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Chapter 1

General introduction

1.1 Background

For many practical purposes it is useful to develop mathematical models which de-

scribe the essence of the system, the process, or the phenomenon under consider-

ation, in a simplified, yet sufficiently accurate way. Within the area of system iden-

tification, the methodology is focused on the estimation of a model from a selected

model class followed by a model validation step to establish the feasibility of the result.

Restricting the discussion to the class of linear time-invariant models of finite order,

when it comes to measuring the complexity of a given model, the model order and the

number of parameters are the most widely used characteristics. Here, the model or-

der is defined by e.g. the number of regressors in a regression model, the dimension of

the state-space in a state-space model, the maximum lag in an autoregressive-moving-

average model (ARMA) model, or the McMillan degree of a rational transfer function.

Model simplification is often carried out by model order reduction techniques, such as

Krylov subspace methods and balanced truncation (see [9] for a recent detailed review

of model reduction approaches) and well known information theoretic criteria such as

AIC, BIC, FPE, etc. [93], are based on a trade off between the model order, the num-

ber of parameters, and the quality of the achieved fit between the model and the data.

Another well known measure for the complexity of a model is the number of nonzero

parameters used in the model. Such a measure is standard in statistics, e.g., when

using multivariate linear regression models and ANOVA tables. Many statistical tests

have been developed to decide whether the value of an estimated parameter differs

significantly from zero, and to determine the contribution of a regressor in explaining

the observed data. The outcomes of such tests determine in part the iterative process

by which regressors are included in or discarded from a regression model.

The number of nonzero parameters in a model determines the sparsity of that

model, which may be defined as the proportion of zero parameters among the total

number of model parameters. The question of how to obtain an accurate sparse model

is relevant for many applications, for instance in engineering with respect to the design

of filters implemented in hardware on analog or digital chips (where space limitations

1



CHAPTER 1. GENERAL INTRODUCTION

and the complexity of component interconnection is an issue) [7, 50], in systems bi-

ology to determine the dominant interactions between a large number of genes and

proteins[38, 14], in biomedicine and epidemiology to determine the main risk factors

for certain pathologies [56, 101], in data sensing and compression to describe a signal

using only the most relevant components [27, 18], and so on. It becomes especially

relevant to take sparsity into account at an early stage of the system identification pro-

cedure in situations where only a limited amount of input-output data is available,

possibly of relatively low quality (due to high noise levels, limited opportunity to carry

out experiments, high costs involved, etc.). Also, the use of a sparse model, containing

only a small number of nonzero parameters, may contribute to resolving identifiability

problems.

1.2 Thesis outline

In this thesis an approach to sparse identification is advocated which employs an `2-

norm to optimize the fit between a model and the data (using a conventional least

squares criterion with respect to the vector of prediction errors) and an `1-norm to

minimize the size of the parameter vector to achieve model sparsity. In Part I of this

thesis, a general framework for sparse estimation is presented as a widely applicable

method to improve model sparsity (Chapter 2). It is applied to the class of regression

models in Chapter 3 to study the settings in which sparse estimation is likely to be suc-

cessful. In Chapter 4 sparse estimation is applied to the class of state-space models in

innovations form, using either a full parameterization, data-driven local coordinates

(DDLC) or a structured parameterization. The focus is then shifted to network models,

where the sparse estimation algorithm is employed to find dominant network interac-

tions in discrete- and continuous-time networks.

In Part II of this thesis a number of applications is presented of sparse estimation

in the field of atrial fibrillation research. Chapters 5 and 6 provide some background

on the characteristics of atrial fibrillation, the analysis of invasive atrial measurements

and complexity quantification by means of fibrillation wave construction. In Chapter 7

one of the techniques presented in Chapter 4 is applied to find dominant interactions

between sites in invasive high-density recordings of atrial fibrillation. Finding dom-

inant predictors of pharmacological cardioversion outcome is the subject of Chapter

8, where from a large number of candidate predictors of successful cardioversion, a

subset is selected using elastic net regression.

2
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Chapter 2

A framework for sparse estimation

2.1 Introduction

The algorithm presented in this chapter is designed for the sparse estimation of a

model from any model class M , defined in the following way: a parameterization

P is defined as a mapping P : Θ 7→ M with Θ ⊆ RN , so that every θ ∈ Θ is mapped

to a model from the model class M : θ 7→ P (θ). The model class M is implicitly de-

fined by the set of all possible model representations {P (θ) |θ ∈Θ}. It is assumed that

the fit between a model P (θ) and observed “data” can be expressed by an error vector

e(θ)= f (P (θ), data). The criterion to assess the goodness of fit between the model and

the data is taken to be a least squares criterion V (θ)= ‖e(θ))‖2
2, possibly normalized by

the length of the error vector. The goal of the algorithm is 1) to maximize the quality

of the fit of the model and 2) to maximize the sparsity of the model, while retaining

the quality of the fit for certain (optimal) parameters θ∗. The space to search for better

model sparsity is the space of equivalent models. There are a number of sources of

equivalence between models from the model class:

I Depending on the context there may be a natural equivalence relation in the

sense that the observed model behavior is identical, i.e. two models parameter-

izations θ, θ̃ ∈Θ are equivalent if P (θ) = P (θ̃).

II In the context of model fitting (maybe from the perspective of achieving good

prediction properties) two models are considered equivalent if e(θ) = e(θ̃).

III While optimizing the least squares error criterion V (θ) two models are equiva-

lent if V (θ) = V (θ̃). This constitutes larger equivalence spaces, that contain the

previous case, since models with equal error vectors e have the same criterion

value.

Every source of equivalence can be perceived as an equivalence relation onΘ, that can

be used for improving sparsity.

5
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Table 2.1: Model equivalence sources

Context Equivalence relation
Natural equivalence P (θ) = P (θ̃)
Model fit equivalence e(θ) = e(θ̃)
Criterion equivalence V (θ) =V (θ̃)

The sparse system identification procedure can be stated in terms of the steps

in the general identification process as described in for instance [58]. A schematic

overview of these steps is given in Figure 2.1.

Prior knowledge Known facts about the identification problem at hand can be incor-

porated into the process: a specific model class and the associated least squares

criterion, known parameter values, the subset of the parameter vector θ that is

subject to sparse maximization.

Observed data Data can be anything that can be used to express the fit between a

model and a desired outcome, ranging from measurements (e.g. input/output

data or frequency domain data) to a reference model that has to be approxi-

mated.

Model set The model class M and its parameterization P (θ) have to be determined.

Calculate model In this phase, a two-step iterative algorithm is executed to fit the

model to the data and to maximize the model sparsity. In Section 2.2 the pro-

cedure to maximize sparsity is explained. The iterative algorithm is described in

Section 2.3

Validate model The model validation step is very much dependent on the nature of

the observed data and the goal of the estimation procedure as a whole. There-

fore, a detailed discussion on model validation is postponed to the chapters con-

taining practical examples.

The following sections describe the algorithm in general terms, since it is applica-

ble to a large range of model classes. The basic components of the algorithm can be

explained using only the assumptions that the model can be parametrized by a vector

θ and that the fit of the model can be expressed as a least squares criterion of an error

vector that is only dependent on θ: e(θ). Practical applications of the algorithm are

given in the next chapters.

2.2 Maximizing sparsity

Maximizing the sparsity of a model is possible if there exists an equivalence class for

the model at hand as defined in the previous section. By definition, maximizing spar-

sity means maximizing the number of zero entries in the model parameter vector θ or,

6



2.2. MAXIMIZING SPARSITY

Prior knowledge Model set Observed data

Calculate model

Validate model

Mixed `2/`1

optimization

EquivalenceSparsity

Figure 2.1: Sparse identification in the system identification loop

equivalently, minimizing the number of non-zero entries ‖θ‖0, where ‖·‖0 denotes the

pseudo-norm `0 of a vector:

‖θ‖0 := #{θi‖θi , 0} . (2.1)

Unfortunately this results in a difficult problem, often NP hard, that has to be solved

using a combinatorial approach which can be time-consuming. A heuristic approach

which is often much more efficient is to try and minimize the `1-norm of the parame-

ter vector θ, ‖θ‖1. This heuristic is applied here since it has been shown that in a linear

least squares setting conditions can be formulated (see [10, 36]) under which mini-

mizing the `1-norm can produce a parameter vector with maximum sparsity. The pro-

posed method to maximize sparsity also features the possibility to target only a subset

of the parameter vector, which allows one to incorporate prior knowledge about the

value of certain parameters into the estimation procedure.

To see how the space of equivalent models can be defined starting from a specific

parameterization θ0, consider the following situation: at a given model representation

P (θ0) and M data records, the error vector e(θ0) = (e1(θ0),e2(θ0), . . . ,eM (θ0))T and the

least squares error criterion V (θ0) = ‖e(θ0)‖2
2 are computed. As seen in the previous

section they offer three possible equivalence spaces to search for sparsity: 1) a natu-

ral equivalence space where the parameterization of a different vector θ , θ0 yields a

7
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model with identical behavior, 2) the space in which the error vector e(θ0) does not

change and 3) the space in which the criterion V (θ0) does not change. Note that the

second space is the space that contains models that result in the same errors with re-

gard to the data, while the third space contains models that share the same goodness of

fit, but not necessarily the same errors with respect to the data. Formally, equivalence

is defined as:

(I) θ � θ0 :⇔ P (θ) = P (θ0), in the case of natural equivalence,

(II) θ � θ0 :⇔ e(θ) = e(θ0), when the individual errors need to remain unchanged,

and

(III) θ � θ0 :⇔V (θ) =V (θ0), when only the goodness of fit matters.

The definitions II and III can be used to determine a local direction s to search for

sparsity, starting at the given model P (θ0): θ = θ0 + s. First, the error vector e(θ0) is not

allowed to change in the direction s. The Taylor series expansion of e(θ) about θ0 is:

e(θ) = e(θ0)+ ∂e

∂θ
(θ0)(θ−θ0)+O (‖θ−θ0‖2)

= e(θ0)+ J (θ0)s +O (‖s‖2), (2.2)

where J (θ0) is the M × N Jacobian matrix of partial derivatives of e to the parameter

vector θ0. It follows that in order to stay within the first equivalence space in first order

approximation, the search direction has to satisfy J (θ0)s = 0. This means that the space

in which the entire error vector e(θ0) does not change in first order approximation is

described by the kernel of J (θ0): s ∈ Ker(J (θ0)). The third equivalence space consists of

those directions that do not change the least squares error criterion V (θ0). The Taylor

series expansion for V (θ) about θ0 is:

V (θ) =V (θ0)+ ∂V

∂θ
(θ0)(θ−θ0)+ 1

2
(θ−θ0)T ∂

2V

∂θ2 (θ0)(θ−θ0)+O (‖θ−θ0‖3)

= eT (θ0)e(θ0)+2eT (θ0)
∂e

∂θ
(θ0)s + 1

2
sT ∂

2V

∂θ2 (θ0)s +O (‖s‖3)

= eT (θ0)e(θ0)+2eT (θ0)J (θ0)s + 1

2
sT H(θ0)s +O (‖s‖3) (2.3)

where H(θ0) denotes the Hessian matrix of second order partial derivatives of V (θ0) to

the parameter vector θ0. Clearly, if J (θ0)s = 0, then the value of V (θ) does not change in

first approximation either. Suppose θ0 is a local optimum of the criterion V , then the

gradient of V (θ0), ∂V
∂θ (θ0), must be zero. But then of course any search direction does

not change the value of V in first order approximation. Limiting the search direction to

s ∈ Ker(J (θ0)) is still a valid option, but the space in which the criterion does not change

in second order approximation is a more meaningful source to search for promising

directions when θ0 is a locally optimal parameterization:

1

2
sT H(θ0)s = 0 ⇔ H(θ0)s = 0 ⇔ s ∈ Ker(H(θ0)) . (2.4)

8



2.2. MAXIMIZING SPARSITY

Under certain conditions the two spaces coincide. To see this, write the Hessian matrix

in terms of the error vector e(θ0):

∂V

∂θ
(θ0) = 2eT (θ0)

∂e

∂θ
(θ0) = 2

M∑
k=1

ek (θ0)
∂ek

∂θ
(θ0)

H(θ0) = ∂2V

∂θ2 (θ0)

= 2
M∑

k=1

(
∂eT

k

∂θ
(θ0)

∂ek

∂θ
(θ0)+ek (θ0)

∂2ek

∂θ2 (θ0)

)

= 2J T (θ0)J (θ0)+2
M∑

k=1
ek (θ0)

∂2ek

∂θ2 (θ0)

= 2J T (θ0)J (θ0)+2S(θ0), (2.5)

where

S(θ0) =
M∑

k=1
ek (θ0)

∂2ek

∂θ2 (θ0). (2.6)

When S(θ0) is sufficiently small, then (2.5) can be approximated by:

H(θ0) ≈ 2J T (θ0)J (θ0), (2.7)

an approximation which is also used by Gauss-Newton type methods for least squares

optimization problems. Substituting this into (2.4) gives:

sT (
J T (θ0)J (θ0)

)
s = 0 ⇔‖J (θ0)s‖ = 0 ⇔ J (θ0)s = 0 ⇔ s ∈ Ker(J (θ0)) , (2.8)

which shows that in this case both approaches lead to a local equivalence space formed

by the kernel of the Jacobian matrix of the error vector.

These observations clarify the available approximations to the local equivalence spaces

at a given parameteriation θ0. The next step is to maximize the number of zero entries

in the parameter vector, starting at θ0, limiting the search space to the selected equiv-

alence space.

2.2.1 Minimizing the `1-norm of the parameter vector θ

Sparsity is sought after by minimizing the `1-norm of the parameter vector θ of the

system at hand. Minimizing the `1-norm of a parameter vector from an affine space

can be expressed in terms of a linear programming (LP) problem. The search space

is constrained, either by the kernel of the Jacobian matrix J of the error vector e(θ)

at a certain model estimate θ0 or by the kernel of the Hessian matrix H of the least

squared error criterion V . This means that the search is limited to those models that a)

produce exactly the same error vector e in first order approximation when J is used, or

b) models that produce the same value of the least squares error criterion V in second

order approximation when H is used. The minimization problem can be formulated

as:

min
s

‖θ0 + s‖1 s.t. K s = 0 (2.9)

9
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where K represents either J or H . This LP problem is not in standard form. A linear

programming problem in standard form only features a linear objective function, lin-

ear (in)equality constraints and positive decision variables (see for instance [22]):

min
x

cT x s.t. Ax ≥ b

x ≥ 0, (2.10)

with the N -vector of decision variables x, A an M ×N matrix, b an M ×1 vector, and c

an N ×1 vector. Its corresponding dual problem is given by:

max
y

bT y s.t. AT y ≤ c

y ≥ 0, (2.11)

with y an M × 1 vector of dual decision variables. There are several options to bring

(2.9) into standard form. One way is by applying two substitutions. First, let θ be the

result of taking a step s starting from θ0: θ = θ0 + s. Then the formulation becomes:

min
θ

‖θ‖1

s.t. K (θ−θ0) = 0

⇔
min
θ

‖θ‖1

s.t. Kθ = Kθ0 (2.12)

To linearize the non-linear objective function, a second substitution can be applied:

θi = θ+i −θ−i , θ+i ,θ−i ≥ 0, i = 1,2, . . . , N (2.13)

which means that each variable θi (positive or negative) is split into two positive vari-

ables θ+i and θ−i . The `1-norm of the vector θ in the objective function can now be

replaced by a linear expression:

min
θ+,θ−

(∣∣θ+1 −θ−1
∣∣+ ∣∣θ+2 −θ−2

∣∣+ . . .+ ∣∣θ+N −θ−N
∣∣)

s.t. K (θ+−θ−) = Kθ0

θ+i ,θ−i ≥ 0 i = 1,2, . . . , N (2.14)

⇔
min
θ+,θ−

(
θ+1 +θ−1 +θ+2 +θ−2 + . . .+θ+N +θ−N

)
s.t. K (θ+−θ−) = Kθ0

θ+i ,θ−i ≥ 0 i = 1,2, . . . , N , (2.15)

because an optimal solution to (2.15) will consist of pairs 〈θ+i ,θ−i 〉 with at least one zero

entry, (〈θ+i ,0〉 when θi > 0 and 〈0,θ−i 〉 when θi < 0), since a mixed pair that represents

the same value of θi yields a higher sum. The expression in (2.15) can be rewritten

10
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to include the inequality constraint in (2.10), completing the conversion to standard

form, with the following substitutions for the notation used in (2.10):

c =
(
1 1 1 · · · 1

)T

x =
[
θ+ θ−

]
A =

[
K −K

]
b = Kθ0. (2.16)

This leads to the following theorem:

Theorem 2.2.1. The minimization problem in (2.9) can be restated as a LP problem in

standard form. Solving the linear program

min
s

‖θ0 + s‖1 s.t. K s = 0

is equivalent to solving:

min
θ+,θ−

(
θ+1 +θ−1 +θ+2 +θ−2 + . . .+θ+N +θ−N

)
s.t. K (θ+−θ−) = Kθ0

θ+i ,θ−i ≥ 0 i = 1,2, . . . , N

where θ = θ0 + s and θ = θ+−θ−.

The LP problem in standard form can be solved by the simplex algorithm and nu-

merous other solvers such as the active set methods and interior point methods. Some

solvers require the computation of the dual problem as well. The dual problem is eas-

ily derived from the primal problem in standard form, using the (free) dual variable

vector δ:

max
δ

(Kθ0)T δ

s.t.K Tδ≤ 1 (restricted variables θ+)

−K Tδ≤ 1 (restricted variables θ−) (2.17)

The number of constraints in the primal problem is M when K = J (θ0) and N when

K = H(θ0). This number can possibly be reduced by applying singular value decom-

position (SVD) to the matrix K . Suppose that K is an (M ×N ) matrix. Singular value

decomposition factors the matrix into a product of three matrices K =U DV T where U

(M ×M) and V (N ×N ) are orthonormal matrices and D (M ×N ) is a diagonal matrix

whose elements are the singular values of K . An orthonormal matrix is a matrix whose

columns are perpendicular to each other (orthogonal) and have unit length. A conve-

nient property of an orthonormal matrix is that multiplying it with its transpose gives

the identity matrix: U T U = I . The matrix D can be partitioned into a strictly positive

square diagonal matrix D1 and zero blocks. If one or more of the singular values of K

11
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is zero, then this results in a smaller set of constraints for the minimization problem.

K =U DV T

=
[
U1 U2

][
D1 0

0 0

][
V1 V2

]T

=U1D1V T
1 . (2.18)

Substituting K = U1D1V T
1 into (2.15) allows to reformulate the constraints for the LP

problem, taking advantage of the orthonormality of U1 and the invertibility of D1:

K (θ+−θ−) = Kθ0

U1D1V T
1 (θ+−θ−) =U1D1V T

1 θ0

U T
1 U1D1V T

1 (θ+−θ−) =U T
1 U1D1V T

1 θ0

D1V T
1 (θ+−θ−) = D1V T

1 θ0

D−1
1 D1V T

1 (θ+−θ−) = D−1
1 D1V T

1 θ0

V T
1 (θ+−θ−) =V T

1 θ0, (2.19)

which implies that the matrix K can be substituted by V T
1 everywhere.

A selection matrix C can be introduced to target only a subset y =Cθ of the model

parameters in the search for sparsity:

min
y,θ

‖y‖1

s.t. Kθ = Kθ0

y =Cθ (2.20)

with y a (n ×1) vector and n ≤ N . The problem (2.20) can again be reformulated by a

substitution for y , similar to the one for θ in (2.13):

yi = y+
i − y−

i , y+
i , y−

i ≥ 0 i = 1,2, . . . ,n. (2.21)

This gives the partial sparsity maximization problem with restricted variables y+ and

y−:

min
y+,y−,θ

(
y+

1 + y−
1 + y+

2 + y−
2 + . . .+ y+

n + y−
n

)
s.t. Kθ = Kθ0

y+− y−−Cθ = 0

y+
i , y−

i ≥ 0 i = 1,2, . . . ,n (2.22)

The dual problem can be formulated by introducing dual variable vectors δ for the

constraints Kθ = Kθ0 and ε for the constraints y+− y−−Cθ = 0 (see also [77]):

max
δ,ε

(Kθ0)T δ

s.t. K Tδ−C T ε= 0 (free variables θ)

ε≤ 1 (restricted variables y+)

−ε≤ 1 (restricted variables y−) (2.23)

12
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2.2.2 Relationship between primal and dual problem

Formulating both the primal and the dual problem of the minimization problem in

(2.9) has the advantage that the dual problem can be solved first to reduce the dimen-

sions of the primal problem, which may speed up computations in certain cases. In

the remainder of this section, the matrix K is assumed to be an (M×N ) matrix to make

the notation unambiguous, although M is equal to N when the Hessian matrix is used.

Theorem 2.2.2. An optimal solution δ∗ to the dual problem in (2.17) is related to a cor-

responding optimal solution 〈θ+∗,θ−∗〉 of the primal problem in (2.15) by the following

rules:

θ+j
∗ =

{
0 if

∑M
i=1 Ki jδ

∗
i < 1

≥ 0 if
∑M

i=1 Ki jδ
∗
i = 1

j = 1,2, . . . , N (2.24)

θ−j
∗ =

{
0 if

∑M
i=1 Ki jδ

∗
i >−1

≥ 0 if
∑M

i=1 Ki jδ
∗
i =−1

j = 1,2, . . . , N . (2.25)

Proof. According to the duality theorem (see e.g. [22]) an optimal solution y∗ of the

dual problem corresponds to an optimal solution of the primal problem x∗ such that

n∑
j=1

c j x∗
j =

m∑
i=1

bi y∗
i . (2.26)

This property is sometimes referred to as “strong” duality, opposed to “weak” duality

which states that a feasible solution to the primal problem has a criterion value that is

equal or larger than any feasible solution of the dual problem and vice versa. To be able

to write down Equation (2.26) in terms of θ and δ, the (2N ×1) vector θ̃ is introduced

to hold both θ+ and θ−: θ̃ = [
θ+
θ−

]
, and the matrix K̃ = [ K −K ]. The primal problem in

(2.15) can now be written as

min
θ̃

(
θ̃1 + θ̃2 + . . .+ θ̃2N

)
s.t. K̃ θ̃ = Kθ0

θ̃i ≥ 0 i = 1,2, . . . ,2N , (2.27)

and the dual (2.17) as

max
δ

(Kθ0)T δ

s.t. K̃ Tδ≤ 1. (2.28)

Equation (2.26) now translates in this specific case to

2N∑
j=1

θ̃∗j =
M∑

i=1
(Kθ0)i δ

∗
i . (2.29)

13
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where δ∗ is an optimal solution to the dual problem and θ̃∗ its corresponding optimal

solution to the primal problem. The inequality constraints in (2.28) imply that

θ̃∗j ≥
(

M∑
i=1

K̃i jδ
∗
i

)
θ̃∗j , j = 1,2, . . . ,2N , (2.30)

and the equality constraints in (2.27) imply that(
2N∑
j=1

K̃i j θ̃
∗
j

)
δ∗i = (Kθ0)i δ

∗
i , i = 1,2, . . . , M . (2.31)

These two observations can be combined to relate the objective functions of the primal

and dual problem to each other:

2N∑
j=1

θ̃∗j ≥
2N∑
j=1

(
M∑

i=1
K̃i jδ

∗
i

)
θ̃∗j =

M∑
i=1

(
2N∑
j=1

K̃i j θ̃
∗
j

)
δ∗i =

M∑
i=1

(Kθ0)i δ
∗
i . (2.32)

Now the equality in (2.29) holds if and only if equalities hold in (2.30). This means that

for each j either θ̃∗j = 0 or
∑M

i=1 K̃i jδ
∗
i = 1. The following rules can be derived to obtain

information about the primal solution from the dual solution:

θ̃∗j =
{

0 if
∑M

i=1 K̃i jδ
∗
i < 1

≥ 0 if
∑M

i=1 K̃i jδ
∗
i = 1

j = 1,2, . . . ,2N . (2.33)

Splitting the vector θ̃∗ in θ+∗ and θ−∗ gives

θ+j
∗ =

{
0 if

∑M
i=1 Ki jδ

∗
i < 1

≥ 0 if
∑M

i=1 Ki jδ
∗
i = 1

j = 1,2, . . . , N (2.34)

θ−j
∗ =

{
0 if

∑M
i=1 Ki jδ

∗
i >−1

≥ 0 if
∑M

i=1 Ki jδ
∗
i =−1

j = 1,2, . . . , N . (2.35)

which concludes the proof. �

Using the substitution in (2.13), the dual solution can be linked to the original LP

formulation not in standard form in (2.9):

θ∗j =


0 if −1 <∑M

i=1 Ki jδ
∗
i < 1

≥ 0 if
∑M

i=1 Ki jδ
∗
i = 1

≤ 0 if
∑M

i=1 Ki jδ
∗
i =−1

j = 1,2, . . . , N (2.36)

which means that an optimal solution to the dual problem contains information on

the signs of the primal variables in the corresponding optimal solution to the primal

problem.
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Corollary 2.2.3. An optimal solution 〈δ∗,ε∗〉 to the partial sparsity dual problem in

(2.23) is related to a corresponding optimal solution 〈y+∗, y−∗,θ∗〉 of the primal prob-

lem in (2.22) by the following rules:

y+
j
∗ =

0 if ε∗j < 1

≥ 0 if ε∗j = 1
j = 1,2, . . . ,n. (2.37)

y−
j
∗ =

0 if ε∗j >−1

≥ 0 if ε∗j =−1
j = 1,2, . . . ,n. (2.38)

Proof. The relation between an optimal solution to the partial sparsity dual problem

in (2.23) and its corresponding optimal solution of the primal problem in (2.22) can

be established in a similar manner as in the proof of Theorem 2.2.2, by introducing

ỹ =
[

y+
y−

]
and Ĩ = [ In−In ]. The primal problem becomes:

min
ỹ ,θ

(
ỹ1 + ỹ2 + . . .+ ỹ2n

)
s.t. Kθ = Kθ0

Ĩ ỹ −Cθ = 0

ỹi ≥ 0 i = 1,2, . . . ,2n, (2.39)

and the dual:

max
δ,ε

(Kθ0)T δ

s.t. K Tδ−C T ε= 0

Ĩ T ε≤ 1. (2.40)

Equation (2.26) now translates to

2n∑
j=1

ỹ∗
j =

M∑
i=1

(Kθ0)i δ
∗
i . (2.41)

where δ∗ is (part of) an optimal solution to the dual problem and ỹ∗ its corresponding

optimal solution to the primal problem (2.39). Just as in the proof of Theorem 2.2.2,

the two objective functions can be linked to each other, but in this case it requires a

little bit more work to make the connection. The inequalities in (2.40) imply that

ỹ j ≥
(

n∑
i=1

Ĩi j εi

)
ỹ j j = 1,2, . . . ,2n (2.42)

and the equalities in (2.39) imply that(
n∑

j=1
Ki jθ j

)
δi = (Kθ0)i δi i = 1,2, . . . , M (2.43)
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Using the relations Ĩ ỹ =Cθ and K Tδ=C T ε, equation (2.32) becomes:

2n∑
j=1

ỹ∗
j ≥

2n∑
j=1

(
n∑

i=1
Ĩi j ε

∗
i

)
ỹ∗

j =
n∑

i=1

(
2n∑
j=1

Ĩi j ỹ∗
j

)
ε∗i

=
n∑

i=1

(
N∑

j=1
Ci jθ

∗
j

)
ε∗i =

N∑
j=1

(
n∑

i=1
Ci j ε

∗
i

)
θ∗j

=
N∑

j=1

(
M∑

i=1
Ki jδ

∗
i

)
θ∗j =

M∑
i=1

(
N∑

j=1
Ki jθ

∗
j

)
δ∗i

=
M∑

i=1
(Kθ0)i δ

∗
i . (2.44)

The equality in (2.41) now holds if and only if equalities hold in (2.42), which in turn

means that either ỹ∗
j = 0 or

∑n
i=1 Ĩi j ε

∗
i = 1. The following rules can be derived to obtain

information about the primal solution from the dual solution:

ỹ∗
j =

{
0 if

∑n
i=1 Ĩi j ε

∗
i < 1

≥ 0 if
∑n

i=1 Ĩi j ε
∗
i = 1

j = 1,2, . . . ,2n. (2.45)

⇔

y+
j
∗ =

{
0 if

∑n
i=1 Ii j ε

∗
i < 1

≥ 0 if
∑n

i=1 Ii j ε
∗
i = 1

j = 1,2, . . . ,n. (2.46)

y−
j
∗ =

{
0 if

∑n
i=1 Ii j ε

∗
i >−1

≥ 0 if
∑n

i=1 Ii j ε
∗
i =−1

j = 1,2, . . . ,n. (2.47)

⇔

y+
j
∗ =

0 if ε∗j < 1

≥ 0 if ε∗j = 1
j = 1,2, . . . ,n. (2.48)

y−
j
∗ =

0 if ε∗j >−1

≥ 0 if ε∗j =−1
j = 1,2, . . . ,n. (2.49)

�

The value of the dual variable ε∗j can be translated to the sign of y∗
j in (2.20):

y j =


≥ 0 if ε j = 1

≤ 0 if ε j =−1

0 if −1 < ε j < 1

j = 1,2, . . . ,n, (2.50)

and the selection matrix C determines which variable signs in the original parameter

vector θ can be determined from these rules.

