted that the model for h-step-ahead forecasts can be obtained by repetitive substitutions.
For more details, see Kauppi and Saikonnen (2008).

7. All the codes have been written in Matlab and are available from the authors upon request.
8. Besides, we tackle the autocorrelation problem induced by the construction of a j months ahead crisis

variable by considering a Gallant correction for the variance-covariance matrix.
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2.2 Panel Data Analysis

Instead of considering EWS for individual countries and hence applying a time-series

approach, several papers (Berg and Patillo, 1998 ; Kumar et al., 2003) favor a panel data

approach by pooling the information available in several countries. The main advantage

of using panel data methods is the number of observations which increases the ability to

estimate. Nevertheless, as shown by Berg et al. (2008), pooling all possible countries can be

problematic for heterogenous countries. Thus, it is advisable to perform pre-cluster samples

of countries. Here we present a dynamic version of a fixed effect panel model by elaborating

on Carro (2007).

Let us consider here the panel version of the dynamic limited dependent EWS which has

the following form:

P(yit = 1) = Λ(αyit−1 + βxit−1 + ηi), t = 0, 1, 2, ...T, and i = 1, 2, ..N, (3)

where N is the number of individuals in the panel, T represents the number of time series

observations for each individual, and ηi accounts for the permanent unobserved heterogeneity

between individuals. Since we do not impose any distributional assumption to ηi, i = 1, 2, ..N ,

they are treated as parameters to be estimated, and our approach is one with fixed effects.

The dependent variable yit equals 1 if if there will be at least a crisis in the following j months

and it equals 0 in the opposite case. Moreover, xit−1 represents the matrix of explicative

variables, which can include besides macroeconomic variables the lagged index as well.

The log-likelihood of the model conditioned on the first observation, often called concen-

trated likelihood takes the following form:

LogL(θ, ηi) =
N∑
i=1

LogLi(θ, ηi) =
N∑
i=1

T∑
t=1

[yitln(Λit) + (1− yit)(1− Λit)], (4)

where θ = (α, β)′. As usual, the estimated parameters maximize the log-likelihood function,

which means that they solve the first order conditions with respect to θ and with respect to

ηi. Most importantly, the estimation of θ depends on η̂i, which means that θ̂ is a convergent

estimator of θ0 only when η̂i is a convergent estimator of ηi0, that is when N → ∞. Thus,

the central issue here, as in any non-linear panel model with fixed effects, is how to deal with

this incidental parameters problem.

The solution proposed by Carro (2007) actually consists in a numerical substitution of

the fixed effects (ηi) in the estimation of θ. Thus, at each step N non-linear equations are

solved so as to estimate η̂i, i = 1, 2...N by using θ̂ obtained at the previous step and then

the estimated values of η̂i are introduced into the first order condition corresponding to the

concentrated likelihood so as to estimate θ̂. To be more precise, the estimation of η is nested
5



in the algorithm that maximizes the concentrated log-likelihood, so that at each iteration

N + 1 non-linear optimizations are realized using the Gauss-Newton algorithm (the first

N optimizations correspond to the fixed effects, while the last one corresponds to the θ

parameters).

Moreover, in order to reduce the estimation bias from O(T−1) to O(T−2) without in-

creasing the asymptotic variance, Carro proposed a modification of the first order condition

expressed in terms of the original parameters of the model (hereafter MMLE). Consequently,

the modified score for a certain country takes the following form:

dθMi(θ) = dθCi(θ, η̂i(θ))−
1

2

1

dηηi(θ,η̂i(θ))

(
dθηηi(θ,η̂i(θ)) + dηηηi(θ,η̂i(θ))

∂η̂i(θ)

∂θ

)
+
∂/∂ηi(E[dθηi(θ, ηi)|yi0, ηi, xi])

E[dηηi(θ, ηi)|yi0, ηi, xi]
|ηi=η̂i(θ) −

E[dθηi(θ, ηi)|yi0, ηi, xi]
E[dηηi(θ, ηi)|yi0, ηi, xi]

|ηi=η̂i(θ)

∗∂/∂ηi(E[dηηi(θ, ηi)|yi0, ηi, xi])
E[dηηi(θ, ηi)|yi0, ηi, xi]

|ηi=η̂i(θ),

(5)

where dθCi(θ, η̂i(θ)) is an individual’s score from the concentrated likelihood (hereafter MLE):

dθCi(θ, η̂i(θ)) =
yit − Fit(θ, ηi)

Fit(θ, ηi)(1− Fit(θ, ηi))

(
yit +

∂η̂i(θ)

∂θ

)
. (6)

The MMLE first order condition corresponding to the entire panel can be obtained by adding

the individual MMLE scores.

At the same time, the corresponding standard errors can be easily obtained from the

principal diagonal of the variance-covariance matrix, which is given by the inverse of the

Hessian accounting for the fixed effects. The computation of the modified score and Hessian

matrix is detailed in Appendix 2.

The main advantage of Carro’s (2007) estimation method consists in its simplicity of

implementation since it is based on the first derivatives of the log-likelihood function. At

the same time, it allows for the estimation of all the dynamic specifications introduced in

the previous subsection. Finally, given the reduction of the bias, the estimators have good

asymptotic properties. 9

3 Empirical Application

To compare the forecasting abilities of static and dynamic currency crises EWS, both

time-series and panel models are estimated in order to retrieve the one-step ahead crisis

probabilities. Then, using the validation framework proposed by Candelon et al. (2009), the

9. All the codes have been developed in Matlab and are available upon request.
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best specification is selected and its forecasting performances are assessed : First, we proceed

to an in-sample analysis using the entire database so as to identify the outperforming model.

Second, aiming to assess the out-of-sample predictive abilities of the best model, we use a

rolling windows procedure with a view to obtain out-of-sample forecasts.

Nevertheless, before starting the analysis per se, let us present some data-related issues.

3.1 Data

Monthly data expressed in US dollars covering the period 1985-2008 for 15 emerging

countries 10 have been extracted from the IMF-IFS database as well as the national banks

of the countries under analysis via Datastream. Several explanatory variables from two eco-

nomic sectors were selected (see Candelon et al. 2009, Berg et al., (2008), Lestano et al.,

2003).

1. External sector: the one-year growth rate of international reserves, the one-year growth

rate of imports, the one-year growth rate of exports, the ratio of M2 to foreign reserves, and

the one-year growth rate of M2 to foreign reserves.

2. Financial sector: the one-year growth rate of M2 multiplier, the one-year growth rate

of domestic credit over GDP, real interest rate and real exchange rate overvaluation.

As in Kumar (2003), we dampen every variable using the formula : f(xt) = sign(xt) ∗
ln(1 + |xt|), so as to reduce the impact of extreme values. Traditional first generation (Im,

Pesaran, Shin, 1997) as well as MW (Maddala and Wu 1999) and second generation (Bai and

Ng, 2001 and Pesaran, 2003) panel unit root tests are performed, leading to the rejection

of the null hypothesis of stochastic trend for all explanatory variables. Besides, the gaps

through the series are replaced with the mean value of each series.

Since we aim to evaluate the forecasting abilities of dynamic logit models, we proceed

to a general selection from the aforementioned exogenous variables, leading to the choice of

only two macroeconomic variables. It is the first lag of these variables that is introduced into

the models as a control variable, namely the one-year growth rate of international reserves

and the one-year growth rate of M2 to foreign reserves. To be more exact, this selection is

based on previous results found in the literature, on the correlation between the indicators,

as well as on the explanatory power of each variable.

