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Modelling change in individual characteristics: an
axiomatic framework

Franz Dietrich1

November 2008

Abstract

Economic models describe individuals in terms of underlying characteristics,
such as taste for some good, sympathy level for another player, time discount
rate, risk attitude, and so on. In real life, such characteristics change through
experiences: taste for Mozart changes through listening to it, sympathy for an-
other player through observing his moves, and so on. Models typically ignore
change, not just for simplicity but also because it is unclear how to incorporate
change. I introduce a general axiomatic framework for defining, analysing and
comparing rival models of change. I show that seemingly basic postulates on
modelling change together have strong implications, like irrelevance of the or-
der in which someone has his experiences and ‘linearity’ of change. This is a
step towards placing the modelling of change on solid axiomatic grounds and
enabling non-arbitrary incorporation of change into economic models.

1 Introduction

In much of economic modelling practice, nothing about an individual (except
perhaps his information state) is taken to change over time. For instance,
an individual engaged in a dynamic decision problem or game with stages
t = 1, 2, ..., T (T finite or infinite) is often assumed to maximise (the expecta-
tion of) a discounted sum

∑T
t=1 δ

tu(at), in which at is the period-t outcome (e.g.
his period-t consumption bundle, or in the case of a game the period-t action
profile), δ is a discount factor, and u(.) is the individual’s intra-period utility
function that, importantly, does not change (exogenously) with time t or (en-
dogenously) with the outcomes of past periods. Such a preference specification
precludes that the individual’s period-t ability to enjoy the period’s outcome at
depends on time t or on past outcomes. Gary Becker (1996) and many others
stress the unrealistic nature of such an assumption: in real life, the pleasure
derived from listening to classical music, consuming drugs, meeting friends, and
so on, depends on time (kids differ from adults) and on the past consumption
pattern (enjoyment of Bordeaux wine has to be learnt). Sen (1977, 1979, 1985),
Rabin (1998) and many others stress the possibility to have, develop or lose
other-regarding feelings that reflect sympathy, hate, reciprocity, identification

1Address for correspondence: London School of Economics, CPNSS, Houghton Street,
London WC2A 2AE. Web: www.personeel.unimaas.nl/f.dietrich. Acknowledgments to be
added.



or other attitudes: in a real-life repeated interaction within a couple, Ann may
have changing feelings for Peter (depending on age and past events), where the
state of these feelings in a period t determines how much pleasure Ann then re-
ceives from an outcome at that benefits Peter. All these scenarios are excluded
by defining period-t utility invariably as u(at). The (equilibrium) behaviour one
derives in a decision problem or game would be more realistic if change in agent
characteristics were successfully incorporated into agent preference.

I develop here a unified axiomatic framework in which to define, analyse and
compare rival models of change in a characteristic (such as taste for wine, identi-
fication with one’s partner, risk aversion, alcohol addiction, need for recognition,
impatience as identified with a discounting rate, personal or social capital as in
Becker’s consumer theory, and so on). More precisely, I model the individual
as being at any moment in some state s, a real number that measures the char-
acteristic of interest. The state changes under what I call experiences, where
this term is used in its broadest and most flexible sense, covering both internal
events (e.g. the effect of a drug, coming into puberty, getting Alzheimer) and
external events (e.g. the smile of a child, an earthquake), and covering events
either under the agent’s own control (e.g. his moves in decision problem or
game) or not under his control (e.g. moves of others or nature).

Allowing agent characteristics to change is perfectly compatible with the or-
thodox methodology of keeping stable preferences (over full histories), and also
with assuming stable separable intra-period utilities of intra-period extended
outcomes, i.e. of pairs (at, s) of the outcome at in the current period t and
the agent’s current state s (e.g. his current taste for wine or feelings for some-
one), where s may depend on time t or on past outcomes. Indeed, Becker is a
vigorous defender not only of individual change but also of stable preferences.
On the other hand, the present analysis of change in characteristics could be
used to model preference change (dynamic inconsistency), namely by defining
the individual’s current preferences as a function of some current characteristic
(e.g. a current addiction level or impatience level). I indeed believe that pref-
erence change (if of interest) is best explained and represented by change in a
well-defined characteristic; hence the relevance of this paper also to modelling
dynamic inconsistency. Dynamic inconsistency is popular in empirical and be-
havioural economics, and unorthodox in theoretical economics. This paper stays
neutral on this methodological issue.

The problem so far has not been that change in individual characteristics
is seriously denied, but that there is little general theoretical understanding of
how to model such change. Even the greatest proponents of individual change
and endogenous characteristics, such as Becker and Sen or advocates of dynamic
inconsistency, leave many questions open when it comes to concretely modelling
change.2 Allowing individual characteristics to change without at the same time

2Becker, for instance, distinguishes between whether marginal utility from a good depends
positively or negatively on past consumption of this good. This gives interesting qualitative
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restricting the way in which they can change runs the risk of a theory with lit-
tle predictive power: there will likely be many free parameters that are hard to
estimate, up to the point of empirical emptiness (i.e. compatibility with every
behavioural pattern). The only hope to break the underdetermination and ren-
der change and endogeneity more popular in modelling practice is to narrow
down the set of possible change patterns, ideally leaving few and easily inter-
pretable parameters. But how should we narrow down the set of possibilities?
An axiomatic approach (as pursued here) is one candidate.

Surprisingly, mathematical economics has so far not engaged in a formal ax-
iomatic treatment of individual change, in spite of having driven rational choice
axiomatics into high spheres of specialisation and sophistication. It appears
long due to take a systematic axiomatic approach to individual change as well.
The neglect that change has received is surely not due to a lack of relevance,
but perhaps to an implicit assumption that change falls outside the scope of
theory and axiomatics. As I hope to show, theory has very much to say on
change, and axiomatics is not only possible but even fruitful.

The axioms on change behaviour introduced here have some flavour of ‘ratio-
nality’ postulates, though it is clear that principles of rationality alone cannot
tell us how exactly someone’s feelings or his taste for wine will (should?) change
in the face of certain experiences. The combination of my postulates turns out
to severely constrain and ‘discipline’ change, forcing it to take a simple and
convenient form potentially suited for modelling practice: the order in which
experiences are made is irrelevant to overall change, and (adding further condi-
tions) change is ‘linear’. As I shall emphasise at different points, these findings
can be interpreted either as providing welcome axiomatic support for modelling
change in a simple way, or, by contraposition, as informing us that any change
pattern without these simple features (of order-insensitivity or linearity) can
only be modelled by violating basic axioms on change.

Mathematically, the key insight is that experiences can be viewed as opera-
tors (operating on individual constitutions) that can be composed (representing
repeated experiences) and ordered (in terms of strength of experience). This
allows me to apply basic theorems of ordered group theory and topological alge-
bra by Hölder (1901), Huntington (1902), Arzél (1948), Tamari (1949), Alimov
(1950) and Nakada (1951).

While the axiomatic approach to individual change is new, this paper is
related, at least in its motivation, to a growing and diverse literature on en-
dogeneity, i.e. on the dependence of human tastes and other characteristics on
the environment, institutions, characteristics of others, and so on. This liter-
ature has added significantly to our understanding and offers concrete models
incorporating endogeneity. See for instance Polak (1976), Bowles (1998) and
Rabin (1998); on endogenous other-regarding feelings (such as sympathy, spite-
fulness, reciprocal feelings), see Rabin (1993), Fehr and Gächter (1998), Bolton

insights but is far from a complete parametric model of change.
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and Ockenfels (2000), Sethi and Somanathan (2001) and (2003), Dufwenberg
and Kirchsteiger (2004), Falk and Fischbacher (2006) and Dietrich (2008); on
endogenously changing fundamental preferences (i.e. dynamic inconsistency),
see Strotz (1955-56), Hammond (1976), and O’Donoghue and Rabin (1999); on
preference evolution, see Dekel et al. (2007). Such models of endogeneity have
implications for the change behaviour of the endogenous characteristic in ques-
tion.3 But they are not (and were not intended as) full-fledged change models,
for a variety of reasons.4 This paper aims at a full-fledged change model. The
paper can also be viewed as a response to the non-unified character of our cur-
rent theory of endogeneity, which indeed appears more as a disjunction of several
special theories, each one designed for a particular human characteristic, envi-
ronment or experimental setup. By contrast, this paper’s framework is entirely
general (but becomes context-specific by suitably specifying its components and
parameters).

My theoretical approach is by no means a replacement for empirical re-
search on individual change. Rather, the two approaches are complementary
and even need each other, for the following reasons. On the one hand, any
model of change that a theoretical approach can recommend will certainly have
free parameters whose exact values can only be approximated statistically. For
instance, the linear change model studied below describes the effect of Peter’s
unfaithful behaviour on Ann’s feelings for him by two parameters: the (pre-
sumably low) level to which her feelings are ‘attracted’ by his bad behaviour,
and the ‘strength’ of this attraction. Calibrating these parameters is an em-
pirical matter. On the other hand, any empirical study of how an individual
characteristic changes under some influences presupposes the theoretical step of
first choosing a model within which hypotheses can be formulated and tested
and free parameters can be estimated. The model should not be chosen ad
hoc but should ideally emerge from a transparent axiomatic approach, notably
because the phenomenon to be modelled (individual change) happens to be one
for which we lack definite prior intuitions.5

3According to a model that makes some individual characteristic X depend on some con-
text (factors) Y , say via a deterministic relationship X = f(Y ), each context y (a value of Y )
lets the characteristic change from its original value to the value x = f(y). A note of caution:
one should be careful with reading more into this ‘one-shot’ model. In particular, one should
not easily infer that a second change of context, say from y to y′, will let the characteristic
change from f(y) to f(y′), because the past experience of context y might have affected the
individual’s internal constitution, letting him respond differently to new contexts in a ‘second
shot’.

4Notably, they usually do not give a fine-grained account of the individual experience(s)
that cause a change; and they usually cannot deal properly with repeated changes: they deal
with ‘one-shot’ change behaviour (see footnote 3), whereas a proper change model must cope
with multiple revision steps (just as a proper belief revision or learning theory must cope with
multiple revisions).

5Out of lack of intuition one might select a very general model (with many degrees of free-
dom), but this may be undesirable both on theoretical (simplicity) grounds and on statistical
(testability and estimatability) grounds. By contrast, selecting a highly specific model (with
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I finally mention that the present analysis intends to model change without
a decay in time of the effect of past experiences and of the individual’s initial
state and constitution. (But the framework is open to adding decay in future
research.)