2.2.3 Practical issues

In a practical setting, the algorithm to maximize sparsity has to deal with a number of

numerical uncertainties: applying singular value decomposition to the matrix K (Ja-
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cobian or Hessian) can possibly return some singular values close to zero. A thresh-

old needs to be applied to determine which values are assumed to be zero and which

not. This threshold has to be chosen carefully: a threshold that is too low will limit the

search space and perhaps exclude valid directions to search for sparsity; a threshold

that is too high can possibly result in search directions that change the model behav-

ior. A similar choice has to be made in the case that the solution to the dual LP problem

is computed and the solution to the primal LP problem is derived from this dual so-

lution: when a value of
∑M

i=1 K̃i jδi is close to 1 or −1 (or the value of ε j in the case of

the partial sparsity problem), a decision has to be made about whether to set the cor-

responding primal variable θ+i or θ−i (or y+
i or y−

i ) to zero or not. Again, the threshold

for this decision determines the quality of the maximization procedure. When decid-

ing on appropriate threshold values one needs to take into account the model class

(and data set) at hand and its robustness with respect to (small) aberrations in search

direction accuracy during the optimization procedure.

2.3 Mixed optimization: minimizing the least squares error and
maximizing sparsity

The procedure to maximize the sparsity of a certain model estimate, requires that there

exists a procedure to arrive at a model that provides a good fit to the observed data.

Only then there is an opportunity to search for a sparser solution that retains the qual-

ity of fit of the estimated model. In Section 2.2 the kernel of the Jacobian matrix J of the

model error or the Hessian H of the least squares error criterion V is the subspace that

contains the search directions to maximize sparsity. The orthogonal complement of

the kernel of J , Ker(J )⊥, determines the subspace of the parameter space in which the

search directions generated by Gauss-Newton type methods are contained, see [102],

to improve the fit of the model to the data. These observations lead to the following

two key elements of the sparse identification procedure:

(1) The orthogonal complement of the kernel of J is employed as the subspace in

which to select a search direction for improving the (nonlinear) least squares

error criterion V (such as, e.g., achieved by Gauss-Newton type optimization

methods).

(2) The kernel of J or the kernel of H if the parameter estimate θ in the first step is

a (local) optimum of V , is employed as the subspace in which to select a search

direction for improving the `1-norm of (a part of) the parameter vector θ.

There are many ways to build an actual sparse identification algorithm from these

two key elements. Algorithms may differ with respect to the amount of iterations of

these two types, and the combinations and order in which they occur. For instance:

one may perform steps in the two subspaces Ker(J ) and Ker(J )⊥ simultaneously at

each iteration; one may perform steps in the two subspaces alternatingly; one may first

perform optimization of V by only taking steps in subspaces of the type Ker(J )⊥ and

then minimize the `1-norm of θ afterwards by taking steps in subspaces of the type
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Ker(J ). In the latter case, the value of V may deteriorate after a number of steps, so

that it becomes necessary to incorporate intermediate optimization steps focused on

the re-minimization of V . Other aspects in which algorithms may differ are: the com-

putation of the search directions in the two subspaces (e.g., depending on the actual

Gauss-Newton type method used); the computation of the corresponding step sizes in

the computed directions.

2.3.1 Technical description

Suppose that a data record is given, which stems from a system S. At a given model

P (θ) corresponding to a current parameter vector θ, one may compute the error vector

e(θ) by running the associated error filter, and the Jacobian matrix J (θ) by running the

associated sensitivity system of the system (see e.g. [40, 42, 76, 100]) . Then the gradient

of the criterion of fit V (θ) = ‖e(θ)‖2 is given up to a scalar factor by J T (θ)e(θ) and the

Gauss-Newton (GN) method produces a search direction s given by

s =−(J T (θ)J (θ))−1 J T (θ)e(θ). (2.51)

Variants of GN (including Levenberg-Marquardt and robust GN) differ in their choice

for the inverse of the matrix J T (θ)J (θ) which appears in this formula: it may be re-

placed by (λIN+J T (θ)J (θ))−1 for some positive scalarλ, or by a suitably chosen pseudo-

inverse. Note that all such methods yield a search direction s in the subspace Ker(J (θ))⊥,

see also [102]. In contrast, the (damped) Newton method does not necessarily possess

this property (see Table 2.2) and is therefore not applicable in this specific situation.

Next, to improve the value of V (θ), the parameter vector θ is modified according to

θk+1 = θk +αs (2.52)

for some step size parameterα> 0. In the undamped GN methodα= 1, but to achieve

good convergence behavior it is preferred to determine α by a suitable line minimiza-

tion procedure (cf. [33]). Ker(J ) is the space in which the error vector e(θ) does not

change locally around θ in first order approximation. The value of ‖θ‖1 can be im-

proved by computing a search direction in Ker(J ), as this will not affect the value of V

in first order approximation. This leads to the following optimization problem:

minimize ‖θ+ s‖1 subject to: J s = 0 (2.53)

which can be rewritten as an LP problem in standard form, as described in Section 2.2.

It clearly admits a finite feasible solution and can be solved with standard LP software.

Suppose θ∗ is a (local) minimum of V , then it is also possible to use the kernel of the

Hessian H of the error criterion, which in this case is equivalent to the space in which

V (θ∗) does not change locally around θ∗ in second order approximation:

minimize ‖θ∗+ s‖1 subject to: H s = 0, (2.54)

with θ∗ a (local) minimum of V . Note that last approach can only be used in an algo-

rithm that performs the sparsity maximization step after the minimization of the least

squares error criterion.
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Table 2.2: Overview of non-linear least squares minimization methods

Method Search direction s(θ) Applicable
Steepest descent −αJ (θ)T e(θ) Yes
Newton (damped) −αH(θ)−1 J (θ)T e(θ) No

Gauss-Newton −α(
J (θ)T J (θ)

)−1
J (θ)T e(θ) Yes

Levenberg-Marquardt −(
J (θ)T J (θ)+λI

)−1
J (θ)T e(θ) Yes

2.3.2 Practical issues

If s∗ is an optimal solution giving an improved value in (2.53), then ‖θ+βs∗‖1 gives an

improved value too for all 0 <β< 1. An actual choice ofβ should take into account that

second and higher order changes in V do not significantly compromise the quality of

the fit between the data and the model. It also must be tuned in such a way that con-

vergence of the overall optimization algorithm can be guaranteed to a point for which

‖θ‖1 is minimal among the set of points for which V is (locally) minimal. One practi-

cal heuristic way by which one may attempt to achieve this, is to restrict the maximal

relative change in the value of V that is allowed to occur when a value for β is chosen.

However, it is not easy to choose an appropriate bound which guarantees monotonic

convergence: several experiments have been carried out which exhibit chaotic itera-

tion behavior or cyclic behavior near a local optimum value. For a bound that is not

restrictive enough, it has been witnessed that an increase of ‖θ‖1 may happen instead

of a decrease, resulting as the net effect of an optimization step with respect to ‖θ‖1

followed by an optimization step with respect to V . This makes clear that the choice of

β should be treated with care.
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Chapter 3

Application: Linear regression
models

3.1 Introduction

The class of linear regression models is treated here as a case study to investigate the

properties and applicability of the proposed algorithm for maximizing sparsity. Linear

regression models are applied in virtually every area of scientific research, rendering it

one of the most influential model classes around. There are three elements to a linear

regression model:

1. The dependent variable(s), for instance observed outputs, measurements, clas-

sifiers.

2. The regressors, the entities that are candidates to explain the behavior of the de-

pendent variables. In an estimation setting the regressors are associated with

a design matrix which is a matrix with regressor instances. The regressors are

functions of the independent variables.

3. The parameter vector of coefficients that characterize the dependent variables

as a linear combination of the regressors.

The linear relationship between the regressors and the dependent variables makes the

analysis and interpretation of the model relatively straightforward. The definition of

linear regression models is also very flexible, enabling for instance the use of time-

dependent regressors (or time itself) and the use of a larger or smaller amount of model

parameters to model the observed behavior, thus increasing or decreasing the model

order. This is where the sparse estimation algorithm comes into play: linear regres-

sion models are often used to determine which (combination of) entities determine

the output or behavior of a certain phenomenon. A relevant problem is to select the

most significant contributors from a set of candidate regressors. There are numer-

ous methods that attempt to solve this problem. Subset selection is the general class
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of methods that selects a subset of the regressors based on certain statistical criteria.

Forward selection, for instance, starts with a zero order model and iteratively adds a

new regressor from the set of candidates that best improves the model fit until k re-

gressors are selected. Backwards elimination starts with a full regression of all avail-

able regressors and iteratively eliminates the ones that do not deteriorate the quality

of the fit significantly. See for instance [66] and [67] for an overview of subset selection

strategies. Ridge regression (or Tikhonov regularization) applies a regularization of the

optimization criterion to favor solutions with certain properties, for instance solutions

with smaller norms [45]. A related technique is the lasso, where the sum of the abso-

lute value of the model parameters is constrained to be less than a constant value [95].

Elastic net [105] is a more recent variable selection and regularization method that

combines the qualities of both ridge regression and the lasso technique. It is particu-

larly useful in the case where the number of regressors is much larger than the number

of observations, and when there are highly correlated regressors.

The sparse estimation algorithm described in the previous chapter can be applied

to the problem of subset selection. In a situation where only a small portion of all

the candidate regressors are assumed to contribute to the modeled phenomenon, the

parameter vector is sparse. The dominant regressors can be identified by trying to

minimize the number of non-zero parameters, while still retaining an optimal fit of

the model to the observed data. The case under investigation will be the situation in

which the amount or quality of the available data is insufficient to uniquely identify the

contribution of each of the candidate regressors. In this situation the problem is un-

derdetermined and there are multiple solutions that provide an optimal fit. The space

of optimal solutions is the equivalence space to maximize the sparsity. The applica-

bility of the sparse estimation algorithm in this linear regression settings is evaluated,

specifically to get an insight into which conditions allow for reproducibility of the non-

zero data generating parameters by sparse linear regression and which conditions do

not.

3.2 The model class

The scalar linear regression problem can be stated as follows: the data available is of

the form
(
φi , yi

)
, i = 1,2, . . . , M , where φi =

[
φi 1,φi 2, . . . ,φi N

]T is the regression vector

and yi is the dependent variable. The index i is used to distinguish between different

states of the regression vector and the corresponding dependent variable. It can be

time-related or just refer to different measurement records. The deterministic linear

regression model class parametrized by θ,
{
P (θ)|θ ∈RN

}
is formulated in the following

way:

yi =φT
i θ, i = 1,2, . . . , M , (3.1)

where θ is the (N ×1) parameter vector that describes the linear relationship between

the regressors and the dependent variable. To be able to determine the N entries in

de parameter vector θ uniquely, at least M ≥ N independent data records are required.
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The model can be expressed in matrix form:

Y =Φθ, (3.2)

with Y = [
y1, y2, . . . , yM

]T andΦ= [
φ1,φ2, . . . ,φM

]T . If M = N and the matrixΦ is non-

singular, there exists a unique solution for θ, given by θ =Φ−1Y . In general, the num-

ber of measurements M will be different from the number of parameters, often much

higher, which leads to an overdetermined system of equations that is not likely to have

an exact solution, due to measurement disturbances or modeling errors. In this case

the goal is to find θ that optimizes the fit between the model and the measurements.

The error ei (θ) between a model estimate and the observed output can be expressed

as

ei (θ) = yi −φT
i θ, i = 1,2, . . . , M , (3.3)

and the least squares error criterion to express the quality of the model fit is

V (θ) =
M∑

i=1
e2

i (θ). (3.4)

or

V (θ) = eT (θ)e(θ) = ‖e(θ)‖2, (3.5)

where e(θ) = [e1(θ),e2(θ), . . . ,eM (θ)]T . If M ≥ N and the corresponding matrix Φ has

full column rank N , the unique least squares solution θLS is given by

θLS =
(
ΦTΦ

)−1
ΦT Y . (3.6)

If M < N and/or the matrixΦ has a column rank r < N , there is no unique least squares

solution, but an optimal least squares solution space of dimension N − r . The Moore-

Penrose pseudo inverse Φ+ = ΦT
(
ΦΦT

)−1
is then commonly used to determine the

minimum norm solution θMN with the smallest Euclidean norm of θ:

θMN =Φ+Y , (3.7)

but it is also possible to compute an optimal solution that has at least N−r zero entries,

using QR decomposition and back-substitution, which intuitively provides an upper

bound for the sparse maximization problem.

The two prerequisites for the sparse estimation algorithm are present in this model

class: a parameterization by θ and a least squares criterion V (θ) to determine the good-

ness of fit of the model to the observed data. The iterative procedure described in the

previous chapter can be brought down to just one iteration. Only in the underdeter-

mined case, an equivalence space exists for the optimal least squares solution that can

be used to maximize the sparsity of the parameter vector while retaining the optimal

least squares fit. In the overdetermined case the equivalence space contains just the

least squares solution θLS.
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Theorem 3.2.1. The equivalence space with respect to the least squares criterion V at a

least squares solution θLS is determined by the kernel of the regressor matrixΦ

V (θLS + s) =V (θLS) ⇔ s ∈ Ker(Φ). (3.8)

Proof. It is easily seen that a solution θLS + s with s in the kernel of the matrix Φ yields

an error vector e(θLS + s) that is equal to e(θLS) (i.e. model fit equivalence as defined in

2.1. An equal error vector produces an equal least squares criterion value, which proves

the forward indication of the theorem. An equal criterion value for θLS and θLS + s also

requires that s is in the kernel of Φ. Every optimal least squares estimate θ∗ has the

following property: ΦT (Y −Φθ∗) = 0. Substituting (θ∗+ s) for θ∗ implies −ΦTΦs = 0,

which is true if and only if s ∈ Ker(Φ). �

In the linear least squares setting criterion equivalence implies model fit equiva-

lence, which can be explained by observing that in this caseΦ= J and H = J T J .

Following the general sparse estimation scheme in the previous chapter, the algo-

rithm can be stated as follows in the case of linear regression models. Given dependent

variable observations Y and the design matrixΦ:

1. Compute a least squares solution θLS

2. Solve the linear program

min
θ

‖θ‖1 subject toΦθ =ΦθLS. (3.9)

The algorithm can also be stated as

min
θ

‖θ‖1 subject toΦθ = Y ∗ (3.10)

with Y ∗ = projΦY the orthogonal projection of the vector Y on the column space ofΦ.

There are a number of other methods that are closely related to this method. One of

them is the more general class of convex problems that minimize the `1-norm of the

parameter vector under a non-linear constraint (see [37]):

min
θ

‖θ‖1 subject to ‖Φθ−Y ‖p ≤ ρp (3.11)

where ‖ · ‖p denotes the p-norm. For ρp = 0 the formulations (3.10) and (3.11) are

equivalent formulations, that lead to the same solution(s). Ridge regression imposes

an `2-norm constraint on the parameter vector θ:

min
θ

‖Φθ−Y ‖2 subject to ‖θ‖2 ≤ t , (3.12)

Another method is the method known as the lasso (least absolute shrinkage and se-

lection operator) [95] that is based on regression shrinkage, which minimizes a least

squares criterion under a `1-norm constraint for the parameter vector:

min
θ

‖Φθ−Y ‖2 subject to ‖θ‖1 ≤ t , (3.13)
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where t is a tuning parameter. An optimal solution θ∗ to (3.10) is an optimal solution

to (3.13) if t = ‖θ∗‖1. The elastic net method combines the penalties used in the ridge

regression approach and the lasso:

min
θ

‖Φθ−Y ‖2 subject to (1−α)‖θ‖1 +α‖θ‖2 ≤ t . (3.14)

These methods promote a non-optimal least squares estimate (for p = 2 in (3.13) and

(3.14)) in favor of a better `1-norm of the parameter vector θ. If the sparse data gener-

ating model parameters are not an optimal solution to the least squares problem due

to disturbances, this provides a opportunity to still retrieve that sparse solution. In

this situation the sparse estimation algorithm will not produce a sparse solution, but

an optimal least squares solution with minimum parameter `1-norm. Under certain

conditions the non-zero data generating parameters can still be recovered from this

solution, which will be illustrated in the experiments.

3.3 Experiments

The sparse estimation algorithm is applied to the problem setting that has been pre-

viously defined in the case of linear regression models: underdetermined problems,

where the regressor matrix Φ allows for a nontrivial space of solutions that minimize

the least squares criterion V , giving way to an equivalence space to maximize the spar-

sity of the parameters. The case of over-determined problems corrupted by noise,

where there exists a unique solution that minimizes V (and the equivalence space is

restricted to that solution), will be briefly discussed, but is not the focus of this chapter.

3.3.1 Experimental setup

In the following experiments, the linear regression model is chosen to be to a lin-

ear multivariable model where the regressors are simply the independent variables

themselves, providing an easy way to generate and analyze the simulations and re-

sults. A model is created by generating a random parameter vector θ of length N con-

taining k non-zero entries, determining the sparsity (1− k
N ) of the model. The val-

ues of the non-zero parameters are drawn from a uniform distribution on the interval

[−2α,−α]∪ [α,2α]. The value of α is chosen in such a way that there is a clear distinc-

tion between zero and non-zero parameter values. A typical value is α= 1. An (M ×N )

matrixΦ of regressor values is generated from a Gaussian distribution with zero mean

and unit variance. The columns of Φ are normalized to unit length. The parameter

vector θ and the regressor matrixΦ together produce the (M ×1) measurement vector

Y . These measurements are optionally disturbed by Gaussian white noise with zero

mean and variance σ2.

The performance of the algorithm is measured by the number of incorrectly es-

timated parameter values Sε, counting both false negatives (parameters that should

be zero are assigned a non-zero value) and false positives (parameters that should be

non-zero are assigned a zero value). In the noiseless case the parameter values are re-

quired to be equal up to machine precision, but in the presence of noise a threshold is
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applied (see point 5 in Section 3.3.2). In the following experiments, the performance

is visualized by plotting the mean performance over a number of trials and the mean

minus and plus the standard deviation over these trials. A second way of assessing

the algorithm performance is to compute the probability that it will succeed, meaning

that the original non-zero and zero parameters are all estimated correctly. This perfor-

mance parameter is denoted by P0. The performance of the algorithm is compared to

the performance of the least squares solution that produces a parameter vector con-

taining at most r non-zero entries, with r the rank of Φ and r ≤ N . The probability

that a least squares solution with at most r non-zero entries is the original data gen-

erating parameter vector is determined by the probability that the original k non-zero

parameter positions are among the r selected non-zero least squares parameters. This

probability can be expressed by the following formula

P (Sε = 0|θLS) =
(

r

k

)
k !(N −k)!

N !
, r ≥ k. (3.15)

All computations are performed using MATLAB. The least squares solution is com-

puted using the backslash operator, giving an estimated parameter vector with at most

r non-zero entries. The linear programming problem is solved by the linprog func-

tion that is available from the Optimization Toolbox.

3.3.2 Underdetermined problems

In situations where the column rank r ofΦ is strictly smaller than the number of entries

in the parameter vector θ, the problem is called underdetermined. More than one

solution provides an optimal fit to the data. To see how this works, consider a small-

scale example, where N = 3, k = 2 and M = 2.

[
5

−1

]
=

[
1 2 −1

1 −1 2

]θ1

θ2

θ3

 , (3.16)

generated by θ∗ = [ 1 2 0 ]T . The minimum norm solution for this problem is

θMN = [
1 1

3 1 2
3 − 1

3

]T . (3.17)

The solution space for the system of equations in (3.16) is the line

θ =

1

2

0

+θ3

−1

1

1

 . (3.18)

The minimum norm solution is retrieved by choosing θ3 =− 1
3 . In this case the solution

with maximum sparsity θ∗ coincides with the solution with a minimal `1-norm, which

is confirmed by visual inspection of Figure 3.1. The sparse estimation algorithm is able

to find this optimum starting from the minimum norm solution θMN. Note that there

are actually more maximally sparse solutions with identical `0-norm, but with higher

`1-norm for θ3 =−2 and θ3 = 1.
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Figure 3.1: Visualization of the minimum norm solution θMN and the maximum spar-
sity solution θ∗ for the problem in (3.16): (a) Visualization of the space ‖θ‖1 = 3 and
the least squares solution line. (b) ‖θ‖1 along the least squares solution line, parame-
terized by θ3. Maximally sparse solutions with minimal `0-norm but higher `1-norm
are marked in gray.
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However, it is also possible to construct a problem that allows multiple maximally

sparse solutions with equal minimal `1-norms. Another problem of equal dimensions

is [
1

−2

]
=

[
1 0 −1

0 1 −2

]θ1

θ2

θ3

 , (3.19)

generated by θ∗ = [ 1 −2 0 ]T . The minimum norm solution for this problem is

θMN = [
1 1

2 −1 1
2

]T . (3.20)

The solution space for the system of equations in (3.19) is the line

θ =

 1

−2

0

+θ3

1

2

1

 . (3.21)

In this case there are actually two maximally sparse solutions with minimal `1-norm.

Besides θ∗, also θ
′ = [ 2 0 1 ]T contains as many zeros as possible and has the same `1-

norm. The solution space for the minimal `1-norm of the parameter vector θ is the

line segment between these two solutions, as can be seen in Figure 3.2.

Finally, it is also relatively straightforward to design a problem where the minimum

`1-norm solution does not correspond to a maximally sparse solution. Consider the

problem

[
3

6

]
=

[
1 2 1

2 2 4

]θ1

θ2

θ3

 , (3.22)

generated by θ∗ = [ 3 0 0 ]T . The solution space for the system of equations in (3.22) is

the line

θ =

3

0

0

+θ3

−3

1

1

 . (3.23)

Here the solution with minimal `0-norm (at θ3 = 0) has a higher `1-norm than the

minimal `1-norm solution (at θ3 = 1), as is visualized in Figure 3.3.

To ensure that the sparse estimation algorithm selects one of the maximum spar-

sity solutions in the second example (Figure 3.2), the algorithm that computes the so-

lution to the linear programming problem has to select an optimal vertex of the poly-

tope that defines the feasible region. Only then a point is selected where one or more of

the variables is zero. The simplex algorithm and the class of active set algorithms both

possess this property, but for instance the interior point algorithm does not, which

makes it not the best candidate to solve this particular LP problem. Only the simplex

algorithm and the active set algorithm are used in the remainder of this chapter. The

last example also shows that the data generating system may not be the only maximally
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Figure 3.2: Visualization of the minimum norm solution θMN and the maximum spar-
sity solutions θ∗ and θ

′
for the problem in (3.19): (a) Visualization of the space ‖θ‖1 = 3

and the least squares solution line. (b) ‖θ‖1 along the least squares solution line, pa-
rameterized by θ3.
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Figure 3.3: Visualization of the the maximum sparsity solutions θ∗ and minimum `1-
norm solution θ`1 for the problem in (3.22): (a) Visualization of the space ‖θ‖1 = 2 and
the least squares solution line. (b) ‖θ‖1 along the least squares solution line, parame-
terized by θ3.
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sparse solution, or may even not be a maximally sparse solution. The algorithm can

produce a different solution θ
′

in these cases, that has either the same or lower num-

ber of zero entries, or has a lower `1-norm altogether. The question whether a original

sparse vector can be retrieved from a set of measurements in a noiseless situation, is

well studied. In [36] and [35] (and references mentioned there), conditions are given

under which a parameter vector θ is the unique sparsest solution, namely:

‖θ‖0 ≤ 1

C
with C = sup

i, j
|ΦT

i Φ j |, (3.24)

where Φi denotes the i th column of the matrix Φ, and conditions under which the

sparsest solution is also the unique solution of the LP problem that minimizes the `1-

norm of the parameter vector:

‖θ‖0 ≤ 1

2

(
1+ 1

C

)
with C as above. (3.25)

These conditions are only valid if the columns of the regressor matrix Φ have unit

length, a condition that was not met in the previous examples. If for instance the prob-

lem in (3.22) is scaled accordingly, the `1-norm of the solution θ = [ 3 0 0 ]T increases to

3
p

5 (≈ 6.71), but the `1-norm of the original minimal `1-norm solution θ = [ 0 1 1 ]T

now exceeds this value by increasing to
p

8+ p
17 (≈ 6.95). The parameter C expresses

the mutual coherence of the matrixΦ (usually denoted as M , but here a different nota-

tion is used to avoid confusion with the number of available measurements M). This

gives a very strict bound, in many practical situations the conditions will not be met.

It is therefore useful to investigate how the algorithm performs in a broader sense, i.e.

how it performs on average in an number of different conditions. To investigate the

probability that the sparse estimation algorithm does retrieve the original data gener-

ating model, and how many errors are produced when it does not, a number of exper-

iments were carried out, where the algorithm performance was evaluated for varying

problem dimensions N , k and M .

1. Dependence on the number of measurements M

The number of available measurements is an important factor in practical sit-

uations where the cost of acquiring measurements can be high. The algorithm

is applied for a fixed parameter vector size N and a varying number of available

measurements M , where M < N . The generation of the matrixΦ is carried out in

such a way that rank(Φ) = M . Results for N = 10 and N = 100 are shown in Fig-

ures 3.4 and 3.5. They indicate that in the situation where there is low sparsity

together with a low number of measurements, the algorithm is not always able

to find the desired solution. Furthermore, the number of measurements needs

to be higher than the number of non-zero entries to obtain reasonable average

performance in an underdetermined situation: k < M < N .

2. Dependence on the number of parameters N

The number of parameters represents the number of candidate regressors. Fig-

ure 3.6 shows the influence of the number of parameters on the number of mea-
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Figure 3.4: Average number of errors Sε and probability of a correct estimate P0 de-
pending on M ranging from 1 to 10, k ranging from 1 to 9 and N = 10. The data is
not disturbed by noise and the number of trials for each combination of parameters is
1000.
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Figure 3.5: Average number of errors Sε and probability of a correct estimate P0 de-
pending on M ranging from 1 to 50, k ranging from 1 to 9 and N = 100. The data is
not disturbed by noise and the number of trials for each combination of parameters is
1000.
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Figure 3.6: Average number of errors Sε and probability of a correct estimate P0 de-
pending on N , ranging from 100 to 1000, k = 5, M ranging from 10 to 50. The number
of trials is 1000.

surements needed to find the right solution for a fixed number of non-zero pa-

rameters. Clearly, the higher the total number of parameters, the higher the

number of required measurements, but the number needed to estimate cor-

rectly is relatively low at high sparsity, for instance in the case where N = 1000,

k = 5, only about 50 measurements are needed to succeed, compared to 1000

measurements needed to solve the same problem using only a conventional

least squares criterion.