3.2 Dating Currency Crises

The most common method leading to the identification of currency crisis periods implies

the computation of an index of speculative pressure. If this index exceeds a certain threshold,

10. Argentina, Brazil, Chile, Indonesia, Israel, Malaysia, Mexico, Morocco, Peru, Philippines, South Ko-
rea,Turkey, Thailand, Uruguay and Venezuela.
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a crisis episode is identified. As in Candelon et al. (2009), we base our choice on the results

of Lestano and Jacobs (2004). Following their results, we identify crisis periods using the

KLR modified pressure index (KLRm), which, unlike the KLR index, also includes interest

rates:

KLRmn,t =
∆en,t
en,t

− σe
σr

∆rn,t
rn,t

+
σe
σi

∆in,t, (7)

where en,t denotes the exchange rate (i.e., units of country n’s currency per US dollar in

period t), rn,t represents the foreign reserves of country n in period t, while in,t is the interest

rate in country n at time t. Meanwhile, the standard deviations σX are actually the standard

deviations of the relative changes in the variables σ(∆Xn,t/Xn,t), where X denotes each variable

separately, including the exchange rate, foreign reserves, and the interest rate, with ∆Xn,t =

Xn,t − Xn,t−6. 11 For both subsamples, the threshold equals two standard deviations above

the mean: 12

Crisisn,t =

1, if KLRmn,t > 2σKLRmn,t
+ µKLRmn,t

0, otherwise.
(8)

3.3 Optimal Country Clusters

As Berg et al. (2008) have pointed out, pooling all available countries into one panel

model might not be the best alternative especially in terms of forecasting abilities of the

model. Nevertheless, a viable alternative to time-series estimation might be represented by

a panel including only poolable countries. To be more precise, by poolable countries we

mean a group of countries for which the slope parameters corresponding to the time-series

models are statistically equal to the ones of a panel model including the same group of

countries, i.e., βi = βp, where βi is the vector of parameters for country i and βp is the vector

of parameters corresponding to the panel model. It is Kapetanios (2003) who proposed a

sequential procedure based on an Hausman type statistic that tests the homogeneity of

parameters between different countries grouped together in the same panel. Thus, it allows

to isolate country clusters for which the null hypothesis of homogeneity of parameters cannot

be rejected.

Following their recommendations, we apply the dynamic panel model on two optimal

clusters (11 and respectively 2 countries out of 15) which are identified by using Kapeta-

nios’s methodology (Kapetanios, 2003). For the two non-poolable countries (Israel and South

Korea) only time-series models are estimated.

11. Additionally, we take into account the existence of higher volatility in periods of high inflation, and
consequently the sample is split into high and low inflation periods. The cut-off corresponds to a six month
inflation rate higher than 50%.

12. The variable Crisis corresponds to yt from our general framework.
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3.4 Estimation Results

In this subsection we first estimate different time-series models for each country and then,

based on the Schwarz Information Criterion (hereafter SBC) we select the most parsimonious

dynamic specification. Then, panel models corresponding to the best dynamic time-series

model specification are estimated by using the whole sample of countries and respectively,

by relying only on the poolable ones.

insert Tables ??, ?? and ??

Tables ??, ?? and ?? show the results of the ML estimates for the four time-series model

specifications, i.e., the static model (Model 1), a dynamic one including the lagged binary

dependent variable (Model 2), a dynamic one including the lagged index (Model 3), and last

but not least, a dynamic model which includes both the lagged binary dependent variable

and the lagged index (Model 4).

The goodness of fit indicator reveals that the independent variables have important ex-

planatory power especially when the lagged dependent variable and/or the lagged index are

present in the model, i.e., the dynamic models (see Table ??).

insert Table ??

More specifically, the lowest values of the SBC criterion are registered most of the time

for these dynamic models and in particular for the second model, which seems to be the

most adequate dynamic specification for most of the countries. 13 To put it another way, the

goodness of fit indicator is a clear indication of the fact that dynamic specifications generally

outperform the static one. Nevertheless, a proper statistical assessment framework for the

forecasting performance of static and dynamic models needs to be implemented, which is

done in the next section.

At the same time, the signs of the estimated parameters in the best dynamic model, i.e.,

the second one, tend to correspond to a priori expectations. If an increase in a country’s

growth of international reserves indicator is observed at a certain moment in time, a decline

in the probability of occurrence of currency crises is presumed, since it is perceived as an

indicator of currency non-vulnerability, i.e., a negative coefficient of the growth of interna-

tional reserves is awaited. Besides, the probability of currency-crisis emergence is supposed

to escalate if an expansion of the growth of M2 to reserves is noticed in the previous period.

To be more exact, if the growth of the amount of money in circulation overruns the growth of

13. Nevertheless, the third model seems better for countries like Brazil and Thailand, whereas the static
model seems more parsimonious than the dynamic specifications for the countries registering a very small
number of crisis periods (only one or two periods), countries for which no model can actually work well since
we face a rare event data problem.
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international reserves, the currency is perceived as unstable and a speculative attack is fore-

seeable. Thus, a positive coefficient of the growth of M2 to reserves is expected. Nonetheless,

several countries register strange signs, i.e. negative and significative coefficients.

To sum up, the coefficient of the lagged binary dependent variable is most of the time

significant and has a positive sign (except for the countries for which the static model turns

to perform better), whereas the impact of macroeconomic variables and of the lagged index

is different from one country to another (in terms of sign and significance), emphasizing the

idea that accounting for the dynamics of the crisis is compulsory for the construction of a

stringent EWS.

Since the second model appears to outperform the other dynamic specifications, we opt for

the dynamic panel methodology in the form including the lagged binary dependent variable

along with the selected macroeconomic indicators.

The results of the estimation of a dynamic panel logit model with fixed effects using the

entire database and respectively using only the poolable countries are reported in Table ??.

It can be noticed that the signs of the coefficients are similar from one model to another,

and that most of them are significative for all the significance levels, i.e., 1%, 5% and 10%.

And yet, the coefficient of the growth of M2 to reserves has the wrong sign for the panel

including all the countries as well as for the first cluster of poolable countries, supporting

the conclusion of Berg et al. (2008) that only poolable countries should be grouped together

in a panel framework.

4 Forecasts Evaluation

So far we have seen that accounting for the currency crisis dynamics matters, and more

exactly we have proved that the introduction of the lagged binary dependent variable into the

model improves the estimation of currency crises probabilities. In this section we go one step

further and statistically test the in-sample one-step-ahead forecasting abilities of the static

and dynamic currency crisis EWS models by applying the validation methodology developed

in Candelon et al. 2009. 14 Then, the out-of-sample one-step ahead predictive abilities of the

best model are checked. Finally, a robustness check is performed considering an horizon of

24 months for the out-of-sample forecast.

14. It consists in a 3-step approach: First, the optimal cut-off for each country based on an accuracy-error
measures. Second, the predictive abilities of the two type of models is scrutinized. using criteria such as
AUC, QPS, LPS, Kuiper’s Score, Pietra Index and the Bayesian Error rate. Third, comparison tests are
implemented so as to identify the outperforming model. To be more precise, a Clark-West test (Clark and
West, 2007) is used in the case of nested models, while a Diebold-Mariano (Diebold and Mariano, 1995) test
is utilized for non-nested models.
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4.1 Time-series Models

In this part of the paper, we check the within sample forecasting abilities of the static and

dynamic time-series models. For this purpose, the whole dataset is considered (January 1986

- February 2008). Moreover, for comparability reasons, we gauge the forecasting abilities of

dynamic Markov switching models. To this aim, a Markov-switching model is estimated for

each country (see Abiad, 2003; Arias and Erlandson, 2005; Candelon et al. 2009). Never-

theless, contrary to the static model that has been previously used, our approach is based

on a dynamic perspective, materialized in a switch of the lagged binary dependent variable

from one regime to another, i.e., from crisis to calm periods and vice-versa. Once the filtered

probabilities are computed, the model for each country is evaluated.

First of all, the optimal cut-offs as well as the percentage of correctly forecasted crises

(sensitivity) and respectively calm periods (specificity) are available in Table ??.

insert Table ??

The optimal cut-off for each country has been identified by relying on the accuracy

and error measures thus giving more weight to the correct identification of crises periods

(sensitivity). Table ?? shows that both the static and dynamic country per country models

are characterized by small values of the cut-offs (they range between 0.008 and 0.606).

Moreover, both crisis and calm periods are very well forecasted by the dynamic logit model,

i.e., sensitivity and specificity lay between 66.7% and 100% for each country while in the

case of the static model they range between 50% and 100%. This means that the lagged

dependent variable has improved explanatory power and discriminates very well between

calm and crisis periods.

Indeed, for most of the countries the crisis probabilities issued from the dynamic logit

model are quite low during real calm periods and they are very high in the real crises periods

(see Figure 1 and 2), reinforcing the idea that the dynamic model outperforms the static

one. To be more precise, this model correctly forecasts most of the currency crisis episodes

that been recorded and analyzed by other studies (Abiad, 1993; Dabrowski, 2003; Glick and

Hutchison, 1999) as well as more recent ones, while the static model seems to be less efficient.

At the same time, the sensitivity and specificity of the dynamic Markov model vary

a lot from one country to another, i.e. they sometimes reach their maximum, 1, but other

times they drop to their minimum, 0, as well, indicating that dynamic Markov models may

not be as good as the logit ones are. To confirm this intuition, a proper comparison test will

be implemented further on.