2 Change models

I define a (change) model as any tuple (S,E,C, (̄.), (.|.)) consisting of:

• a set S ⊆ R (of individual states), a closed interval of finite positive
length,

• an arbitrary set E (of experiences) with E �= ∅,
• an arbitrary set C (of individual constitutions) with C �= ∅,
• a surjective function (̄.) : C→ S (the state projection),
• a function (.|.) : C×E→ C (the revision rule),

such that two conventions defined below (namely (1) and (2)) are respected. I
now explain each component of a change model (S,E,C, (̄.), (.|.)). First though,
I stress that this notion of a change model is entirely general and flexible: it
abstracts from the particular characteristic of interest and might thus be applied
to, for instance, (the change of) taste for music, compassion, risk aversion,
drug addiction, need for recognition, impatience (discounting rate), personal or
capital, and so on. Needless to say, the plausibility of a given change model
or condition on change models may depend on the particular characteristic,
context and individual it is applied to.

The interval S contains the possible states s in which the individual may be
relative to the characteristic, i.e. the possible addiction levels, sympathy levels,
and so on.6

The set E contains all experiences the individual may have. As explained
earlier, the term ‘experience’ is taken in its broadest sense as being any rele-
vant influence on the individual. The structure of experiences is entirely general:
they might be numbers, vectors, functions, elements of a metric space, or what-
ever the modeller wishes.

The set C contains all constitutions in which the individual may be. Con-
stitutions are, like experiences, objects of any kind (e.g. vectors). Although
one is ultimately interested in the individual’s state, not in his entire constitu-
tion, constitutions will play a key role: any change in state will be explained
by an underlying change in constitution. Constitutions must thus (indirectly)

few degrees of freedom) may be ad hoc as long as we do not have clear theoretic reasons for
this selection.

6Under a generalised notion of a change model (left to future research), the set of states
S might be a subset of some Euclidean space Rk (to model change in k ≥ 1 characteristics),
or, even more generally, some set endowed with some appropriate structure (presumably at
least a topological structure so that one can formulate notions such as attraction to a state).
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encode not just the current state but also the way the state would react to
potential future experiences. Does this imply that constitutions must be highly
complex objects, as complex as a genetic code, and too complex for practice?
This question will be of central interest to us (and I hope to bring some positive
news).

The state projection (̄.) : C→ S assigns to each constitution c ∈ C the state
c that the individual has in constitution c. So this function extracts the ulti-
mately relevant information from constitutions. (The surjectivity assumption
is there to ensure that S contains no impossible states.)

The revision rule (.|.) : C × E → C, finally, maps each constitution-
experience pair (c, e) to a new constitution c|e, read ‘c after e’ and representing
the individual’s new constitution after experiencing e in constitution c. Of
ultimate interest to us is the change of state from c to c|e.

I call the change model (S,E,C, (̄.), (.|.)) a submodel of another one (Ŝ, Ê, Ĉ,

(̂.), (.̂|.)) (and the latter a supermodel or extension of the former) if S ⊆ Ŝ,

E ⊆ Ê, C ⊆ Ĉ, (̄.) = (̂.)|
C
and (.|.) = (.̂|.)

∣∣∣
C×E

.

Remark. All five components of my definition are indispensable. Attempts
to model change without involving constitutions run into problems (and this
might explain the neglect of change in theoretical economics). Here are two
such attempts that fail:

• Trying to define change directly on the level of states — namely as a map-
ping S×E→ S from state-experience pairs (s, e) to new states, without in-
volving constitutions — runs into the problem that the present state s does
in practice not encode enough information to infer the post-experience
state, as concrete examples make clear.7

• In response, one might be tempted to blow up the notion of a state such
that it contains the missing information on how to update. But such ‘thick
states’ simply collapse into what I call constitutions, and one would have
to introduce a function that extracts from the ‘thick state’ the parameter
of economic interest (e.g. the altruism level); this function corresponds to
a state projection (̄.), and so we are back to a change model in the original
sense up to relabelling.

Notation. I often drop brackets when it is clear how to place them; e.g.
c|e|e′ stands for (c|e)|e′, and c|e1 · · · |en for (· · · (c|e1) · · · )|en (interpreted as c if
n = 0).

7Suppose states are peacefulness levels. Let an individual currently be in a peaceful state
sold , and then experience a war. In scenario 1, the peacefulness is not deeply entrenched in
the individual, and the war experience puts him into an aggressive state snew,1 . In scenario
2, the peacefulness is deeply entrenched (perhaps because of ‘positive’ past experiences) so
that the war experience leads to a new state snew,2 that is less brutal than snew,1 (though
perhaps more brutal than sold). Obviously, the war experience has changed the same state
sold in two different ways, depending on additional information; the missing information is
what my constitutions are intended to capture.
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The two conventions. Call experiences e, e′ essentially identical if they have
the same effect on each constitution, i.e. if c|e = c|e′ for all constitutions c. By
convention, the model describes experiences only as far as relevant:8

no distinct experiences e, e′ ∈ E are essentially identical. (1)

So, if losing a friend on Monday and doing so on Tuesday affect the individual
in the same way, the two will be modelled as the same experience e ∈ E of
‘loosing a friend’. Hence, each e ∈ E in a sense represents an experience type,
which makes it meaningful to experience e repeatedly.

What matters about a constitution c are the present and future states. Ac-
cordingly, I call constitutions c, c′ essentially identical if c|e1 · · · |en = c′|e1 · · · |en
for all experience sequences (e1, ..., en) of any (possibly zero) length n ≥ 0 (i.e.
if c = c′ and c|e = c′|e for all experiences e and c|e1|e2 = c′|e1|e2 for all experi-
ences e1, e2, etc.). By convention, the model describes constitutions only as far
as relevant:

no distinct constitutions c, c′ ∈ C are essentially identical. (2)

The conventions (1) and (2) impose no loss of generality.9

3 Examples and applications

I now give three formal examples of change models, followed by four concrete
applications.

Example 1: the linear model. I start with a particularly important change
model, later shown to have several salient properties. The linear change model
(for the set of states S) is the change model (S,E,C, (̄.), (.|.)) with

• set of experiences E = S× (0,∞); any experience (s, x) ∈ E is written sx,
with x interpreted as strength of experience and s as the state to which
the individual is attracted (if states are levels of sympathy for kids, the
experience sx of seeing a kid cry might have high s);

• set of constitutions C = S × [0,∞); any constitution (s, x) ∈ C is again
written sx, with s interpreted as the current state and x as strength of
constitution, i.e. immunity to experience;

• state projection given by sx = s (so the ‘s’ in a constitution sx stands
indeed for the current state);

• revision rule given by sx|s̃x̃ =
(

x
x+x̃
s+ x̃

x+x̃
s̃
)
x+x̃

.

8So, experiences may be formally identified with constitution transformations C→ C.
9If (S,E,C, (̄.), (.|.)) violates the conventions, then, as essential identity defines an equiva-

lence on E (resp. C), one can replace E (resp. C) by a subset Ê (resp. Ĉ) containing exactly
one member of each equivalence class, (̄.) by its restriction to Ĉ, and (.|.) by its restriction to
Ĉ× Ê.
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In the linear model, having an experience s̃x̃ in a constitution sx leads the state
to change from s to a weighted average of s and s̃, with the weight of s resp. s̃
proportional to strength of constitution resp. experience. The new constitution
has strength x+ x̃. So, the stronger the old constitution and the experience, the
stronger the new constitution, i.e. the smaller the effect of future experience
(which seems plausible in that future experience must then compete with a
higher stock of past influences). Repeatedly applying the linear revision rule,
the effect of a whole sequence of experiences s1x1 , ..., s

t
xt (t ≥ 0) on a constitution

sx is given by

sx|s
1
x1 · · · |s

t
xt =

(
xs+ x1s1 + ...+ xtst

x+ x1 + ...+ xt

)

x+x1+...+xt
. (3)

Example 2: a non-parametric model. Secondly, as a more abstract (mea-
sure theoretic) example, consider for a given set of states S the change model
(S,E,C, (̄.), (.|.)) defined by the

• set of constitutions C consisting of all finite measures on (the Borel-
measurable sets of) S with a non-negative density function f : S→ [0,∞);
f(s) represents how much the individual currently ‘tends’ to state s;

• set of experiences E consisting of all finite measures on S with a positive
density function f : S→ (0,∞); so, experiences are again measures, this
time capturing tendencies in (the effect of) experience;

• state projection given by c =Median(c);10 the individual’s state c̄ repre-
sents a ‘summary’ or ‘compromise’ of all tendencies in his current consti-
tution c;11

• revision rule given by c|e = c+ e.

In this change model, the individual’s post-experience constitution is the sum
of his old constitution c and the experience e; so that his state changes from
Median(c) to Median(c+ e).

Example 3: trivial models. Finally, as a somewhat extreme and perhaps
degenerate case, I call a change model (S,E,C, (̄.), (.|.)) trivial if its revision rule
is constant, i.e. if the individual is changed to the same constitution c∗ = c|e
whatever the initial constitution c and experience e. It follows by (1) that there
is a single experience, i.e. that #E = 1, and by (2) that constitutions are
isomorphic to states, i.e. that one may assume w.l.o.g. that C = S with state
projection given by c = c. The model represents an individual who (at least in
his environment) can have only one experience, an overwhelming one that fully
overrides his initial constitution in favour of constitution c∗.

10By definition, the median m = Median(c) has the property that c({s ∈ S : s ≤ m} =
c({s ∈ S : s ≥m}; if more than one m ∈ S has this property, Median(c) is by convention the
middle of the interval of all these m’s (also other conventions would work).
11The median is a compromise in that it minimises the average distance to states (relative

to the measure).
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I now briefly sketch potential applications.

Application 1: state as the taste of a Becker-type consumer. Con-
sider an agent in an intertemporal consumption problem with T periods and K
goods (K,T ∈ {1, 2, ...}). A (consumption) bundle is a vector b = (b1, ..., bK) ∈
[0,∞)K , with bk denoting quantity of good k. A (consumption) path is a tuple
(bt)t=1,...,T of bundles, with bt denoting the bundle consumed in period t. Follow-
ing Becker (1996), taste for certain goods (e.g. wine or classical music) depends
on past consumption; let this be so for good 1. Specifically, let the individual’s
state s (in the sense of change models) be a measure of taste for good 1. If in
a period t the agent consumes bundle b at taste (state) s, he receives utility
u(b; s) in that period. The analytic form of u(b; s) might belong to one of the
classic parametric families (Cobb-Douglas, CES, ...), with s being a coefficient
attached to good 1.12

Becker’s insight that the past consumption pattern b1, ..., bt−1 affects period-t
taste s — let us write s = sb1,...,bt−1 to capture the dependence — is very important,
but his theory gives no clear answers to our question of how taste changes, i.e.
on how to specify sb1,...,bt−1 as a function of b1, ..., bt−1. Answers matter notably
for the intertemporal consumer problem of maximising intertemporal utility

U((bt)t=1,...,T ) :=
T∑

t=1

δtu(bt; sb1,...,bt−1) (4)

over consumption paths (b1, ..., bT ) ∈ [0,∞)K×T subject to a budget constraint
(with δ > 0 denoting a fixed discount factor).