3. Dependence on the number of non-zero parameters k

The number of non-zero parameters k determines, together with the number of

parameters N , the sparsity of the model. Figure 3.7 shows the effect of increas-

ing the number of non-zero parameters on the algorithm performance. As k
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Figure 3.7: Average number of errors Sε and probability of a correct estimate P0 de-
pending on k, ranging from 1 to 20, N = 1000, M ranging from 10 to 50.

increases, the algorithm performance deteriorates and more measurements are

needed for a correct estimate.

4. Relation between N , k and M

The previous analyses indicate that there exists a relation between the number of

total available parameters, the number of non-zero parameters and the number

of available measurements when it comes to correctly estimating the data gen-

erating model parameters θ. To investigate the nature of this relation further,

an experiment is performed that records the results for ranges of N , k and M .

The range of N is N = {10,20, . . . ,100}, and the range of k is {1,2, . . . ,n}∀n ∈ N .

For each combination of N , k the minimum number of measurements M (N ,k)
min is

determined that is needed to correctly estimate the data generating model pa-

rameter vector. The number of trials for each combination is 20.
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the data generating model parameters correctly, as a function of the sparsity of the
parameter vector (1− k

N ) for N ∈ {10,20, . . . ,100} and k = (1,2, . . . , N ). The number of
trials for each combination is 20.

The main result of this experiment is depicted in Figure 3.8. It shows that the

performance of the algorithms improves with higher sparsity of the parameter

vector and that at higher sparsity, a lower amount of measurements is sufficient

to compute an accurate estimate. This is in contrast to the strict bound that is

given by the threshold based on matrix coherence C , stated in Equation 3.25,

as can be seen in Figure 3.9. The theoretical upper bound on the number of

non-zero parameters for example does not even reach 3 at N = 500, given a rel-

atively large number of measurements M < N . A similar observation was made

by Donoho [28], who showed that for most large underdetermined systems the

parameter vector with minimal `1-norm corresponds to the sparsest solution.

5. Dependence on the noise level

In many practical situations, the measurement data Y is corrupted by a (M ×1)
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noise vector E , producing the noisy data Ŷ = Y +E . A number of experiments

have been performed to assess the sensitivity of the sparse estimation algorithm

to a noise vector E , generated from a Gaussian distribution with zero mean and

standard deviation σ. The signal to noise ratio (SNR) is used to express the noise

level:

SNR = Var(Y )

Var(E)
= Var(Y )

σ2 , (3.26)

often converted to decibels:

SNR = 10log10

(
Var(Y )

Var(E)

)
dB. (3.27)

The variance Var(Y ) and Var(E) can be interpreted here as the power of the “sig-

nals” Y and E , since they both have zero mean. Y has zero mean because Y =Φθ
and the independent columns Φ j of the matrix Φ and θ j both have zero mean.

The variance of Y also depends on the values ofΦ and θ and can be expressed as

Var(Y ) = 7kα2

3M
. (3.28)

This can be derived as follows: since every column j in Φ has length 1, the en-

ergy inΦ jθ j is θ2
j . Therefore, the total energy in Y is θ2

1 +θ2
2 + . . .+θ2

N = ‖θ‖2. The

variance of Y is the expected power: Var(Y ) = ‖θ‖2/M . The expected value of θ j ,
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coming from a uniform distribution on [−2α,−α]∪ [α,2α], is 7α2

3 . If only k ele-

ments of θ are non-zero, Var(Y ) is 7kα2

3M . The required noise variance σ2 is com-

puted in each experiment to match the desired noise level in decibels. The ex-

pected effect of adding noise to the measurements is that more than k elements

of the estimated parameter vector θ̂ will be non-zero. In general M elements of θ̂

will be non-zero. When M ≥ k and at reasonable noise levels, the original k non-

zero parameters will also be non-zero in the parameter estimate θ̂. Figures 3.10

and 3.11 explore the effects of adding noise on the minimum estimated value of

a non-zero parameter and the maximum value of a zero parameter.

A threshold is needed to distinguish the small (and consequently probably zero)

non-zero parameters from the dominant non-zero parameters in θ̂. To decide

on the computation of the value of this threshold, one can look at how the ex-

pected values in Y depend on the values in θ, and the inverse relation, what

the expected value of an entry in an estimated θ̂ is based on a data record Ŷ .

From the computation of Var(Y ) it can be derived that the expected power of a

non-zero element of θ̂ is M
N Var(Ŷ ). At moderate noise levels, originally non-zero

parameters are more likely to have a power in θ̂ higher than this value, since

they represent the power in Y , while originally zero parameters that are non-

zero in θ̂ are more likely to have a power value that is less than M
N Var(Ŷ ), since

they represent the power in E . The square root of M
N Var(Ŷ ) is therefore a good

threshold candidate to determine which non-zero entries in θ̂ are actually zero

entries, moreover since it does not depend on any a priori knowledge about the

noise level or k. Figures 3.12 and 3.13 show the effect of different noise levels

on the performance of the algorithm and the probability of correctly classifying

the non-zero and zero parameters at different noise levels. It can be concluded

that the algorithm is relatively sensitive to noise, especially at low sparsity. At

higher sparsity the negative effect of noise can be diminished by adding more

measurements.

6. Dependence on LP solver

The time that is required to compute a solution to a given sparse linear regres-

sion problem is a relevant aspect of the algorithm. The two steps of the algo-

rithm can be performed using a number of different solvers. This section con-

centrates on the choice of linear programming solver. The least squares mini-

mization method is the same in each setup. The LP solvers under investigation

are the simplex method, the activate set method and the interior point method

as implemented in Matlab release 2010a. The performance of each solver is de-

pendent on the dimensions of the problem (N ,k, M). Figure 3.14 shows that the

active set method is the fastest option to solve the `1-minimization problem as

it outperforms both the simplex method and the interior point method.

Another property that influences the performance of the algorithm is the for-

mulation of the linear programming problem. As explained in Chapter 2, Sec-

tion 2.2, the problem of minimizing the `1-norm of the parameter vector can

be stated as a linear programming problem in two equivalent ways: the primal
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Figure 3.14: Average CPU time of different LP solvers on the `1-minimization problem
(dual LP formulation, k = 5, M = 50).

problem (2.15) and the dual problem (2.17). Solving the primal problem imme-

diately gives one the solution for the parameter vector with minimal `1-norm.

Solving the dual problem instead, requires one to translate the solution to the

dual problem back to a solution to the primal problem via the relation given in

Section 2.2.2. The performance of these two approaches is compared using the

active set LP solver. The result can be seen in Figure 3.15. Solving the dual prob-

lem first, clearly is much faster than solving the primal problem directly.

3.3.3 Performance of the least absolute shrinkage and selection opera-
tor (LASSO)

As mentioned in Section 3.2, an other method that favors sparse solution in the linear

regression setting, is the lasso method. This method is also applicable in the under-

determined setting investigated here. The formulation in Equation 3.13 can be formu-

lated as as regularized linear regression:

min
θ

‖Φθ−Y ‖2 +λ‖θ‖1, (3.29)

and is solved for several values of the regularization parameter λ, using for instance a

technique called least angle regression (LARS)[32]. In the same experimental setup as

in item 4, the performance of the lasso method was compared to the performance es-

tablished for the sparse maximization algorithm. Lasso performance was calculated in

a slightly different way, since the lasso tends to underestimate the parameter values θ,

depending on the choice for λ. Therefore a lasso solution was considered correct if the

nonzero parameters indices were correctly determined. Figure 3.16 shows the result

of the comparison in terms of the minimal number of measurements Mmin/M needed
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Figure 3.15: Average CPU time for solving the sparse maximization problem with the
primal LP formulation and the dual LP formulation (N = 100, k = 5, active set method).

to correctly identify the data generating model parameters, depending on the model

sparsity. In this setup the sparse maximization algorithm is better able to correctly

identify the parameters at a lower amount of available measurements. At the same

level of sparsity, the lasso method in general requires a larger number of measurements

for successful estimation than the sparse maximization algorithm. The elastic net al-

gorithm is left out of the comparison, as its strengths lie mainly in the ability to handle

correlated parameters, which are not expected to be present given the experimental

setup.

3.3.4 Overdetermined problems and subset selection problems

A common problem is the case where the number of available measurements is (much)

higher than the number of parameters (M À N ), but the measurements are corrupted

by noise, which reduces the chance to retrieve the original data generating model pa-

rameters. In this case, finding a sparse solution corresponds to the subset selection

problem where one tries to find the dominant regressors in the set of available regres-

sors that still provides a good fit to the measurements. In this case there is no clear

equivalence space: the equivalence space at the least squares solution θLS is a single-

ton, because θLS is the unique solution. One could try to search within a sub-optimal

space for a sparse solution, as is done in the lasso approach. An extension of the cur-

rent sparse estimation to the overdetermined case is however beyond the scope of the-

sis.
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3.4 Conclusions

In a linear regression setting the equivalence space that can be exploited for sparse

maximization of the parameter vector, is given by the kernel of the regressor matrixΦ.

The examples in Section 3.3.2 show that in an underdetermined situation, where the

number of available observations M is lower than the number of parameters N that

are to be estimated, `1-minimization of the parameter vector θ can lead to accurate

reconstruction of the maximally sparse data generating parameters. However, it is also

possible to design an example where a maximally sparse data generating parameter

vector (the vector with minimal `0-norm) is not found by `1-minimization. Scaling of

the columns of the regressor matrix Φ to unit length improves the conditions under

which `1-minimization leads to correct reconstruction of the maximally sparse solu-

tion.

The experiments in Section 3.3 indicate that the number of non-zero parameters

k, the number of measurements M and the number of parameters N together deter-

mine the accuracy of the reconstruction of the data generating parameters. In general,

for a reconstruction to be successful, the number of available measurements needs

to exceed the number of non-zero parameters (M > k). At high sparsity (k relative to

N ), the number of measurements needed to get a high probability of accurate recon-

struction is relatively low. This is in contrast to the strict bound imposed by a measure

based on the mutual coherence of the regressor matrix. Moreover, there is a consistent

relationship between k, M and N that can be helpful in determining the likelihood

of computing an accurate reconstruction, given the dimensions of the linear regres-

sion problem and the assumed sparsity. The main effect of adding measurement noise

is that at increasing noise levels the originally zero-valued parameters are assigned

a non-zero value, which eventually makes it infeasible to correctly classify non-zero

and zero-valued data generating parameters. More measurements are then needed to

counteract this effect. When compared to the lasso method, an alternative approach

to sparse parameter vector reconstruction, the sparse maximization algorithm shows

superior performance.
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Chapter 4

Application: State-space models

4.1 Introduction

In this chapter the possibilities and limitations of applying the sparse estimation pro-

cedure to the class of linear time-invariant (LTI) state-space models are investigated.

State-space models are used in system identification and control for a wide range of

applications. One important feature of a state-space model is that it allows one to de-

fine a state interaction matrix that describes the strength of the relations between the

state components of a system. Here the state components are regarded as nodes in a

network and the interaction matrix as the structure of this network. In many networks

the number of direct interactions is limited, meaning that every node only interacts

with a small number of other nodes, making the interaction matrix sparse. When the

number of available measurements is too low for conventional identification meth-

ods to be able to estimate the network uniquely, this creates a relevant case to apply

the sparse estimation algorithm. In the case of full parameterization and sufficient

measurements, the sparse estimation algorithm is also applicable, as in this case there

still exists a natural equivalence space of input/output equivalent models that can be

searched for parameter sparsity.

The sparse estimation algorithm is employed to identify the network interactions

in a number of different settings.

1. Discrete-time model: in this case the problem can be formulated as a linear re-

gression problem and solved by sparse linear regression. (Section 4.6)

2. Discretized continuous-time model: a continuous state-space model can be trans-

formed to a discrete model under certain conditions. The discrete model can be

estimated by sparse linear regression and transformed back again to a continu-

ous model. (Section 4.7)

3. Continuous-time model: the parameters of the continuous model are estimated

directly, leading to a non-linear optimization problem, that can be solved by an

iterative version of the sparse estimation algorithm. (Section 4.8)
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The performance and applicability of the sparse estimation algorithm is evaluated for

each of these settings. To investigate the properties of the iterative sparse estimation

algorithm, a different, but related setting is treated first, where the state-space model is

fully parameterized (abandoning the network interpretation) and the number of avail-

able measurements is sufficient. This is a setting worth investigating, as in this case

the algorithm can be tuned in such a way that it stays within the current equivalence

space at each sparse maximization step. This property is achieved by relating the space

to search for sparsity to the search space in an identification procedure called data-

driven local coordinates (DDLC). When the state-space model is not fully parameter-

ized, the sparse maximization step has to be bounded in some way to stay sufficiently

close to the current model equivalence space. The influence of the choice of bound on

the algorithm performance is assessed by comparing it to the case in which it is guar-

anteed that the sparse maximization step stays within the equivalence space. (Section

4.5).

4.2 The model class

The model class is the well-known class of discrete time LTI state-space models, de-

scribed by the equations

x[k +1] = Ad x[k]+Bd u[k]+w[k],

y[k] =C x[k]+Du[k]+ v[k]. (4.1)

Here, at each time instant k ∈Z, the n-vector x[k] denotes the state, the m-vector u[k]

denotes the exogenous input and the p-vector y[k] denotes the output. The p-vectors

w[k] and v[k] are independent, identically distributed random variables, representing

process or measurement noise sources respectively. Models from the model class are

assumed to be stable, i.e. the matrix Ad has eigenvalues that lie within the open unit

disk. It can be shown that every model in (4.1) has an associated model representation

in innovations form:

x[k +1] = Ad x[k]+Bd u[k]+Kd e[k],

y[k] =C x[k]+Du[k]+e[k]. (4.2)

where the p-vector e[k] is also an independent and identically distributed (i.i.d.) vari-

able, called the innovations input. In this case the innovations input {e[k]} is assumed

to constitute a zero mean white noise stationary process with constant covariance

Σd > 0; this is the innovations process from which the model representation derives its

name. The matrix Kd is the Kalman gain matrix. It is assumed that a record of input-

output observations is available with respect to the exogenous input signal {u[k]} and

the output signal {y[k]}. This i/o data record can be used to identify the state-space

matrices (Ad , Bd , C , D , Kd ). As usual (see for instance [58]), it is further assumed that:

I minimality holds: the number n of state components used to describe the i/o

behavior is as small as possible; equivalently (Ad , [Bd ,Kd ]) is controllable and

(C , Ad ) is observable,
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II Ad is asymptotically stable: all its eigenvalues are in the open unit disk, ensuring

that the noise part of the model is stationary,

III (Ad −KdC ) is asymptotically stable: the noise part of the model is strictly min-

imum phase, so that the associated one-step-ahead predictor is asymptotically

stable,

IV for each k the innovation e[k] is independent from the state x[`] and the input

u[`] at time instants `≤ k, and also from the output y[`] at time instants `< k.

For a further background on this model class and its use in system identification, see

[58], [43] and [92]; see also [57] and [72].

4.3 Prediction error identification

To identify the discrete-time system (Ad , Bd , C , D , Kd ) and the noise covariance Σd

from an available record of i/o data, a prediction error method (PEM) can be used.

The one-step-ahead predictor associated with an estimate (Âd , B̂d , Ĉ , D̂ , K̂d ) of (Ad ,

Bd , C , D ,Kd ) is given by the equations

x̂[k +1] = (Âd − K̂dĈ )x̂[k]+ (B̂d − K̂d D̂)u[k]+ K̂d y[k], (4.3)

ŷ[k] = Ĉ x̂[k]+ D̂u[k]. (4.4)

It gives rise to a prediction error process {ê[k]} according to

ê[k] = y[k]− ŷ[k] =−Ĉ x̂[k]− D̂u[k]+ y[k]. (4.5)

When the one-step-ahead predictor is driven by i/o data obtained from a system (Ad ,

Bd , C , D , Kd ) and a noise covariance Σd , it yields a prediction error process of which

the covariance Σ̂d satisfies the inequality Σ̂d ≥ Σd (to be understood in the sense of

positive semi-definite matrices). Equality occurs if and only if (Âd , B̂d , Ĉ , D̂ , K̂d ) co-

incides with (Ad , Bd , C , D , Kd ) up to a similarity transformation. This implies that

the system matrices can be identified when the trace of the prediction error covari-

ance is minimized. This is the rationale behind least squares prediction error methods

for system identification, since trace{Σ̂d } = E(‖ê[k]‖2
2). In a practical situation, the lat-

ter expectation is conveniently estimated by the trace of the error covariance resulting

from a given i/o data set. Equivalently, it involves minimization of the nonlinear least

squares criterion of fit

V = 1

M

M∑
k=1

‖ê[k]‖2
2 (4.6)

over the set of matrices (Âd , B̂d , Ĉ , D̂ , K̂d ), where M denotes the size of the data record.

(Here, with some slight abuse of notation, the quantity ê[k] now denotes the actual

prediction error at time k resulting from the available data record, using some initial

conditions to start up the prediction error filter.) The criterion V is popular for various

other reasons too:
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1. it corresponds to maximum likelihood estimation in a situation where the inno-

vations process is Gaussian,

2. local minimization of V can be achieved in a relatively cheap fashion using a

Gauss-Newton method (or a more sophisticated variant such as Levenberg-Mar-

quardt, see e.g. [25], [33], [55]),

3. recursive (approximate) methods for minimizing V can be designed, which can

be used in an online or an adaptive identification context (see [58], [92]).

One important drawback of the approach is that the prediction error criterion V is

notorious for the many local minima it may possess. When a local search method is

employed to minimize V , this makes it necessary either to come up with a good initial

estimate (such as may be provided by subspace identification methods; cf. [5], [6], [54],

[74], [98]) or to use a large number of different initial estimates.

4.4 Parameterization and identifiability issues

Depending on the chosen parameterization of the model class, there are several fac-

tors which contribute to identifiability problems that may arise in the prediction error

identification framework described above. One important source of unidentifiability is

caused by the freedom to choose a basis for the state-space. As is well known, two min-

imal systems (A,B ,C ,D,K ) and (Ã, B̃ , C̃ , D̃ , K̃ ) are input-output equivalent (yielding

the same transfer function) if and only if there exists a nonsingular n×n matrix T such

that (Ã, B̃ , C̃ , D̃ , K̃ ) = (T AT −1, T B , C T −1, D , T K ). The dimension of the system mani-

fold is nm +2pn +pm, which is n2 less than the total number of entries in the system

matrices. There are three main ways to deal with this source of unidentifiability:

1. by factoring out the matrix T by using a (local) canonical form (see, e.g., [44],

[47], [76], [81]),

2. by using a regularization technique which extends the prediction error criterion

V by penalizing the norm of the parameter vector as well (see, e.g., [91]),

3. by using a full parameterization and dealing with the selection of a specific model

from its i/o equivalence class only after convergence of the criterion V has been

achieved (see, e.g., [62], [63]).

Each of these approaches has its drawbacks when the aim is to identify a sparse model

which fits the data well. The use of a local canonical form imposes structure on the sys-

tem matrices, which need not correspond to a relevant sparse structure. A regulariza-

tion approach may compromise the quality of the fit between the model and the data,

or run into numerical problems when the two parts of the extended criterion become

unbalanced. When a full parameterization is used, convergence of the criterion V may

become very slow as parameters may drift without affecting V . A recent technique

which attempts to deal with these problems concerns the use of data-driven local co-

ordinates (DDLC), see for instance [64], [84], [83] and the references given there. Here
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the idea is to compute the tangent space to the i/o-equivalence class of the system at

hand, and to use a local parameterization with respect to its orthogonal complement

(corresponding to the tangent space to the system manifold at the system at hand).

As remarked in [102], the search directions generated by the DDLC approach using a

Gauss-Newton type method to minimize V , correspond precisely to the search direc-

tions obtained in a fully parameterized setting when using a so-called robust Gauss-

Newton method. Indeed, the tangent space to the i/o-equivalence class of the system

at hand is entirely contained in the kernel of the Jacobian matrix J of the error vector

ê = (ê[1]T , ê[2]T , . . . , ê[M ]T )T at that system, because the error vector does not depend

on the choice of basis of the state-space. This type of unidentifiability will be examined

in Section 4.5.

Another important source of unidentifiability concerns the amount (and the qual-

ity) of the available input-output measurement data. In the ideal situation the avail-

able data (locally) admits a unique transfer function model (or input-output behavior)

which optimally fits the data according to the criterion V . In that case the concept of

(local) structural identifiability applies and there are various techniques available to

investigate this (see for instance [8], [24] and [59]). In a situation where the number of

measurements M is too small, or when the input signals are not sufficiently exciting,

there will be a subset of dimension > 0 of models that are all consistent with the data.

The focus of this chapter is to investigate whether it is possible to deal with this issue

by using additional prior information, in particular information about the sparsity of a

model, to select a relevant model from this subset.

4.5 Sparse state-space estimation

The fact that the least squares prediction error criterion of fit in (4.6) is nonlinear in

the case of state-space models in innovations form, means that an iterative version

of the sparse estimation algorithm has to be applied. Adapted to this situation, at a

given estimate with prediction error vector ê, the two main ingredients of the sparse

estimation algorithm are:

1. The orthogonal complement of the kernel of the Jacobian matrix J of ê is em-

ployed as the subspace in which to select a search direction for improving the

nonlinear least squares prediction error criterion V .

2. The kernel of J is employed as the subspace in which to select a search direc-

tion for improving the `1-norm of (a part of) the parameter vector θ. If θ is a

(local) optimum of V , the kernel of the Hessian matrix H of the prediction error

criterion V is chosen instead.

In the case of state-space models, the parameter vector θ consists of selected entries

from the state-space matrices (A,B ,C ,D,K ). In this section only full parameteriza-

tions are considered, but structured parameterizations (as discussed in e.g. [26]) can

be dealt with in the same way. The vector θ is defined as

θ = vec(A,B ,C ,D,K ) , (4.7)
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using the vec(·) operator to denote the vectorization of a matrix argument by stacking

the columns on top of each other. As mentioned before, the two ingredients can be

used to define a number of different algorithms, depending on the order in which steps

in the two search directions are taken and the number of steps in each search direction.

In this chapter the setup of the iterative algorithm is as follows:

1. Minimize the prediction error V (θ) starting from an initial parameter vector θ0,

producing a locally optimal vector θ`2

2. Compute the Hessian of the prediction error criterion V at θ`2 , H(θ`2 ), and min-

imize the `1 norm of the parameter vector within the kernel of H(θ`2 ). This pro-

duces a vector θ̃`1 with minimum `1-norm.

3. Take a bounded step in the direction of θ̃`1 from θ`2 : θ`1 = θ`2 +β(θ̃`1 −θ`2 ), with

0 ≤β≤ 1.

4. Set θ0 = θ`1 and repeat steps (1), (2) and (3) until the algorithm has converged or

a maximum number of iterations has been reached.

This procedure is visualized in Figure 4.1. The choice of β in step (3) is crucial for the

performance of the algorithm (see Chapter 2, Section 2.3.2), as it determines the rate

of convergence and the monotonicity of the algorithm with respect to the `1-norm of

θ`1 in the successive steps of the algorithm.

4.5.1 Jacobian and Hessian

To be able to minimize the prediction error of a general discrete-time state-space sys-

tem in innovations form as defined in (4.2), the Jacobian matrix J has to be computed.

The one-step-ahead predictor using the matrices (Ad , Bd , C , D , Kd ) and correspond-

ing parameter vector θ = vec(Ad ,Bd ,C ,D,Kd ) is

x̂[k +1] = (Ad −KdC )x̂[k]+ (Bd −Kd D)u[k]+Kd y[k], (4.8)

ŷ[k] =C x̂[k]+Du[k]. (4.9)

and the prediction error process:

ê[k] = y[k]− ŷ[k] =−C x̂[k]−Du[k]+ y[k]. (4.10)

The Jacobian J (θ) of ê(θ) is

J (θ) =


J (θ)1,1 J (θ)1,2 . . . J (θ)1,N

J (θ)2,1 J (θ)2,2 . . . J (θ)2,N
...

...
. . .

...

J (θ)M ,1 J (θ)M ,2 . . . J (θ)M ,N

 , (4.11)

with J (θ)k,i a p × 1 vector containing the partial derivatives of the error vector with

respect to the parameter θi at time k:

J (θ)k,i =
∂ê[k]

∂θi
=− ∂C

∂θi
x̂[k]−C

∂x̂[k]

∂θi
− ∂D

∂θi
u[k], (4.12)
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Figure 4.1: An illustration of the sparse estimation iteration scheme. The contours
of the optimization criterion V are shown. The contour at the optimal value of V is
marked by a dotted line. The white dots correspond to θ`2 solutions, the gray dots cor-
respond to θ̃`1 solutions, and the black dots correspond to θ`1 solutions. For simplicity,
not all θ̃`1 solutions are visible.

where ∂x̂[k]
∂θi

are the partial derivatives of the state vector with respect to θi at time k:

∂x̂[k +1]

∂θi
= ∂(Ad −KdC )

∂θi
x̂[k]+ (Ad −KdC )

∂x̂[k]

∂θi

+ ∂(Bd −Kd D)

∂θi
u[k]+ ∂Kd

∂θi
y[k]. (4.13)

The computation of the Hessian matrix H(θ) of V (θ) is required to determine the search

space for sparsity Ker(H(θ)):

H(θ) =


H(θ)1,1 H(θ)1,2 . . . H(θ)1,N

H(θ)2,1 H(θ)2,2 . . . H(θ)2,N
...

...
. . .

...