Next, performance assessment criteria based on both sensitivity-specificity measures

(AUC, Kuiper’s score, Pietra index, Bayesian Error rate) and on the comparison of fore-

casts with the realizations of the crisis variable ( QPS and LPS) are used. We recall that
11



the higher the value of AUC is the better the model will be; a positive value of Kuiper’s

score signifies that the model generates more hits than false alarms, and so its predictive

performance should increase; similarly, a higher Pietra index, and a lower Bayesian error

rate indicate a more stringent model, as do values of QPS and LPS closer to zero.

insert Tables ?? and ??

On the one hand, the results corresponding to the static time-series model are presented

in the upper part of Table ??. By comparison with the results of the dynamic logit model

(see the lower part of the Table ??), it seems that the values of the evaluation criteria of

the static model are not as close to the optimum as for the dynamic model. The difference

is most of the time at the second decimal, and it favors our dynamic specification.

On the other hand, the forecasting abilities of dynamic Markov models seem to vary a

lot from one country to another (see Table ??); for example, QPS and LPS have relatively

high values, while AUC is sometimes worst than the one of a random model. These findings

support our intuition that the dynamic Markov model is not even as good as the static logit.

Finally, the optimal model specification is identified by applying Clark-West’s MSPE-adj

test and Diebold Mariano’s DM test. First, the two time-series models are compared using

Clark and West, (2007) test, suited to nested models, then, the test developed by Diebold-

Mariano, (1995) is implemented so as to compare logit and Markov models. The results

obtained are presented in Table ??.

insert Table ??

Table ?? reveals that the dynamic time-series specification outperforms the static one

for most of the countries. 15 Indeed, Clark-West’s test rejects the null hypothesis of equal

forecasting abilities for 10 out of the 15 countries. The results of these tests corroborate our

main finding that the lagged binary dependent variable matters for the forecasting abilities

of currency crises EWS models. Moreover, the middle part of Table ?? confirms the findings

of Candelon et al. (2009) stressing the forecasting superiority of the logit models versus the

dynamic Markov models.

4.2 Panel Models

So far, we have shown that time-series dynamic logit models outperform both static logit

models and dynamic Markov switching specifications. Now, the two dynamic panel models

considered in the paper (based on all available countries and respectively using only the

15. As we have already seen in the information criterion Table, that there are several countries for which
the static model seems better than the dynamic. Here we have the statistical proof that for Brazil, Chile,
Israel, South Korea and Morocco the static and dynamic models have similar forecasting abilities.
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poolable ones) are evaluated and their in sample forecasting abilities compared to those of

the best time-series specification, i.e., the dynamic logit model including the lagged binary

dependent variable.

insert Table ??

First of all, in the case of the dynamic panel models the values of the optimal cut-off are

similar to the ones registered for the dynamic time-series logit models, even though fairly

smaller i.e., they vary between 0.001 and 0.74 (see Table ??). Similarly, sensitivity and

specificity values corresponding to the two types of dynamic models resemble. All in all,

the results obtained by using a panel model do not seem to diverge much from those obtained

when using time-series models. To check this intuition, proper statistical comparison tests

are applied at the end of this section.

insert Table ??

Second, Table ?? shows that the dynamic panel models generally have good forecasting

abilities. To be more precise, with the exception of Chile, Morocco and Uruguay, the AUC is

always greater than 0.8, Kuiper’s score has positive values, Pietra index registers relatively

high values, while the Bayesian Error rate, QPS and LPS are very close to 0 (inferior to

0.153 to be more exact). Besides, the results are very similar from one dynamic model to

another except for Uruguay, for which the results cluster estimation are worst than the ones

corresponding to the entire dataset.

Last but not least, the two dynamic panel models are compared to the time-series dynamic

one and to the dynamic Markov-switching specification by using the DM test proposed by

Diebold-Mariano (1995).

insert Table ??

Table ?? shows that the null hypothesis of equal forecasting abilities cannot be rejected,

thus clarifying the fact that the dynamic panel models do not have better forecasting abilities

than the dynamic time series one, supporting the results obtained by Berg et al (2008). The

only exceptions are Marocco and Venezuela. Besides, the right part of Table ?? proves that

not only time-series dynamic logit models but also dynamic panel logit models are better

than dynamic Markov-switching specifications.

4.3 Out-of-sample analysis

In the previous subsections the properties of the dynamic logit model including the lagged

binary dependent variable have been investigated. Nevertheless, the out-of-sample characte-

ristics of such an EWS model have to be checked before concluding.
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To this aim, an out-of-sample experiment using a rolling windows procedure has been

implemented. More precisely, in order to compute the probability of having a crisis in January

1997, a dynamic time-series logit model is estimated using the dataset from January 1986 to

December 1996 and the parameters obtained are used to calculate the crisis probability for

January 1997. Similarly, for February 1997, the in-sample data corresponds to the February

1986-January 1997 period, and so on. A series of out-of-sample crisis probabilities is thus

obtained for each country so that the aforementioned evaluation methodology can be applied

straightforward.

Figure 3 presents the out-of-sample crisis probabilities from January 1997 to February

2008 for each of the 11 countries registering at least one crisis for the in-sample period

(January 1986 - December 1996). 16 It appears that for the countries which faced more than

one month of currency crisis, the EWS forecasting probability is very low in calm periods

while it is very high during crisis periods. It hence follows closely the in-sample results. On the

contrary, when countries faced only one period of crisis, forecasting abilities are disappointing.

Such a result is driven by the low amount of crisis observations : the number of 0 is huge,

hence causing bias in the estimation of the dynamic logit model. Thus, this findings would

support the use of longer forecast horizons as it is usually done in the literature. Considering

a forecast horizon of j months increases ”artificially” the number of 1 observation in the

sample, which improves the quality of the estimation and hence of the forecasting ability.

Nevertheless, it also introduced autocorrelation (see Berg and Coke, 2004) which may be

problematic.

Consequently, a robustness check is performed by employing the C24 crisis variable.

Figures 4 and 5 present the out-of-sample probabilities corresponding to this new binary

variable. This time the results are excellent, since the crisis probability is very high in real

crisis periods while it is very low in real calm periods. Even for the countries which never

faced a crisis the results are quite spectacular since the crisis probability is always low.

Indonesia and Thailand are the only exceptions, for which a high probability pick can be

observed in a calm period. Nevertheless, the picks are not persistent and thus, they can

hardly be perceived as signals of crisis. Besides, results are available for all countries, since,

contrary to the previous case, they all face currency crises in the within-sample period.

To summarize, it seems that all the EWS considering a forecast horizon j, where j > 1

should be dynamic, since the autocorrelation can be successfully captured improving hence

the forecasting abilities of the EWS model.

The cutoffs used for the out-of-sample series of crisis probabilities in both cases (crisis

at time t and respectively in 24 months) are reported in Table ??, while the out-of-sample

validation results are displayed in Table ??. The superiority of the forecasting results corres-

16. If there is not any in-sample crisis, we cannot compute the optimal cut-off needed in order to evaluate
the out-of-sample forecasting abilities of the model.
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ponding to the C24 variable is clear. Sensitivity and specificity are always higher than the

ones corresponding to the crisis at time t variable. Similarly, AUC, Kuiper’s score, Pietra

index and Bayesian error rate are higher while QPS and LPS are lower for C24.

insert Tables ?? and ??

5 Conclusion

This paper provides evidence of the importance of crisis dynamics to adequately forecast

crises and shows that future EWS models should integrate this dynamic. It is actually the

first to consider an exact ML methodology, elaborated on Kauppi and Saikonnen (2008), to

estimate a dynamic limited dependent EWS. In a second part, it extends this methodology

to panel by drawing on the works of Carro (2007).

Several conclusions can be drawn from the empirical application of this methodology to

construct currency crisis EWS models. First, we show that dynamic logit models consistently

outperform static ones as well as MS. This conclusion is drawn from the within sample fore-

cast exercise. Such a result is corroborated by the out-of-sample forecast exercise performed

by considering an horizon larger than 1. This can be explained by the fact that dynamic

captures the autocorrelation observe in such EWS. Second, looking at their forecasting abi-

lity, it turns out that dynamic EWS deliver extremely good forecasting probabilities: close

to 1 in the crisis periods or and near 0 the rest of the time.

There is no doubt that in the quest for a new generation for financial crisis EWS, dynamics

should constitute a key characteristic that would deliver more adequate signals to prevent

financial turmoils. Let us hope that policy makers could exploit these signals to tame such

painful events.
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Appendix 1: Constrained Maximum Likelihood Estima-

tion (Kauppi and Saikkonen, 2008)

Let us recall the general form of the model: Pt−1(yt = 1) = Λ(απt−1 + δyt−1 + xt−1β).