If for example one follows the linear change model, taste changes as follows.
The experience of consuming any bundle b is then represented as a strength-
indexed state s(b)x(b) (i.e. consumption of b attracts taste to s(b) with strength
x(b)). Let ŝx̂ be the agent’s initial constitution (i.e., initially, taste is ŝ, en-
trenched to degree x̂). Applying (3), the past consumption of b1, ..., bt−1 leads
to the new period-t taste given by:

sb1,...,bt−1 = ŝx̂|s(b1)x(b1) · · · |s(bt−1)x(bt−1) =
x̂ŝ+ x(b1)s(b1) + ...+ x(bt−1)s(bt−1)

x̂+ x(b1) + ...+ x(bt−1)
.

If by contrast one follows Example 2’s change model, taste (hence optimal
consumption paths) change rather differently. The experience of consuming any
bundle b is then represented as a measure µ(b) on S, and consumption stream
b1, ..., bt−1 changes the agent’s initial constitution µ̂ (another measure on S) to
the the period-t constitution µ̂|µ(b1) · · · |µ(b1) = µ̂+µ(b1)+ ...+µ(bt−1), whose
median defines the new taste sb1,...,bt−1 .

12Using the CES utility function, u(b; s) = ((s1b1)ρ + ... + (sKbK)ρ)1/ρ for parameters
s1, ..., sK , ρ > 0, where s1 = s (taste for good 1) changes over time but s2, ..., sK (testes for
goods 2, ...,K) and ρ stay fixed.
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Application 2: state as level of sympathy for another player. Often ob-
served cooperative behaviour in repeated human interactions with a prisoners’-
dilemma-type monetary payoff structure is arguably best explained neither by
irrational selfish agents, nor by rational agents with a stable level of sympathy
(other-regardingness), but by rational agents with changing sympathy levels.
Indeed, sympathy for others plausibly changes with their behaviour. But this
approach requires modelling change in sympathy level. As an illustration, con-
sider a dynamic game with perfect information, two players 1,2, and stages
t = 0, 1, ..., T (1 ≤ T < ∞). Each stage t consists of a simultaneous move
of the players: each player chooses between two actions C (‘cooperate’) and D
(‘defect’). A stage-t outcome (B1, B2) ∈ {C,D}2 leads to monetary transfers

C D
C 2, 2 0, 3
D 3, 0 1, 1

C D
C 2 + 2s, 2 + 2s′ 3s, 3
D 3, 3s′ 1 + s, 1 + s′

Table 1: Monetary transfers (left) and utilities (right) at a stage in which player
1 (2) has state s (s′)

of the structure of a prisoners’ dilemma (Table 1, left); let v1B1B2 (v
2
B1B2) denote

the transfer, or material payoff, received by player 1 (2). By contrast, a player
i’s intra-period utility from (B1, B2) also reflect the other player j’s transfer,
and this to an extent given by i’s current sympathy level (state) s ∈ S = [0, 1],
where s = 0 (s = 1) represents full selfishness (sympathy).13 Specifically, let
i’s intra-period utility be ui(B1, B2; s) := viB1B2 + sv

j
B1B2 , the sum of i’s own

transfer and j’s transfer weighted by current sympathy.14 Player i’s intertem-
poral utility of a path h ≡ (B1t , B

2
t )t=0,...,T ∈ ({C,D}

2)T+1 is the sum of his
intra-period utilities:

U i(h) =
T∑

t=0

ui(B1t , B
2
t ; s

i(ht)) =
T∑

t=0

[
viB1B2 + s

i(ht)v
j
B1B2

]
, (5)

where si(ht) denotes player i’s state after experiencing the past moves ht :=
(B1t , B

2
t )t=0,...,t−1.

Once again, the core question is: how should si(ht) be specified, i.e. how
do past experiences change the individual’s state? Suppose the linear change
model is used. The experience of cooperation (defect) by the other player is
then represented by a strength-indexed state sCxC (sDxD); so C and D are (as
experiences) identified with sCxC and s

D
xD, respectively. Let ŝx̂ be each player’s

initial constitution, also a strength-indexed state. Two implicit assumptions
(that could be dropped) are: there is symmetry between the players (i.e. the
parameters sC, xC, sD, xD, ŝ, x̂ are not player-indexed), and a player’s own ac-
tions do not affect him (neglecting phenomena like habit-formation). A player’s

13By letting S = [−1, 1] one could also capture antipathy.
14Whenever I denote a player by i, I denote the other by j.
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experiences are thus the other player’s moves. By (3), a player i’s stage-t state
(sympathy level) is given by

si(ht) = ŝx̂|B
j
0 · · · |B

j
t−1 =

x̂ŝ+ ntx
CsC + (t− nt)x

DsD

x̂+ ntxC + (t− nt)xD
,

with nt denoting the number of times cooperation C (≡ sCxC) occurs among

Bj0, ..., B
j
t−1. Note that we have now fully specified a dynamic game with en-

dogenously changing mutual sympathy. For many reasonable parameter com-
binations15, there exists a subgame perfect equilibrium such that (along the
equilibrium path) both players cooperate at all stages; interpretationally, a
player cooperates in early stages16 in order to win the sympathy of the other
player (although cooperation gives him less current utility), and later players
cooperate because they like each other (with cooperation now dominant in the
current constituent game). This contrasts with the ‘always defect’ outcome in
a classic finitely repeated prisoners’ dilemma.

Application 3: asymmetric information on instable players. There are
many interesting dynamic games in which some players — call them instable
players — have a characteristic that (i) changes in the course of the game and
(ii) is preference-relevant in that the path of states the characteristic undergoes
enters the player’s (or perhaps other players’) utility function. Players with
changing sympathy levels (Application 2) are just one example. It is often
realistic to assume incomplete information about (i) an instable player’s initial
state or constitution (how initally wine-addicted is he? or how sympathetic?),
and/or about (ii) the effect of future moves, i.e. moves of himself (how does
his wine-drinking affect his wine-addiction?) or of others (how do my kind
actions affect his sympathy for me?) or of nature. More formally, and using
here the linear change model, there may be incomplete information about (i)
an instable player’s initial constitution ŝx̂ and/or (ii) the precise experiences
s(A)x(A) certain moves A in the game give him. Note that not just the other
players may be incompletely informed (about an instable player), but also (or
only) the instable player himself: sometimes we are the worst judges of ourselves.

The relevance of such games is obvious, and our question becomes even more
pressing: which change model should such games employ?

Application 4: explaining dynamic inconsistency by change in char-
acteristics. Dynamic inconsistency is change in fundamental preference, i.e.
in preference over maximally described outcomes (as opposed to Applications
1-3, to Becker’s theory, and to informational preference change17). Models of

15Reasonably, sD < ŝ < sC, i.e. a defect-experience reduces sympathy, a cooperate-
experience increases it. Also, the strengths of experience xC, xD and the number of periods
T should not be too small, to leave sufficient potential for state change.
16The number of early stages is zero if initial sympathy ĉ already exceeds 1/2.
17I.e. belief-driven change in expected utilities (of non-fully described outcomes).
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dynamically inconsistent agents often suffer from underdetermination and an
embarrassment of riches. In response, a change model could be used to con-
strain (‘discipline’) preference change. To see how, denote by A the set of
relevant alternatives (e.g. terminal histories of a decision tree or dynamic game
form) and represent the individual as holding at any moment (e.g. decision
node) a preference relation �s on A that is fully determined by the current
state s ∈ S of some given characteristic (such as drug addiction, criminal en-
ergy, health, or altruism). This explains changes in preference by changes in
a single characteristic, which (in our change model) are in turn explained by
experiences e ∈ E (such as drug consumption, or (un)friendly actions of others,
or internal experiences like Alzheimer or puberty). The question is once again:
what change model should be used?

4 Two postulates on change and a consequence

Hereafter, let (S,E,C, (̄.), (.|.)) be an arbitrary change model. I now introduce
two natural postulates on change — Attraction and Indoctrination — and prove
that, on the background of a richness assumption, they imply a striking restric-
tion: switching the order of two experiences has no effect on the state to which
the individual is attracted. For instance, if as in Application 2 the individual is
a player and his states are his sympathy levels for the opponent, then experienc-
ing first cooperation and then defection by the opponent attracts the player to
the same sympathy level as experiencing first defection and then cooperation.
This conclusion is surprising because none of my postulates is ‘about’ the order
of experience.

This finding can be interpreted in two ways: either as a welcome argument
for ignoring the order of experience when modelling change, a simplicity gain;
or as a warning that modelling order-sensitive change behaviour requires giving
up at least one of the basic assumptions. The co-existence of two readings —
direct or by contraposition — pertains to many results, including Aumann’s on
agreeing to disagree.18

I start with the first postulate. Real-life experiences usually ‘pull’ us in some
direction, ‘suggest’ to us to be of some kind: nice behaviour of Sam suggests
liking Sam, drinking wine ‘pulls’ towards higher wine addiction, and so on. I
formalise this using the notion of attraction to a state:

Definition 1 An experience e attracts to a state s if for every constitution c
the new state c|e is s or is strictly between s and the old state c. An experience
is attracting if it attracts to a state.

18Aumann’s (1976) celebrated result can be read either as supporting that agents do not
‘agree to disagree’, or as showing that modelling agents who ‘agree to disagree’ requires giving
up a basic assumption (of common priors or of Bayesian updating).
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states

1c ec |1 2c ec |2 ec |3 3ce

Figure 1: Experience e attracts constitutions c1, c2, c3.

Two facts are worth recording (the proofs are obvious).

• If an experience e attracts to the state c of a constitution c, then the new
constitution c|e still has this state, i.e. c|e = c.

• Each experience e attracts to at most one state, which (if existent) is
denoted e and called the attractor of e or simply the state of e.

The first postulate requires experiences to be of the attracting kind:

Attraction (A) Each experience e attracts to a state e.