H(θ)N ,1 H(θ)N ,2 . . . H(θ)N ,N

 , (4.14)

with H(θ)i , j the second order partial derivative of the prediction error criterion V (θ)

with respect to the parameters θi and θ j :

H(θ)i , j = ∂2V

∂θi∂θ j
= 2J (θ)T

j J (θ)i +2
M∑
k

ê[k]T ∂2ê[k]

∂θi∂θ j
, (4.15)
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with ∂2 ê[k]
∂θi ∂θ j

a p×N matrix consisting of the second order partial derivatives of the error

vector with respect to θi and θ j at time k:

∂2ê[k]

∂θi∂θ j
=− ∂2C

∂θi∂θ j
x̂[k]− ∂C

∂θi

∂x̂[k]

∂θ j
− ∂C

∂θ j

∂x̂[k]

∂θi
−C

∂2x̂[k]

∂θi∂θ j
− ∂2D

∂θi∂θ j
u[k]. (4.16)

Finally, the second order derivatives of the state vector, ∂2 x̂[k]
∂θi ∂θ j

, are given by:

∂2x̂[k +1]

∂θi∂θ j
= ∂2(Ad −KdC )

∂θi∂θ j
x̂[k]+ ∂(Ad −KdC )

∂θi

∂x̂[k]

∂θ j

+ ∂(Ad −KdC )

∂θ j

∂x̂[k]

∂θi
+ (Ad −KdC )

∂2x̂[k]

∂θi∂θ j

+ ∂2(Bd −Kd D)

∂θi∂θ j
u[k]+ ∂2Kd

∂θi∂θ j
y[k]. (4.17)

In a discrete-time setting the parameter vector θ consists of entries of the matrices

(Ad , Bd , C , D , Kd ), which means that second order derivatives of single matrices with

respect to θ are always zero, and (4.16) simplifies to

∂2ê[k]

∂θi∂θ j
=− ∂C

∂θi

∂x̂[k]

∂θ j
− ∂C

∂θ j

∂x̂[k]

∂θi
−C

∂2x̂[k]

∂θi∂θ j
, (4.18)

and (4.17) can be reduced to

∂2x̂[k +1]

∂θi∂θ j
=

(
−∂Kd

∂θi

∂C

∂θ j
− ∂C

θi

∂Kd

∂θ j

)
x̂[k]+ ∂(Ad −KdC )

∂θi

∂x̂[k]

∂θ j

+ ∂(Ad −KdC )

∂θ j

∂x̂[k]

∂θi
+ (Ad −KdC )

∂2x̂[k]

∂θi∂θ j

+
(
−∂Kd

∂θi

∂D

∂θ j
− ∂D

∂θi

∂Kd

∂θ j

)
u[k]. (4.19)

If the state-space system is in fact a continuous-time system but only a discrete-

time i/o data record with sample time T is available, the Jacobian and Hessian have

to be computed in a different way to be able to relate the change in the discrete-time

prediction error to the continuous-time model parameters θc . The continuous-time

state equations are assumed to be of the form

ẋ(t ) = Ac x(t )+Bc u(t ), (4.20)

deliberately omitting the stochastic part of the model to avoid having to model continuous-

time disturbances. Process noise is therefore assumed to be absent in continuous-

time. Under the zero order hold assumption for the input u (u(t ) = u[k],kT ≤ t ≤
kT +T for given sample time T), the corresponding discrete-time state equations are

given by

x[k +1] = e Ac T x[k]+
(∫ kT+T

kT
e Ac (kT+T−τ)Bc dτ

)
u[k]. (4.21)
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The conversion from continuous-time matrices Ac and Bc to discrete-time matrices

Ad and Bd and vice versa can be performed using a relation described by Van Loan

[97]:

eMc T = Md , (4.22)

where

Mc =
[

Ac Bc

0 0

]
and Md =

[
Ad Bd

0 Im

]
. (4.23)

The first and second order partial derivatives of Ad and Bd with respect to the continuous-

time parameter θc
i and θc

j can be computed relatively straightforward using the follow-

ing definitions:

M (i )
d = ∂Md

∂θc
i

= ∂eMc T

∂θc
i

, M (i )
c = ∂Mc

∂θc
i

,

M (i , j )
d = ∂2Md

∂θc
i ∂θ

c
j

= ∂2eMc T

∂θc
i ∂θ

c
j

, M (i , j )
c = ∂2Mc

∂θc
i ∂θ

c
j

. (4.24)

and the general formula for the computation of the directional derivative for any ana-

lytical function F on a block triangular matrix (see [69] for a detailed description of the

computation of such a derivative):

F

([
P V

0 P

])
=

[
F (P ) DV (F (P ))

0 F (P )

]
, (4.25)

where P is a square matrix and DV (F (P )) denotes the first directional derivative evalu-

ated at P in the direction of V . The first order partial derivatives M (i )
d can therefore be

computed by setting P to Mc and V to the derivative of Mc with respect to θc
i :

exp

([
Mc M (i )

c

0 Mc

])
=

[
Md M (i )

d
0 Md

]
, (4.26)

where exp(·) is the exponential function. The second order derivative M (i , j )
d can be

computed by taking the left triangular block matrix in (4.26) as the matrix P in (4.25)

and setting V to the derivative of P with respect to θc
j :

exp




Mc M (i )
c M ( j )

c M (i , j )
c

0 Mc 0 M ( j )
c

0 0 Mc M (i )
c

0 0 0 Mc


=


Md M (i )

d M ( j )
d M (i , j )

d

0 Md 0 M ( j )
d

0 0 Md M (i )
d

0 0 0 Md

 . (4.27)

Note that M (i , j )
c is actually a zero matrix in this case, but it is shown here for complete-

ness.

The ability to compute Jacobian and Hessian matrices, discrete-time or continuous-

time, is an advantage when applying the sparse estimation algorithm, as opposed to

having to approximate them, for two reasons: a) the matrices are accurate (up to nu-

merical precision), and b) the computation can be done more efficiently, which is es-

pecially relevant when the problem size increases.
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4.5.2 Relation to DDLC

Data driven local coordinates propose a way of parameterizing state-space systems

to overcome the first source of unidentifiability mentioned in Section 4.4, that orig-

inates from the ‘built-in’ equivalence class present in fully parameterized state-space

systems: given the classM(n) consisting of rational and causal p×(p×m) transfer func-

tions with MacMillan degree n, and the parameter space Smin(n) consisting of matrix

entries of minimal state-space representations of order n and identical p and m, every

transfer function fromM(n) corresponds to an analytical manifold of dimension n2 in

Smin(n). This means that in a system identification procedure at each stage there are

at least n2 possible local parameter vector coordinates that do not change the value

of the prediction error criterion V . The DDLC approach avoids this equivalence space

by defining a parameterization from a given estimate (A,B ,C ,D,K ) that only consid-

ers the orthogonal complement to the tangent space to the i/o equivalence class of

the current estimate. The approach is briefly explained here to illustrate the connec-

tion to the sparse estimation algorithm; a more detailed discussion and applications

to system identification can be found in [81] and [82].

The equivalence class for a given minimal realization (A,B ,C ,D,K ) is given by{(
T AT −1,T B ,C T −1,D,T K

)}
, (4.28)

with T from the set of non-singular (n ×n) matrices. The tangent space to the equiva-

lence class is given by{(
Ṫ AT −1 −T AT −1Ṫ T −1, Ṫ B ,−C T −1Ṫ T −1,0, Ṫ K

)
, Ṫ ∈Rn×n}

, (4.29)

which at the current minimal realization (A,B ,C ,D,K ) reduces to{(
Ṫ A− AṪ , Ṫ B ,−C Ṫ ,0, Ṫ K

)
, Ṫ ∈Rn×n}

, (4.30)

by setting T = I . The tangent space to the i/o equivalence class can be written in vec-

torized form:

{(
Ṫ A− AṪ , Ṫ B ,−C Ṫ ,0, Ṫ K

)
, Ṫ ∈Rn×n}=




AT ⊗ In − In ⊗ A

B T ⊗ In

−In ⊗C

0pm×n2

K T ⊗ In


︸                       ︷︷                       ︸

Q

·vec
(
Ṫ

)
, Ṫ ∈Rn×n


(4.31)

where⊗ stands for the Kronecker product. The tangent space is the span of the columns

of Q. The data driven local coordinates are a mapping onto the orthogonal comple-

ment of the tangent space, a space that is the span of the columns of the orthogonal

complement Q⊥ of the matrix Q.

For the case of a full parameterization and ‘rich’ data, the sparse maximization

space Ker(J (θ)) coincides with the tangent space to the i/o-equivalence class of the
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current estimate (this is the space that is deliberately disregarded in the DDLC ap-

proach). One may then attempt to stay within the i/o-equivalence class (and thus

leave V unchanged) by associating a state-space transformation matrix T with the `1-

minimization search direction vector s∗. Note that if one puts T = In + Ṫ where Ṫ

represents a ‘first order change’ to the identity matrix In , then the corresponding first

order change in (A,B ,C ,D,K ) is given by (Ȧ, Ḃ ,Ċ ,Ḋ , K̇ ) = (Ṫ A − AṪ , Ṫ B ,−C Ṫ ,0, Ṫ K ).

The latter expression corresponds to the search direction s∗ in the same way that the

entries of (A,B ,C ,D,K ) are collected in the parameter vector θ. From a given value of

s∗ a corresponding matrix T can then be computed in a straightforward way by solving

the corresponding linear equations for Ṫ . The matrix Ṫ can be computed by solving:

s∗ =Q ·vec
(
Ṫ

)
. (4.32)

Here it is noted that it is not difficult to design examples where I + Ṫ becomes singu-

lar (and hence cannot be used as a state-space transformation matrix). To resolve this

and to avoid singularity one may instead consider the invertible state-space transfor-

mation matrix exp(Ṫ ) which exhibits the same first order effects as In + Ṫ .

4.5.3 Example: small non-sparse models and full parameterization

To illustrate the iterative version of the sparse estimation algorithm, this example fea-

tures a discrete-time model M0 with 4 states, 1 input and 1 output. This model only

contains non-zero parameters: all parameter values are within the interval [−2α,−α]∪
[α,2α], with α set to 0.25. Starting from a zero initial state, 100 samples are generated

using a random Gaussian input signal. No process or measurement noise is added.

Table 4.1 shows the state-space matrices of the original model M0 and the estimation

result M̂ after 100 iterations. The algorithm started at the data generating model M0.

The bound β was chosen in such a way that the least squares criterion deteriorated at

most by 0.01 when minimizing the `1 criterion:

maxβ s.t V (θ`1 )−V (θ`2 ) ≤ 0.01, 0 ≤β≤ 1. (4.33)

The estimated state-space matrices in Table 4.1 contain more zero parameters than

the original matrices. Note that the estimate of the matrix K is effectively a zero matrix,

which is to be expected since no noise was present in the simulation. The trajectory of

the `1-norm of the estimated parameter vector θ during the iterations of the algorithm

is shown in Figure 4.2. The mixing of `2-norm optimization of the error vector and

`1-norm optimization of the parameter vector causes the `1-norm to fluctuate during

iterations as depicted in the lower plot in Fig. 4.2. Often, the prediction error min-

imization step of the algorithm causes an increase in the `1-norm of the parameter

vectors, as can be seen in Figure 4.3. To stop or decrease the size of these fluctuations

at the end of the optimization process and thus ensure convergence, an appropriate

damping mechanism has to be constructed.

Fig. 4.4 demonstrates the need for monitoring what happens to V when taking

steps to minimize the `1-norm of θ. The first plot in Fig. 4.4 displays the values for

the `1-norm of θ in a situation where all the system estimates are in the same optimal
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θ`2

θ`1

iteration

‖θ
‖ 1

Figure 4.2: `1-norm trajectory of the parameter vector estimate θ in the upper plot and
a detail of the trajectory in the lower plot, indicating the consecutive `1-norm values
of θ`2 and θ`1 . It can be seen that minimization of the prediction error criterion V may
increase the `1-norm of the estimated parameter vector.
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Matrix M0 M̂

A


0.29 −0.31 0.33 −0.36

−0.37 0.37 0.43 −0.38
0.38 −0.27 0.47 0.25
0.33 0.25 0.30 0.34




0.67 −0.14 0.01 −0.04
−0.14 0.69 −0.01 0.00
−0.01 −0.00 0.06 0.69

0.02 −0.01 −0.27 0.04



B


0.31
0.49
0.30

−0.27



−0.04

0.16
−0.06
−0.49


C

(−0.29 −0.33 0.34 −0.37
) (

0.00 −0.13 0.53 −0.01
)

D −0.28 −0.28

K


0.38
0.34
0.39

−0.34




0.05
0.01
0.00

−0.02


Table 4.1: Example of the state-space matrices estimated by the sparse estimation al-
gorithm starting from a non-sparse discrete-time state-space model with 4 states, 1
input and 1 output.

0 20 40 60 80 100

−0.3

−0.2

−0.1

0

0.1

iteration

ch
an

ge
in

‖θ
‖ 1

θ`1

θ`2

Figure 4.3: Change in the `1-norm of the parameter vector θ for 100 iterations. Black
bars denote the change after the minimization of the `1-norm of the parameter vector,
gray bars indicate the `1-norm change after prediction error minimization.
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i/o-equivalence class. In this case the step s∗ in the direction of `1-norm minimization

is used to compute an associated state-space transformation matrix T as discussed in

(4.5.2). This setup is used to minimize the `1-norm of θ via state-space transforma-

tions. This ensures that the least squares criterion V remains unchanged. The figure

shows that when the bound on the least squares criterion value is increased, the speed

of `1-norm minimization also increases. When the bound on the maximum change

in V is too loose, the value of the `1-norm of θ cycles between a number of values

and does not converge. What happens is that the sparsity maximization step results in

a new estimate that does not lie within the i/o-equivalence space of the current esti-

mate. It can easily lead to a non-minimal system, which is explained by the fact that the

`1-norm minimization tends to create zeros in the parameter vector. The consecutive

least squares minimization step takes a relatively large step to return to a local opti-

mum of the least squares error criterion, potentially causing a large deterioration of

the `1 norm of the parameter vector estimate. In this way the algorithm keeps travers-

ing different i/o equivalence spaces and does not converge. Note on the other hand

that a tight bound may cause the algorithm to become slow. The trade-off is to choose

a bound that forces `1-norm minimization steps to remain close to the manifold of i/o

equivalent state-space systems, so that the `2-step will return to the same equivalence

manifold, while maintaining a certain speed of convergence in the `1 criterion.

4.6 Discrete-time network models

The dynamics of a discrete-time linear interaction network can be described by a sys-

tem of difference equations

x[k +1] = Ad x[k]+Bd u[k].

y[k] = x[k]+e[k] (4.34)

with node states x and network inputs u. The network states can be directly observed

in the output y , possibly disturbed by a noise term e. This is equivalent to setting

C = In , K = 0 and D = 0 in the innovations form (4.2). The interaction matrix Ad is

assumed to be sparse, the input matrix Bd not. The output equation in Equation (4.34)

can be written as:

Y = Ad X +BdU +E , (4.35)

with X = (x[0], x[1], . . . , x[M −1]), U = (u[0],u[1], . . . ,u[M −1]), Y = (x[1], x[2], . . . , x[M ])

and E = (e[1],e[2], . . . ,e[M ]). Each row ai of Ad and bi of Bd can be estimated sepa-

rately by sparse linear regression by solving the partial sparsity problem:

min
(ai ,bi )

‖ai‖1

s.t.
(
X T U T )[aT

i
bT

i

]
= proj(X T U T )yT

i , (4.36)

where yi is the i-th row of Y and proj(X T U T )yT
i denotes the orthogonal projection of

the vector yT
i on the column space of

(
X T U T

)
. In the noiseless case, this projection
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) ≤ 1

Figure 4.4: `1-norm trajectory for different settings for the maximum allowed change
in the prediction error criterion value when maximizing the parameter vector sparsity.

can be omitted. Note that not all network structures with a sparse connectivity matrix

can be solved in parallel. For this approach to be meaningful, every row of Ad has to

be be sparse. A similar setup, but then in a continuous-time setting with known state

derivatives, has been investigated in [77], and the main results for numerous simula-

tions can be found there. In the following experiments this approach is extended to

structured discrete-time networks that are stable and minimal. These networks are the

data generating systems and the estimation problem is to retrieve the correct network

interaction matrices from a limited set of available measurements.

4.6.1 Experiments

Experiments are conducted using a directed network with a regular network structure,

in this case a ring structure, where each node is connected to itself and at least one

neighbor.

The node connectivity matrix has a tridiagonal structure with one additional entry
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1

2
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4

5

c1

b2

a1

c2

b1


a1 c2 0 0 b1

b2 a2 c3 0 0
0 b3 a3 c4 0
0 0 b4 a4 c5

c1 0 0 b5 a5



Figure 4.5: An example of the ring shaped network structure of order 5 and the accom-
panying node interaction matrix

in the upper right corner (b1) and one in the lower left corner (c1) to ensure the closure

of the ring structure as depicted in Figure 4.5. To generate a stable node interaction

matrix from this prescribed structure the following strategy was applied:

1. For a network of order N , the pole locations p1, p2, . . . , pN of the transfer function

of the desired system are the roots of the characteristic polynomial of the inter-

action matrix A. In the case of a discrete-time system they are chosen within

the complex unit circle, and in case of a continuous-time data generating sys-

tem in the left half of the complex plane. The characteristic polynomial of the

interaction matrix A can be written as

P (x) = (x −p1)(x −p2) · · · (x −pN ). (4.37)

2. The polynomial P (x) defined by these pole locations is then disturbed by a (small)

number ε to alter the roots of the characteristic polynomial. The roots of the dis-

turbed polynomial P̃ (x) = P (x)+ε are denoted as p̃1, p̃2, . . . , p̃N . P̃ (x) is factored

into linear factors (real roots) and quadratic factors (pairs of complex conjugated

roots). These factors are used to construct the intermediate matrix Ã that has the

characteristic polynomial P̃ (x).

P̃ (x) = P (x)+ε= (x − p̃1)(x − p̃2) · · · (x − p̃N ). (4.38)

As an example, for N = 5, with one real root p̃1 and two pairs of complex roots

(p̃2, p̃3) and (p̃4, p̃5), the matrix Ã is constructed as follows:
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Ã =


a1 0 0 0 0

0 a2 c3 0 0

0 b3 a3 0 0

0 0 0 a4 c5

0 0 0 b5 a5



a1 = p̃1

{
(x −a2)(x −a3)− c3b3 = (x − p̃2)(x − p̃3)

a2 +a3 = p̃2 + p̃3, c3 = p̃2 p̃3−a2a3
b3{

(x −a4)(x −a5)− c5b5 = (x − p̃4)(x − p̃5)

a4 +a5 = p̃4 + p̃5, c5 = p̃4 p̃5−a4a5
b5

The values of (a2, a3) and (a4, a5) are to be chosen in such a way that their sum

equals (p̃2 + p̃3) and (p̃4 + p̃5). The values of c3 and c5 depend on the choices for

b3 and b5 respectively.

3. The vector b of length N is defined in such a way that
∏N

i=1 bi = −ε. This vec-

tor forms the sub diagonal of the matrix A (with b2,b3, . . . bN ) and the entry A1,N

(with b1). The unknown values in the matrix Ã can be computed based on the

values in b. Setting the remaining variables in the matrix A to zero (c1 = 0 and

ci = 0 if it is not involved in a quadratic factor), results in a matrix with charac-

teristic polynomial P (x). In the case of N = 5, the matrix will have the following

form:

A =


a1 0 0 0 b1

b2 a2 c3 0 0

0 b3 a3 0 0

0 0 b4 a4 c5

0 0 0 b5 a5



A network with this prescribed structure will attain a high level of sparsity, even at

relatively small network sizes N . Figure 4.6 illustrates this property. At N = 20 a sparsity

of 0.84 is achieved, and at N = 50 the sparsity level is already at 0.93

This procedure will generate a stable network in theory. One consideration how-

ever is the observation made by Wilkinson [103], that the location of the roots of a

given polynomial can be sensitive to small changes in the coefficients of the polyno-

mial. The implications of this observation are twofold in this case. First of all, the

roots of the polynomial P (x) have to be chosen carefully to create a well-conditioned

polynomial in which the small disturbance ε will cause a small change in the root lo-

cations. The approach taken here is to place the roots of the polynomial P (x) within

equidistance on the complex circle with radius 0.9. This ensures that the roots are

well-separated and of equal magnitude. A second implication is that the computation

of the characteristic polynomial needs to be as precise a possible. To avoid changes

in the coefficients of the polynomial due to roundoff errors, computations are carried

out with 64 decimal digits numeric precision.
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Figure 4.6: Sparsity of the network with the tridiagonal interaction matrix structure for
increasing size N of the network. The computation of the network sparsity includes the
(non-sparse) matrix B . The sparsity of the system described by the matrices A and B
is defined by b3 1

2 N −1c/(N 2 +N ). Sparse estimation of the rows of A and B , applicable
in the case of discrete-time networks, can lead to a slightly sparser (with 3 non-zero
parameters) or less sparse setting (with 4 non-zero parameters), with sparsity equal to
3/(N +1) and 4/(N +1) respectively.

The inputs u are Gaussian signals with zero mean and unit variance. The initial

states x[0] are also drawn from a Gaussian distribution with zero mean and unit vari-

ance. The motivation behind choosing this type of inputs and initial state is that with

sufficiently exciting inputs and non-zero initial states the dynamics of the model are

more likely to be well represented in the output vector y . The performance of the

sparse estimation algorithm is measured by the number of errors and the probability

that the correct network model (with a correct A and B) is retrieved.

4.6.2 Results

The example in Figure 4.7 demonstrates that the sparse linear regression algorithm is

able to reconstruct the correct network structure in an underdetermined setting. The

performance of the sparse linear regression algorithm for a range of network sizes is

shown in Figures 4.8 and 4.9. Figure 4.8 illustrates the effect of increasing network size

N and available number of measurements M on the sparse network estimation perfor-

mance, measured in false negatives and false positives. The amount of false negatives

(parameters that have a non-zero value, but are estimated as zero) starts off high at

a low amount of available measurements M . Typically at M = 1, the number of false

negatives is almost equal to the number of non-zero parameters. The number of false

negatives steadily drops to zero as more measurements are available. The number of

false positives (parameters that have a zero value, but are estimated as having a non-
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zero value), starts out low but then quickly increased with increasing M , before drop-

ping again to zero. Both the number of false negatives and positives produced by the

sparse estimation algorithm clearly outperform a conventional least squares solution.

The effect of increasing M on the two error types and the probability of a completely

correct estimate P0 is depicted in Figure 4.9.

4.7 Discretized continuous-time network models

The description of continuous-time network consists of a system differential equations

ẋ(t ) = Ac x(t )+Bc u(t )

y(t ) = x(t )+e(t ). (4.39)

If the values of ẋ(t ) are available, the sparse estimation problem again reduces to sparse

linear regression. However, in general these values are not known and can be approx-

imated at best. An alternative approach is to try and estimate a discrete-time network

first, based on the available measurements, and convert the result to a continuous-

time description. The discrete-time zero order hold (ZOH) equivalent model of (4.39)

is

x[k +1] = e Ac T x[k]+
(∫ kT+T

kT
e Ac (kT+T−τ)Bc dτ

)
u[k]

y[k] = x[k]+e[k], (4.40)

with sample time T so that x[k] = x(kT ). Note that although Ac is assumed to be

sparse, Ad = e Ac T is in general not sparse for all values of T . To deal with this issue,

the value of T has to be sufficiently small, as can be appreciated from the first order

approximation of Ad :

Ad = e Ac T =
∞∑

k=0

1

k !
(Ac T )k ≈ I + Ac T. (4.41)

From this approximation can also be concluded that the diagonal elements of Ad will

typically have non-zero values. They should therefore not be selected for sparsity max-

imization. The adapted sparse linear regression problem, where sparsity is not en-

forced in the diagonal of the interaction matrix A, is given by

min
(ai ,bi )

‖ãi‖1

s.t.
(
X T U T )[aT

i
bT

i

]
= proj(X T U T )yT

i , (4.42)

where ãi denotes the i-th row of the matrix Ad without the entry Ai i . After estimation

the discrete-time matrices Ad and Bd need to be translated to their continuous-time

counterparts by the inverse of the transformation described in Equation 4.5.1:

Mc = log Md

T
, (4.43)

65



CHAPTER 4. APPLICATION: STATE-SPACE MODELS

1

2

3

4

567

8

9

10

11

12

13

14

15 16 17

18

19

20

data generating 1

2

3

4

567

8

9

10

11

12

13

14

15 16 17

18

19

20

M = 4

1

2

3

4

567

8

9

10

11

12

13

14

15 16 17

18

19

20

M = 6 1

2

3

4

567

8

9

10

11

12

13

14

15 16 17

18

19

20

M = 8

1

2

3

4

567

8

9

10

11

12

13

14

15 16 17

18

19

20

M = 10 1

2

3

4

567

8

9

10

11

12

13

14

15 16 17

18

19

20

M = 12

Figure 4.7: Data generating network structure and estimated network structure based
on M = {4,6,8,10,12} measurements.
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where

Mc =
[

Ac Bc

0 0

]
and Md =

[
Ad Bd

0 1

]
. (4.44)

An potential issue with this approach of first estimating the parameters of the network

in discrete time and then translating those parameters to a continuous-time settings, is

that there is no guarantee that the matrix logarithm featured in Equation 4.43 will yield

a real-valued matrix Mc and consequently, real-valued matrices Ac and Bc . First of all,

the matrix Md needs to be invertible for log Md to exist. Secondly, a real solution exists

if and only if each Jordan block of Md associated with a negative eigenvalue occurs an

even number of times. A unique solution Mc exists if and only if all the eigenvalues

of Md are real and positive and no Jordan block belonging to any eigenvalue appears

more then once [23]. It is clear that the proposed estimation procedure does not ad-

here to any of these conditions.

4.7.1 Experiments

The way the continuous-time networks are generated is similar to the way described

in 4.6.1, with the only difference being the location of the poles of the generated sys-

tem. The poles are generated in the left side of the complex plane to ensure that

the continuous-time system is stable. The choice of the exact location of the poles

is guided by the desired location of the poles in the transformed discrete-time system

with sampling time T . The relation between pole locations in discrete-time and con-

tinuous time is given by the bilinear transform:

z1,2 = e s1,2T , (4.45)

where s1,2 = x±yi denotes the pair of complex conjugated continuous-time poles. This

means that the magnitude of the discrete-time poles z1,2 is determined by the real part

of s1,2 and the sampling time T : ∣∣z1,2
∣∣= exT , (4.46)

and the angle of the discrete-time poles is determined by the imaginary part of s1,2 and

the sampling time T :

∠z1,2 =±e yi T . (4.47)

Figure 4.10 shows the relationship of the choice for the location of the continuous-time

poles and the transformed discrete-time poles at different sampling intervals T . It is

clear that in this example the value of T is critical for the location of the discrete-time

poles and consequently, the ability of any algorithm to correctly estimate the original

continuous-time pole locations. A choice of a large value for T will reduce the discrete-

time pole magnitude and potentially give rise to an discrete-time pole angle outside of

the 〈−π,π〉 range, which in turn can lead to a pole multiplicity larger than one. On the

other hand, a small value of T will push the discrete-time pole magnitude closer to 1,

but may also reduce the separation between the discrete-time poles to such an extent

that they become indistinguishable for practical purposes.
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Figure 4.10: Bilinear transform of the continuous- and discrete-time pole locations for
sampling time T = {0.1,0.5,1}. The (stable) continuous time pole locations s1,2 = x± yi
with real parts x = {−0.1,−0.5,−1} and imaginary parts yi in the interval 〈−π,π〉 are
transformed to discrete-time pole locations z1,2 = exT e±yi T .

4.7.2 Results

The results of the estimation of a continuous-time network parameters via a discrete-

time representation are depicted in Figures 4.11 and 4.12. It is clear that the perfor-

mance deteriorates compared to the result in discrete-time as shown in Figure 4.9.

There are several explanations for this lower performance:

1. Under- or over-sampling: at lower sampling rates, for instance T = 1.0, the dy-

namics of the continuous-time system may not be sufficiently expressed in the

measurement data, especially when the amount of available data is limited. At

higher sampling rates the time covered by the measurements may in turn be in-

sufficient to capture the dominant interactions.

2. Sparsity of e Ac T : at lower sampling rates, the sparsity of the discrete-time inter-

action matrix Ad decreases, inhibiting the advantage of the sparse estimation

approach. Figure 4.13 illustrates this issue. The sparsity of the discretized matrix

Ad decreases quickly with increasing sampling time T . On the other hand, the
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Figure 4.11: Discretized continuous-time networks estimation: average number of a)
false negative and b) false positive errors, and c) the probability of a correct estimate
P0 depending on the number of measurements M and sampling time T (between 0.01
and 1). Networks of order 20 were generated with pole locations −1.0± yi , with y in
the interval 〈0,π/2〉. Curves were averaged over 20 networks, with 20 experiments for
each number of measurements.
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`1-norm of Ad is lower at higher sampling rates, which means that dominant in-

teractions as defined in the continuous-time network, will not manifest itself as

strongly in the discrete-time matrix Ad .

3. Bilinear transformation issues: as mentioned before, the transformation from

the estimated (sparse) matrices Ad and Bd to the corresponding continuous-

time matrices is very likely to be problematic, again especially when the amount

of available data is limited.

These observations can help to interpret the results in Figure 4.11. The effect of the

sampling time T on the type of error made in the estimation procedure are visualized

In Figure 4.11a) and b). At lower sampling rates T = 1.0 and T = 0.5 the number of

errors is higher, most likely because the discrete-time model is not sparse enough. The

number of errors decreases with higher sampling rates, but starting from T = 0.05 a

different phenomenon appears: the performance at low amounts of measurements M

still (slightly) increases, but as M increases, the number of errors becomes higher than

at lower sampling rates. Even at a sufficient amount of available measurements, the

estimation is incorrect. This can be explained by the fact that at these higher sampling

rates, the time covered by the measurements is simply too short to fully capture the

dominant interactions of the network. Figure 4.12 further illustrates this point and also

shows that the pole locations of the data generating network are in part determining

the appropriate choice for the sampling time T and the number of measurements re-

quired to correctly estimate the data generating network parameters. Starting from the

same network analyzed in Figure 4.11 with continuous-time pole locations at −1.0±yi

(shown in Figure 4.12a)), the real parts of the pole locations are shifted to −0.5 and

−0.1 (see Figure 4.12b) and c)). The effect of this shift is that at high sampling rates, for

instance at T = 0.01 and T = 0.02, the probability of a correct estimate (P0) decreases,

as the less negative pole locations lead to a slower response to the input to the network,

whereas at lower sampling rates, for instance at T = 0.5 and T = 1.0 the overall proba-

bility of a correct estimate increases, which can be explained by the fact that at these

sampling times the slower dynamics of the generated response are better detected.