Following Kauppi and Saikkonen, we set the initial value π0 to (x̄β)/(1 − α), x̄ being the

sample mean of the exogenous variables. The initial condition for the β vector of parameters

is given by an OLS estimation, while the initial α is set to 0. Moreover, since α is an auto-

regressive parameter, a constrained maximum likelihood estimation must be implemented.

Nevertheless, the same results can be reached in a faster and easier way, by using a transfor-

mation of the α parameter in the classical maximum likelihood process. Thus, to solve this

problem, we denote by ψ the new maximization parameter, identified so that α is equal to

ψ/(1 + |ψ|), i.e., α takes values in the interval [0,1].

Hence, the log-likelihood function takes the form of:

LogL(θ) =
T∑
t=1

lt(θ) =
T∑
t=1

[ytlogΛ(πt(θ)) + (1− yt)log(1− Λ(πt(θ)))], (9)

where θ is the vector of parameters θ = [ψ β].

It is noticed that in view of the parameter transformation from α to ψ, the maximization

variance-covariance matrix corresponds to the parameters [β ψ], and not to the initial pa-

rameters [β α]. Thus, we must proceed to a change of the variance-covariance matrix from

the first space to the second one. To this end, we use Taylor’s theorem to calculate the

approximation of the transformation function around the point ψ0. To be more exact, since

the estimated parameter α̂ = f(ψ̂), where f(ψ̂) = ψ̂/(1 + |ψ̂|), the approximation becomes:

α̂ = f(ψ̂) ' f(ψ0) +
∂f(ψ̂)′

∂ψ
|ψ0(ψ̂ − ψ0). (10)

Nevertheless, we aim at finding the variance of α, and thus, using the formula V ar(a′X) =

a′V ar(X)a, we obtain:

V ar(α̂) ' 0 +
∂f(ψ̂)′

∂ψ
|ψ0V ar(ψ̂)

∂f(ψ̂)

∂ψ
|ψ0 (11)

Since ψ̂
p−→ ψ0, we can replace ψ0 with the estimator ψ̂ in eq. 8:

sV ar(α̂) ' 0 +
∂f(ψ̂)′

∂ψ
|ψ̂V ar(ψ̂)

∂f(ψ̂)

∂ψ
|ψ̂ (12)

Last but not least, the first derivative of the transformation function f(ψ̂) with respect to (ψ̂)
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can be computed through finite differences. Consequently, the standard errors obtained as

the square root of the elements laying on the first diagonal of the variance-covariance matrix

are consistent with the [α ψ] vector of parameters. More exactly, a Gallant correction based

on a Parzen kernel (Gallant, 1987) is used for the variance-covariance matrix. Kauppi and

Saikonnen (2008) argue that robust standard errors can be obtained as the diagonal elements

of the matrix Ĵ(θ̂)−1Î(θ̂)Ĵ(θ̂)−1, where Î(θ̂) = T−1(
∑T

t=1 d̂
′
td̂t +

∑T
t=1wTj

∑T
t=j+1(d̂

′
td̂t−j +

d̂
′
t−j d̂t)), d̂t = ∂lt(θ̂)∂θ, and where J(θ) = plimT→∞T

−1
∑T

t=1(∂2lt(θ)∂θ∂θ
′
). On top of that,

we consider that the robust variance-covariance matrix should be used not only for h-periods-

ahead forecasts, h > 1 (as in Kauppi and Saikonnen, 2008) but also for one period-ahead

forecasts, since the logistic distributional hypothesis imposed to the error term might not

always hold and most importantly, since this variance-covariance matrix specification is

robust to autocorrelation, automatically introduced when considering an EWS (see Berg

and Coke, 2004).

Appendix 2: Modified Maximum Likelihood Estimation

(Carro, 2007)

As previously mentioned, the dynamic panel logit models with fixed effects is estimated

by solving N + 1 non-linear equations based on the modified score of each individual, which

takes the following form:

dθMi(θ) = dθCi(θ, η̂i(θ))−
1

2

1

dηηi(θ,η̂i(θ))

(
dθηηi(θ,η̂i(θ)) + dηηηi(θ,η̂i(θ))

∂η̂i(θ)

∂θ

)
+
∂/∂ηi(E[dθηi(θ, ηi)|yi0, ηi, xi])

E[dηηi(θ, ηi)|yi0, ηi, xi]
|ηi=η̂i(θ) −

E[dθηi(θ, ηi)|yi0, ηi, xi]
E[dηηi(θ, ηi)|yi0, ηi, xi]

|ηi=η̂i(θ)

∗∂/∂ηi(E[dηηi(θ, ηi)|yi0, ηi, xi])
E[dηηi(θ, ηi)|yi0, ηi, xi]

|ηi=η̂i(θ),

(13)

where dθCi(θ, η̂i(θ)) is an individual’s score from the concentrated likelihood (MLE):

dθCi(θ, η̂i(θ)) =
yit − Fit(θ, ηi)

Fit(θ, ηi)(1− Fit(θ, ηi))

(
yit +

∂η̂i(θ)

∂θ

)
(14)

From the first order condition of ηi, dηi(θ, ηi) =
∑T

t=1(yit−Fit(θ, ηi))/Fit(θ, ηi)(1−Fit(θ, ηi)) =

0, it can be derived that the estimators η̂i, i = 1, 2, ..., N solve the following equation:

T∑
t=1

yit
fit(θ, ηi)

Fit(θ, ηi)(1− Fit(θ, ηi))
=

T∑
t=1

Fit(θ, ηi)fit(θ, ηi)

Fit(θ, ηi)(1− Fit(θ, ηi))
(15)
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Deriving Equation (15) with respect to θ we can obtain ∂η̂i(θ)/∂θ:

∂η̂i(θ)/∂θ = −

T∑
t=1

XiZ
Fit(θ,ηi)2(1−Fit(θ,ηi)2)

T∑
t=1

Z
Fit(θ,ηi)2(1−Fit(θ,ηi)2)

, (16)

where Xi = yt−1, xi1, xi2, ..., xiK , is the explanatory variable corresponding to the θ =

α, β1, β2, ..., βK parameter we analyze, K is the number of explanatory variables, and Z =

yt[f
′
it(θ, ηi)Fit(θ, ηi)(1−Fit(θ, ηi))−f 2

it(θ, ηi)(1−2Fit(θ, ηi))]−f 2
it(θ, ηi)F

2
it(θ, ηi)−F 2

it(θ, ηi)(1−
Fit(θ, ηi))f

′
it(θ, ηi). Let us remind that Fit(θ, ηi) is the cumulative distribution function,

fit(θ, ηi) is the density function and f
′
it(θ, ηi) is the first derivative of the density function.

Thus, in the case of a logit model Fit(θ, ηi) = exp(αyit−1 + xit−1β + ηi)/(1 + exp(αyit−1 +

xit−1β + ηi)), fit(β, ηi) = exp(αyit−1 + xit−1β + ηi)/(1 + exp(αyit−1 + xit−1β + ηi))
2, and

f
′
it(β, ηi) = exp(αyit−1 +xit−1β+ηi)(1− exp(αyit−1 +xit−1β+ηi))/(1 + exp(αyit−1 +xit−1β+

ηi))
3.

To put it another way, the partial derivative of the η gradient with respect to θ is given

by the implicit functions theorem:

∂η̂i(θ)/∂θk = −∂dηi(θ, η̂i)/∂θk
∂dηi(θ, η̂i)/∂ηi

, (17)

where k=1,2,...K, K being the number of explanatory variables considered in the model,

∂dηi(θ, η̂i)/∂θk = ∂2LogL(θ, ηi)/∂ηi∂θk|(θ, η̂i), and ∂dηi(θ, η̂i)/∂ηi = ∂2LogL(θ, ηi)/∂
2ηi|(θ, η̂i).

The estimation of the parameters by classical MLE is straightforward since dθCi(θ, η̂i(θ)) = 0

and dηi(θ, ηi) = 0 can be easily computed and solved. However, aiming to reduce the estima-

tion bias, the implementation of MMLE becomes compulsory, for which further information

regarding the expectance of the first order condition and the derivatives of this expectance

is required.

In view of the MMLE estimation, we derive the following elements for the α parameter,

corresponding to the lagged binary variable:

dαηi(θ, ηi) =
∂2LogLi
∂α∂ηi

= −
T∑
t=1

yi,t−1fit(αyit−1 + βxi + ηi), (18)

dηiηi(θ, ηi) =
∂2LogLi
∂2ηi

= −
T∑
t=1

fit(αyit−1 + βxi + ηi), (19)
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dαηiηi(θ, ηi) = −
T∑
t=1

yi,t−1f
′

it(αyit−1 + βxi + ηi), (20)

dηiηiηi(θ, ηi) = −
T∑
t=1

f
′

it(αyit−1 + βxi + ηi), (21)

where f is the logistic pdf and f ′ is the first derivative of the logistic pdf.