Attraction holds in Examples 1-3, with the attractor of experiences given
by sx = s in Example 1, by e = Median(e) in Example 2, and by e = c∗ in
Example 3. Attraction is a plausible (but not universal) property of change. It
notably allows an experience to attract to the maximal (resp. minimal) state
in S, in which case the experiences always raises resp. reduces the individual’s
state.

The second postulate concerns the effect of repeated experience:

Indoctrination (I) For every experiences e, denoting for any constitution c by
cn the constitution c|e · · · |e resulting from n times experiencing e,

(I1) for any initial constitutions c, c
′, the difference in final state, cn − c′n, con-

verges to zero as n → ∞ (in short: unboundedly growing future experience
ultimately overrules the past);

(I2) for any initial constitution c, the effect of any experience e
′ on the final

state, cn|e′ − cn, converges to zero as n → ∞ (in short: unboundedly growing
past experience ultimately overrules the future).

Indoctrination, which holds in Examples 1-3,19 is, like Attraction, a plausi-
ble (but not universal) property. Part of the plausibility lies in the fact that
only an asymptotic requirement is made, and that asymptotic negligibility (of
the past in I1 and the future in I2) is required only under highly extreme and
artificial circumstances: those in which the individual has (is ‘indoctrinated’ by)
exactly the same experience e over and over again, without distraction by other
experiences in between and without the 100st experiences being any different or

19For instance, I1 holds in the linear model because, writing c = sx and e = s̃x̃, one
has cn =

xs+nx̃s̃
x+nx̃ → s̃ and, similarly, c′n → s̃. And I2 holds in Example 2 because cn =

Median(c+ ne)→Median(e) and cn|e′ =Median(c+ ne+ c′)→Median(e).
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weaker than the first. Intuitively, as total experience grows, the past (in I1) or
future (in I2) in comparison becomes smaller and smaller, and ultimately neg-
ligible. Part of the condition’s plausibility also stems from an explicit limit in
focus of this paper, which intends to model situations without decay: an expe-
rience e does not gradually lose its power, is not ‘forgotten’, as time progresses
and further (similar or different) experiences are made.20 Putting decay into
the model (a challenge for future research) could be accomplished in various
ways, some of which would involve weakening or dropping Indoctrination.21

The composition of two experiences is naturally defined as follows.

Definition 2 An experience ê is the composition of experiences e, e′ if ê has
the same effect as e followed by e′, i.e. if c|ê = c|e|e′ for all constitutions c.

An obvious remark follows from (1):

• For all experiences e, e′, there is (i.e. E contains) at most one composition
of e and e′; if there is one, it is denoted e ◦ e′ or simply ee′.

My results will assume the set of experiences to be ‘closed under composi-
tion’:

Richness1 (R1) If E contains experiences e, e′, it contains their composition
ee′.

Richness1 holds in Examples 1-3, with composition given by sxs̃x̃ =
(
sx+s̃x̃
x+x̃

)
x+x̃

in Example 1, by eẽ = e + ẽ in Example 2, and by ee = e in Example 3. A
model that violates R1 can always be enriched into one satisfying R1 by simply
‘closing E under composition’.22

Richness conditions are sometimes misinterpreted; so some brief remarks
are due. Virtually all formal models in decision theory have their own richness
conditions; e.g. Savage’s and von-Neumann-Morgenstern’s models assume the
agent to face a rich set of acts resp. lotteries.23 This paper uses certain condi-
tions of richness in experiences or constitutions. If in a concrete application the

20So, in Indoctrination, each new occurrence of e is intuitively ‘added’ to the earlier ones,
without ‘replacing’ or ‘diminishing’ them.
21One such way (in fact, one that is compatible with retaining Indoctrination) explicitly

augments change models by decay (or ‘de-experience’) operators, which transform individual
constitutions in the opposed direction from experiences: they ‘undo’ the effect of experience.
In group-theoretic terms, they are inverses of experiences relative to composition (see Defin-
ition 2). Change models as currently defined do not allow inversion of experiences: (E, ◦) is
just a semigroup, as proven later.
22W.l.o.g., identify experiences in E with transformations C → C. Extend E to a set Ê

by adding all those transformations C→ C that are compositions of (two or more) transfor-
mations in E, and extend the revision rule C×E→ C to a revision rule C× Ê→ C in the
obvious way, i.e. by the prescription (c, ê) �→ ê(c).
23The set of Savage acts (mappings from nature states to outcomes) is closed under mixing

and contain all ‘constant acts’. Von-Neumann-Morgenstern’s agent chooses from the set of
all lotteries (over given deterministic outcomes).
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agent cannot ‘have’ all these experiences or constitutions (because they simply
do not occur, are ‘infeasible’ in the special environment), then our rich model
refers to an extension of the real environment so as to also include what would
happen in hypothetical cases.24

Theorem 1 If a change model (S,E,C, (̄.), (.|.)) satisfies Attraction, Indoctri-
nation and Richness1, then ee′ = e′e for all experiences e, e′ ∈ E.

This order-invariance finding is easily checked on the models of Example
1 (where sxs̃x̃ = s̃x̃sx =

xs+s̃x̃
x+x̃

for all experiences sx, s̃x̃), Example 2 (where

ee′ = e′e =Median(e+e′) for all experiences e, e′), and Example 3. This order-
invariance property holds not just in change models as simple as Examples 1-3,
but surprisingly in all change models satisfying Attraction, Indoctrination and
Richness1. Full order-insensitivity, i.e. ee

′ = e′e rather than just ee′ = e′e for
all experiences e, e′, is obtained in Theorem 2 below.

The rest of the section consists in proving Theorem 1.

Lemma 1 Suppose R1. Composition ◦ is an associative operation on E (hence
(E, ◦) is a semigroup).

So I may without ambiguity drop brackets: ee′e′′ stands for either e(e′e′′) or
(ee′)e′′, and en for the n-fold self-composition e · · · e (n ≥ 1).

Proof. Assume R1. Let e, e
′, e′′ ∈ E. By (1) I have to show for all c ∈ C

that c|e(e′e′′) = c|(ee′)e′′, which holds because, applying R1 repeatedly,

c|e(e′e′′) = c|e|e′e′′ = c|e|e′|e′′,

c|(ee′)e′′ = c|ee′|e′′ = c|e|e′|e′′. �

Lemma 2 Assume A and R1. For all experiences e, e′, their composition’s
attractor ee′ is weakly between e and e′, and ee′ �= e if e �= e′.

For instance, if states are levels of risk-aversion, experience e attracts to high
risk-aversion, and experience e′ to low one, then the composition ee′ attracts to
some intermediate risk-aversion.

Proof. Assume A and R1, and let e, e
′ ∈ E. Consider three cases.

1. First suppose e = e′. Let c be a constitution with this state. Applying
twice A and then R1, we have c = c|e = c|e|e′ = c|ee′. So c = c|ee′. Hence
ee′ = c by A, i.e. ee′ = e = e′, as desired.

24A less rich model (Ŝ, Ê, Ĉ, (̂.), (.̂|.)) automatically inherits all findings about a rich ex-
tension (S,E,C, (̄.), (.|.)), such as the commutativity of experience. (Model extensions are
defined in Section 2.) So the paper’s findings also have a bearing on less rich environments.
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2. Now suppose e < e′. Let c be a constitution of state c = ee′. I have to
show that c ∈ (e, e′], and do so in two claims.

Claim 1. c ≤ e′.

For a contradiction, let c > e′. Then c|e < c (by A), and hence c|e|e′ < c (by
A and as e′, c|e < c). But c|e|e′ = c|ee′ = c (by R1 and then A), a contradiction.
Q.e.d.

Claim 2. c > e.

Suppose for a contradiction that c ≤ e. Then either c = e or c < e. In the
first case, c|e = c, and so (by c < e′ and A) c|e|e′ > c. In the second case,
c|e > c and so (by e′ > c and A) c|e|e′ > c. So in either case c|e|e′ > c. But
c|e|e′ = c|ee′ = c (by R1 and then A), a contradiction. Q.e.d.

3. Finally, suppose e′ < e. Then the proof that ee′ ∈ [e′, e) is analogous to
the proof under 2. �

Lemma 3 Assume A and R1. For all constitutions c and experiences e, e′,

(a) c|en → e as n→∞ if I1 holds;
(b) c|ene′ → e as n→∞ if I holds.

Proof. Assume A and R1 and consider e, e
′ ∈ E and c ∈ C.

(a) Assume I1. Consider any constitution c
′ ∈ C with state c′ = e. Since by

I1 c|en− c′|en → 0 as n→∞, where by A each c′|en equals e, we have c|en → e
as n→∞.

(b) Assume I. Let e, e′ ∈ E and c ∈ C. Since by I2 c|ene′ − c|en → 0 as
n→∞, where by part (a) c|en → e, we have c|ene′ → e as n→∞. �

Lemma 4 Assume A and R1. For all experiences e.e′, e′′,

(a) e′en → e as n→∞ if I1 holds;
(b) ene′ → e as n→∞ if I holds;
(c) e′ene′′ → e as n→∞ if I holds.

Proof. Suppose A and R1 and let e, e
′, e′′ ∈ E.

(a) Assume I1.

First, if e = e′ then by Lemma 2 e′en = e→ e as n→∞.

Now let e′ < e. By Lemma 2 (and a simple induction on n) e′en+1 ∈ (e′en, e]
for all n ≥ 0 (where e′e0 stands for e′). So the sequence (e′en)n≥0 is increasing
and upper bounded by e. Hence e′en → s for some s ≤ e. As S is topologically
closed, s is in S, i.e. is a state. For a contradiction, assume s < e. Let c be
any constitution with state c = s. We have c|e′en = c|e′|en → e by part (a) of
Lemma 3. So there is an n ≥ 0 such that c|e′en ≥ c. However, c|e′en < c by
e′en < c and A, a contradiction.

By an analogous argument, if e′ > e then e′en → e.
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(b) Assume I.

First, the case that e = e′ can be treated like in part (a).

Second, suppose e′ < e. Like in (a), it can be seen that (ene′)n≥0 is an
increasing sequence converging to some state e. For a contradiction, assume
s < e. Letting c be a constitution of state c = s, we have c|ene′ → e by part
(b) of Lemma 3. So there is an n ≥ 0 such that [c|ene′] ≥ c. But c|ene′ < c by
ene′ < c and A, a contradiction.

Third, if e′ > e then for analogous reasons ene′ → e.