4.8 Continuous-time network models

In the previous section the network model was either defined in discrete-time or con-

verted to discrete-time, to be able to find a sparse representation using sparse linear re-

gression. Both approaches are a somewhat flawed in the sense that they ignore the fact

that 1) the data generating network probably is continuous-time in nature and 2) the

continuous time interaction matrix is sparse, while the corresponding discrete-time

interaction matrix does not necessarily posses this property. A conceptually sounder

approach is to hold on to the continuous-time definition of the model and the cor-

responding parameterization and to try and match the continuous-time model pa-

rameters to the discrete-time measurements and inputs while striving for maximum

sparsity of those parameters. In this way the model dynamics are really taken into

account. A downside to this approach is that sparse linear regression is no longer ap-
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Figure 4.12: Discretized continuous-time networks estimation: effect of pole locations
x ± yi of the data generating network on the probability of a correct estimate P0 for
a) x = −1.0, b) x = −0.5, and c) x = −0.1. Networks of order 20 were generated and
estimated using a varying number of measurements M and sampling time T .
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plicable, since the continuous-time model parameters feature in a non-linear way in

the prediction error. This means that the mixed `2/`1 optimization procedure has to

be applied here.

The discrete-time network formulation in (4.34) has a simplified corresponding Ja-

cobian and Hessian of the prediction error criterion compared to the full parameteri-

zation in Section 4.5.1. The Jacobian reduces to

J (θ)k,i =
∂e[k]

∂θi
=−∂x[k]

∂θi

∂x[k +1]

∂θi
= ∂Ad

∂θi
x[k]+ Ad

∂x[k]

∂θi
+ ∂Bd

∂θi
u[k], (4.48)

and the Hessian of V (θ) reduces to

V (θ) = e(θ)T e(θ),

∂V

∂θi
= 2e(θ)T J (θ)i , (4.49)

∂2V

∂θi∂θ j
= 2J (θ)T

j J (θ)i +2e(θ)T ∂2e(θ)

∂θi∂θ j
,

∂2e[k]

∂θi∂θ j
=− ∂2x[k]

∂θi∂θ j
,

∂2x[k +1]

∂θi∂θ j
= ∂2 Ad

∂θi∂θ j
x[k]+ ∂Ad

∂θi

∂x[k]

∂θ j
+ ∂Ad

∂θ j

∂x[k]

∂θi
+ Ad

∂2x[k]

∂θi∂θ j
+ ∂2Bd

∂θi∂θ j
u[k]. (4.50)

The Jacobian and Hessian resulting from a continuous-time network (with sampling

time T) can now be derived using the equation 4.24 in Section 4.5.1.

4.8.1 Experiments

The data generating continuous time networks are identical to the networks investi-

gated in Section 4.7. Contrary to the discretized continuous-time network approach,

trying to directly estimate a sparse continuous-time network requires an initial param-

eter estimate as a starting point for the iterative sparse optimization procedure. Here,

a trial-and-error strategy is applied, where random non-sparse initial network models

are generated, followed by prediction error minimization on the generated data. An

estimated network is then accepted as an initial solution if it is stable. All stable ini-

tial solutions enter the mixed `2/`1 optimization procedure. During the optimization

procedure, the stability of the network given a certain parameter estimate is monitored

to ensure that the estimate at an iteration step does not wander off to an unstable re-

gion within the i/o equivalence space. This is not an unlikely scenario, as the limited

amount of available i/o data may very well fit to the dynamics of an unstable network.

Choosing an appropriate bound β on the increase of the prediction error in the `1-

step of the algorithm is crucial to ensure a smooth trajectory over the manifold of i/o

equivalent network models. Only network estimates that are stable after the optimiza-

tion procedure are taken into account, and the most sparse solution from this set of

stable estimates is ultimately selected as the final solution.

75



CHAPTER 4. APPLICATION: STATE-SPACE MODELS

4.8.2 Results

Examples of continuous-time sparse network estimation

An prerequisite for the mixed `2/`1 optimization procedure to be applicable, is that

the data generating network represents a local minimum in terms of the `1-norm of

the parameter vector, given the limited amount of available measurement data. The

optimality in terms of the prediction error is guaranteed in the noiseless case, as inves-

tigated here. Figure 4.14 illustrates what happens when the data generating network is

not an optimum of the mixed `2/`1 criterion space. Starting from the data generating

system as the initial solution, the algorithm moves away from the initial solution to an

estimate with a lower `1-norm, while retaining the optimality of the `2-norm of the

prediction error. Eventually the algorithm converges to an unstable network estimate.

The choice of the bound β on the increase of the prediction error criterion in the `1-

step has limited effect, as shown in Figure 4.14. In this case, the i/o equivalence space

allows for a sparser network configuration than the data generating network.

If however the data generating network is in fact a local optimum in terms of pre-

diction error and `1-norm of the network parameters, the mixed `2/`1 optimization

algorithm can converge to this network, starting from a different network configura-

tion. Figure 4.15 shows an example in which the original data generating network is

retrieved in a underdetermined setting, even after the first prediction error minimiza-

tion step leads to an unstable network estimate. The number of measurements needed

to create such a setting is however already quite close to the number that would be

sufficient to find a unique solution based on the prediction error criterion alone (in

principle M = 11, disregarding potential effects by the choice of sampling time T ).

Stability and sparsity of continuous-time network models

The phenomena observed when estimating continuous-time network models, call for

a more systematic analysis of the properties networks that correspond to (local) op-

tima given a specific set of input-output measurement data. In Section 4.4 it was pos-

tulated that searching for a sparse model could potentially aid in selecting a relevant

model from the set of all models that are consistent with the measurement data. In-

tuitively, one could even imagine that minimizing the `1-norm of the network model

parameters, while safeguarding the local optimality of the least-squares fit to the mea-

surement data, will favour stable network estimates. However, this seems to be a erro-

neous assumption, as can be observed from the results in the previous sections. The

relationship between the measurement data and the stability of the sparsest fitting

model appears to be more complex, especially in the case of continuous-time network

models. In Figure 4.16 this relationship is visualized for a low order continuous-time

network (N = 2), where an estimate is computed based on 2 measurements generated

by this network. There are 6 parameter to be estimated (4 entries of the interaction

matrix Ac and 2 of the input matrix B), and 4 data points (2 for each time instant),

leading to 2 degrees of freedom. The effect of this freedom in choosing parameter val-

ues on the stability of the estimated network and the `1-norm of the corresponding

parameter vector was investigated by fixing the value of the estimated entries â11 and
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Figure 4.14: Example of the trajectories during the mixed `2/`1 optimization algorithm
of a) the `1-norm of the network parameters and b) the largest real part of the eigen-
values of the estimated network matrix Âc . Trajectories are shown for different choices
for the bound β on the increase of the prediction error criterion in the `1-step. The
algorithm was applied on measurement data (M = 8, sampling time T = 1) generated
by a network of order N = 10, with the real part of the poles of the system located at
−1. The initial solution was the data generating network. To improve interpretability
of the trajectories, not all iterations are shown.
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Figure 4.15: Example of the trajectories during the mixed `2/`1 optimization algorithm
of a) the `1-norm of the network parameters and b) the largest real part of the eigen-
values of the estimated network matrix Âc . Trajectories are shown for different choices
for the bound β on the increase of the prediction error criterion in the `1-step. The al-
gorithm was applied on measurement data (M = 9, sampling time T = 0.5) generated
by a network of order N = 10, with the real part of the poles of the system located at
−0.1. The initial solution was a randomly generated network.
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Figure 4.16: Stability (lower plane) and `1-norm (upper plane) of networks estimates
of order N = 2 as a function of the entries a11 and a21 of the network interaction matrix
Ac . Network parameters are estimated on 2 measurements. The black dot indicates the
pair of (a11, a21) producing the minimal `1-norm (upper plane), which in this setting
corresponds to an unstable network estimate (lower plane).

â12 of the matrix Âc and computing the (now unique) prediction error minimization

solution for the remaining parameters. As is clear from Figure 4.16, a local minimum

for the `1-norm of the parameter vector does not necessarily correspond to a stable

solution.

Based on this observation it can be concluded that the mixed `2/`1 optimization

algorithm has major limitations in the setting of continuous-time networks with a lim-

ited amount of measurement data, which render it unsuitable for practical applica-

tions. The fact that both steps in the algorithm do not take the stability of the current

estimate into account makes it likely that the algorithm will converge to an unstable

solution, as the i/o-equivalence space of network models can contain unstable sparse

optima in the case of a limited amount of measurement data.
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4.9 Conclusions

In this Chapter the sparse estimation framework has been applied to the class of LTI

state-space models, and specifically to a subclass of network models. Taking into ac-

count the nonlinear least squares prediction error criterion, the mixed `2/`1-optimi-

zation procedure is applicable here. In a fully parameterized setting, with sufficient

available measurement data, model equivalence is still present in the form of natural

equivalence via a nonsingular state-space transformation matrix T . In this case the `1-

minimization step in the algorithm can be taken in such a way that the updated model

estimate stays within the optimal i/o equivalence class, by associating the `1-mini-

mization search direction with a state-space transformation matrix T . In structured

parameterizations, a choice for the bound β has to be made on the maximum dete-

rioration of the prediction error criterion value V of the current estimate, based on a

trade-off between convergence speed of the algorithm and the risk of stepping outside

of the optimal i/o equivalence manifold.

Sparse maximization of discrete-time network model interactions can be stated as

a sparse linear regression problem, and solved accordingly, under the condition that

every row of the interaction matrix Ad is sparse. Experiments using a ring-shaped net-

work topology, resulting in a such a sparse interaction matrix, show that also in this

case sparse linear regression is able to correctly reconstruct the network structure in

an underdetermined setting. Moving to continuous-time interaction networks, it is

still possible to apply sparse linear regression by assuming sparsity in the discrete-time

interaction matrices and transforming the estimated solution back to a continuous-

time state-space representation. Here, the performance of the algorithm is very much

dependent on the sampling time T and the sparsity of the discretized network inter-

action matrix. Estimating the sparse continuous-time network interaction matrix di-

rectly is feasible, but here a limited amount of available measurements increases the

risk of finding a solution with minimal `1-norm that corresponds to an unstable net-

work model.
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“This whole world’s wild at heart and weird on top.”

— Wild at Heart, dir. David Lynch



Chapter 5

Introduction to atrial fibrillation

5.1 Definition and treatment of atrial fibrillation

Atrial fibrillation (AF) is the most common cardiac arrhythmia, that affects 1.5-2% of

the general population [15]. The normal sequence of activation of the heart - sinus

rhythm (SR) - is disrupted and instead of organized waves originating from the sinoa-

trial node in the right atrium and traveling through the atrial conduction system to the

atrioventricular (AV) node, the atria are activated in a disorganized way by multiple

wavelets. This in turn can cause fast and irregular activation of the ventricles. Patients

suffering from AF have a increased risk of stroke, because of potential thrombus for-

mation in the atria as a result of the disturbed blood flow. If untreated, AF is a progres-

sive disease, starting out as short intermittent episodes of silent AF. When eventually

diagnosed, it is classified as paroxysmal AF when AF episodes are still short and self-

terminating, lasting no more than 48 hours. It is classified as persistent AF when either

an episode lasts longer than 7 days, or when it is no longer self-terminating and needs

to be stopped using cardioversion, either pharmacological cardioversion or electrical

cardioversion. More severe stages of AF are long-standing AF, where a patient is in AF

for more than a year, and permanent AF, when patient and physician agree to no longer

try to restore sinus rhythm.

Treatment and management of AF depend on the progression of the disease and

can be divided into rhythm control and rate control strategies (see Figure 5.1). Rhythm

control means that one tries to restore sinus rhythm and rate control means that one

tries to bring down the heart rate, but not necessarily convert to SR. Cardioversion (CV)

and ablation are the main forms of rhythm control. Pharmacological cardioversion is

achieved by administering an anti-arrhythmic drug, such as flecainide, amiodarone or

vernakalant, and is used in patients with paroxysmal AF, and most effective in patients

with recent onset AF (< 48 hours of AF). Electrical or direct current cardioversion works

by delivering a synchronized shock to the patient at the right moment in the cardiac

cycle. Electrical CV is applied when pharmacological CV is ineffective and in patients

with persistent AF. Catheter or surgical ablation is often chosen in patients with symp-

tomatic AF that do not respond to anti-arrhythmic medication. Catheter ablation of
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Figure 5.1: Progression and treatment of AF. Taken from the ESC guidelines for the
management of atrial fibrillation [15].

AF works by inserting a catheter through a vein in the groin or the neck and guiding

this catheter to the atria to create lesions in atrial tissue by means of energy, for in-

stance radiofrequency or cryothermic energy. Surgical ablation is more invasive and

relies on open heart surgery to deliver the energy needed to create lesions. At all stages

anticoagulation is usually advised to reduce the risk of thrombus formation and stroke.

Although management of AF has been subject to extensive research for many decades,

the reasons a patient develops AF and the mechanism(s) behind the perpetuation of

AF are still not fully understood. Figure 5.2 from the 2012 expert consensus statement

on catheter and surgical ablation of AF [17] illustrates the idea that the initiation and

perpetuation of AF is caused by a combination of triggers from the autonomic nervous

system and wave reentry. The complexity of the AF substrate in an individual patient

is however difficult to assess. The recurrence rate of AF after for instance direct current

CV is high (typically around 50% recurrence within 4-6 weeks), indicating that a large

amount of patients have not benefitted from this treatment. Better quantification of

the complexity of the pattern of AF may help in personalizing patient treatment.

5.2 Quantitive description of atrial fibrillation

The characteristics of AF are studied in many ways, both invasively and noninvasively.

The most direct way of measuring the electrical signals in an atrium is direct con-

tact mapping, where electrodes are placed on the epicardial or endocardial surface

of an atrium. The signals measured here are called electrograms. Electrograms can

be unipolar signals, that contain the voltage difference to some reference signal out-

side of the atrium, or bipolar signals, the voltage difference between two electrodes

placed within a short distance (typically a couple of millimeters) from each other on

the atrium. These invasive measurement can be done on the inside of an atrium (en-
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Figure 5.2: Atrial structure and autonomic nervous system (A), and potential mecha-
nisms of AF, with B) large en small reentrant waves, C) common locations of triggers
(focal sources) for AF located around the pulmonary veins (PV) and other locations,
and D) superposition of anatomical and pro-arrhythmic mechanisms. Figure adapted
from [17].

docardial), using for instance commercially available electroanatomic mapping sys-

tems such as Ensite™NaVx™(St. Jude Medical) or CARTO®(BioSense Webster), or on

the outside of an atrium during cardiac surgery. Signals measured on the body surface

provide a noninvasive way to assess cardiac function in general and atrial function in

specific. The standard 12-lead electrocardiogram (ECG) is designed to evaluate car-

diac function as seen from different angles on the body surface. More recently, high-

coverage body surface potential maps (BSPM) have been introduced that try to cap-

ture more information than the 12-lead ECG by covering the body surface with many

electrodes. In combination with anatomical information obtained by for instance a

CT-scan, one can try to reconstruct the electrical signals on the heart. This technique

is then called ECG imaging (ECGI).
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(a)

(b)
(c)

Figure 5.3: Grids of electrodes with a) a square configuration (16×16 grid of electrodes,
electrode distance 1.5mm) , b) a circular configuration (234 electrodes, electrode dis-
tance 2.4mm), and c) examples of unipolar direct contact mapping electrograms.

5.2.1 Invasive analysis

The invasive measurements analyzed in this thesis were acquired using regular grids

of electrodes as depicted in Figure 5.3 that were placed on the epicardial atrial wall

during open-chest surgery. In this way not only unipolar electrograms were recorded,

but also spatial patterns of conduction could be reconstructed based on the config-

uration of the grid of electrodes. These invasive measurements provide a detailed

description of the complexity of the propagation patterns in AF in different models

(see [52],[99],[41],[4] for examples of invasive AF complexity analysis based on high-

density contact mapping of AF in goat and humans). In Chapter 6 a novel probabilis-

tic algorithm is presented to automatically detect the moment of local atrial depolar-

ization (so-called deflections) in direct contact electrograms and to reconstruct two-

dimensional atrial propagation patterns in terms of fibrillation waves. In Chapter 7 an

alternative approach to propagation pattern identification is introduced that applies

the concept of sparse linear regression to identify time-delayed interactions between

electrograms at different electrodes, circumventing the need for manual or automatic

annotation of atrial deflections. Here the focus is more on the detection of recurrent

propagation patterns than on a detailed wave-based description of the AF substrate.

5.2.2 Noninvasive analysis

Noninvasive analysis of AF relies on the assumption that the ECG contains information

on the complexity of the AF substrate. If this is true (at least to some extent), nonin-

vasive assessment of AF complexity could aid in the management of AF, by predict-

ing treatment outcome. In Chapter 8 a systematic comparison of existing noninvasive

AF complexity parameters is performed when it comes to the prediction of successful
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pharmacological cardioversion. From the large number of candidate predictors, dom-

inant predictors are selected using a sparse logistic regression approach.
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Chapter 6

Probabilistic electrogram analysis
and atrial fibrillation wave
reconstruction

6.1 Introduction

Atrial fibrillation (AF) is an arrhythmia where the electrical activity in the atria is irreg-

ular instead of well organized. Multiple wavelets wander throughout the atria, instead

of a single coordinated wave [87]. High-density atrial contact mapping of AF provides

the most direct information on the spatiotemporal complexity of AF. It allows one to

describe the process of AF in its most elementary form, the separate fibrillation waves

[4]. From these wave propagation patterns it is possible to quantify the complexity

of AF, for example in terms of the number of waves, the wave size, the wave conduc-

tion velocity or the wave source (peripheral or transmural breakthrough). Complexity

of the AF activation pattern is a strong determinant of responsiveness to AF therapy.

Assessment of the AF activation pattern might therefore be used for decision-making

in the management of AF patients [51]. Current analysis methods still involve labor-

intensive manual annotation of atrial deflections and waves, which limits the amount

of fibrillation data that can be analyzed within a reasonable timeframe. Manual edit-

ing also increases the risk of subjective editing, which can lead to lower inter-observer

consistency. To overcome these limitations we developed a novel method that identi-

fies atrial deflections and fibrillation waves in a rapid and fully automated way, based

on estimated probabilistic properties of the recorded fibrillation process. The details of

this automatic procedure are presented in this Chapter, as well as the results of a vali-

dation study. In the design of the new deflection detection and wave mapping method,

we aimed to incorporate electrophysiological knowledge to be able to compute wave

map solutions that both visually and intellectually reflect the way electrophysiologists

would construct them.
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6.2 Methods

6.2.1 Data acquisition

Unipolar atrial fibrillation electrograms were recorded in 15 patients during cardiac

surgery using a 16× 16 square grid of electrodes with an inter-electrode distance of

1.5mm. Acute AF was induced in 8 patients who were in sinus rhythm, 7 patients

were already in AF during surgery (either paroxysmal or persistent AF). Signals were

acquired from the epicardium of the right atrial free wall (RA) (n = 15) and the poste-

rior left atrium (LA) (n = 11) with a sampling frequency of 1kHz. Segments of 4 seconds

of AF were manually annotated by three experienced electrophysiologists to determine

local atrial deflections and to identify clusters of deflections that form separate fibril-

lation waves, following the algorithm described in [4].

6.2.2 Electrogram pre-processing

The first step in processing the atrial measurements is to eliminate electrograms that

exhibit a bad signal-to-noise ratio. To enable a valid comparison between the new

method and manually annotated signals, the same electrograms were eliminated in

both methods. Signals were then filtered with a third order zero-phase Chebyshev

0.5Hz high-pass filter to remove any baseline drift. Ventricular far-field disturbances

in the atrial signal were removed by ventricular R-wave detection in a synchronously

recorded ventricular signal [75], followed by single-beat QRST-template cancellation

based on the adaptive singular value decomposition cancellation method by Alcaraz

et al. [1]. This method determines the morphology of the QRST complex as the most

significant principal component of a set of QRST windows in a single lead. We adapted

this method to compute the QRST complex for a single beat in all electrograms to ac-

count for beat-to-beat QRST complex variability. In atrial electrograms these ventricu-

lar far-fields are usually relatively low in amplitude compared to the local atrial deflec-

tions, but nonetheless they can cause false positives when detecting deflections and

constructing waves.

6.2.3 Intrinsic deflection detection

By interviewing several electrophysiologists, a single predefined deflection shape was

constructed to detect all candidate atrial deflections in the electrograms. This template

could vary in duration (5−50ms). At each time-point in an electrogram the maximum

correlation was determined between the electrogram and all template durations. The

local maxima in the resulting template correlogram were marked as candidate deflec-

tion positions, as shown in Figure 6.1a, 6.1b and 6.1c. These candidate deflections can

be either true intrinsic (or local) deflections or far-field deflections - fluctuations of the

electrograms caused by activations remote from the electrode - or deflections caused

by external disturbances. To distinguish between the three types of deflections, we ex-

ploited the underlying distribution of the AF cycle length (AFCL). This distribution was

estimated by iteratively increasing the minimally allowed deflection amplitude until
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the distribution of the remaining deflection intervals showed a clear peak. The posi-

tion and shape of this peak in the interval distribution of deflections with higher ampli-

tude reflect the interval distribution of the true intrinsic deflections. The distribution

estimation procedure was automated by introducing a maximum deflection interval

threshold (default value 250ms). The minimally allowed deflection amplitude was in-

creased until a maximum percentage (default value 10%) of the remaining deflection

intervals were larger than the maximum deflection interval threshold. A normal distri-

bution with parameters θCL = (µCL,σCL) was fitted on the resulting deflection intervals.

The procedure is illustrated in Figure 6.2. Given the sequence of candidate deflections

{cn}n∈{1,2,...,N } and the AFCL distribution estimate, a deflection type assignment prob-

lem is formulated, where the goal is to select a subsequence of intrinsic deflections

{cnr }r∈{1,2,...,k},nk≤N with maximum interval probability. Assuming a sequence of de-

flection intervals is i.i.d., the joint interval probability of a subsequence {cnr } can be

expressed as

P
(
{cnr }|θCL

)= k−1∏
i=1

f
(
tri+1 − tri |θCL

)
, (6.1)

where tri is the central time of deflection ci . The interval between the time tr1 of

the first deflection in a subsequence and the beginning of the recording t0 and the

interval between the time trk of last deflection in a subsequence and the end of the

recording tend has to be included in the joint probability of the subsequence to include

the constraint that intrinsic deflections are to be found in all parts of the recording,

forming a chain of deflections that are linked by probable deflection intervals.

P
((

t0, {cnr }, tend
) |θCL

)=
f̃
(
tr1 − t0|θCL

) ·(k−1∏
i=1

f
(
tri+1 − tri |θCL

)) · f̃
(
tend − trk |θCL

)
, (6.2)

where

f̃
(
t j − ti |θCL

)={
f
(
µCL|θCL

)
if t j − ti ≤µCL

f
(
t j − ti |θCL

)
if t j − ti >µCL

(6.3)

A heuristic greedy algorithm finds a solution to the sequence selection problem by

starting with the complete sequence of candidate deflections and trying to improve

the joint deflection probability in Equation 6.2.3 by removing deflections, starting with

deflection with low amplitude and slope, until the solution converges. This order of

deflection deletion in this algorithm is based on the tendency of electrophysiologists to

mark steep deflections with high amplitude as intrinsic deflections and flat deflections

with low amplitude as far-field deflections. An example result of an intrinsic deflection

assignment solution can be seen in Figure 6.1d, 6.1e and 6.1f. The strength of this

intrinsic deflection detection method is that it is able to adapt to substrate-specific

deflection properties, such as amplitude, slope and interval distribution.
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Figure 6.1: Deflection detection procedure. The pre-processed signal (a) is analyzed by
a sensitive template-matching algorithm. The peaks in the correlogram are depicted
in (b) and the corresponding template matches in (c). The intrinsic deflection assign-
ment algorithm identifies the location of the intrinsic deflections (red) (d). Far-field
deflections (blue) are determined as deflections that have a minimal amplitude of 10%
of the median intrinsic deflection amplitude and a minimal slope of 10% of the median
intrinsic deflection slope. The final result is depicted in (e) and the corresponding cor-
relogram peak locations in (f).

6.2.4 Fibrillation wave construction

The intrinsic deflection detection step determines the sequences of intrinsic deflec-

tions that are used to construct the fibrillation waves. The center of an intrinsic deflec-

tion is taken as the moment of local activation. Wave construction is divided into three

phases. First, partial waves are created based on a minimum conduction velocity crite-

rion (default value 20 cm/s) between two neighboring activations in the electrode grid.

In experimental studies this threshold was identified as reasonable cut-off value for the

occurrence of conduction block [4]. Activations that can be linked to two or more par-

tial waves are not yet assigned. In the second phase statistical conduction properties of

these partial waves are determined. The distribution of the wave conduction velocity

is estimated by computing the conduction velocity in partial waves containing at least

9 activations. The local conduction velocity for each wave activation is determined

by fitting a tangent plane onto the surface formed by the activation and the activa-

tions within the same wave at the directly surrounding electrodes. The conduction
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Figure 6.2: Estimating the intrinsic deflection interval distribution. A histogram of the
intervals between the deflections found in the template matching procedure is shown
in (a). Increasing the minimal amplitude of a deflection without causing long intervals,
produces the histogram in (b). If a maximum of 10% long intervals are allowed, a clear
peak appears, as can been seen in (c). A normal distribution is fitted onto this peak.
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velocity is then computed as the reciprocal of the plane gradient vector length and the

direction of conduction as the plane gradient angle. The resulting velocity distribution

is approximated by a gamma distribution with parameters θCV = (αCV,ζCV). Besides

the velocity distribution also the distribution of the conduction deviation or tortuosity

within a wave is determined by computing the mean conduction direction difference

at each activation compared to the activations within the same wave at the directly

surrounding electrodes. This tortuosity distribution is approximated by a normal dis-

tribution with parameters θTO = (µTO,σTO). The third phase consists of assigning the

unassigned activations to adjacent waves based on a maximum local conduction ve-

locity and conduction direction probability. Given an activation ae,t at electrode e at

time t and a set of candidate waves W , this probability is defined as

P
(
CV = cva,w ,TO = toa,w

)= P
(
cva,w |θCV

) ·P
(
toa,w |θTO

)
, (6.4)

where cva,w denotes the conduction velocity that results from adding activation ae,t to

wave w ∈W , and toa,w the mean conduction tortuosity.

6.2.5 Validation

The results of the novel automated deflection detection and wave map construction

procedure were validated by comparing the location of intrinsic deflections to the lo-

cation manually annotated deflections. Locations were considered equal if the man-

ually annotated deflection was positioned within the descending part of the automat-

ically detected intrinsic deflection. Automatically computed wave maps were com-

pared to manually constructed maps in terms of median wave conduction velocity,

median AF cycle length, number of waves per AFCL, number of breakthrough waves

(BT) per AFCL and average wave size.