Next, we aim at calculating the expectation of the derivatives dαηi and dηiηi . Thus, in a

first step we calculate the probability at time t that a crisis will occur in country i in the

next 24 months given the initial value of the binary dependent variable yi0, the fixed effects

ηi and the explanatory variables xi (Pr(yit = 1|yi0, ηi, xi)):
Pr(yi1 = 1|yi0, ηi, xi) = Fit(αyi0 + βxi + ηi) starting point. For t > 1 :

Pr(yit = 1|yi0, ηi, xi) = Pr(yit−1 = 1|yi0, ηi, xi)(Fit(α+βxi+ηi)−Fit(βxi+ηi))+Fit(βxi+ηi).

(22)

Moreover, Pr(yi0 = 1|yi0, ηi, xi) = yi0.

In the second step the expectation of the two derivatives can be calculated:

E[dαηi(θ, ηi)|yi0, ηi, xi] = −
T∑
t=1

E[yit−1fit(αyit−1 + βxi + ηi)|yi0, ηi, xi], where (23)

E[yit−1fit(αyit−1 + βxi + ηi)|yi0, ηi, xi] = fit(α + βxi + ηi)Pr(yit−1 = 1|yi0, ηi, xi). (24)

and

E[dηiηi(θ, ηi)|yi0, ηi, xi] = −
T∑
t=1

E[fit(αyit−1 + βxi + ηi)|yi0, ηi, xi], where (25)

E[fit(αyit−1 + βxi + ηi)|yi0, ηi, xi] = fit(α + βxi + ηi)Pr(yit−1 = 1|yi0, ηi, xi)
+ fit(βxi + ηi)(1− Pr(yit−1 = 1|yi0, ηi, xi))
= Pr(yit−1 = 1|yi0, ηi, xi)(fit(α + βxi + ηi)

− fit(βxi + ηi)) + fit(βxi + ηi),

(26)

The last elements needed in the gradient function are the derivatives of the two expectations

of dαηi and dηiηi with respect to the fixed effect ηi. Nevertheless, to compute these elements,

the derivative of the probability of occurrence of a crisis within 24 months at time t in
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country i with respect to ηi must be first calculated:

∂

∂ηi
Pr(yi1 = 1|yi0, ηi, xi) = fi1(αyi0 + βxi + ηi) (27)

∂

∂ηi
Pr(yit = 1|yi0, ηi, xi) =

∂

∂ηi
Pr(yit−1 = 1|yi0, ηi, xi)(Fit(α + βxi + ηi)− Fit(βxi + ηi))

+ Pr(yit = 1|yi0, ηi, xi)(fit(α + βxi + ηi)− fit(βxi + ηi)) + fit(βxi + ηi).

(28)

Finally, the last elements needed in the formula of the gradient are obtained

∂

∂ηi
(E[dαηi(θ, ηi)|yi0, ηi, xi]) = −

T∑
t=1

∂

∂ηi
E[yit−1f(αyit−1 + βxit−1 + ηi)|y0, ηi, xi]

= f
′
(α + βxit−1 + ηi)Pr(yit−1 = 1|yi0, ηi, xi)

+ f(α + βxit−1 + ηi)
∂

∂ηi
Pr(yit−1 = 1|yi0, ηi, xi),

(29)

and respectively

∂

∂ηi
(E[dηiηi(θ, ηi)|yi0, ηi, xi]) = −

T∑
t=1

∂

∂ηi
E[f(αyit−1 + βxit−1 + ηi)|y0, ηi, xi]

=
∂

∂ηi
Pr(yit−1 = 1|yi0, ηi, xi)(f(α + βxit−1 + ηi)− f(βxit−1 + ηi))

+ Pr(yit−1 = 1|yi0, ηi, xi)(f
′
(α + βxit−1 + ηi)− f

′
(βxit−1 + ηi))

+ f
′
(βxit−1 + ηi).

(30)

The individual score corresponding to the slope parameters, i.e. β, can be computed in

a similar way. Nevertheless, we must take into account the fact that ∂F/∂βk = xit,kf ,

where xit,k is the kth explanatory variable, which is known, contrary to yt−1 from the score

corresponding to the lagged binary variable parameter α.

As for the variance-covariance matrix, it is the inverse of the the MMLE Hessian matrix,

which is calculated accounting for the fixed effects by using the following formula: 17

N∑
i=1

(
∂2LogLi(θ, η̂i(θ))

∂θ∂θ
+
∂2LogL(θ, ηi)

∂θ∂ηi
|ηi=η̂i(θ)

∂η̂i(θ)

∂θ

+ [
∂2LogLi(θ, ηi(θ))

∂ηi∂θ
|ηi=η̂i(θ) +

∂2LogLi(θ, ηi(θ))

∂ηi∂ηi
|ηi=η̂i(θ)

∂η̂i(θ)

∂θ
]
∂η̂i(θ)

∂θ
).

(31)

17. It is also possible to correct for autocorrelation as in the case of time-series models, by using a ”sandwich
estimator” for the variance-covariance matrix.
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Figure 1 – Predicted probability of crisis - in sample
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Figure 2 – Predicted probability of crisis - in sample (continued)
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Figure 3 – Predicted probability of crisis (one-step-ahead forecasts) - out-of-sample
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Figure 4 – Predicted probability of crisis (one-step-ahead forecasts) - out-of-sample (conti-
nued)
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Figure 5 – Predicted probability of crisis (24-months-ahead forecasts) - out-of-sample
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Figure 6 – Predicted probability of crisis (24-months-ahead forecasts) - out-of-sample (conti-
nued)
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Table 1 – Estimation results of the time-series logit models

Coefficient

Country Indicator Model 1 Model 2 Model 3 Model 4

Argentina

Intercept
-4.905*** -4.828*** -4.432*** -4.184***

(1.117) (0.809) (1.158) (1.047)

Lagged binary variable
2.527** 2.384**

(1.062) (0.915)

Growth of international reserves
-7.703** -5.398* -7.135*** -4.832**

(3.783) (2.676) (3.266) (2.255)

Growth of M2 to reserves
-1.602 -1.156 -1.394 -0.880

(1.051) (0.806) (0.955) (0.693)

Lagged index
0.106 0.143

(0.107) (0.135)

Brazil

Intercept
-3.293*** -3.579*** -0.621*** -0.808***

(0.481) (0.423) (0.167) (0.246)

Lagged binary variable
2.363*** 0.655

(0.874) (0.596)

Growth of international reserves
-3.289 -2.433 -1.087*** -1.034***

(1.997) (1.753) (0.285) (0.330)

Growth of M2 to reserves
-0.047 -0.042 0.017*** 0.018***

(0.069) (0.057) (0.004) (0.004)

Lagged index
0.835*** 0.794***

(0.039) (0.060)

Chile

Intercept
-4.413*** -4.405*** -2.104*** -0.984**

(0.747) (0.758) (0.812) (0.478)

Lagged binary variable
-4.140*** 1.613*

(1.397) (0.900)

Growth of international reserves
-1.447 -1.395 -0.086 0.788***

(3.754) (3.839) (0.312) (0.282)

Growth of M2 to reserves
-3.029 -3.051 -0.993 0.090

(2.303) (2.359) (0.968) (0.091)

Lagged index
0.531*** 0.809***

(0.158) (0.098)

Indonesia

Intercept
-5.583*** -5.640*** -8.501*** -6.971***

(0.927) (0.913) (2.009) (1.334)

Lagged binary variable
3.961*** 4.246**

(1.454) (1.886)

Growth of international reserves
-2.738 -0.086 -5.183 -0.537

(3.912) (3.967) (8.408) (5.706)

Growth of M2 to reserves
-10.12*** -6.355*** -15.45*** -8.574***

(2.608) (1.938) (5.029) (3.224)

Lagged index
-0.481*** 7-0.207

(0.083) (0.169)

Israel

Intercept
-8.228*** -23.07** -9.323*** -37.22

(1.418) (11.063) (2.382) (65.094)

Lagged binary variable
-10.10 -20.65

(6.360) (37.37)

Growth of international reserves
-54.41*** -209.8* -59.41*** -374.2

(10.26) (112.3) (10.89) (669.5)

Growth of M2 to reserves
-22.64*** -89.33* -23.81*** -168.5

(4.615) (47.22) (5.249) (304.3)