(c) Assume I. It suffices to show that (i) e′e2ne′′ → e as n → ∞ and (ii)
e′e2n+1e′′ → e as n→∞. I only show (i), as (ii) follows from (i) by replacing e′′

by ee′′. By Lemma 2, for all n the state e′e2ne′′ = (e′en)(ene′′) is weakly between
e′en and ene′′. Hence, as by parts (a) and (b) e′en and ene′′ both converge to e,
so does e′e2ne′′. �

Proof of Theorem 1. Assume A, I and R1, and let e, e
′ ∈ E. For all n ∈

{1, 2, ...}, Lemma 1 gives the equation (ee′)n+1 = e(e′e)ne′, whose left resp.
right hand side converges to ee′ resp. e′e as n→∞ by Lemma 4. So, ee′ = e′e.
�

5 Strength of constitution and strength of ex-

perience

The above postulates — Attraction and Indoctrination — might be viewed as
defining the large class of ‘prima facie plausible’ change models, which includes
models as different as the linear model and Example 2’s non-parametric model.
Within this class, the linear model deserves our special attention: it is proba-
bly the simplest (interesting) model, and it has something very compelling to
it in that the individual’s post-experience state is a weighted average of where
he was before and where the experience wants him to be. But what exactly
(if anything) makes the linear model so special among the class of ‘prima fa-
cie plausible’ change models? It surprisingly is a single additional property,
Attraction-Consistency, as proven in the next section. In the present section, I
introduce Attraction-Consistency and prove two consequences of this condition
(in conjunction with the previous postulates), namely in Theorem 2 that expe-
rience is fully commutative, and in Theorem 3 that, in short, the modeller is
allowed to represent experiences and also constitutions as state-strength pairs
sx ≡ (s, x), just as done in the linear model.

Theorems 2 and 3 can again be interpreted in either normative or purely
logical terms: that is, either as providing support for change models that treat
experience as commutative and render experiences and constitutions isomorphic
to state-strength pairs, or as informing us that any notion of change without
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these properties can be implemented only by sacrificing some simplicity, i.e. by
violating either Attraction or Indoctrination or Attraction-Consistency.

The just-announced third condition on change states as follows.

Attraction-Consistency (AC). This condition has two parts.

(AC1) For all experiences e, e
′ attracting to a same state s, if some constitution

c is more attracted by e than by e′ (i.e. s ≤ c|e < c|e′ or s ≥ c|e > c|e′) then
each constitution c with s �= c|e′ is so.

(AC2) For all constitutions c, c
′ of same state, if some experience e attracting

to a state s more attracts c than c′ (i.e. s ≤ c|e < c′|e or s ≥ c|e > c′|e) then
each experience e attracting to a state s �= c′|e does so.

AC holds in the linear model and the trivial model, but not in Example 2’s
non-parametric model, as the reader might check. AC should be considered,
more than A and I, as a genuine restriction of generality, not as an inherent
property of change per se. AC is natural for applications in which two expe-
riences (and also two constitutions) can always be meaningfully compared in
terms of their strength, but less plausible in those more complex applications
in which strength comparisons can be ambiguous.25 In fact, there even is an
equivalence between AC and the possibility to linearly order experiences and
also constitutions in terms of strength, as can be deduced from Lemma 11 below.

Simplicity and parsimony considerations might speak in favour of adopting
AC not just when AC is fully realistic. But my intension is less to argue for AC
than to show its strong implications and, ultimately, to characterize the linear
model.

The section’s theorems require a second richness condition. I call a consti-
tution cw weak if every attracting experience e fully attracts cw, i.e. cw|e = e.
Intuitively, the agent in a weak constitution does not resist at all to any expe-
rience, obviously a limiting constitution. In Example 1, the weak constitutions
are the zero-strength constitutions s0 (s ∈ S). In Example 2, the only weak
constitution is the zero-measure on S. In Example 3, all constitutions are weak.

Richness2 (R2) For every non-weak constitution c there is a weak constitution
cw from which c is reachable, i.e. such that c = cw|e1 · · · |en for some experiences
e1, ..., en (n ≥ 1).

Examples 1-3 obviously satisfy R2. What makes R2 intuitively fairly plau-
sible is that, starting from a weak constitution (provided there is at least one),
it should be possible to reach any non-weak constitution (through appropriate

25One might indeed imagine experiences e and e′ none of which is unambiguously stronger
than the other in the sense that e impresses the individual more or less than e′ depending on
the individual’s current constitution. If such complicated situations are to be captured, AC
should be given up.
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experiences) because weakness stands for the absence of any predispositions
whatsoever, hence for the ability to be entirely shaped by experience. (This
intuition is underscored by later lemmas.)

The conjunction of R1 and R2 is called Richness1,2 (in symbols: R1,2), and
later notation should be interpreted similarly (e.g. Richness1-3 stands for the
conjunction of three richness conditions).

Theorem 2 If a change model (S,E,C, (̄.), (.|.)) satisfies Attraction, Indoctri-
nation, Attraction-Consistency and Richness1,2, then ee′ = e′e for all experi-
ences e, e′ ∈ E.

That is, (E, ◦) is an Abelian (commutative) semigroup. To prepare the next
theorem (on the structure of experiences and constitutions), I now formally
define strength comparisons:

Definition 3 For every state s, let Cs be the set of constitutions with state s
and Es the set of experiences attracting to state s, and define the

(a) strength relation ≥ on Es by: e ≥ e′ (“e is at least as strong as e′”) if e
attracts constitutions as least as much as e′, i.e. for every constitution c,
c|e is weakly between s and c|e′;

(b) strength relation ≥ on Cs by: c ≥ c′ (“c is at least as strong as c′”) if
c is at most as attracted by experiences as c′, i.e. for every attracting
experience e, c′|e is weakly between e and c|e.

The linear model, for instance, has Es = {sx : x > 0} andCs = {sx : x ≥ 0},
with strength relation on Es (or Cs) simply given by sx ≥ sx̃ ⇔ x ≥ x̃, in
line with our earlier interpretation of ‘x’ in ‘sx’ as strength of experience (or
constitution).

The strength relation ≥ (on Es resp. Cs) induces a ‘(strictly) stronger than’
relation > and an ‘as strong as’ relation ≡ (on Es resp. Cs), both defined as
usual.26

Endowing Es and Cs with their strength relations yields structures (Es,≥)
and (Cs,≥); further endowing Es with composition ◦ (under R1) yields a struc-
ture (Es,≥, ◦) (an ordered semi-group, as we will see). Isomorphisms between
structures (i.e. between sets with relation(s) and/or operation(s)) are defined
as usual, namely as relation- and operation-preserving bijections. Two struc-
tures (A, ...) and (B, ...) are isomorphic (written (A, ...) ≡ (B, ...)) if there exists
an isomorphism between them. Isomorphic structures are thus identical up to
relabelling.

We are now ready for the section’s second result. (Trivial models were
defined in Example 3.)

26These relations on Es are given by e > e
′ ⇔ [e ≥ e′&e′ �≥ e] and e ≡ e′ ⇔ [e ≥ e′&e′ ≥ e];

and similarly for the relations on Cs.
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Theorem 3 If a non-trivial change model (S,E,C, (̄.), (.|.)) satisfies Attrac-
tion, Indoctrination, Attraction-Consistency and Richness1,2, then for every
state s there exists a set Xs ⊆ (0,∞) (of ‘strength levels’) closed under ad-
dition such that

• (Es,≥, ◦) is isomorphic to (Xs,≥,+), and
• (Cs,≥) is isomorphic to (Xs,≥) (hence, to (Es,≥)) if Cs contains no

weak constitution, and to (Xs∪{0},≥) if Cs contains a weak constitution.

The set of strength levels Xs (for a state s) might for instance be (0,∞)
(as in the linear model) or [1,∞) or (0,∞) ∩ Q or {1, 2, ...} or {mx + ny :
m,n ∈ {1, 2, ...}} (for fixed x, y > 0). In fact, for every non-empty set X ⊆
(0,∞) closed under addition, a submodel of the linear model (S,E,C, (̄.), (.|.))
is obtained by replacing E and C by their subsets S×X resp. S×(X∪{0}) and
restricting (̄.) and (.|.) accordingly, and this submodel satisfies all conditions of
Theorem 3, namely with Xs = X for all s ∈ S. In other examples, the set Xs
varies across states s.

Under Theorem 3’s conditions, it is justified to represent experiences and
also constitutions as state-strength pairs sx ≡ (s, x), with state projection given
by sx = s, strength comparisons (between experiences or between constitutions)
given by sx ≥ sx′ ⇔ x ≥ x′, and composition of experiences given by sxsx′ =
sx+x′. This brings us partially to the linear model. Theorem 4 will bring us
there fully, by forcing all sets Xs to be (0,∞) and the revision rule to be linear.

I now prove Theorems 2 and 3, starting with several lemmas.

Lemma 5 Assume R1.

(a) Constitutions c, c′ are identical if c = c′ and c|e = c′|e for all experiences
e.

(b) Experiences e, e′ are identical if c|e = c|e′ and c|eẽ = c|e′ẽ for all consti-
tutions c and experiences ẽ.

Proof. Assume R1.

(a) Consider constitutions c, c′ such that c = c′ and c|. = c′|.. By (2) and as
c = c′, we have c = c′ if, for all e1, ..., ek ∈ E (k ≥ 1), c|e1 · · · |ek = c′|e1 · · · |ek.
By R1, the latter is equivalent to c|e1 · · · ek = c′|e1 · · · ek, which holds by c|. =
c′|..

(b) Consider experiences e, e′ such that c|e = c|e′ and c|eẽ = c|e′e for all
constitutions c and experiences ẽ. Then, using R1, c|e|ẽ = c|e′|ẽ for all consti-
tutions c and experiences ẽ. So, by part (a) applied to the constitutions c|e and
c|e′, we have c|e = c|e′ for all constitutions c. This implies e = e′ by (1). �

Lemma 6 Assume A, I and R1. If experiences e, e′ attract to different states,
their composition’s attractor ee′ is strictly between the attractors e and e′.
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Proof. Assume A, I and R1, and let e, e
′ ∈ E have distinct state. By Lemma

2, ee′ is weakly between e and e′. Also by Lemma 2, ee′ �= e and e′e �= e′, the
latter implying ee′ �= e′ by Theorem 1. So ee′ is strictly between e and e′. �

Adding R1 to R2, all constitutions c are reachable from the same weak
constitution cw, and this through a single experience:

Lemma 7 Assume R1,2. For every non-weak constitution c there is an experi-
ence ec such that c = cw|ec for all weak constitutions cw.