6.3 Results and discussion

The sensitivity of the intrinsic deflection detection algorithm compared to the manual

intrinsic deflection annotation is 87±6.7% (mean±SD). The positive predictive value

of the automated intrinsic deflection algorithm is 89±3.8%. Figure 6.3 and Table 6.1

contain the comparison between the result of automated wave construction algorithm

and the manually created waves. In general, the automated procedure produces very

similar results to a manual annotation, most notably the wave conduction velocity and

the AF cycle length. The number of waves per AFCL is only slightly overestimated, but

the number of breakthrough waves per AFCL is roughly doubled by the automated

procedure. An explanation for this phenomenon is that a manual editor tends to min-

imize the number of breakthroughs by searching for alternative activation pathways

originating from the edge of the mapping array. A consequence of the larger number

of waves detected in the automated procedure is that the average size of automatically

created waves is smaller than the average size of manually created waves. Importantly,

correlations are high, which effectively shows that the automated procedure is an ade-

quately and valid substitute for the cumbersome manual annotation of atrial electro-

grams and manual atrial wave reconstruction.
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Table 6.1: Comparison between automated and manual wave construction. Numbers
are reported as mean±SD. All correlations are significant (p < 0.01).

Category Manual Automated r
Number of waves per AF cycle 5.6±2.7 7.8±3.3 0.96
Number of BT per AF cycle 1.8±1.2 3.7±2.0 0.94
Wave conduction velocity (cm/s) 65±12 66±13 0.97
AFCL (ms) 200±32 204±29 0.97
Wave size (number of electrodes) 53±29 36±18 0.96

Acute AF Paroxysmal AF Persistent AF 
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Figure 6.3: Examples of manually edited wave reconstructions versus wave reconstruc-
tions computed by the automated procedure. The maps show the wave reconstruction
for a patient in acute AF, paroxysmal AF and persistent AF. The same wave shapes can
be visually identified in both the manually edited maps as well as in the computed
maps, although the automated procedure tends to create more and smaller waves.
This does not however affect the ranking of AF complexity.
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6.4 Conclusion

We developed and validated a novel algorithm for fast and automated spatiotemporal

analysis of the substrate of atrial fibrillation. The algorithm identifies the key proper-

ties of the substrate with high accuracy. Potential applications of this technique are:

1. Assessment of spatial and temporal variability of the AF substrate. Automatic

analysis of high-density maps during longer recordings will provide greater in-

sight into the temporal variation in the behavior of the AF substrate and the

recording duration required to assess AF complexity in a more reliable way.

2. Analysis of large amounts of fibrillation data in multicenter trials to establish a

new classification of AF. Using the automated method, the amount of AF fibrilla-

tion electrograms that can be feasibly processed and analyzed in a short amount

of time will increase, enabling larger scale data studies required to establish a

classification of AF.

3. On-site AF substrate complexity assessment to tailor ablation therapy. A (quasi)

real-time implementation of the automated method can provide direct infor-

mation on wave conduction patterns to guide the ablation process and can give

immediate feedback to assess efficacy of an ablation lesion set.
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Chapter 7

Identification of recurring wavefront
propagation patterns in atrial
fibrillation using basis pursuit

7.1 Introduction

The identification of recurring patterns in high-density recordings of atrial fibrillation

(AF) provides valuable insight in the underlying mechanisms that determine the com-

plexity of the AF substrate. Response to treatment of AF, whether this is for instance

ablation therapy or pharmacological intervention, is dependent on this AF substrate

complexity. High-density contact mapping of AF may give a good first visual impres-

sion of recurring wavefront patterns, but detailed substrate analysis requires exten-

sive signal processing of atrial electrograms, atrial deflection detection and fibrillation

wave reconstruction. We hypothesize that recurring patterns and signaling pathways

can be identified using electrograms and electrode topology alone, employing a sparse

multivariate autoregression (MVAR) modeling approach. A recent study showed that

a similar approach can lead to meaningful results when identifying propagation pat-

terns between several intracardiac recording sites using bipolar electrograms from a

basket catheter [86]. In contrast to this approach, we intend to identify interactions

between unipolar electrograms within a short timeframe to account for the dynami-

cal nature of complex atrial fibrillation patterns. Furthermore, the spatial resolution

of these unipolar recordings is higher (interelectrode distance 2.4mm) than in bipolar

electrogram acquisition devices such as a basket catheter.

The MVAR model used in our approach allows us to choose 1) the maximum time-

delay (the model order), 2) some dead time, and 3) model sparsity. The model order

has to be chosen in such a way that sufficient but not too much past electrical activity

is used to explain current activity. Including dead time is necessary to prevent (almost)

simultaneous activations in a wavefront to be used to explain and detect spatial in-

teraction in the direction of wave propagation. Sparsity is used to highlight dominant
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interactions. We are interested in spatial interactions, which is why we use an averag-

ing procedure over time, within a suitably short window to prevent too many different

wavefronts to cancel each other out. A key issue here is that otherwise unrelated atrial

complexes often have similar morphology, so that any method that maximizes sparsity

is prone to identify dominant interactions between unrelated locations. To address

this issue we developed a distance-weighted adaptation of the basis pursuit algorithm

[19] that maximizes the sparsity of the MVAR interaction matrices, while also regular-

izing sparsity based on interelectrode distance. The algorithm was then applied to a

set of recordings in a goat model of AF that contained multiple recurrent wavefront

propagation patterns.

7.2 Methods

7.2.1 Sparse multivariate autoregression model

The MVAR model of order P for a set of N synchronous recorded electrograms x[k] =
[x1[k], x2[k], . . . , xN [k]]T ,k = 1,2, . . . , M with a dead time δ, can be formulated as

x[k] =
δ+P−1∑
τ=δ

Aτx[k −τ]+w[k], (7.1)

where each Aτ is the N ×N matrix with entries ai j (τ) quantifying an interaction from

x j [k − τ] to xi [k]. The vector w[k] = [w1[k], w2[k], . . . , wN [k]] is a multivariate white

noise process. The model in (7.1) can be written in matrix form:

X =ΦΘ+W, (7.2)

where

X = [x[δ+P ],x[δ+P +1], . . . ,x[M ]]T

Φ=


x[P ] · · · x[M −δ]

...
. . .

...

x[1] · · · x[M − (δ+P −1)]


T

Θ= [Aδ,Aδ+1, . . . ,Aδ+P−1]T

W = [w[δ+P ],w[δ+P +1], . . . ,w[M ]]T .

For a set of electrograms with M ≥ N P +δ and Φ with full column rank N P , the

unique least squares (LS) solution can be derived for each column θ(i ) ofΘ separately

θ(i )
LS = (

ΦTΦ
)−1

ΦT x(i ), (7.3)

where x(i ) denotes column i of X . In this study we focus on short time-segments

of electrograms, which typically causes the number (N P ) of parameters that needs

to be estimated for each column θ(i ) to be much larger than the available number

of observations M . If the matrix Φ has rank r < N P , which necessarily happens if

M −δ−P +1 < N P , then there is no unique LS solution, but an optimal least squares
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solution space of dimension N P −r . This equivalence space with respect to the LS cri-

terion can be exploited to maximize the sparsity of the parameter vector θ(i ). We apply

a basis pursuit algorithm to find a parameter vector θ(i ) with minimal `1-norm, while

retaining the optimal least squares fit:

min
θ(i )

‖θ(i )‖1 subject toΦθ(i ) =Φθ(i )
LS . (7.4)

Minimizing the `1-norm has been shown to produce a solution with maximum spar-

sity under certain conditions [36], even in the presence of noise [29]. Note that the

right-hand side vector in the constraint in (4) is a unique vector, formed by the the or-

thogonal projection of x(i ) on the column space of Φ which does not depend on the

choice of a solution in the equivalence space for the LS criterion.

An N ×N spatiotemporal weight matrix Cτ can be defined and incorporated into

the criterion function in (7.4) which allows to regularize sparsity at corresponding en-

tries of Aτ. Define C as

C = [Cδ,Cδ+1, . . . ,Cδ+P−1]T , (7.5)

and C (i ) as column i of C . The regularized problem can now be written as

min
θ(i )

(C (i ))T
[
|θ(i )

1 |, |θ(i )
2 |, . . . , |θ(i )

N P |
]T

subject toΦθ(i ) =Φθ(i )
LS , (7.6)

The problem in (7.6) can be solved using linear programming by bringing it into stan-

dard form:

min
θ+,θ−

(C (i ))T (
θ++θ−)

s.t. Φ(θ+−θ−) =Φθ(i )
LS

θ+i ,θ−i ≥ 0 i = 1,2, . . . , N P, (7.7)

where θ(i ) = θ+ − θ−. The resulting column vectors θ̃(i ) with minimal `1-norm are

joined to form the estimated matrix Θ̃. From this matrix the estimated interaction

matrices Ãτ can be constructed. To compute a solution θ(i )
LS which features in (7.7),

several approaches are possible. One is to employ the data directly as indicated in

the definitions of Φ and X above and to use classical techniques from linear algebra

such as QR-decomposition or an SVD-approach. However, the matrix ΦTΦ in the LS

formula (7.3) is known to have a near block-Toeplitz structure which admits highly ef-

ficient recursive inversion. This is the basis for the well-known Levinson algorithm and

its multivariate generalizations such as the Whittle-Wiggins-Robinson algorithm, see

[92], which allow for the computation of an LS solution recursively in the order P of

the MVAR model. This may speed up the estimation process, and it also allows one to

use information theoretic criteria to select an appropriate value for P .

7.2.2 Dominant pathway identification

The goal of the sparse MVAR model estimation is to identify the dominant interactions

between synchronous electrograms within a relatively short time interval of length M ,
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Figure 7.1: Isochrone contour maps depicting a single occurrence of three recurring
patterns of AF (left) and graphs showing estimated dominant electrode interactions
(right). The asterisk (*) marks the starting point of a wavefront in the contour map.
The wavefront trajectories are indicated by the bold directed lines. The directed elec-
trode interaction graphs are constructed by drawing a line between electrodes where
dominant interactions occur. The strength of the interaction is indicated by a grayscale
and width, ranging from black and thick (strong) to white and thin (weak).
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typically shorter than one AF cycle length. A set of electrograms of duration > M is

analyzed by extracting L consecutive intervals of length M with overlap M/2 and esti-

mating the sparse MVAR model for each of the intervals. The estimated MVAR model

matrices Ãτ are then analyzed to extract information on recurring interaction patterns.

We will focus on the regularization of spatial sparsity only and define the spatiotem-

poral weight matrix Cτ as

Cτ,i j = exp

(
di j

λ

)
,τ= δ, . . . ,δ+P −1, (7.8)

where di j is the euclidean distance between electrodes i and j in millimeters and λ is

a decay factor. The model coefficients are indicators of the strength of the interaction

between two electrodes at a certain time delay, based on electrogram morphology. The

mean interaction ai j from electrode j to i is defined as

ai j =
∑L

l=1

∑δ+P−1
τ=δ Ã(l )τ,i j

PL
, (7.9)

where Ã(l )τ denotes the interaction matrix Ãτ estimated on the interval l . Pathway

maps are constructed from the mean electrode interaction matrix A.

7.2.3 High-density contact mapping

A subset of the mapping data presented in [99] was used for analysis. In short, goats

were instrumented with an atrial endocardial pacemaker lead and a burst pacemaker.

AF was maintained for 3 weeks (short-term AF [ST], n=10) or 6 months (long-term

AF [LT], n=7). In an open-chest follow-up experiment, electrograms during AF were

recorded from the left atrial (LA) and right atrial (RA) free walls using a round, high-

density electrode array of 4cm in diameter, consisting of 234 unipolar recording elec-

trodes with an interelectrode distance of 2.4mm (sampling rate 1kHz). Three record-

ings were chosen to investigate the relevance of the sparse multivariate regression ap-

proach: 1) an ST goat with a large peripheral wavefront, entering the mapping array

at the same location and recurring with the same pattern for several seconds, 2) an ST

goat with a recurring breakthrough wavefront pattern, and 3) an ST goat with a recur-

ring rotating wavefront pattern.

7.3 Results

The MVAR model was estimated on 3 second recordings segmented into consecutive

100ms intervals (M = 100) with 50ms overlap. Model delay and order were set at δ= 1

and P = 11, corresponding to 1ms and 11ms respectively. These values are based on

the assumption that local conduction velocity between two horizontally or vertically

adjacent electrodes can be as slow as 0.2mm/ms (2.4/0.2 = 12ms) and should not be

faster than 1.5mm/ms (2.4/1.5 = 1.6ms). The value of the decay factor λ was set at

10mm. Dominant electrode interaction graphs were reconstructed by normalizing the

outgoing mean interactions for each electrode to the interval [0,1] and selecting only

interactions with a normalized value higher than 0.75. Fig. 7.1 shows three examples

of identified recurring wave propagation patterns.
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Peripheral wave train

The top isochrone map and interaction graph in Fig. 7.1 show the analysis of a re-

curring pattern of a peripheral wavefront entering from the left, moving from left to

right and leaving the mapping area at the right. The contour map on the left shows

one such wave, with higher conduction velocity at the top and bottom of the mapping

array and slower conduction in the middle. The direction of the wavefront pattern is

captured by the dominant interaction graph, where the top and bottom of the map-

ping array show clear rightward conduction patterns while the pattern in the middle is

more diverse. Surprisingly the points where the wavefront enters the mapping area on

the left are identified as sinks with many dominant incoming interactions. This can be

explained by the observation that at an electrode where a wavefront originates there

is no preceding activation at the surrounding electrodes, but they do contain later ac-

tivations that still correlate with the activation at the originating electrode. At points

where a wavefront has just passed, there will be a number of correlating similar acti-

vations before and after the front, but for a point where waves originate or come in,

only correlations after the front are possible. When the two sides (before and after)

are present, the resulting dominant interaction is likely not as strong as when only one

side is present. Therefore at sources (just as at sinks) dominant interactions will more

easily be pointed towards them. In this case the auto-interaction coefficient ai i can

provide additional information.

Repetitive breakthrough wave

The middle map and graph in Fig. 7.1 show a repetitive breakthrough wave pattern,

where a wavefront originates from a deeper layer of the atrium. The activation breaks

through in the right upper corner of the mapping array and subsequently shows radial

spread of activation, leaving the mapping array at the left, bottom and right side. The

dominant interaction graph again captures this breakthrough pattern. The upper right

part of the interaction graph shows a more complex pattern, again with several elec-

trodes that act as sinks. These electrodes are the locations where most breakthrough

waves tend to enter the mapping area.

Rotating wave

The bottom map and graph in Fig. 7.1 depict the pattern of a rotating wave that enters

the mapping area in the lower right, moves upward and then turns left. One part of the

wavefront leaves the mapping area on the upper left, the other part keeps on turning

anticlockwise to return to the point where the wavefront entered the area. The domi-

nant interaction graph clearly shows the first upward movement of the wavefront, the

left turn and the leftward exit of the wavefront. The second part of the wavefront is less

clear, although several downward paths can be distinguished in the middle and lower

part of the mapping area. This can be explained by the fact that the second part of the

wavefront is not as recurrent as the first part.
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7.4 Discussion and Conclusions

The three examples illustrate the identification of recurrent wave propagation patterns

using a sparse multivariate regression model. Without the need for annotation and in-

cluding only a limited amount of underlying assumptions, the developed method is

able to capture the relevant dominant interactions between electrograms located at

different recording locations. The distance-weighted version of the basis pursuit algo-

rithm is a fast and promising tool to identify interactions within a short timeframe. The

constructed dominant interaction graph can be further analyzed using graph theoret-

ical algorithms to identify sources and sinks related to wave propagation, to compute

maximum flow between different locations in the mapping array and to quantify graph

connectivity. In a clinical setting a real-time implementation of the pattern identifica-

tion algorithm might be used to guide the ablation process by identification of specific

conduction patterns as ablation targets and for verification of conduction block.
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Chapter 8

Systematic comparison of techniques
for noninvasive assessment of atrial
fibrillation complexity to predict
outcome of pharmacological
cardioversion in patients with recent
onset atrial fibrillation

8.1 Introduction

Atrial fibrillation (AF) is a common cardiac arrhythmia that progresses in complexity

over time. Current classification of AF is mainly based on AF stability and episode du-

ration [15]. A decision on a rhythm control strategy is usually taken based on this clas-

sification of AF, also taking into account symptoms, and the doctor and patient prefer-

ence. However, whether a patient will respond to rhythm control therapy is difficult to

predict. Moreover, any kind of rhythm control strategy is associated with considerable

risks such as ventricular pro-arrhythmia in case of anti-arrhythmic drugs or procedu-

ral risks in case of AF ablation. Predicting the acute and long-term success of AF treat-

ment at any stage of the disease is therefore desirable and subject to extensive research

[53]. One of the most urgent research questions is whether the degree of the electro-

physiological changes in the atria can be assessed using noninvasive techniques. The

increasing incidence of conduction block in the atria as a consequence of a progressive

structural remodelling process causes an increase in number of fibrillation waves. The

standard 12-lead ECG is an attractive choice for noninvasive assessment of this level

of AF complexity because of its widespread use in daily clinical practice. However,

whether AF complexity quantified from the surface ECG can be employed in a clinical

setting to predict treatment outcome and ultimately guide management of AF, still has
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to be established. Many complexity parameters have been proposed that are derived

from the 12-lead ECG. Although several studies report encouraging results in either

classifying AF or predicting treatment outcome, it is not a straightforward task to com-

pare and interpret the reproducibility of these results, because of the large differences

in patient populations, the parameters computed on the ECG, and the specific clinical

setting. There is a clear need for standardization of ECG-based AF complexity analysis

[88, 13] to be able to get closer to answering the question whether ECG-derived com-

plexity parameters can be of value and if so, which parameters computed on which

leads are useful in which clinical setting. To try and address these issues, we have

performed a comparison of a large set of ECG-derived AF complexity parameters and

their ability to predict successful outcome of pharmacological CV using flecainide in a

population of patients with recent onset AF. Unlike previous studies, we systematically

compared the performance of both time- and frequency-domain parameters, com-

puted on single leads and multiple leads. We assessed prediction models containing a

single type of complexity parameter, but also performed a thorough analysis of mod-

els containing all possible combinations of different types of parameters, grouped by

parameter domain (time or frequency) and number of leads involved (one lead or mul-

tiple leads). A direct comparison of best performing ECG parameter models to clinical

predictors is also provided, to quantify the added value of ECG-derived complexity pa-

rameters in the prediction of successful pharmacological CV. Long-term implications

of recent onset AF complexity were investigated by associating patient complexity to

the risk of progression to persistent AF.

8.2 Methods

Patient database and electrocardiogram processing

Patient data were retrieved from a patient database at Maastricht University Medical

Centre, Maastricht, the Netherlands, which contained the records for patients with re-

cent onset AF (< 48h), who underwent cardioversion with the anti-arrhythmic drug

flecainide for the first time between the years 2008 and 2012. From the database a

total of 221 patients were selected for this study. Exclusion criteria were the use of

anti-arrhythmic drugs prior to the CV attempt, the use of additional medication dur-

ing the CV procedure, and a missing ECG or an ECG of poor quality. An overview of

the patient characteristics is given in Table 8.1. Echocardiographic parameters were

only included if an echocardiography was performed within one year before or after

the CV attempt. Before the CV attempt, for each patient a standard 10-second 12-lead

ECG was recorded during AF using a GE MAC® 5500 resting ECG recording device at a

sampling frequency of 250Hz. CV success was defined as restoration of sinus rhythm

within one hour after the start of the flecainide infusion. Flecainide was dosed at 2

mg/kg with a maximum dose of 150 mg intravenously. Follow-up data on progression

to persistent AF within the period 2008-March 2015 was available for 201 (out of 221)

patients. Before parameter computation, signals were filtered with a 1-100Hz band-

pass filter (3rd order Chebyshev, 20dB stop-band attenuation). To enable analysis of
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TQ-segments, the end of the T-wave and the onset of the Q-wave were detected in

the unfiltered signals using Woody’s improved method [16]. To isolate the atrial signal

from each lead, the ventricular QRST complexes were detected and subtracted using

a single lead cancellation method based on singular value decomposition of the QRST

windows [1]. Large QRS residues after cancellation were replaced by interpolated val-

ues. Single ventricular extra-systoles were blanked. The extracted atrial signal was

filtered with a 3Hz high-pass filter (3th order zero phase Chebyshev filter, 20dB stop-

band attenuation) to remove any remaining T-wave residues. Finally, the first and last

second of the recording were truncated to avoid the border effect of filtering proce-

dures, leaving 8 seconds available for analysis.

Noninvasive AF complexity parameters

The list of noninvasive AF complexity parameters included in this study was composed

of parameters that appear frequently in the last decade of noninvasive AF complexity

literature. These parameters are often computed on the extracted atrial signal (AA), but

some of them can also be computed on just the (concatenated) TQ segments. Param-

eters were computed with algorithms provided by the original author(s) or otherwise

as described in the original publication. An overview of these parameters and their

domain is shown in Figure 8.1.

Spectral complexity

The frequency content of the each lead was determined by computing the spectrum

for each lead using 1), the (fast) Fourier transform of the extracted atrial signal, 2)

Welch’s power spectral density estimate (3 segments, 1024 points, 50% overlap), and

3) the compressed spectrum (CS) [11] using the original ECG signal. The dominant

frequency (DF) was defined as the frequency with the largest power within the 3-12Hz

band. The organization index (OI) of the spectrum was defined as the relative contri-

bution of the 2 largest peaks to the total spectral power. Spectral entropy (SE) is the

application of Shannon’s entropy to the frequency distribution and can be interpreted

as a measure of uniformity of the spectrum. A high value of SE indicates high com-

plexity. The single lead spectral analysis can be extended to a multidimensional anal-

ysis that incorporates spectral information from multiple leads using the so-called

spectral envelope. The spectral envelope describes the shared spectral characteris-

tics of a multidimensional signal [94]. This means that the spectral information from

multiple leads is represented in a single spectrum. From the spectral envelope, the

same three spectral parameters were derived: multidimensional dominant frequency

(MDF), multidimensional organization index (MOI) and multidimensional spectral

entropy (MSE) [96].

Fibrillation wave amplitude

The amplitude of fibrillation waves was determined in two ways: automatic annota-

tion of f-waves in each lead by peak detection, followed by fibrillation wave amplitude

(FWA) computation, comparable to the manual annotation method used by Nault et

al. [70], and - analogous to the computation of spectral complexity - a signal envelope

approach that computes a multidimensional fibrillation wave amplitude (MFWA) on
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multiple leads [65]. MFWA was computed on both the AA signal and TQ segments. A

low value of FWA or MFWA indicates high complexity.

Sample entropy

Sample entropy (SAE) is a time-domain parameter that quantifies the irregularity of

a signal by searching for similar segments of a certain length. As proposed by Alcaraz

et al. [3] SAE was computed on the main atrial wave (MAW) of each lead. The MAW

is the signal resulting from filtering the atrial signal centered around the dominant

frequency with a 3Hz bandwidth. A high value of SAE indicates a high complexity.

Additional parameters related to the MAW are the f-wave power of the MAW (FWP

MAW), with similar interpretation as FWA, and the relative sub-band energy (RHE)

[3], computed as the relative energy present in the first and second harmonics of the

MAW. A low value of RHE indicates high complexity.

Principal component analysis

Another multidimensional approach to AF complexity quantification is principal com-

ponent analysis (PCA), which expresses the information from all 12 leads in a num-

ber of linearly uncorrelated components that essentially describe the amount of vari-

ance between the leads. Complexity measures based on PCA included were spatial

complexity k0.95, the number of components required to describe 95% of the vari-

ance in all 12 leads, and spatiotemporal stationarity (NMSE), the degree in which the

three major signal components are varying over time [12]. A high value of k0.95 and

NMSE indicates high complexity. Additional measures of spatial complexity C and

variability of spatial complexity CV were also included. The parameter C defines spa-

tial complexity as the relative signal variance, excluding the three major components

[61]. Frequency domain parameters derived from PCA were spectral concentration

SC and spectral variability SV [61], where SC quantifies the concentration of the spec-

tral power around the dominant frequency and SV the temporal variation of the SC. A

low value of SC or a high value of SV indicates high complexity. PCA parameters were

computed on both the AA signal and the TQ segments.

Prediction models and statistical analysis

Cardioversion prediction models were built using logistic regression. Prediction per-

formance was expressed as the area under the curve (AUC) of the receiver operating

characteristics (ROC) (also known as the c-statistic). Complexity parameters were first

individually scored in terms of predictive performance. Then, parameters were di-

vided into 4 groups, based on their computational domain (time or frequency) and the

number of leads involved in the computation (a single lead or multiple leads). The best

combination of parameters in terms of predictive performance (expressed as AUC) for

each of the 4 groups of parameters was determined by iterating over all possible com-

binations in that group, if feasible. For larger numbers of possible parameter combi-

nations, for instance in the case of multidimensional spectral complexity, elastic net

logistic regression[105] was applied to first select a smaller subset of candidate param-

eters, for which again all possible combinations were evaluated. Elastic net regression
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Figure 8.1: Overview of ECG signal processing and complexity parameter computa-
tion. In the time domain, multi-lead parameters can be computed on both the ex-
tracted atrial activity, as well as on the TQ-segments of the original ECG. In the fre-
quency domain, complexity can be quantified based on a single lead or on a multi-lead
spectrum.

is a regularized form of regression aimed at parameter selection, where all parameters

can be entered into the model at once and it is especially appropriate in the case where

there are many correlated predictors, overcoming the limitations of classical stepwise

feature selection algorithms. This latter approach was also employed to select the best

model from the set of all parameters. See Appendix 8.A for a more detailed description

of the parameter selection procedure. Best performing parameter combinations were

compared to the prediction performance that could be obtained using conventional

clinical and echocardiographic predictors. Model prediction performance was cross-

validated using 5-fold data partitioning with 20 Monte-Carlo repetitions. Significant

differences in model performance were tested with a Student’s t-test with a signifi-

cance threshold of p=0.05. Univariate parameter differences between patients with a

successful and patients with an unsuccessful CV, both ECG-derived and clinical, were

tested for normality with the Lilliefors test and compared using a standard 2-tailed un-

paired t-test or a Mann-Whitney U-test if the test for normality failed. The association

between ECG complexity parameters and clinical parameters, and the risk of progres-

sion to persistent AF was investigated using a Cox proportional hazards model. Hazard

models were estimated for each parameter individually, as well as for combinations
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Table 8.1: Patient characteristics of the patients with an analyzed ECG. Numbers are
given as mean ± standard deviation or count. Between brackets is the actual number
of observations for each parameter. Binary variables were tested using a χ2-test for
proportions.

Characteristic Successful CV Unsuccessful CV P-value
n = 157(71%) n = 64(29%)

Sex (Male \ Female) 93\64 52\12 0.002
Age (years) 61±13 57±15 0.170
Height (cm) 174±10(116) 179±12(51) 0.004
Weight (kg) 81±14(116) 91±19(51) 0.001
BMI (kg/m2) 26.9±3.9(116) 28.1±5.3(51) 0.305
Diabetes 11(141) 5(61) 0.924
Hypertension 66(141) 29(62) 0.996
COPD 8(141) 2(61) 0.471
PVI 2(141) 5(60) 0.014
Left atrial diameter (mm) 40.3±5.1(113) 43.1±6.0(49) 0.003
Left atrial volume (ml) 74.2±20.8(111) 80.8±19.6(48) 0.067
Right atrial volume (ml) 56.3±18.0(99) 69.9±23.3(47) < 0.001
LVEDD (mm) 49.4±5.4(117) 51.5±6.0(51) 0.127
LVESD (mm) 33.6±4.5(116) 36.3±7.3(50) 0.064
LVEF (%) 60.1±5.6(117) 57.0±10.0(51) 0.171

COPD: chronic obstructive pulmonary disease; PVI: pulmonary vein isolation;
LVEDD/LVESD: left ventricular end diastolic/systolic diameter;
LVEF: left ventricular ejection fraction

of parameters, again applying an elastic net technique with 5-fold cross-validation

to select a smaller subset of candidate parameters [89]. Differences in hazard model

fit quality were assessed using a likelihood ratio test with a significance threshold of

p=0.05. All computations were performed in MATLAB (MATLAB and Statistics Toolbox

Release 2014a, The MathWorks, Inc., Natick, Massachusetts, United States), using cus-

tom made software and the Glmnet for MATLAB toolbox [80] for elastic net regression.

8.3 Results

Prediction using a single parameter derived from one lead

Single lead parameter results are listed in Table 8.2.