Lagged index
-0.124 0.157**

(0.155) (0.079)

Note: The standard errors are reported in the parentheses. Significance at one percent level is denoted by ***, at five percent

level by ** and at ten percent level by *.
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Table 2 – Estimation results of the time-series logit models (continued)

Coefficient

Country Indicator Model 1 Model 2 Model 3 Model 4

South Korea

Intercept
-33.65*** -41.55*** -24.83 -303.6

(5.959) (7.351) (68.57) (25930)

Lagged binary variable
76.76*** 466.7

(17.19) (39249)

Growth of international reserves
-265.9*** -266.6*** -314.2 -1033

(48.85) (40.94) (1158) (82816)

Growth of M2 to reserves
-176.9*** -31.05*** -131.0 -178.4

(31.83) (9.330) (385.3) (20333)

Lagged index
(0.511) (-0.623)

(0.397) (11.96)

Malaysia

Intercept
-4.253*** -5.246*** -5.952*** -6.177***

(0.760) (1.039) (1.144) (1.197)

Lagged binary variable
6.092*** 6.596***

(1.752) (2.035)

Growth of international reserves
-12.78*** -5.090 -17.21*** -6.822

(2.759) (4.138) (4.967) (5.363)

Growth of M2 to reserves
-5.640*** -0.448 -8.381** -1.656

(1.723) (1.895) (3.447) (1.985)

Lagged index
-0.374** -0.188***

(0.150) (0.071)

Mexico

Intercept
-3.188*** -4.343*** -4.290*** -5.200***

(0.681) (0.684) (0.801) (0.883)

Lagged binary variable
5.927*** 6.932***

(1.893) (2.639)

Growth of international reserves
-5.135 -0.746 -6.857 -1.221

(3.298) (2.459) (5.033) (3.665)

Growth of M2 to reserves
-2.543 1.173 -3.452 1.383

(1.983) (3.662) (3.510) (4.995)

Lagged index
-0.329 -0.196***

(0.242) (0.066)

Morocco

Intercept
-6.812*** -6.809*** -1.899*** -1.530***

(1.020) (1.033) (0.298) (0.189)

Lagged binary variable
-0.514 -2.588***

(1.866) (0.769)

Growth of international reserves
-6.700*** -6.699*** -1.473** -1.116**

(1.422) (1.421) (0.687) (0.506)

Growth of M2 to reserves
-17.80*** -17.79*** -4.971*** -3.897***

(2.960) (2.960) (1.687 (1.240)

Lagged index
0.729*** 0.777***

(0.042) (0.025)

Peru

Intercept
-5.151*** -5.939*** -2.787*** -6.793***

(0.961) (0.840) (0.709) (2.993)

Lagged binary variable
3.264*** 3.600***

(0.999) (1.341)

Growth of international reserves
-13.23*** -11.77*** -7.706*** -13.44*

(2.519) (2.808) (1.626) (7.037)

Growth of M2 to reserves
-0.476 -0.574 -0.439 -0.525

(0.696) (0.712) (0.253) (0.941)

Lagged index
0.477*** -0.144

(0.094) (0.493)

Note: The standard errors are reported in the parentheses. Significance at one percent level is denoted by ***, at five percent

level by ** and at ten percent level by *.
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Table 3 – Estimation results of the time-series logit models (continued)

Coefficient

Country Indicator Model 1 Model 2 Model 3 Model 4

Philippines

Intercept
-3.300*** -3.754*** -5.178*** -5.647***

(0.532) (0.534) (1.319) 1.590)

Lagged binary variable
2.967*** 2.832**

(1.131) (1.299)

Growth of international reserves
-10.595*** -7.135** -16.586*** -15.833**

(3.192) (3.261) (5.407) (6.510)

Growth of M2 to reserves
-5.645*** -3.280** -8.879*** -6.493***

(1.427) (1.296) (2.702) (2.470)

Lagged index
-0.473*** -0.436

(0.121) (0.233 )

Thailand

Intercept
-6.387*** -8.068*** -13.81 -12.30

(1.545) (2.776) (32.12) 24.86)

Lagged binary variable
5.497*** 2.514***

(1.496) (1.205)

Growth of international reserves
-40.56*** -35.99 -113.1 -87.37

(11.65) (20.73) (266.6) (208.7)

Growth of M2 to reserves
5.873** 10.84** 37.13 29.79

(2.790) (4.866) (90.47) (70.38)

Lagged index
0.579*** 0.525***

(0.043) (0.180)

Turkey

Intercept
-5.721*** -5.556*** -10.21 -10.90

(1.627) (1.651) (6.460) (6.817)

Lagged binary variable
0.767 2.253

(1.609) (1.507)

Growth of international reserves
-15.11*** -13.43** -29.89 -27.99

(3.997) (5.899) (22.26) (24.67)

Growth of M2 to reserves
-4.562** -4.241* -7.292 -7.443

(2.045) (2.545) (4.589) (6.055)

Lagged index
-0.502*** -0.617***

(0.095) (0.166)

Uruguay

Intercept
-4.717*** -5.053*** -7.485*** -4.464***

(0.693) (0.634) (2.309) (0.931)

Lagged binary variable
2.971*** 2.923***

(1.046) (0.926)

Growth of international reserves
-10.17*** -7.704*** -15.731*** -6.640***

(2.638) (1.776) (4.845) (2.196)

Growth of M2 to reserves
-2.336 -2.803 7-3.053 -3.017**

(2.404) (1.735) (2.947) (1.521)

Lagged index
-0.537** 0.136

(0.246) (0.159)

Venezuela

Intercept
-6.088*** -5.914*** -1.427*** -5.304***

(1.111) (1.196) (0.389) (1.309)

Lagged binary variable
3.470** 3.370***

(1.432) (1.210)

Growth of international reserves
-15.48*** -11.72*** -4.779*** -10.33***

(4.092) (4.059) (1.233) (3.884)

Growth of M2 to reserves
-2.164** -0.235 0.359*** 0.017

(0.940) (1.314) (0.115) (1.338)

Lagged index
0.804*** 0.103

(0.037) (0.207)

Note:The standard errors are reported in the parentheses. Significance at one percent level is denoted by ***, at five percent

level by ** and at ten percent level by *.
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Table 4 – SBC information criterion for the time-series logit models

Country Model 1 Model 2 Model 3 Model 4

SBC SBC SBC SBC

Argentina 57.62 57.47 63.07 62.72

Brazil 88.39 87.72 87.20 91.94

Chile 49.03 54.53 54.81 58.68

Indonesia 54.90 49.80 58.70 55.05

Israel 26.42 30.49 31.88 35.14

South Korea 16.75 22.33 22.33 31.44

Malaysia 50.16 40.35 54.51 45.66

Mexico 101.1 67.70 105.4 72.29

Marocco 27.86 33.43 33.60 39.15

Peru 62.50 53.73 66.37 59.22

Philippines 75.14 70.75 76.82 75.00

Thailand 33.21 32.47 30.43 35.30

Turkey 44.78 50.04 45.13 48.86

Uruguay 62.06 58.89 66.65 64.35

Venezuela 74.60 68.01 82.78 73.48

Note: Bold values correspond to the best model according to SBC.

32



Table 5 – Estimation results of the panel logit models

Indicator Coefficients

All countries Poolable countries Poolable countries

(cluster1) (cluster2)

Lagged binary variable 4.383*** 4.294*** 3.608***

(0.304) (0.332) (0.955)

Growth of international reserves -4.092*** -3.614*** -7.496***

(0.665) (0.681) (2.695)

Growth of M2 to reserves -0.542* -0.550* -0.459

0.298 (0.325) (0.776)

Fixed effects

Argentina -5.083 -4.919 −−
Brazil -4.076 -4.004 −−
Chile -4.660 -4.657 −−
Indonesia -4.066 -4.030 −−
Israel -5.308 −− −−
South Korea -4.218 −− −−
Malaysia -4.436 -4.375 −−
Mexico -4.102 -4.021 −−
Marocco -5.347 −− -5.170

Peru -4.339 −− -4.825

Philippines -4.096 -4.033 −−
Thailand -4.334 -4.279 −−
Turkey -4.523 -4.441 −−
Uruguay -4.682 -4.552 −−
Venezuela -4.577 -4.450 −−

Note: The standard errors are reported in the parentheses. Significance at one percent level is denoted by ***, at five percent

level by ** and at ten percent level by *.
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Table 6 – Optimal cut-off identification for time-series models