Proof. Assume R1,2. Let c be a non-weak constitution. By R2, c =
cw|e1| · · · |en for some weak constitution cw and experiences e1, ..., en. So, by
R1, c = cw|ec where ec := e1 · · · en. Now let c′w be an arbitrary weak constitu-
tion. I have to show that c = c′w|ec, i.e. that cw|ec = c

′
w|ec. By Lemma 5, it

suffices to show that (i) cw|ec = c′w|ec and (ii) cw|ec|e = c
′
w|ec|e for all experi-

ences e. Equality (i) holds as it reduces to ec = ec by the weakness of cw and
c′w. The equality in (ii) holds as it reduces to cw|ece = c

′
w|ece by R1, hence to

ece = ece by the weakness of cw and c
′
w. �

Lemma 8 Assume A, I and R1,2. Experiences e1, e2 are identical if ee1 = ee2
for all experiences e.

Proof. Assume A, I and R1,2. Let e1, e2 ∈ E satisfy ee1 = ee2 for all e ∈ E.
By part (b) of Lemma 5, it suffices to show the following two claims.

Claim 1. c|e1 = c|e2 for all constitutions c.

Let c ∈ C. Write c as c = cw|e according to Lemma 4. Using first R1 and
then the weakness of cw, we have c|e1 = cw|ee1 = ee1, and similarly c|e2 =
cw|ee2 = ee2. So I have to show that ee1 = ee2, which holds by assumption on
e1, e2. Q.e.d.

Claim 2. c|e1ẽ = c|e2ẽ for all constitutions c and experiences ẽ.

Let c ∈ C and ẽ ∈ E. Again write c as c = cw|e according to Lemma
4. Applying first R1, then the weakness of cw, and then Theorem 1, we have
c|e1ẽ = cw|ee1ẽ = ee1ẽ = ẽee1; and similarly, c|e2ẽ = cw|ee2ẽ = ee2ẽ = ẽee2. So
I have to show that ẽee1 = ẽee2, which holds by assumption on e1, e2. �

Proof of Theorem 2. Assume A, I, AC and R1,2, and let e, e
′ ∈ E. By Lemma

8 it suffices to show that êee′ = êe′e for all ê ∈ E. So let ê ∈ E. Consider three
exhaustive cases.

Case 1 : ê = e = e′. Write s for this state. Applying Lemma 2 repeatedly,
we have s = êe = êee′, and similarly s = êe′ = êe′e. So êee′ = êe′e.

Case 2 : e �= e′. Then e′ �= ee′ by Lemma 6. So ee′ �= e′ee′, again by
Lemma 6. Moreover, e′ee′ = e′e′e by Theorem 1. So, letting cw be any weak
constitution (it exists by R2), we have cw|e′ee′ = cw|e′e′e by the weakness of
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cw, and hence by R1 c|ee′ = c|e′e where c := cw|e′. By Theorem 1, ee′ = e′e.
In summary, I have shown that ee′ and e′e have a same state — call it s — and
that c|ee′ = c|e′e �= s. So, by AC, c′|ee′ = c′|e′e for all c′ ∈ C. Applying this to
c′ = cw|ê, I obtain cw|ê|ee′ = cw|ê|e′e, hence by R1 cw|êee′ = cw|êe′e, and so by
the weakness of cw êee′ = êe′e.

Case 3 : e′ �= ê. This case can be reduced to case 2 as by Theorem 1
êee′ = ee′ê and êe′e = eêe′. �

To prove Theorem 3, I analyse the structure (Es,≥, ◦) (for s ∈ S) using
Hölder’s (1901) seminal theorem, which states as follows. Recall that a (totally)
ordered semigroup is a set X endowed with a linear order ≥ and an associative
binary operation ◦ under which ≥ is stable (i.e. such that, for all x, y, z ∈ X,
if x ≥ y then x ◦ z ≥ y ◦ z and z ◦ x ≥ z ◦ y). An ordered semigroup (X,≥, ◦) is
a (totally) ordered group if (X, ◦) is a group, commutative if ◦ is commutative,
cancellative if ◦ is cancellative (i.e. from xz = yz or zx = zy follows x = y, for
all x, y, z ∈ X), and semi-divisible if, for all x, y ∈ X with x > y, y divides x
(i.e. x = ya = by for some a, b ∈ X). An element x of the ordered semigroup is
an identity if xy = y for all y (X contains at most one identity), weakly positive
(weakly negative) if xy, yx ≥ (≤)y for all y ∈ X, and strictly positive (strictly
negative) if it is weakly positive (weakly negative) and not an identity.27 The
ordered semigroup is positively ordered if each x ∈ X is weakly positive, and
Archimedean if for all strictly positive (strictly negative) elements x, y there is
an integer n ≥ 1 such that xn ≥ y (xn ≤ y).

Lemma 9 (Hölder 1901; in part Huntington 1902) Every Archimedean can-
cellative semi-divisible positively ordered semigroup without identity can be em-
bedded into ((0,∞),≥,+).

Before I can apply this theorem, a number of lemmas must be shown.

Lemma 10 Assume A and AC.28 For every state s,

(a) the strength relation ≥ on Es is a weak order;
(b) the strength relation ≥ on Cs is a weak order.

Proof. Assume A and AC. Let s ∈ S.

(a) On Es, ≥ is obviously transitive ([e ≥ e′&e′ ≥ e′′] ⇒ e ≥ e′′ ∀e, e′, e′′ ∈
Es). To show completeness, consider e, e′ ∈ Es and suppose e �≥ e′. Then there
is an c ∈ C such that c|e is not weakly between s and c|e′. We have c �= s:
otherwise c|e = c|e′ = s (as e and e′ attract to s). W.l.o.g. suppose c > s (the
proof is analogous if c < s). Then, by A and as e and e′ attract to s, c|e > s
and c|e′ > s. Hence, as c|e /∈ [s, c|e′], we have c|e > c|e′ > s. So c|e′ is strictly

27If X has an identity e, x is weakly positive (weakly negative) if and only if x ≥ (≤)e.
28In fact, part (a) holds given just A and AC1 , and part (b) holds given just A and AC2 .
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between s and c|e. Hence, by AC1, for every constitution c′ not of state s, c′|e′

is strictly between s and c′|e. So for every constitution c′ (whether or not of
state s) c′|e′ is weakly between s and c′|e. That is, e′ ≥ e, as desired.

(b) On Cs, ≥ is again obviously transitive. The proof that ≥ is complete is
analogous to the completeness proof in (a), with the roles of constitutions and
experiences inverted and using AC2 instead of AC1. �

Lemma 11 Assume A, I, AC and R1,2.
29 For every state s,

(a) the strength relation ≥ on Es is a linear order;
(b) the strength relation ≥ on Cs is a linear order.

Proof. Assume A, I, AC and R1,2 and let s ∈ S. By Lemma 10, only
anti-symmetry remains to be shown in each part. This is done as follows.

(a) Consider e, e′ ∈ Es with e ≡ e′; we show that e = e′. By Lemma 8 it
suffices to show that êe = êe′ for all ê ∈ E. So consider any ê ∈ E. Letting cw
be a weak constitution (it exists by R2), and putting c := cw|ê, it follows from
e ≥ e′ that c|e is weakly between s and c|e′, and from e′ ≥ e that c|e′ is weakly
between s and c|e. So c|e′ = c|e′, i.e. cw|ê|e′ = cw|ê|e′. So by R1 cw|êe′ = cw|êe′,
and hence by cw’s weakness êe′ = êe′, as desired.

(b) Consider constitutions c, c′ ∈ Cs such that c ≡ c′. Then, for all experi-
ences e attracting to s′, we have from c ≥ c′ that c′|e is weakly between s′ and
c|e, and from c′ ≥ c that c|e is weakly between s′ and c′|e. So c|e = c′|e for all
e ∈ E. Hence c = c′ by Lemma 5. �

Note the large mathematical gap between the linearity of (Es,≥) (shown in
Lemma 11) and the embeddability of (Es,≥, ◦) into ((0,∞),≥,+) (claimed in
Theorem 3). This gap is large not only because of the role of composition ◦
but also because many linearly ordered sets (such as sets of higher cardinality
than R, the lexicographically ordered set R2 and many well-ordered sets) are
not embeddable into the reals. More work is needed to close this gap.

Lemma 12 Assume A, I, AC and R1,2. For all states s and all experiences
e, e′ ∈ Es, e > e

′ if and only if, for some experience ê, eê is strictly between s
and e′ê.

Proof. Assume A, I, AC and R1,2, and let s ∈ S and e, e′ ∈ Es. Let cw be a
weak constitution (there is one by R2).

1. Assume there is ê ∈ E such that eê is strictly between s and e′ê. Then
cw|eê is strictly between s and cw|e′ê. Hence, c|e is strictly between s and c|e′,
where c := cw|ê. So e > e′ by Lemma 11.

2. Assume e > e′. Then there is a c ∈ C such that (*) c|e′ > c|e ≥ s or
c|e′ < c|e ≤ s. c is obviously non-weak, so that by Lemma 7 we have c = cw|ê

29Part (b) holds given just A, AC2 and R1 .
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for some experience ê. As c|e = cw|êe = eê and c|e′ = cw|êe′ = e′ê, (*) implies
that e′ê > eê ≥ s or e′ê < eê ≤ s. In these inequalities, I can replace ≥ by >
and ≤ by <, by Lemma 6. �

Lemma 13 Assume A, I, AC and R1,2.
30 The assignment e �→ cw|e, where cw

is a fixed weak constitution, does not depend on the choice of cw and defines

• a bijection from E to {c ∈ C : c is not weak} and
• for each state s an (order-)isomorphism between (Es,≥) and ({c ∈ Cs : c

is not weak},≥).

Proof. Assume A, I, AC and R1,2. Let cw be any weak constitution.

First, the assignment does not depend on the choice of cw, because if c
′
w is

another weak constitution and e ∈ E then cw|e = c′w|e by an argument in the
proof of Lemma 7.

Consider the first bullet point. Surjectivity follows from Lemma 7. To show
injectivity, consider distinct e1, e2 ∈ E. By Lemma 8 there is an experience e
such that ee1 �= ee2, hence by Theorem 1 e1e �= e2e. So, by the weakness of cw,
cw|e1e �= cw|e2e. Hence, cw|e1e �= cw|e2e, and so cw|e1|e �= cw|e2|e, which implies
cw|e1 �= cw|e2.