Frequency-domain (DF, OI, SE, RHE) The most significant difference between suc-

cessful and unsuccessful CV, and best predictive performance was achieved using DF

(Welch’s spectral density estimate) at leads II, III, aVR, aVF, and V1 with maximum sin-

gle lead AUC (0.66) at lead II. Computed on the same spectrum, OI was significantly

different at lead III (AUC 0.60) and SE at lead V6 (AUC 0.59). The other spectral density

estimation methods produced fewer or no significant differences and lower predic-

tive performance. RHE showed significance at lead I (AUC 0.59). Overall, differences
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Table 8.2: Significant single lead parameters and logistic regression AUC. Parameter
values are reported as mean ± SD or median (interquartile range). AUC values are
given as mean ± SD

Parameter Lead Successful CV Unsuccessful CV P-value AUC
Frequency domain

DF (Hz) II 5.9(1.0) 6.3(1.1) < 0.001 0.66±0.08
Welch III 6.1(0.7) 6.3(1.2) 0.009 0.61±0.09

aVR 5.9(1.2) 6.3(1.2) 0.008 0.61±0.08
aVF 5.9(1.0) 6.3(1.5) 0.007 0.61±0.09

V1 6.3(1.2) 6.6(1.6) 0.027 0.59±0.09
RHE I 0.201(0.155) 0.166(0.106) 0.043 0.59±0.08
OI (%) III 57.8±17.7 53.1±19.7 0.020 0.60±0.09
SE V6 5.67(0.67) 5.83(0.55) 0.043 0.59±0.08

Time domain
SAE II 0.317±0.046 0.341±0.055 0.001 0.64±0.08

aVF 0.323±0.060 0.345±0.061 0.010 0.61±0.09
FWP MAW aVL 0.0064±0.0018 0.0058±0.0018 0.021 0.60±0.09
FWA (mV) II 0.055(0.024) 0.051(0.017) 0.044 0.59±0.08

III 0.059(0.024) 0.053(0.021) 0.007 0.62±0.09
aVL 0.044(0.016) 0.040(0.015) 0.023 0.60±0.10
aVF 0.053(0.024) 0.048(0.016) 0.016 0.60±0.08

V6 0.038(0.012) 0.034(0.010) 0.018 0.60±0.08

between successful and unsuccessful CV were small, but as expected given the inter-

pretation of the frequency-domain parameters. Predictive performance was equally

low for all single lead frequency-domain parameters, with the exception of DF at lead

II.

Time-domain (FWA, SAE, FWP) Time-domain parameters showed similar predic-

tive performance to single lead frequency-domain parameters. Maximum significance

difference between successful and unsuccessful CV was found for SAE at lead II (AUC

0.64). FWP computed on the MAW was significantly different at lead aVL, but predic-

tive performance was low (AUC 0.60). FWA differences between successful and unsuc-

cessful CV were significant at many leads, but differences were too small to achieve

better prediction (maximum AUC 0.62 at lead III).

Prediction using a single parameter derived from multiple leads

Multidimensional parameter results are listed in Table 8.3. This analysis focused on the

parameters that were computed using the information derived from multiple leads,

but expressed the complexity of those multiple leads as a single parameter value.

Frequency-domain (MDF, MOI, MSE, SC, SV) The MDF, MOI and MSE parameters

were computed on the spectral envelope of all possible combinations of 2 or more

precordial leads (57 for each parameter in total), as opposed to only pairs of leads in
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Table 8.3: Significant multidimensional parameters and prediction AUC. Parameter
values are reported as mean ± SD or median (interquartile range). AUC values are
given as mean ± SD

Parameter
Leads\
Signal

Successful
CV

Unsuccessful
CV

P-value AUC

Frequency domain
MDF (Hz) V(2,5) 6.0(1.0) 6.3(1.3) 0.008 0.61±0.09
Top 4 (42) V(1,4,5) 6.0(1.3) 6.8(1.5) 0.003 0.63±0.09

V(1,2,4,6) 6.0(1.3) 6.5(1.4) 0.001 0.64±0.08
V(1,2,4,5,6) 6.0(1.3) 6.5(1.3) 0.001 0.65±0.08

MOI (%) V(3,4) 50.6±8.7 47.6±6.9 0.015 0.61±0.08
Top 3 (22) V(1,2,4) 53.8(10.2) 51.2(10.0) 0.005 0.62±0.08

V(2,4,5,6) 41.6(8.0) 38.9(6.2) 0.005 0.62±0.08
MSE V(3,4) 6.37±0.39 6.49(0.34) 0.046 0.60±0.08
SC (%) All leads 23.8(1.4) 23.5(1.5) 0.031 0.59±0.09
SV All leads 0.51(0.26) 0.66(0.37) 0.001 0.65±0.08

Time domain
k0.95 AA 4.8(0.8) 5.0(0.8) 0.033 0.59±0.09

TQ 3.2(0.6) 3.4(0.4) 0.050 0.58±0.08
MFWAmedian AA 0.049(0.037) 0.040(0.031) 0.025 0.60±0.09
MFWAmean AA 0.049(0.033) 0.039(0.024) 0.031 0.59±0.08
C AA 9.4(3.5) 10.7(4.3) 0.021 0.60±0.08

TQ 4.6±1.8 5.2±2.0 0.050 0.59±0.09
CV AA 2.5±1.0 3.0±1.5 0.005 0.59±0.08

TQ 2.8±1.2 3.2±1.3 0.076 0.58±0.09

Uldry et al. [96]. Results show that the predictive power of MDF increases when more

leads are included, but only reaches a maximum AUC of 0.65 for the combination of

V(1,2,4,5,6), still lower than single lead DF performance on limb lead II. Many MOI com-

binations resulted in statistically significant differences between successful and un-

successful CV, but only reached a maximum AUC of 0.62. MSE was only significant for

the combination V(3,4), with a low AUC of 0.60. SC and SV were both significant, with a

higher AUC for SV (0.65 vs. 0.60).

Time-domain (k0.95, NMSE, MFWA, C, CV) The time-domain multidimensional pa-

rameters k0.95, C and CV attained significant differences and predictive performance,

both computed on the AA signal as well as on the concatenated TQ segments, but with

equally low predictive performance (AUC between 0.58 and 0.60). MFWA was only

significant when computed on the full AA signal. Also here predictive performance

was low (AUC 0.60). Overall, single lead and multidimensional time-domain predictive

performance was very similar, and generally lower than frequency-domain parameter

performance.
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Figure 8.2: Prediction performance of different types of complexity parameters com-
puted on one lead and multiple leads, in the frequency-domain and the time-domain.
Performance is expressed as the mean AUC±SD for each of the 4 groups (parameter
computed in the frequency/time-domain and on one/multiple leads). For every group
the best performing single parameter model AUC is given, as well as AUC of the best
combination of parameters belonging to the same group.

Prediction using a combination of ECG parameters

Results for the parameter models consisting of a combination of ECG parameters are

listed in Table 8.4. In this analysis we determined the combination of parameters in

each of the 4 groups (time- or frequency-domain and single lead parameters or multi-

dimensional parameters) that led to the optimal predictive performance. Out of these

group results, we also distilled the optimal combination of all ECG parameters under

investigation. The best model containing a combination of frequency-domain param-

eters computed on a single lead improved performance from an AUC of 0.66 to 0.72

(p< 0.001), by adding OI (lead III) and SE (lead I) to the best single lead parameter DF

(lead II). In the time-domain prediction also improved by extending the best perform-

ing single lead parameter SAE (lead II) with FWA (lead aVF and V1) and FWP (lead V2),

from an AUC of 0.64 to 0.72 (p< 0.001). Combining multidimensional parameters pro-

duced similar results in the frequency-domain, with a 6-parameter model increasing

the AUC from 0.65 (MDF on V(1,2,4,5,6) or SV) to 0.71 (p< 0.001). In the time-domain

predictive performance remained poor (MFWA and CV, AUC 0.60 vs. 0.62, p = 0.082).

Combining the best predicting parameters of each group of parameters in a single

model further improved prediction performance to an AUC of 0.78, with parameters

selected from each group. Figure 8.2 shows the effect of combining parameters within

each parameter group on the prediction performance. A selection of cross-validated

ROC curves, from which the AUC values were derived, is depicted in Figure 8.3.
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Figure 8.3: Cross-validated ROC curves of various ECG parameter models listed in Ta-
bles 8.2, 8.3, and 8.4. The narrow band around each of the curves indicates the 95%
confidence interval of the sensitivity for a given specificity. Depicted are the ROC
curves for the best prediction performance of a single parameter computed on 1 lead
(DF on lead II, AUC 0.66, black line), the best performance for a single multidimen-
sional parameter (SV derived from all leads, AUC 0.65, red line), the best performing
combination of parameters computed on 1 lead (DF (II), OI (III) and SE (I), AUC 0.72,
blue line), and the best combination of all ECG parameters (DF (II), SE (I), FWA (aVF,
V1), MOI (V(3,4), V(3,5)), SV, and MFWA, AUC 0.78, green line).
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Table 8.4: Best performing parameter models for single lead and multidimensional
parameters. For each group of parameters the selected parameters and leads are given
together with the prediction AUC±SD of the estimated model.

Group Parameters Leads or signal AUC
Single lead DF II 0.72±0.07
Frequency domain OI III

SE I
Single lead SAE II 0.72±0.07
Time domain FWA aVF, V1

FWP MAW V2

Multiple leads MDF V(1,2,4,5), V(1,2,4,5,6) 0.71±0.07
Frequency domain MOI V(3,4), V(3,5), V(2,4,5,6)

SV All leads
Multiple leads MFWAmedian AA 0.62±0.09
Time domain CV AA
Combined DF (II), SE (I), FWA (aVF, V1), 0.78±0.06

MOI (V(3,4), V(3,5)), SV, MFWA median

Prediction using clinical parameters and ECG parameters

An overview of the predictive performance obtained when combining clinical patient

characteristics and ECG parameters can be found in Table 8.5. In the smaller subset

of patients with complete clinical characteristics and echocardiographic data avail-

able (n = 139), the predictive capability of clinical parameters alone was limited. The

combination of patient weight and right atrial volume (RAV) performed best with a

mean AUC of 0.68. The predictive performance in this patient subset of the predic-

tion models based on the 4 ECG parameter groups outperformed the model using the

best combination of all available clinical parameters, except for the multidimensional

time-domain parameter model. Adding the ECG parameters from the best perform-

ing group models to the clinical parameters significantly enhanced predictive perfor-

mance in all cases, again except for the multidimensional time-domain parameter

model. Maximum AUC was reached by combining weight and RAV with single lead

frequency-domain parameters (AUC 0.81, p< 0.001 compared to clinical). Combin-

ing the clinical parameters with the best performing single lead and multidimensional

ECG parameter model, as determined on the full ECG data set, did not further improve

prediction performance (AUC 0.78). The ROC curves demonstrating the added value

of the ECG parameters are shown in Figure 8.4.

8.4 Risk of progression to persistent AF

Out of the 201 patients for whom follow-up was available, 38 (19%) developed persis-

tent AF between the date of CV and March 2015 (median survival time: 408 days, in-

terquartile range (IQR): 171-822 days). Table 8.6 contains the significant hazard ratios

(HR) for individual clinical and ECG complexity parameters, and the parameter unit

increment used in the computation of the HR. Age, body mass index (BMI), left atrial
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Figure 8.4: Cross-validated ROC curves showing the difference in prediction perfor-
mance between the best model consisting solely of clinical parameters (weight and
RAV, AUC 0.68, black line) and the best model consisting only of parameters computed
on the ECG (best ECG parameter model derived from the full data set, AUC 0.78, blue
line), and the performance of the best combination of clinical parameters and ECG
parameters (weight, RAV and the best single lead frequency-domain parameter model,
AUC 0.81, red line). The bands around the curves indicate the 95% confidence interval
of the sensitivity for a given specificity.
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Table 8.5: Predictive performance of clinical parameters and the added value of the
best performing single lead and multidimensional ECG parameters models, as deter-
mined on the full data set (see Table 8.4). P-values relate to the comparison between
the model consisting of only clinical parameters and the specific combination. P-
values between brackets relate to the difference between the model consisting of ECG
parameters and the combined model of clinical and ECG parameters.

Parameter model AUC on subset
AUC clinical &

ECG parameters
P-value

Clinical parameters 0.68±0.11 N/A N/A
(Weight, RAV)
Single lead 0.76±0.09 0.81±0.07 < 0.001
Frequency domain (< 0.001)
Single lead 0.73±0.09 0.77±0.09 < 0.001
Time domain (< 0.001)
Multiple leads 0.73±0.10 0.77±0.09 < 0.001
Frequency domain (< 0.001)
Multiple leads 0.60±0.11 0.68±0.09 0.289
Time domain (< 0.001)
Best ECG model 0.78±0.08 0.78±0.08 < 0.001

(0.473)

diameter (LAD), RAV, left ventricular end systolic diameter (LVESD) and left ventricular

ejection fraction (LVEF) showed small, but significant hazard ratios. Unsuccessful CV

was not a significant hazard (HR 1.58, 95% confidence interval (CI) 0.82-3.06, p=0.17).

ECG complexity parameters were only significant for DF (on leads III, aVL, avF, V4) and

FWA (V1). Both a higher DF and a higher FWA were associated with a larger risk of de-

veloping persistent AF. Correcting for age and sex only eliminated DF on lead V4 as a

significant hazard. Figure 8.5 depicts the Kaplan-Meier curves for four dichotomized

parameters BMI, LAD, DF (aVL) and FWA (V1), showing that an increased risk of pro-

gression to persistent AF was associated with obesity (BMI > 30 kg/m2), an enlarged

left atrium (LAD > 41mm), a faster atrial rate (DF > 5.7 Hz), and a higher f-wave ampli-

tude (FWA > 0.06 mV). Progression to AF was significantly faster for patients with FWA

> 0.06 mV (median survival time 296 days vs. 796 days, p=0.03). Multivariate analy-

sis showed that the risk of progression to persistent AF is best described by a model

containing LAD (n=155), when considering only clinical parameters. ECG complexity

parameters modelled progression best using a combination of DF (lead aVL) and FWA

(lead V1) (n=201, DF(aVL): HR 1.45, CI 1.08-1.94, p=0.01; FWA(V1): HR 1.16, CI 1.05-

1.27, p<0.01). Adding DF (aVL) or FWA (V1) to the best model containing only clinical

parameters both improved the model fit (p=0.05 or 0.02 respectively).
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(a) BMI (b) LAD

(c) DF (aVL) (d) FWA (V1)

Figure 8.5: Kaplan-Meier curves for the risk of progression to persistent AF after the CV
attempt for patients with a) BMI > 30 kg/m2 (HR 2.97, CI 1.38-6.40), b) LAD > 41 mm
(HR 2.65 CI 1.16-6.06), c) DF > 5.7 Hz on lead aVL (HR 4.16, CI 1.62-10.67), and d) FWA
> 0.06 mV (HR 3.25, CI 1.66-6.35). All HR are significant with p<0.01.
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Table 8.6: Significant hazard ratios for risk of progression to persistent AF.

Hazard ratios (95% CI)
Parameter Increment Unadjusted Adjusted for Sex and Age
Age 1 year 1.03 (1.01-1.06)∗ N/A
BMI (n=159) 1 kg/m2 1.09 (1.03-1.17)# 1.10 (1.03-1.18)#
COPD (n=185) N/A 3.59 (1.26-10.21)∗ 3.38 (1.19-9.61)∗
LAD (n=155) 1 mm 1.12 (1.05-1.19)# 1.11 (1.04-1.18)#
RAV (n=141) 5 ml 1.11 (1.03-1.21)∗ 1.12 (1.02-1.22)∗
LVESD (n=158) 1 mm 1.06 (1.00-1.11)∗ 1.08 (1.02-1.14)#
LVEF (n=160) -1 % 1.06 (1.02-1.11)# 1.06 (1.02-1.10)#
DF (III) 1 Hz 1.57 (1.17-2.10)∗ 1.65 (1.24-2.19)#
DF (aVL) 1 Hz 1.50 (1.14-1.99)# 1.64 (1.24-2.16)#
DF (aVF) 1 Hz 1.46 (1.11-1.92)# 1.53 (1.17-2.00)∗
DF (V4) 1 Hz 1.37 (1.03-1.87)∗ 1.34 (0.99-1.83)
FWA (V1) 0.01 mV 1.17 (1.07-1.29)# 1.16 (1.06-1.27)#

CI: Confidence interval; ∗ p<0.05, # p<0.01

8.5 Discussion

EGC parameters as predictors of pharmacological cardioversion out-
come

The results of the single and multidimensional ECG lead analysis show that the 12-

lead ECG contains valuable information related to the response to pharmacological

CV of recent-onset AF. This information may be used to characterize complexity of AF

at an early stage. As expected patients with a lower DF are more likely to respond to

treatment, an observation that corroborates the findings of Choudhary et al. [21] who

showed that recent-onset AF patients with a lower atrial fibrillatory rate (AFR) were

more likely to spontaneously cardiovert. Moreover, significant single lead measures of

organization of the signal spectrum (OI and SE) indicate that a higher degree of orga-

nization favours successful CV. In the time-domain, SAE on lead II provides the most

significant difference between groups, with lower SAE associated with higher chance

of CV success, which is consistent with the results of Alcaraz et al. in a study on predic-

tion of spontaneous CV [2]. Using multidimensional parameters that compute a single

value from multiple leads is a logical extension of single lead analysis. In theory, in-

corporating spatial differences among leads and capturing inter-lead variability as an

additional measure of complexity should provide a more robust estimate of AF com-

plexity. The results from the multidimensional parameter analysis indeed confirm this

to some extent. While DF computed on one of the precordial leads only gives a sig-

nificant result on lead V1, the multidimensional extension MDF performs better, with

significant results for many combinations of the precordial leads (42 significant com-

binations in total). Maximum MDF AUC is however still lower than the maximum AUC

of DF on limb lead II (0.65 vs. 0.66). The same holds true for OI and MOI, apart from the

fact that MOI has a slightly higher maximum AUC on a combination of the precordial

leads than the maximum AUC of OI on lead III (0.62 vs. 0.60). We did not notice an im-
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portant role of left atrial content in this patient population as indicated by Uldry et al.

in their study on discriminating persistent and long-standing persistent AF [96]. The

most significant multidimensional parameter differences consisted of a mix of right-

and left-oriented precordial leads. Although differences were indicating a higher de-

gree of organization in the successful CV group, they were too subtle to use for classi-

fication or prediction purposes. The significant result for SV (AUC 0.65) indicates that

a higher degree of temporal regularity in the frequency-domain is also a determinant

for successful CV. Multidimensional parameters in the time-domain appear to have a

lower performance in this dataset, but we do see several significant differences that

point to lower complexity of AF in patients with successful CV, such as the higher mul-

tidimensional f-wave amplitude and lower number of signal components k0.95 needed

to describe the signal. Overall however, predictive performance of single parameters

in the time-domain is low. This is likely due to the very subtle differences in AF com-

plexity between patients in this stage of recent-onset AF. Combining several complex-

ity parameters in a prediction model significantly improves prediction, regardless of

whether these different parameter values are calculated from single lead or multiple

leads. Worthwhile noting is that the best combination of frequency-domain parame-

ters computed on a single lead is composed completely of limb leads I, II and III, with

a strong role of DF at lead II, again suggesting the need to include leads that contain

both right and left atrial activity. The best model combining time-domain parameters

computed on a single lead seems to reach a similar performance, but this is partially

driven by the correlation between DF and SAE computed on the MAW (correlation DF

and SAE at lead II: r = 0.79, p<0.001, mean correlation DF and SAE: r = 0.75±0.03). This

correlation, as already noted by Platonov et al. [79], can be explained by the fact that

the SAE is computed on a signal that has been filtered around the DF, making it likely

for a signal with a higher DF to have a higher SAE. The best single lead time-domain

parameter model without SAE has a somewhat lower predictive performance (AUC:

0.71±0.08 vs. 0.72±0.07, FWA(aVF, V1), FWP MAW(aVL, aVF, V2)).

Added predictive value of ECG parameters compared to clinical informa-
tion

The ability of clinical parameters (including echocardiographic parameters) to predict

successful outcome of CV was limited. Combinations of ECG parameters performed

better on the subset of patients with complete clinical and echocardiographic data

records. Combining ECG and clinical parameters further improved prediction. This

implies that features extracted from the ECG contain complementary information to

the available clinical characteristics in this patient population. In particular, single

lead frequency-domain parameters improved prediction.

Noninvasive complexity and risk of progression to persistent AF

Both clinical as well as ECG complexity parameters were associated with risk of pro-

gression to persistent AF. Clinical parameters like age and BMI, and echocardiographic

parameters like LAD, RAV and LVEF were indicators for an increased risk of progression
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to persistent AF, which is largely in line which previous findings [48]. From the set of

ECG parameters only parameters computed on a single lead showed significant haz-

ard ratios, namely DF and FWA. The threshold of 5.7 Hz computed for DF on lead aVL

to produce the survival curve in Figure 8.5c is very comparable to the AFR threshold of

<350 fibrillations per minute (5.8 Hz) found by Choudhary et al. [21] associated with a

significant increase in the likelihood of spontaneous cardioversion of recent onset AF

within 18 hours. One could argue that patients that are not likely to spontaneously car-

diovert have a higher risk to develop persistent AF, due to more electrical and, eventu-

ally, structural remodelling caused by prolonged episodes of AF. The role of FWA on V1

in the development of persistent AF in this patient cohort is more challenging to inter-

pret: a higher FWA was associated with a higher risk for persistent AF, while the inverse

relation was found for FWA in the prediction of successful pharmacological CV. To our

knowledge, the long-term implications of FWA determined in patients in recent-onset

AF have not yet been studied. Within the set of patient with follow-up, the combina-

tion of available clinical and echocardiographic parameters that best described FWA

on V1 consisted only of LVEF, but with a low correlation coefficient (r=-0.20, p=0.018).

All other clinical parameters showed no significant (linear) association with FWA on

V1. Atrial dimensions did not correlate well with FWA on V1 (LAD r=0.16, p =0.05; LAV

r=0.04, p=0.66; RAV r=0.06, p=0.50). FWA on V1 was also not related to left-right atrial

DF or OI differences, as one might hypothesize based on the idea that increased left

atrial AF complexity can lead to a reduced cancellation of the f-waves present in the

right atrium.

Limitations

The retrospective nature of this study has obvious implications for the availability and

quality of both clinical information and ECG signals. Echocardiography was not recor-

ded at the same time as the ECG, but selecting an available echocardiography within a

year produced similar results compared to a narrower timeframe (see Appendix 8.B for

an analysis of the echocardiography timeframe). ECG signals were not recorded with

the intention to analyse AF, meaning that quality was varying and recording length was

limited to 10 seconds.

8.A Parameter selection via elastic net logistic regression

In several cases, the number of candidate parameters in the logistic regression model

makes it infeasible to iterate over all possible parameter combinations to select the

overall best performing model. Parameter selection using stepwise logistic regression

has the disadvantage that it is dependent on the order in which parameters are added

or removed from the prediction model. Stepwise parameter selection is also affected

by parameter correlation. To select dominant parameters from a large set of candi-

date parameters, and to overcome the limitations of stepwise methods we applied an

approach that combines information from classical stepwise logistic regression and

elastic net logistic regression. Elastic net regression is based on mixed `1/`2-norm
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regularization of the parameter coefficients in the criterion function of the regression

model at hand. This regularization aims to minimize the number of non-zero param-

eter coefficients in the estimated model. Given a certain output data y of length N , in

the case of logistic regression the objective is to minimize the model deviance

D(y,θ) =−2
(
log

(
p(y |θ)

)− log
(
p(y |θs )

))
, (8.1)

where the vector θ contains the parameter coefficients and θs denotes the parameter

vector of the saturated model. The formulation for the elastic net logistic regression

problem is

min
θ

(
1

N
D

(
y,θ

)+λPα(θ)

)
, with (8.2)

Pα(θ) = 1−α
2

‖θ‖2
2 +α‖θ‖1.

The two regression tuning parameters are λ and α. The parameter λ determines the

strength of the regularization of the parameter coefficients, while α (a value between

0 and 1) controls the balance between penalizing either the `2- and/or the `1-norm

of the coefficient vector [34]. Several steps of the parameter selection procedure are

outlined in Figure 8.6. In the analysis shown there the set of parameters under inves-

tigation was the group of parameters computed on 1 lead in the frequency domain

(DF, OI, SE and RHE). Figure 8.6a) and b) show the elastic net estimation result for a

fixed value of α (α = 0.5). The choice of λ influences the estimated parameter coeffi-

cients and the deviance of the estimated model. A commonly accepted choice for λ is

the value that corresponds to a model deviation that lies within 1 standard deviation

of the cross-validated minimum deviation. These λ-values are indicated with a gray

(minimum deviation) and a black line (minimum deviation + 1 standard deviation).

The choice of α also determines the number of parameters that are selected. For α= 1

the algorithm corresponds the Lasso algorithm, which tends to select one parameter

from a group of correlated parameters, but for α values between 0 and 1, the elas-

tic net algorithm will include more correlated parameters. Therefore a range of alpha

(between 0.1 and 1) was investigated and for each value of α the non-zero parame-

ter coefficients were stored (see Figure 8.6c). Parameters that appeared in any of the

models computed with this range of α were considered potential candidates for the

final logistic regression model. In this case the parameters DF(on leads II, aVR and V4),

OI (leads I and III) and RHE (lead I) were selected. As an additional step, parameters

were also selected through forward stepwise logistic regression (p<0.05 for significant

deviance improvement by adding a parameter). In this case selected parameters were

DF (lead II), OI (III) and SE (I). The union of the parameters selected by the two regres-

sion methods was then taken to iterate over all possible combinations of parameters

to find the model with the best prediction performance. Figure 8.6d) shows the result

of this last step. The model performance increased by adding more parameters, but

reached a maximum at a model containing 3 parameters (DF (II), OI (III) and SE(I)).
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(a) (b)

(c) (d)

Figure 8.6: Parameter selection via elastic net logistic regression (parameters com-
puted on a single lead, frequency-domain). The upper plots show the result of the anal-
ysis for α=0.5, with in a) the cross-validated deviance as a function of λ and in b) the
parameters coefficients (df indicates the number of non-zero parameter coefficients).
The gray vertical line/circle marks the choice of λ that minimizes the deviance, the
black vertical line/circle marks the solution that is within 1 standard deviation. Panel
c) shows the non-zero parameters coefficients selected by the elastic net regression as
a function of α. Panel d) contains the result for the cross-validated maximum AUC for
models composed of a specific number of candidate parameters, defined by union of
the stepwise regression and elastic net parameter selection.
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8.B Effect of time interval between echocardiography and CV at-
tempt

In our analysis we included echocardiographic data that was collected within a year

(365 days) of the date of the CV attempt. In this analysis we also included patients with-

out an ECG or a poor quality ECG before the CV attempt (n=198). Results are shown

in Figure 8.7. From Figure 8.7a it becomes clear that the number of patients that can

be included in the analysis based on their echocardiographic data, initially decreases

slowly when we move from 365 days to a narrower timeframe. This decrease acceler-

ates when we reach 100 days as a cut-off value. The performance of the best model

containing only clinical parameters (weight and right atrial volume (RAV)), shown in

Figure 8.7b, remains relatively stable until 100 days, and then starts to increase, but also

becomes more irregular, due to the lower number of patients included in the analysis.