Static logit Dynamic logit Dynamic Markov switching

Cut-off Sensitivity Specificity Cut-off Sensitivity Specificity Cut-off Sensitivity Specificity

Argentina 0.011 1.000 0.767 0.010 1.000 0.767 0.672 0.857 0.857

Brazil 0.064 0.500 0.859 0.042 0.700 0.847 0.026 0.900 0.694

Chile 0.014 0.667 0.714 0.014 0.667 0.721 < 0.001 1.000 < 0.001

Indonesia 0.061 1.000 0.917 0.036 0.909 0.969 0.908 0.818 0.992

Israel 0.066 1.000 0.992 0.203 1.000 0.992 0.998 0.500 0.973

South Korea 0.005 1.000 1.000 0.606 1.000 1.000 0.999 1.000 0.938

Malaysia 0.033 1.000 0.938 0.008 1.000 0.860 0.823 1.000 0.895

Mexico 0.244 0.643 0.972 0.034 0.857 0.988 0.567 1.000 0.873

Marocco 0.010 1.000 0.883 0.010 1.000 0.883 0.000 1.000 0.000

Peru 0.112 1.000 0.944 0.069 1.000 0.956 0.998 0.077 0.960

Philippines 0.038 1.000 0.784 0.022 1.000 0.733 0.987 1.000 0.882

Thailand 0.183 1.000 0.984 0.174 1.000 0.996 0.999 0.875 0.887

Turkey 0.071 0.889 0.957 0.107 0.889 0.969 0.897 1.000 0.957

Uruguay 0.031 1.000 0.851 0.021 1.000 0.843 0.937 1.000 0.984

Venezuela 0.065 0.929 0.892 0.092 0.929 0.948 0.999 1.000 0.725

Note: For each country we identify the optimal cut-off by using the accuracy measures method, so as to give more weight to

the correct identification of crisis periods (sensitivity).
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Table 7 – Evaluation criteria for the time-series logit models

Static time-series logit model

Country AUC Kuiper score Pietra index Bayesian error rate QPS LPS

Argentina 0.938 0.767 0.271 0.026 0.043 10.07

Brazil 0.710 0.359 0.127 0.030 0.069 0.145

Chile 0.606 0.380 0.134 0.011 0.022 0.061

Indonesia 0.979 0.917 0.324 0.026 0.044 0.072

Israel 0.994 0.992 0.351 0.008 0.011 0.018

South Korea 1.000 1.000 0.354 0.000 0.000 0.000

Malaysia 0.978 0.938 0.332 0.023 0.039 0.063

Mexico 0.784 0.615 0.217 0.030 0.073 0.161

Marocco 0.888 0.883 0.312 0.004 0.008 0.021

Peru 0.974 0.944 0.334 0.030 0.059 0.086

Philippines 0.915 0.784 0.277 0.034 0.062 0.110

Thailand 0.995 0.984 0.348 0.011 0.021 0.031

Turkey 0.976 0.846 0.299 0.015 0.026 0.053

Uruguay 0.959 0.851 0.301 0.026 0.051 0.086

Venezuela 0.955 0.821 0.290 0.038 0.066 0.109

Dynamic time-series logit model

Country AUC Kuiper score Pietra index Bayesian error rate QPS LPS

Argentina 0.946 0.767 0.271 0.019 0.033 0.066

Brazil 0.799 0.547 0.193 0.034 0.068 0.135

Chile 0.601 0.388 0.137 0.011 0.022 0.061

Indonesia 0.981 0.878 0.310 0.011 0.024 0.052

Israel 0.994 0.992 0.351 0.008 0.011 0.015

South Korea 1.000 1.000 0.354 0.000 0.003 0.004

Malaysia 0.978 0.860 0.304 0.008 0.015 0.034

Mexico 0.880 0.845 0.299 0.019 0.038 0.086

Marocco 0.888 0.883 0.312 0.004 0.008 0.021

Peru 0.989 0.956 0.338 0.023 0.038 0.059

Philippines 0.935 0.733 0.259 0.026 0.049 0.092

Thailand 0.998 0.996 0.352 0.004 0.011 0.019

Turkey 0.978 0.858 0.303 0.015 0.027 0.052

Uruguay 0.966 0.843 0.298 0.015 0.034 0.069

Venezuela 0.961 0.877 0.310 0.023 0.046 0.086

Note: The AUC criteria takes values between 0.5 and 1, 1 being the perfect model. Kuiper’s score should have positive values

if the model identifies well the crisis periods. Pietra index takes values from -0.354 to 0.354, the higher its level, the better the

model. Bayesian error rate takes values between 0 and 1, 0 corresponding to the perfect model. QPS ranges from 0 to 2, 0 being

perfect accuracy, while LPS ranges from 0 to ∞, 0 being perfect accuracy.
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Table 8 – Evaluation criteria for the dynamic Markov-switching model

Country AUC Kuiper score Pietra index Bayesian error rate QPS LPS

Argentina 0.871 0.714 0.252 0.026 0.754 1.711

Brazil 0.783 0.594 0.210 0.038 0.502 3.807

Chile 0.010 0.000 0.000 0.011 1.198 3.661

Indonesia 0.817 0.810 0.286 0.015 1.199 1.602

Israel 0.536 0.473 0.167 0.008 0.480 1.079

South Korea 0.969 0.938 0.332 0.023 0.171 1.081

Malaysia 0.955 0.895 0.317 0.026 0.239 1.526

Mexico 0.971 0.873 0.308 0.023 0.598 0.903

Marocco 0.028 0.000 0.000 0.004 0.436 1.087

Peru 0.268 0.037 0.013 0.049 1.121 1.950

Philippines 0.948 0.882 0.312 0.038 0.526 1.399

Thailand 0.828 0.762 0.269 0.030 1.203 3.108

Turkey 0.992 0.957 0.338 0.011 0.386 0.608

Uruguay 0.995 0.984 0.348 0.011 0.546 0.814

Venezuela 0.863 0.725 0.256 0.053 0.997 5.528

Note: The AUC criteria takes values between 0.5 and 1, 1 being the perfect model. Kuiper’s score should have positive values

if the model identifies well the crisis periods. Pietra index takes values from -0.354 to 0.354, the higher its level, the better the

model. Bayesian error rate takes values between 0 and 1, 0 corresponding to the perfect model. QPS ranges from 0 to 2, 0 being

perfect accuracy, while LPS ranges from 0 to ∞, 0 being perfect accuracy.
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Table 9 – Comparison tests

Static vs. dynamica Dynamic logit vs. Markovb Dynamic panel logit vs. Markovc

(Clark-West test) (Diebold Mariano test) (Diebold Mariano test)

Country test statistic p-value test statistic p-value test statistic p-value

Argentina 2.144 0.016 25.54 < 0.001 25.61 < 0.001

Brazil 1.136 0.128 8.004 < 0.001 7.830 < 0.001

Chile 1.036 0.150 21.89 < 0.001 21.71 < 0.001

Indonesia 2.526 0.006 21.89 < 0.001 48.04 < 0.001

Israel 0.434 0.332 10.04 < 0.001 −− < 0.001

South Korea 1.037 0.150 5.157 < 0.001 −− < 0.001

Malaysia 2.656 0.004 5.985 < 0.001 5.885 < 0.001

Mexico 3.291 < 0.001 29.02 < 0.001 25.81 < 0.001

Marocco 0.668 0.252 9.726 < 0.001 8.701 < 0.001

Peru 2.776 0.003 40.70 < 0.001 22.39 < 0.001

Philippines 2.358 0.009 9.094 < 0.001 6.976 < 0.001

Thailand 2.067 0.019 21.77 < 0.001 18.12 < 0.001

Turkey 2.067 0.019 11.10 < 0.001 6.048 < 0.001

Uruguay 2.827 0.002 14.33 < 0.001 10.89 < 0.001

Venezuela 2.977 < 0.001 16.40 < 0.001 11.98 < 0.001

a - Static vs. dynamic time series logit model.

b - Dynamic time-series logit model vs. Markov switching.

c - Dynamic panel logit model (poolable countries) vs. Markov switching.