Regarding the second bullet point, let us restrict the bijection to Es (for
some s). The restriction is obviously a bijection onto {c ∈ Cs : c is not weak}.
To see that it even is an order-isomorphism, consider any e+, e− ∈ Es. By
Lemma 11, it suffices to show that e+ > e− ⇒ cw|e+ > cw|e−. Assume e+ > e−.
Then by Lemma 12 there is an experience e such that e+e is strictly between s
and e−e. So, cw|e+|e is strictly between s and cw|e−|e, implying cw|e+ > cw|e−
by Lemma 11. �

Lemma 14 Assume A, I, AC, R1,2. For each state s, (Es,≥, ◦) is an Archimedean
positively ordered semigroup.

Proof. Let s ∈ S. By Lemma 2, Es is closed under ◦, i.e. ◦ indeed defines
an operation on Es.

Claim 1. (Es,≥, ◦) is an ordered semigroup.

Given Lemmas 1 and 11, ◦ is associative and ≥ linear. It remains to show
stability of ≥ under ◦. Let e, ė, e′ ∈ Es with e ≥ ė. I have to show ee′ ≥ ėe′

(which by Theorem 2 also implies e′e ≥ e′ė). Assume for a contradiction that
ėe′ > ee′. By Lemma 12 there is an ê ∈ E such that ėe′ê is strictly between
s and ee′ê. But this implies, again by Lemma 12, that ė > e. Contradiction.
Q.e.d.

Claim 2. (Es,≥, ◦) is positively ordered.

30Condition AC is not needed for the first bullet point.
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Assume for a contradiction that e ∈ Es is strictly negative, i.e. e′ > ee′ = e′e
for an e′ ∈ Es. Then by Lemma 12 there is an ê ∈ E such that e′ê is strictly
between ee′ê and s = e, a contradiction by Lemma 2. Q.e.d.

Claim 3. (Es,≥, ◦) is Archimedean.

Let e, ė ∈ Es be strictly positive. I have to find an integer n ≥ 1 such that
en ≥ ė. If e ≥ ė, take n = 1. Now suppose ė > e. Then by Lemma 12 there is
an ê ∈ E such that ėê is strictly between s and eê. By Lemma 4, enê → s as
n→∞, and so (using that ėê �= s by Lemma 6) there is an n such that enê is
strictly between s and ėê. So, by Lemma 12, en > ė. �

Lemma 15 Assume A, I, AC and R1,2. For all experiences e, e′, ė, if eė = e′ė
then e = e′ (i.e. ◦ is cancellative).

Proof. Consider experiences e, e′, ė such that eė = e′ė.

Case 1 : ė �= e. For all n ≥ 1 we have enė = e′nė because

enė = en−1e′ė = e′en−1ė = e′en−2e′ė = e′2en−2ė = ... = e′nė.

The state enė = e′nė converges to e and also to e′ by Lemma 4. This already
gives us e = e′. Now, let cw be a weak constitution, and consider the constitu-
tions c := cw|e and c′ := cw|e′. Note that c = c′, and that ė is equally attracted
by c as by c′, i.e. c|ė = c′|ė (= eė), where this state differs from ė by Lemma
6. So c ≡ c′ by AC, and hence c = c′ by Lemma 11. So, by Lemma 13. e = e′.
Q.e.d.

Case 2 : ė = e. First assume all experiences attract to e. Then, by Lemma
8, there exists a single experience; hence, e = e′, as desired. Now assume there
is an experience ë attracting to ë �= e. Consider the experiences ẽ := ëe and
ẽ′ := ëe′. We have ẽė = ẽ′ė (by ẽė = ëeė = ëe′ė = ẽ′ė), where e �= e (by Lemma
6), i.e. ė �= e. So, by Case 1 above, ẽ = ẽ′, i.e. ëe = ëe′. Noting that eë = e′ë
(by Theorem 2) with ë �= e, I can again apply Case 1 to infer e = e′. �

Lemma 16 Assume A, I and R1,2, and let the model be not trivial. Then
(E, ◦) contains no idempotent, i.e. no e with e2 = e. In particular, each (Es, ◦)
(s ∈ S) contains no idempotent, hence no identity.

Proof. Assume A, I, R1,2 and non-triviality. Let e ∈ E.

Claim 1. There is an e′ ∈ E such that e′ �= e.

Suppose the contrary. Then, by Lemma 8, E = {e}. Hence, by non-
triviality, there is a c ∈ C such that (*) c|e �= e. In particular, c is non-weak,
hence by Lemma 13 of the form c = cw|ec for some weak cw ∈ C and some
ec ∈ E. As E = {e} we have ec = e, and hence c = cw|e = e. So c|e = e, a
contradiction by (*). Q.e.d.

Let e′ be as in Claim 1. Applying Lemma 6 twice, we have e′e �= e, and
hence e′e2 �= e′e. So e2 �= e. �
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While all but one of Hölder’s hypotheses have been shown to hold for our
ordered semigroup (Es,≥, ◦) (s ∈ S), Hölder’s semi-divisibility hypothesis need
not hold.31 So Hölder’s Theorem cannot be applied directly. To overcome this
obstacle, the proof of Theorem 3 will first embed (Es,≥, ◦) into a larger ordered
semigroup, to which Hölder’s Theorem can be applied. More precisely, (Es,≥, ◦)
is embedded into the positive part of its ordered group extension, drawing on
another fundamental algebraic result:

Lemma 17 (Tamari 1949, Alimov 1950, Nakada 1951) For every commutative
cancellative ordered semigroup (X,≥, ◦),

• there exists an, up to isomorphism unique, smallest commutative ordered
group into which (X,≥, ◦) can be embedded; it is denoted (X̂,≥, ◦) and
called the ordered group extension of (X,≥, ◦);

• X ⊆ X̂+ (:= {x ∈ X̂ : x is strictly positive}) if (X,≥, ◦) is positively
ordered without identity;

• (X̂,≥, ◦) (hence (X̂+,≥, ◦)) is Archimedean if (X,≥, ◦) is Archimedean
and positively ordered and contains no anomalous pair, i.e. no x, y with
x > y and xn < yn+1 for all integers n ≥ 1.

For instance, the ordered group extension of X = {1, 2, ...} (with ≥,+ stan-
dardly defined) is X̂ = {0,±1,±2, ...} (with ≥,+ standardly defined). To apply
the Tamari-Alimov-Nakada Theorem, a single property must still be shown:

Lemma 18 Assume A, I, AC and R1,2. For each state s, (Es,≥, ◦) contains
no anomalous pair.

Proof. Assume A, I, AC and R1,2. Let s ∈ S and e, ė ∈ Es such that e > ė.
By Lemma 12 there is an ê ∈ E such that eê is strictly between s and e′ê. So,
since (eê)nê → eê as n → ∞ (by Lemma 4), there is an n such that (eê)nê
is strictly between s and e′ê. In other words, enên+1 is strictly between s and
e′n+1ên+1. So, by Lemma 12, en > e′n+1. �

Proof of Theorem 3. Assume A, I, AC and R1,2. Suppose the model is not
trivial, and let s ∈ S. By Lemmas 14, 15, 16, 18 and Theorem 2, I may
apply the Tamari-Alimov-Nakadathe Theorem (Lemma 17) to embed the or-
dered semigroup (Es,≥, ◦) into (Ê+s ,≥, ◦), an Archimedean ordered semigroup.
As (Ê+s ,≥, ◦) is moreover semi-divisible, without identity, cancellative and posi-
tively ordered (all this by being the strictly positive part of an ordered group), it
can itself be embedded into ((0,∞),≥,+) by Hölder’s Theorem (Lemma 9). So
(Es,≥, ◦) can be embedded into ((0,∞),≥,+). Hence (Es,≥, ◦) ≡ (Xs,≥,+)
for some set Xs ⊆ (0,∞) closed under addition.

31Consider the submodel of the linear model obtained by redefining E as S× (1,∞) and C
as S × ({0} ∪ (1,∞)). Then (Es,≥, ◦) ≡ ((1,∞),≥,+), which is not semi-divisible because
3 > 2 but there is no z ∈ (1,∞) with 3 = 2 + x.
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To show the second bullet point, write C∗s := {c ∈ Cs : c is not week}. By
Lemma 13, (C∗s,≥) ≡ (Es,≥). So, by the first bullet point (C

∗
s,≥) ≡ (Xs,≥).

We are done if C∗s = Cs, i.e. if Cs contains no weak constitution. Now suppose
it contains one, cw; then it contains no other one by Lemma 5, and all c ∈ C∗s
satisfy c > cw by definition of (non-)weakness. So, (Cs,≥) = (C∗s ∪ {cw},≥) ≡
(Xs ∪ {0},≥). �

6 Characterisation of the linear change model

As mentioned, the linear model deserves our special attention as it is the perhaps
simplest and intuitively most natural (non-degenerate) change model. Does it
have a compelling characterisation in terms of few easily interpretable proper-
ties? I now show that the linear model is, up to isomorphism, the only change
model that satisfies our earlier conditions and is ‘sufficiently rich’ in experiences
and constitutions (in the sense of three more richness conditions). Formally, a

change model (Ŝ, Ê, Ĉ, (̂.), (.̂|.)) is isomorphic to (or a reparametrisation of ) an-
other one (S,E,C, (̄.), (.|.)) if there exist an increasing bijection between states
S → Ŝ, s �→ s∗, a bijection between constitutions C → Ĉ,c �→ c∗, and a bi-
jection between experiences E → Ê, e �→ e∗, such that (̂.) is the image of (̄.)

(i.e. c∗ = ĉ∗ for all c ∈ C) and (.̂|.) is the image of (.|.) (i.e. (c|e)∗ = c∗̂|e∗ for
all c ∈ C and all e ∈ E).32 Isomorphic models are perfectly equivalent (but
perhaps not equally natural or convenient).33

Here are the first two additional richness conditions characteristic for linear
models:

Richness3 (R3) For each constitution c there are experiences e, e
′ such that

c|e ≤ c ≤ c|e′.

Richness4 (R4) No non-weak constitution c is weaker than all other non-weak
constitutions of the same state, i.e. satisfies c < c′ for all other non-weak
constitutions c′ of state c′ = c.

Intuitively, R3 requires that change is never ‘one way only’, i.e. that any state
could, depending on the experience, either (weakly) fall or (weakly) increase —
a mild form of richness in experiences that holds whenever some experience in
E attracts to the maximal state and some to the minimal state. R4 holds in

32For instance, the linear model with state set S = [0, 1] is isomorphic to that with state
set Ŝ = [0, 2]: transform states via s �→ 2s, constitutions via sx �→ (2s)x and experiences
via sx �→ (2s)x. Linear models can also be reparameterised into non-linear models, e.g. by
measuring strength of experience on a new scale obtained by squaring each strength level.
33From a formal angle, ‘is isomorphic to’ defines an equivalence relation over the class of

change models.
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particular if for any (non-weak) constitution there is a weaker one (without the
strength relation ≥ being assumed to be linear).