This observation is supported by examining the evolution of the two clinical parame-

ters forming the best performing model, as shown in Figure 8.7c and 8.7b.
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Figure 8.7: The effect of maximum allowed time difference between the date of car-
dioversion and the closest date of an echocardiography on (a) the number of patients
included in the analysis, (b) prediction performance of the best performing model con-
taining clinical parameters weight and RAV, (c) differences in patient RAV (successful
and unsuccessful CV), and (d) differences in patient weight.
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Chapter 9

General discussion

9.1 Sparse estimation

In this thesis it was investigated to what extent sparse linear, time-independent sys-

tems can be estimated given a limited amount of available measurement data. In linear

regression minimizing the `1-norm of the parameter vector within the input-output

equivalence space, provided a good heuristic to correctly estimate the data generating

model parameters, even in a strongly underdetermined setting. In system identifica-

tion, this method was employed to estimate (structured) state-space matrices using

an iterative mixed `2/`1 minimization procedure, where conventional prediction er-

ror minimization is followed by `1 minimization of the parameter vector within the lo-

cal input-output equivalence space, defined either by the Jacobian matrix of the error

vector or the Hessian matrix of the prediction error criterion. The ability to correctly

estimate sparse network interactions was also evaluated, using sparse linear regression

in the discrete-time interaction networks, and the iterative version of the algorithm in

continuous-time networks.

9.1.1 Sparse linear regression

In Chapter 3 the error rates and probability of a correct parameter estimate were in-

vestigated in the class of linear regression models. Given the theoretical bound on

the sparsity of the parameter vector needed to ensure that the vector with minimal

`1-norm corresponds to the sparsest parameter vector, a relative low amount of mea-

surements were needed on average to correctly estimate the data generating param-

eters. The strictness of this theoretical bound was already noted in [28], where it was

shown that especially in large underdetermined systems of equations, the minimum

`1-norm solution will typically also be the sparsest solution. In a noiseless setting,

the method outperformed the lasso, a method that employs a parameter shrinking ap-

proach to maximizing sparsity. It was therefore considered a good candidate for sparse

maximization in nonlinear optimization as well. The approaches to sparse linear re-

gression mentioned in this thesis, represent only a subset of the recent advances that
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have been made in this field of research. The lasso algorithm has been extended to

work for grouped variables called the group lasso [104] and sparse-group lasso [90].

Component lasso [46] is another extension that groups variables based on the sample

covariance matrix. Sparse approaches have been developed for the class of general-

ized linear models, to include for instance sparse logistic regression and Cox’s propor-

tional hazards analysis [89]. Moreover, software packages have been developed that

contain efficient implementations of several sparse regression algorithms (see for in-

stance [80]).

9.1.2 Sparse state-space identification

In Chapter 4 an extension of the sparse linear regression algorithm was proposed.

An iterative version of mixed `2/`1 minimization was able to increase model sparsity,

starting from a nonsparse data-generating model. The choice of the size of the step in

the sparse minimization direction was however critical for the convergence of the algo-

rithm to a specific solution. In a fully parameterized state-space model, an approach

could be used that was guided by the data-drive local coordinates technique, which

guaranteed that the mixed `2/`1 minimization parameter trajectory stayed within the

space of state-space systems that can be described by a state coordinate transforma-

tion. Here, the existence of an input-output equivalence space is inherent to the pa-

rameterization of the model and not necessarily related to an undetermined setting.

Note also that minimization of a mixed `2/`1-norm of the parameter vector in a fully

parameterized state-space model may lead to (continuous-time) balanced realizations,

see [40] and [100]. Balanced realizations are well-known to exhibit good numerical

condictioning properties in many applications (cf., e.g., [68, 73, 78]) and the approach

presented here may also be of practical value in situations where the system order is

relatively low and sparsity does not apply. Possible additional applications of sparse

state-space identification lie in the field of model reduction by eliminating redundant

interactions, in the field of coordination control, by identifying nested structures or

groups of uncoupled of states within large-scale systems, which may enable decompo-

sition into a hierarchical structure (see [49] and references given there for an overview

of coordination control of linear systems), and time-dependent role identification, by

identifying activating or inhibiting components in a system.

9.1.3 Sparse network identification

To be able to generate sparse network structures, a specific ring-like topology was de-

signed, corresponding to a tri-diagonal state interaction matrix. Within this prescribed

structure, relatively large, stable and sparse networks could be generated. In networks

that are sparse in discrete time, sparse linear regression could be applied for each net-

work node, leading to similar performance as in the simple linear regression setting.

For a network with sparse interactions in continuous time, two approaches were in-

vestigated. A sparse network in continuous time sampled at a sufficiently high sam-

pling time will still yield a sparse discretized interaction matrix. The estimated dis-

cretized interaction matrix (estimated by sparse linear regression) can be transformed
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back to continuous time to try and retrieve the original continuous-time interaction

structure. Experiments indicated that this is indeed possible at appropriate sampling

rates, in combination with a sufficiently exiting input signal and a fast enough impulse

response of the generated network. The number of measurements needed to correctly

estimate the data generating model parameters is however much larger than in the

case of sparse linear regression. The risk of over- or under-sampling is also present

and the range of sampling rates for which network interactions were estimated cor-

rectly was narrow. A second, and potentially more viable approach was to estimate the

continuous-time network parameters directly, given a certain sampling rate. This also

proved to be feasible, but here the convergence to a stable sparse network estimate

turned out to be problematic. In an underdetermined setting the mixed `2/`1 mini-

mization algorithm indeed converged to a sparse solution, but unfortunately this so-

lution often corresponded to an unstable network configuration. When the data gen-

erating system was the sparsest solution given the number of measurements at hand,

convergence to this solution was achieved, but the number of measurements needed

to create such a situation was already close to the number of measurements sufficient

to find a unique solution. The application of sparse network identification is feasible,

assuming sparsity in discrete time. Continuous-time sparse estimation applicability is

limited by the interplay between the time-resolution needed to observe the relevant

model behaviour, the number of available measurements, and the optimality of the

data generating model parameter sparsity (see Garnier et al. [39, 20] for more details

on continuous-time system identification techniques). In this thesis only a specific

type of regular network structure was investigated in the evaluation of the applica-

bility of the (mixed) sparse estimation procedure. Although several observations that

were made for this type of network are likely equivalent for other network structures,

like the dependence on the sampling rate and the time-scale of the model behaviour,

other sparse network topologies might possess more (or less) favourable properties

when it comes to estimating the network interactions in an underdetermined setting.

The main challenge here lies in generating stable and minimal networks with specific

properties, like small-world, scale-free or random networks (see for instance [71] for a

review of network structures), that are large enough to fulfil the sparsity assumption.

The mixed `2/`1 minimization algorithm as presented here does not take into account

the stability of the estimated solution. One could envision a regularized adaptation of

the algorithm to promote stable solutions by for instance including the infinity-norm

(H∞) of the state-space system corresponding to the current parameter vector esti-

mate, as a regularization term in the prediction error minimization criterion. This

however will probably lead to estimates that are only marginally stable, as the trajec-

tory followed in the mixed `2/`1 minimization procedure when starting from a stable

initial solution and converging to maximally sparse unstable solution, contains such a

marginally stable solution.
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9.2 Applications in atrial fibrillation

Several techniques investigated in the analysis of sparse estimation approaches have

potentially interesting applications in the analysis of atrial fibrillation, from electro-

gram interaction analysis to feature selection in prediction of treatment outcome.

9.2.1 Recurrent propagation pattern identification

In Chapter 7 the sparse linear regression algorithm was adapted to identify time--

delayed interactions between direct contact electrograms in goats, recorded with a

high-density grid of electrodes. A distance-weighted version of this algorithm iden-

tified dominant local electrode interactions within a short time frame. By averaging

these sparse electrode interaction matrices recurrent propagation patterns could be

extracted that corresponded to patterns reconstructed by manual annotation of local

atrial deflections. This approach is promising for several reasons. First of all, recon-

structing activation patterns through annotation (manually or automatically as de-

scribed in Chapter 6), depends on accurate detection of local atrial deflections, a task

that can be time-consuming and/or subject to uncertainty, especially in more complex

(i.e. fractionated) electrograms. The sparse multivariate autoregression approach has

the advantage that it is designed to take into account both instantaneous and time-

delayed coupling between electrodes, without having to assign atrial deflections and

corresponding activation times. Furthermore, it is able to incorporate spatial infor-

mation to regularize the sparse estimation procedure to focus more on local interac-

tions, while still taking into account the full set of possible interactions. Future work

in this application can provide a more systematic evaluation of ability of the algorithm

to identify recurring patterns, by validating the estimated electrode interactions with

manually annotated propagation patterns. The question of causal relationships be-

tween electrodes in terms of conduction sources and sinks can be further investigated

by comparing the reconstructed recurrent patterns to the frequency-domain analy-

sis, as proposed by Richter et al. [85, 86]. This could show its potential to identify

(recurrent) drivers of AF, or elucidate underlying structures in the atrial tissue (e.g. en-

docardial bundle architecture or epicardial fiber orientation [60]) that contribute to

electrical dissociation and conduction disturbances, which in turn may lead to con-

duction block, wave break, and transmural breakthroughs [30, 31]. Finally, although

the method was developed for high-density contact electrograms where distance be-

tween electrodes is known and constant, it could also be applicable in endocardial

basket recordings of AF to identify dominant patterns of conduction.

9.2.2 Feature selection to predict pharmacological cardioversion

A second application in the analysis of AF was presented in Chapter 8. Here a different

sparse estimation technique was employed to identify the dominant predictors (ECG

complexity parameters and clinical parameters) of successful cardioversion of AF us-

ing flecainide. Although the identification problem at hand was not necessarily under-

determined (the number of predictors was typically lower than the number of observa-
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tions), a sparse estimation approach was called for because of the need to find a small

subset of parameters that possessed a good predictive performance. The collinearity

of several predictors, arising from the fact that identical parameters were computed

on neighbouring lead locations, or that different parameters had a similar interpre-

tation, motivated the use of elastic net regression in this application. A generalized

linear model implementation of elastic net logistic regression was employed to select

dominant features, supplemented with features (if different) selected by ordinary for-

ward stepwise logistic regression. This application illustrated the use and advantages

of a sparse estimation approach to feature selection, by being able to identify subsets

of (possibly correlated) candidate predictors without the need to evaluate all possible

combinations of parameters, while overcoming the shortcomings of traditional step-

wise methods when it comes to variable selection in the presence of collinearity. The

selected predictors indicated that individual ECG-derived AF complexity parameters

are capable to detect small, but significant differences in patients with recent onset AF,

when it comes to successful CV. Predictive performance of ECG-parameters improved

by combining different types of parameters computed on different leads. Compared

to conventional clinical predictors, ECG-parameters provided better prediction of suc-

cessful CV, most notably by parameters computed on a single lead in the frequency

domain. Although clinical implications of this study may be limited, since pharmaco-

logical cardioversion is - at least in patients without contraindication - a low-cost and

low-risk procedure, the approach to compare and select relevant predictors in a rig-

orous and systematic way is a contribution to the standardization of noninvasive AF

complexity quantification analysis. Analyzing larger patient cohorts and, as advocated

in this thesis, more robust approaches to feature selection will in the near future clarify

the added value of the large set of candidate noninvasive AF complexity parameters at

various stages of AF management. Analysis of the added value of high-coverage body

surface potential maps to improve noninvasive AF complexity quantification will also

benefit from this type of robust feature selection.
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Summary

In many practical settings it is desirable to describe the essence of a system by a model

in a simplified, yet accurate way. Model complexity reduction can be achieved in

many ways, for instance by determining if the value of a model parameter is signifi-

cantly different from zero or not. In this thesis the notion of sparsity is employed as

an underlying property of a system that is to be estimated, in the presence of insuffi-

cient amounts of available measurement data. Sparsity is defined here as the (relative)

number of nonzero parameters within a system. Part I of this work is dedicated to

the development of a sparse system identification framework and applications in two

model classes, linear regression models and state-space models. In Chapter 2 a gen-

eral framework for sparse identification of linear time-invariant (LTI) models is pro-

posed that constitutes a hybrid approach to sparse parameter estimation. Minimizing

a least-squares (`2) prediction error criterion ensures the quality of the overall fit of

the model to the data. Minimizing the absolute value (`1-norm) of the parameter vec-

tor within the model equivalence space aims to maximize parameter vector sparsity.

This mixed `2/`1 optimization framework is subsequently applied to the class of lin-

ear regression models (Chapter 3) and the class of state-space models (Chapter 4), in

an underdetermined setting where the number of parameters to be estimated is typ-

ically (much) larger than the available measurements. In the setting of linear regres-

sion models, a sparse solution can be found in the space of models with an equivalent

minimal prediction error criterion value (Section 3.2). Experiments indicate that in a

noiseless setting, the minimal amount of input-output (i/o) data needed to correctly

estimate the data generating model parameters is much lower on average than stated

by a theoretical (worst case) lower limit (Section 3.3).

An iterative version of the mixed `2/`1 optimization algorithm is applied to the

general class of state-space models in innovations form (Section 4.5). Here, model

equivalence is intrinsically present by the existence of a (non-singular) state-space

transformation matrix that leads to equivalent i/o behaviour. After initial minimiza-

tion of the prediction error criterion, the `1-norm of the parameter vector is minimized

in the space formed by the linear approximation of this equivalence space. The opti-

mal solution is then taken as a direction in which a step is made to improve parameter

vector sparsity. This `2/`1 minimization procedure is repeated to traverse along the

manifold of increasingly sparse i/o equivalent state-space models. Experiments show
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that this iterative version of mixed `2/`1 optimization is capable of increasing model

sparsity while retaining an optimal fit to the data. The choice of the size of the step

in the sparse search direction is however critical for the convergent properties of this

algorithm. In a fully parameterized setting a connection with data driven local coordi-

nates (DDLC) can be made, achieving fast convergence to a sparse solution.

The special subclass of state-space models describing (sparse) network interac-

tions is studied in more detail in Sections 4.6-4.8. These networks have a ring-like in-

teraction structure, which makes large-scale generation of sparse, stable and minimal

networks more feasible than for instance in the case of a random interaction structure.

In sparse networks with interactions in discrete time (Section 4.6), the results obtained

from the linear regression setting in Chapter 3 are directly transferrable, since a sparse

linear regression problem can be solved for each state separately. Moving to networks

with a sparse interaction matrix structure in continuous time introduces the compli-

cating factor of the sampling period that determines the level of sparsity present in

the discrete-time representation of the interaction matrix and the duration of the ob-

served time interval. Estimating a sparse discrete-time interaction matrix, followed by

transformation to continuous time is possible, but only for a narrow range of sampling

times (Section 4.7). The continuous-time interactions can be estimated directly using

the iterative `2/`1 optimization algorithm and some experiments show that it is in-

deed feasible to find a correct sparse solution in an underdetermined setting (Section

4.8), but the applicability of this technique is limited in this case due to the tendency

of the algorithm to converge to a solution that corresponds to an unstable state-space

model.

The notion of sparsity is investigated in the field of atrial fibrillation analysis. Atrial

fibrillation (AF) is a common arrhythmia in which the normal, synchronized contrac-

tion of the atria is disturbed and multiple waves of electrical activations propagate over

the atria. Invasive, high-density measurements of AF allow for a detailed description

of the number and behaviour of fibrillation waves. In Chapter 6 an automated prob-

abilistic approach to AF electrogram annotation and fibrillation wave construction

is described that is shown to correspond well to manual pattern assessment in sev-

eral recordings of human AF. An alternative approach to propagation pattern analysis

is developed that is based on a sparse multivariate autoregressive model of electro-

gram interactions (Chapter 7), extending the work in Chapters 3 and 4 to time-delayed

sparse linear regression. This technique enables identification of recurring propaga-

tion patterns in fibrillation waves, without manual or automated annotation. Example

analyses in high-density mapping in a goat model of AF illustrate the ability of this

application of sparse estimation to capture recurring patterns like wave trains, break-

through waves and rotating wave fronts. Another application of sparse estimation is in

the noninvasive analysis of AF (Chapter 8). Identification of the dominant predictors

of successful pharmacological cardioversion (i.e. restoration of regular sinus rhythm)

of AF is achieved using elastic net logistic regression, a shrinkage estimator employing

a mixed regularization of the prediction error criterion by the `2- and `1-norm of the

predictor coefficients. Here, sparse estimation is employed to select features (ECG-

based complexity parameters and clinical features) in an overdetermined setting.
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Samenvatting

In de praktijk is het vaak wenselijk om de essentie van een systeem te beschrijven met

behulp van een model op een vereenvoudigde, maar toepasselijke manier. Het ver-

minderen van de complexiteit van een model kan op aantal verschillende manieren,

bijvoorbeeld door te bepalen of de waarde van een modelparameter significant ver-

schilt van nul of niet. In dit proefschrift wordt het begrip sparsity (dungezaaidheid of

ijlheid zijn equivalente begrippen in de Nederlandse taal) gebruikt als een onderlig-

gende eigenschap van een te schatten systeem, waarbij het aantal beschikbare waar-

nemingen onvoldoende is om de modelparameters uniek te kunnen schatten. Spar-

sity wordt hier gedefiniëerd als het (relatieve) aantal niet-nul parameters in een sys-

teem. Deel I van dit proefschrift is gewijd aan de ontwikkeling van een raamwerk voor

systeemidentificatie van dergelijke sparse systemen en de toepassing van dit raam-

werk in een tweetal modelklassen, namelijk de klasse van lineaire regressiemodellen

en de klasse van toestandsruimtemodellen. In Hoofdstuk 2 wordt dit algemene raam-

werk voor sparse systeemidentificatie van lineaire, tijdsinvariante modellen geïntro-

duceerd, bestaande uit een hybride aanpak van sparse parameterschatting. Het mi-

nimaliseren van een kleinste kwadraten (`2) predictie-errorcriterium zorgt voor een

goede overeenkomst tussen het model en de beschikbare meetgegevens. Het minima-

liseren van de absolute waarde (`1-norm) van de parameter vector in de ruimte van

gelijkwaardige modellen, heeft als doel de sparsity van de parameter vector te maxima-

liseren. Dit gecombineerde `2/`1 optimalisatieraamwerk wordt vervolgens toegepast

in de klasse van lineaire regressiemodellen (Hoofdstuk 3) en de klasse van toestands-

ruimtemodellen (Hoofdstuk 4), in beide gevallen in een onderbepaalde situatie waarin

het aantal parameters dat geschat dient te worden gewoonlijk (veel) groter is dan het

beschikbare aantal waarnemingen. In het geval van lineaire regressie modellen kan

een sparse oplossing worden gevonden in de ruimte van modellen met een gelijke mi-

nimale waarde van het predictie-errorcriterium (Sectie 3.2). Experimenten laten zien

dat in een situatie zonder ruis, de minimale hoeveelheid input-output (i/o) gegevens

die nodig is om de parameters die de gegevens hebben gegenereerd, correct terug te

schatten, gemiddeld veel lager is dan afgaande op een theoretische (worst case) on-

dergrens (Sectie 3.3).

Een iteratieve versie van het gecombineerde `2/`1 optimalisatiealgoritme wordt

toegepast op de klasse van toestandsruimtemodellen in vernieuwingsvorm (Sectie 4.5).
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Modelequivalentie is hier ingebakken in de beschrijving van het model, door het be-

staan van een (niet-singuliere) toestandsruimte-transformatiematrix die leidt tot equi-

valent i/o gedrag. Na initiële minimalisatie van het predictie-errorcriterium wordt ver-

volgens de `1-norm van de parameter vector geminimaliseerd in de ruimte beschre-

ven door een lineaire benadering van deze equivalentieruimte. De optimale oplos-

sing wordt dan gebruikt als een richting waarin een stap wordt genomen om de spar-

sity van de parameter vector te verbeteren. Deze `2/`1 minimalisatieprocedure wordt

herhaald om een pad te volgen over de topologische ruimte van steeds sparsere i/o-

equivalente toestandsruimtemodellen. Uit experimenten blijkt dat deze iteratieve ver-

sie van gecombineerde `2/`1 optimalisatie in staat is om de sparsity van een model

te vergroten, terwijl de overeenkomst tussen het model en de waarnemingen gewaar-

borgd blijft. De grootte van de stap in de zoekrichting naar sparsity is echter cruciaal

voor de convergentie van het algoritme. In een situatie waarin het toestandsruimte-

model volledig geparameteriseerd is, kan een link worden gelegd naar de techniek data

driven local coordinates (DDLC), waardoor een snellere convergentie naar een sparse

oplossing kan worden bereikt.

De subklasse van toestandsruimtemodellen die een (sparse) interactienetwerk be-

schrijven, wordt verder onderzocht in Secties 4.6-4.8. De onderzochte netwerken be-

zitten een ringvormige interactiestructuur die het beter mogelijk maakt om op grote(re)

schaal sparse, stabiele en minimale netwerken te creëren, vergeleken met bijvoorbeeld

netwerken met een willekeurige interactiestructuur. In het geval van sparse netwerken

met interacties in discrete tijd (Sectie 4.6) zijn de resultaten verkregen bij lineaire re-

gressiemodellen direct overdraagbaar, aangezien een sparse lineair regressieprobleem

kan worden opgelost voor elke afzonderlijke toestand. Het schatten van netwerken

met een sparse interactiematrix in continue tijd brengt de complicerende factor met

zich mee van de wijze van bemonstering. Het bemonsteringsinterval bepaalt namelijk

zowel de mate van sparsity van de interactiematrix in discrete tijd, als de totale duur

van het interval dat kan worden waargenomen. Het schatten van een sparse interactie-

matrix in discrete tijd, gevolgd door een transformatie naar continue tijd, is mogelijk,

maar alleen voor een beperkt bereik van bemonsteringsintervallen (Sectie 4.7). De in-

teracties in continue tijd kunnen direct worden geschat met behulp van het iteratieve

`2/`1 optimalisatiealgoritme, en enkele experimenten bevestigen ook dat het moge-

lijk is om de correcte sparse oplossing te bepalen in een onderbepaalde situatie (Sectie

4.8), maar de praktische toepassing van deze techniek is beperkt in dit geval vanwege

de neiging van het algoritme om naar een oplossing te convergeren die overeenkomt

met een instabiel toestandsruimtemodel.

Het begrip sparsity wordt verder onderzocht in de analyse van atriumfibrilleren.

Atriumfibrilleren (AF) is een veelvoorkomende hartritmestoornis waarbij de normale,

gelijktijdige samentrekking van de atria is verstoord en in plaats daarvan meerdere gol-

ven de atria activeren. Invasieve metingen van AF met een hoge dichtheid van elektro-

des maken een gedetailleerde beschrijving mogelijk van het aantal fibrillatiegolven en

hun gedrag. In Hoofdstuk 6 wordt een geautomatiseerde, probabilistische aanpak van

de annotatie van electrogrammen en de constructie van fibrillatiegolven beschreven,

die goed blijkt overeen te komen met handmatige analyse van golfpatronen in ver-
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scheidene patiënten. Een alternatieve manier om golfpatronen te analyseren is ont-

wikkeld, die gebaseerd is op een sparse multivariaat autoregressiemodel van interac-

ties tussen electrogrammen (Hoofdstuk 7), waarbij de technieken uit Hoofdstuk 3 en 4

verder worden uitgebreid naar lineaire regressiemodellen met verschoven versies van

de gegevens in de tijd. Deze techniek maakt het mogelijk om terugkerende patronen

te identificeren in fibrillatiegolven, zonder handmatige of geautomatiseerde annota-

tie van electrogrammen. Voorbeeldanalyses van opnames in een geitenmodel van AF

laten zien dat de toepassing van een sparse schattingsmethode het mogelijk maakt

terugkerende patronen te onderscheiden, zoals golftreinen, doorbrekende golven en

ronddraaiende golffronten. Het idee van een sparse schattingsmethode heeft ook een

toepassing in de niet-invasieve analyse van AF (Hoofdstuk 8). De identificatie van be-

langrijke voorspellers van succesvolle farmacologische cardioversie (het herstellen van

het normale patroon van sinusritme) van AF kan worden bereikt door elastic net logis-

tische regressie toe te passen. De elastic net techniek is een shrinkage estimator die

het predictie-errorcriterium regulariseert met een gecombineerde `2- en `1-norm van

de coëfficiënten van de voorspellers. Hier wordt de sparse schattingsmethode inge-

zet om de belangrijkste kenmerken (complexiteitsparameters bepaald uit een ECG en

klinische kenmerken) te selecteren in een overbepaalde situatie.
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Introduction

The notion of sparsity, as discussed in this thesis, is nowadays ubiquitous in science,

for instance in feature selection in high-dimensional datasets (big data), or complex

interaction network identification. The growing number of potential features that can

be related to a certain trait or outcome is often not matched by the number of observa-

tions that can be recorded. This makes it more difficult to quantify the role of each fea-

ture in a unique and unambiguous way. Assuming sparsity in the relationship between

all the candidate features or interactions and the observed behavior can overcome this

limitation to some extent.

Sparse estimation

Sparse estimation of parameters in a linear regression problem (Chapter 3), given a

limited set of available measurements, greatly improves the chances of correctly esti-

mating the data generating parameter values, if the data generating parameter vector

is indeed sparse. This is a technique that is applicable in many fields of research, in

principle in every research question where the parameter estimation problem is un-

derdetermined, i.e. when the number of parameters (greatly) exceeds the number of

available measurements, or when one aims to determine the dominant regressors in

a regression model. The application in this thesis of sparse (logistic) regression to de-

termine the dominant predictors of successful pharmacological cardioversion, given a

large set of candidate predictors, illustrates this application directly.

When considering state-space models (Chapter 4) there is an inherent model equiv-

alence present (in the fully parameterized setting) that can be exploited to search for

a maximally sparse solution within the set of models that exhibit equivalent input-

output behaviour. In models where the interactions between states represent physical

connections, finding a sparse solution can help to lower model complexity and reduce

for instance the number of connections to be manufactured in a digital chip or the

number of interactions between a large number of genes to take into account.

The case of sparse network interaction models (as a subclass of state-space mod-

els) has been studied in more detail in this thesis. In the case of a limited amount of

available measurements, sparse estimation of network model parameters can also aid
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in identifying the correct data generating parameters, using an adapted form of sparse

linear regression (in discrete time) or an iterative version of the sparsity maximization

algorithm (in continuous time). An application of sparse estimation of network inter-

action models in discrete time is presented in this thesis in Chapter 7. One limiting

factor in this approach to sparse network interaction estimation, in discrete, but most

notably in continuous time, is that appropriate sampling of the network inputs and

outputs is critical to finding a meaningful solution. This issue needs to be investigated

further, to determine necessary and sufficient conditions under which sparse estima-

tion of network interactions is a viable approach.

Applications in atrial fibrillation

The developed software package to automatically process and annotate atrial electro-

grams (Chapter 6) is now used within our Physiology department, enabling fast and

reproducible analysis of longer recordings of high-density contact mapping. This has

substantially changed the way mapping data is being collected in our recent studies,

moving from manually analyzing 4-second segments, which could take days, to an-

alyzing several minutes of electrogram data recorded simultaneously at several atrial

sites, in only a few minutes.

The algorithm developed for identification of recurring wave front propagation

patterns (Chapter 7) has a potential application during (surgical) ablation of atrial fib-

rillation to identify regions with highly recurrent propagation patterns that are associ-

ated with the maintenance of AF. The readout of the algorithm is a directed graph of

the mapping area that shows the dominant interactions between atrial locations, also

indicating the strength of the interaction. This information will show a cardiologist an

immediate impression of the prevailing conduction pattern in that area, which may be

instrumental in guiding the ablation process.

The demonstrated predictive value of noninvasive AF complexity parameters (Chap-

ter 8), when it comes to predicting successful pharmacological cardioversion of parox-

ysmal AF, has a clear potential to guide AF treatment. Using the software package that

has been developed to extract the atrial signal from body surface ECGs and to com-

pute complexity parameters in a standardized way, an initial noninvasive assessment

of AF complexity can be made when a patient visits the clinic. Properly trained and

validated prediction models can be developed and integrated in a knowledge support

system that assists a physician in making an informed decision on patient treatment.

This will eventually lead to a more patient-specific treatment, improving quality of care

and reducing costs by abandoning likely unsuccessful treatment options.
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non-zero entries. 35

⊥ orthogonal complement. 17

P0 probability of a correct parameter vec-

tor estimate. 26

P LS
0 probability of a correct parameter

vector estimate, (least-squares
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minimum norm solution, 23
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