Note: The null hypothesis of both tests is the equality of predictive performance of the two models. The alternative of the

Clark-West test indicates that the non-constraint model (the bigger one) is better than the other one. Under the null hypothesis,

the MSPE-adj statistic follows a normal distribution with a critical unilateral value of 1.645(5%). The alternative of the Diebold

Mariano test indicates that the first model is better than the other one. Under the null hypothesis, the test statistic follows a

normal distribution. Bold entries indicate significance at the 5% level.
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Table 10 – Optimal cut-off identification for dynamic panel logit models

All countries Poolable countries

Cut-off Sensitivity Specificity Cut-off Sensitivity Specificity

Argentina 0.025 0.857 0.942 0.023 0.857 0.930

Brazil 0.043 0.700 0.894 0.043 0.700 0.898

Chile 0.015 0.333 0.973 0.014 0.333 0.966

Indonesia 0.046 0.909 0.984 0.043 0.909 0.984

Israel 0.008 1.000 0.962 −− −− −−
South Korea 0.027 1.000 0.996 −− −− −−
Malaysia 0.016 1.000 0.860 0.033 0.857 0.996

Mexico 0.074 0.929 0.964 0.068 0.929 0.968

Marocco 0.001 1.000 0.174 0.020 0.900 0.769

Peru 0.030 1.000 0.952 0.019 1.000 0.977

Philippines 0.019 0.900 0.757 0.025 0.889 0.973

Thailand 0.019 1.000 0.977 0.015 1.000 0.851

Turkey 0.025 0.889 0.973 0.021 1.000 0.813

Uruguay 0.013 1.000 0.835 0.000 1.000 0.000

Venezuela 0.025 0.929 0.888 0.061 1.000 0.956

Note: For each country we identify the optimal cut-off by using the accuracy measures method, so as to give more weight to

the correct identification of crisis periods (sensitivity). Cut-off values are in bold.
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Table 11 – Evaluation criteria for the dynamic panel logit model

All countries

Country AUC Kuiper score Pietra index Bayesian error rate QPS LPS

Argentina 0.950 0.799 0.282 0.019 0.036 0.071

Brazil 0.806 0.594 0.210 0.038 0.082 0.155

Chile 0.475 0.307 0.108 0.011 0.026 0.069

Indonesia 0.913 0.893 0.316 0.015 0.032 0.070

Israel 0.983 0.962 0.340 0.008 0.011 0.027

South Korea 0.999 0.996 0.352 0.004 0.013 0.032

Malaysia 0.978 0.860 0.304 0.008 0.017 0.038

Mexico 0.924 0.893 0.316 0.023 0.044 0.097

Marocco 0.271 0.174 0.062 0.004 0.008 0.028

Peru 0.988 0.952 0.337 0.023 0.039 0.071

Philippines 0.905 0.657 0.232 0.030 0.048 0.096

Thailand 0.994 0.977 0.345 0.008 0.016 0.036

Turkey 0.976 0.862 0.305 0.015 0.035 0.069

Uruguay 0.964 0.835 0.295 0.015 0.035 0.073

Venezuela 0.964 0.817 0.289 0.023 0.049 0.095

Poolable countries

Country AUC Kuiper score Pietra index Bayesian error rate QPS LPS

Argentina 0.950 0.787 0.278 0.019 0.036 0.071

Brazil 0.810 0.598 0.211 0.038 0.081 0.153

Chile 0.443 0.299 0.106 0.011 0.025 0.069

Indonesia 0.913 0.893 0.316 0.015 0.032 0.069

Israel −− −− −− −− −− −−
South Korea −− −− −− −− −− −−
Malaysia 0.977 0.853 0.302 0.008 0.017 0.039

Mexico 0.923 0.897 0.317 0.023 0.044 0.095

Marocco 0.910 0.669 0.236 0.030 0.048 0.096

Peru 0.994 0.977 0.345 0.008 0.016 0.037

Philippines 0.977 0.862 0.305 0.015 0.035 0.070

Thailand 0.965 0.851 0.301 0.015 0.035 0.073

Turkey 0.965 0.813 0.287 0.023 0.049 0.096

Uruguay 0.167 0.000 0.000 0.004 0.008 0.032

Venezuela 0.989 0.956 0.338 0.023 0.037 0.062

Note: The AUC criteria takes values between 0.5 and 1, 1 being the perfect model. Kuiper’s score should have positive values

if the model identifies well the crisis periods. Pietra index takes values from -0.354 to 0.354, the higher its level, the better the

model. Bayesian error rate takes values between 0 and 1, 0 corresponding to the perfect model. QPS ranges from 0 to 2, 0 being

perfect accuracy, while LPS ranges from 0 to ∞, 0 being perfect accuracy. For Malaysia and Morocco time-series analyses have

been performed the results being available in table 11.
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Table 12 – Comparison test of dynamic time-series and panel logit models

Time series vs Panel - All countries Time series vs Panel - Poolable countries

Country test statistic p-value test statistic p-value

Argentina 0.715 0.474 0.662 0.508

Brazil 1.496 0.135 1.491 0.136

Chile 1.343 0.179 1.391 0.164

Indonesia 1.402 0.161 1.431 0.152

Israel 0.139 0.889 −− −−
South Korea 1.304 0.192 −− −−
Malaysia 0.782 0.434 0.803 0.422

Mexico 0.834 0.404 0.801 0.423

Marocco 1.033 0.302 2.320 0.020

Peru 0.138 0.890 -1.446 0.148

Philippines -0.059 0.953 -0.651 0.515

Thailand 0.863 0.388 1.541 0.123

Turkey -0.832 0.406 1.075 0.282

Uruguay 0.160 0.873 -1.746 0.081

Venezuela 0.755 0.450 -2.308 0.021

Note: The null hypothesis of the Diebold Mariano test is the equality of predictive performance of the two models. The

alternative indicates that the first model is better than the other one. Under the null hypothesis, the test statistic follows a

normal distribution. Bold entries indicate significance at the 5% level.

Table 13 – Optimal cut-off identification (Out-of-sample exercise)

Cut-off Sensitivity Specificity

One-month-ahead forecasts

Argentina 0.011 0.8 0.938

Brazil 0.11 0 0.992

Chile 0.021 0 0.812

Philippines 0.065 0.625 0.857

Uruguay 0.028 0.875 0.944

Venezuela 0.162 0 0.977

24-months-ahead forecasts

Argentina 0.001 0.964 0.434

Brazil 0.026 0.958 0.809

Chile 0.170 1.000 0.991

Indonesia 0.664 1.000 0.983

South Korea 0.032 1.000 0.949

Malaysia 0.040 1.000 0.992

Philippines 0.126 0.974 0.969

Thailand 0.130 1.000 0.967

Turkey 0.020 0.964 0.840

Uruguay 0.083 0.968 0.971

Venezuela 0.131 0.958 0.945

Note: For each country we identify the optimal cut-off by using the accuracy measures method, so as to give more weight to the

correct identification of crisis periods (sensitivity). The values of the cut-off are calculated on the basis of the in-sample dataset

(January 1986 - December 1996). The other countries, i.e. Israel, South Korea, Malaysia, Mexico, Morocco, Peru, Thailand and

turkey do not register any in sample or out-of-sample crises.
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Table 14 – Evaluation criteria for the out-of-sample dynamic logit model

Country AUC Kuiper score Pietra index Bayesian error rate QPS LPS

One-month-ahead forecasts

Argentina 0.874 0.738 0.280 0.015 0.054 0.260

Brazil 0.737 -0.008 0.261 0.007 0.023 0.055

Chile 0.545 -0.188 0.183 0.007 0.018 0.062

Philippines 0.690 0.482 0.207 0.045 0.094 2.914

Uruguay 0.915 0.819 0.307 0.015 0.047 0.244

Venezuela 0.372 -0.023 0.000 0.007 0.019 5.135

24-months-ahead forecasts

Argentina 0.947 0.398 0.325 0.022 0.045 1.504

Brazil 0.985 0.767 0.336 0.015 0.032 0.081

Chile 0.992 0.991 0.350 0.007 0.015 0.076

Indonesia 0.993 0.983 0.351 0.007 0.024 0.172

South Korea 0.996 0.949 0.351 0.007 0.015 0.147

Malaysia 0.996 0.992 0.351 0.007 0.015 0.087

Philippines 0.973 0.942 0.341 0.015 0.043 0.126

Thailand 0.994 0.967 0.345 0.015 0.049 0.131

Turkey 0.971 0.804 0.338 0.015 0.030 0.081

Uruguay 0.966 0.939 0.339 0.015 0.030 3.115

Venezuela 0.957 0.904 0.336 0.015 0.037 0.187

Note: The AUC criteria takes values between 0.5 and 1, 1 being the perfect model. Kuiper’s score should have positive values

if the model identifies well the crisis periods. Pietra index takes values from -0.354 to 0.354, the higher its level, the better the

model. Bayesian error rate takes values between 0 and 1, 0 corresponding to the perfect model. QPS ranges from 0 to 2, 0 being

perfect accuracy, while LPS ranges from 0 to ∞, 0 being perfect accuracy.
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