To state the last richness condition, I define a state path as a family (se)e∈∪∞
n=0E

n

(∈ S∪
∞

n=0E
n

) of states se ∈ S assigned to experience sequences e ≡ (e1, ..., en) ∈
En of any (possibly zero) length n. A state path (se)e∈∪∞

n=0E
n describes where

the individual is initially (namely in state s()), after any experience e (namely
in state s(e)), after any pair experiences e1, e2 (namely in state s(e1,e2)), and so on.

To each constitution c is naturally assigned state path (c|e1 · · · |en)(e1,...,en)∈∪∞n=0En,

containing the initial state c, the states c|e after any experiences e, and so on.
The set of all state paths, S∪

∞

n=0E
n

, usually contains many state paths that are
impossible, i.e. are not the state path of any constitution c in C. A state path
(se)e∈∪∞

n=0
En is constant if its states se are all the same.

Richness5 (R5) For any sequence of constitutions (ck)k=1,2,..., if the sequence of
corresponding state paths converges (pointwise) to a non-constant state path,
then there is a constitution c with this state path.

Intuitively, R5 requires C to be closed under taking ‘limiting constitutions’.
In R5, the constitution c is indeed the limit of the sequence (ck)k=1,2,... in the
sense of a natural topology.34 Another perspective on R5 is that it requires
topological closedness (in fact, slightly less than closedness due to the qualifi-
cation ‘non-constant’) of the set of constitutions C as embedded into the state
path space S∪

∞

n=0E
n

.35

We are ready for the characterization result.

Theorem 4 A change model (S,E,C, (̄.), (.|.)) is the linear model (up to iso-
morphism) if and only if it satisfies Attraction, Indoctrination, Attraction-
Consistency and Richness1-5.

The proof draws on the following fundamental result of topological algebra
due to Arzél (1948) and Tamari (1949). Recall that an ordered semigroup
(X,≥, ◦) is topological if its operation ◦ is continuous with respect to the order
topology on X induced by ≥. The notions of ‘density’ and ‘completeness’ are
to be understood order-theoretically rather than topologically.36

34Here, I endow C with the weak topology induced by the functions fe : C → S (with
e ≡ (e1, ..., en) ranging over ∪

∞

n=0E
n) defined by fe(c) = c|e1 · · · |en. This topology is by

definition the smallest (coarsest) topology for which these functions are continuous. So, a
constitution sequence (cn) converges to a constitution c if and only if fe(cn) → fe(c) for all
functions fe, or equivalently, if and only if cn’s state path converges (pointwise) to c’s state
path as n→∞.
35This embedding relies on identifying constitutions with their state paths (a one-to-one

mapping by (2)). ‘Closedness’ is meant relative to the pointwise-convergence topology on
S
∪
∞

n=0
E
n

(the weak topology induced by the projection functions, i.e. by the functions
S
∪
∞

n=0
E
n

→ S that evaluate state paths at particular points e ∈ ∪∞n=0E
n).

36An ordered semigroup (X,≥, ◦) is dense if ≥ is dense (i.e. for all x, y ∈ X with x > y
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Lemma 19 (Arzél 1948, Tamari 1949) Every cancellative, dense and complete
topological ordered semigroup (X,≥, ◦) with #X > 1 is isomorphic to (S,≥,+)
for some set S ∈ {R, [0,∞), (0,∞), [1,∞), (1,∞)} or to the dual (S,≤,+)
thereof.

To apply this result to the structure (Es,≥, ◦) (s ∈ S), I now first prove
that all premises are satisfied.

Lemma 20 Assume A, I, AC and R1,2,5. For every state s, ≥ on Es is com-
plete.

Proof. Assume A, I, AC and R1,2,5. Let s ∈ S. In the definition of com-
pleteness, the part on suprema is equivalent to that on infima; so it suffices to
show the latter. The claim is obvious if the model is trivial. Now assume it
is non-trivial. Let A ⊆ Es be a non-empty set that is bounded below, say by
e< ∈ Es. I show that A has an infimum in (Es,≥). As (Es,≥) is by Theorem
3 isomorphic to (X,≥) for some set X ⊆ (0,∞), there exists a strictly decreas-
ing sequence (ek)k=1,2,... in A such that for all e ∈ A we have e ≥ ek for some
(sufficiently high) k. It suffices to show that {ek : k = 1, 2, ...} has an infimum
(as this infimum is then also one of A).

Claim 1. There is a c∗ ∈ Cs such that, for all e ∈ E, eke converges monoton-
ically to c∗|e as k →∞.

For all e ∈ E, eke converges (in R): if e = s obviously, if e > s because eke
is increasing and bounded above by e, and if e < s because eke is increasing
and bounded below by e. So the sequence of state paths corresponding to the
sequence of constitutions (cw|ek)k=1,2,..., i.e. the sequence of state paths whose

k’s component is (cw|ek|e1 · · · |en)(e1,...,en)∈∪∞n=0En = (eke1 · · · en)(e1,...,en)∈∪∞n=0En,
converges pointwise. By R5, the limiting state path is the state path of some
c∗ ∈ C. Taking n = 0 yields ek → c∗, i.e. s → c∗, so that c∗ ∈ Cs. Taking
n = 1 yields, for all e ∈ E, eke→ c∗|e. Q.e.d.

Claim 2. c∗ = cw|e∗ for some e∗ ∈ Es.

As the model is not trivial, there is (by an earlier argument) an experience
e not of type s. Suppose e > s (the proof is analogous if e < s. As ek ≥ e<
for all k, eke ≤ e<e for all k. So (by Claim 1) c∗|e ≤ e<e. Hence, c∗|e < e.
So c∗|e �= e. Hence c∗ is not weak. Hence, by Lemma 13, c∗ = cw|e∗ for some
e∗ ∈ Es. Q.e.d.

Claim 3. e∗ is the infimum of {ek : k = 1, 2, ...} (hence of A, completing the
proof).

First, e∗ is a lower bound: each ek is at least as strong as e∗ because, for each
e ∈ E, eek is (by Claim 1) weakly between s and c∗|e, i.e. (by Claim 2) weakly

there is a z ∈ X with x > z > y), and complete if ≥ is complete (i.e. every non-empty set
A ⊆ X that is bounded below resp. above has an infimum resp. supremum).
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between s and e∗e. Second, consider another lower bound e∗∗, and suppose for
a contradiction that e∗∗ > e∗. Then, by Lemma 12, there is an e ∈ E such that
e∗∗e is strictly between s and e∗e. So there is (by Claims 1-2) a k such that e∗∗e
is strictly between s and eke; but this violates that ek ≥ e∗∗. �

Lemma 21 Assume A, I, AC and R1,2,4,5. For every experience e and state s
with Es �= ∅, infe′∈Es |ee

′ − e| = 0.

Proof. Assume A, I, AC and R1,2,4,5 and let e ∈ E, s ∈ S with Es �= ∅. If e ∈
Es then obviously infe′∈Es |ee

′ − e| = 0. Now suppose e �∈ Es; w.l.o.g. let e < s
(the proof being analogous if e > s). So I have to show that infe′∈Es(ee

′−e) = 0,
i.e. that infe′∈Es ee

′ = e.

Claim 1. There is a c∗ ∈ C such that infe′∈Es ee
′ = c∗|e.

Consider a sequence (ek)k=1,2,... in Es such that eek → infe′∈Es ee
′ as k →∞.

Like in proof of Claim 1 of the proof of Lemma 20, one can show existence of
a c∗ ∈ Cs such that eke converges to c∗|e as k → ∞; hence infe′∈Es ee

′ = c∗|e.
Q.e.d.

Claim 2. c∗ is weak (hence by Claim 1 infe′∈Es ee
′ = e, as desired.)

Suppose the contrary. Then, by Lemma 13, there is an e∗ ∈ Es such that
c∗ = cw|e∗ (where cw is a weak state). We have infe′∈Es ee

′ = c∗|e = ee∗. So
e′ ≥ e∗ for all e′ ∈ Es, i.e. e∗ weakest among all experiences in Es. Hence, by
Lemma 13, cw|e∗ is weakest among all non-weak constitutions in Cs, a violation
of R4. �

Lemma 22 Assume A, I, AC and R1,2,4,5. For every state s, if e ∈ Es then
e ≥ ê2 for some ê ∈ Es.

Proof. Assume A, I, AC and R1,2,4,5. Let s ∈ S and e ∈ Es. By R5 the model
is not trivial; hence there exists an ẽ ∈ E with ẽ �∈ Es; w.l.o.g. let ẽ < s (the
proof is analogous if ẽ > 0). Let ǫ := ẽe−ẽ (> 0). By ǫ > 0 and Lemma 21, there
is an e′ ∈ Es such that ẽe′ − ẽ ≤ ǫ/2; again by Lemma 21, there is an e′′ ∈ Es
such that ẽe′e′′ − ẽe′ ≤ ǫ/2. It follows that (ẽe′ − ẽ) + (ẽe′e′′ − ẽe′) ≤ ǫ/2 + ǫ/2,
i.e. ẽe′e′′ − ẽ ≤ ǫ. So, letting ê be the weakest of e′ and e′′, ẽê2 − ẽ ≤ ǫ, i.e.
ẽê2 − ẽ ≤ ẽe− ẽ. So ê2 ≤ e. �

Lemma 23 Assume A, I, AC and R1,2,4,5. For every state s, ≥ on Es is dense.

Proof. Assume A, I, AC and R1,2,4,5. Let s ∈ S. If Es = ∅ the claim holds
vacuously. Now suppose Es �= ∅. Let Xs ⊆ (0,∞) be as in Theorem 3; hence
(Es,≥, ◦) ≡ (Xs,≥,+).

Claim 1. infXs = 0 (where this infimum is formed in (R,≥), hence exists
but needn’t belong to Xs).
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By Lemma 22 there exists a sequence (ek)k=1,2,... in Es such that, for all k,
e2k+1 ≤ ek. So, by (Es,≥, ◦) ≡ (Xs,≥,+), there exists a corresponding sequence
(xk)k=1,2,... inXs such that, for all k, 2xk+1 ≤ xk, i.e. xk+1 ≤ xk/2. In particular,
xk → 0 as k →∞. Hence infXs = 0. Q.e.d.

Claim 2. (Xs,≥) is dense (hence (Es,≥) is, completing the proof).

Let x, y ∈ Xs such that x < y. By Claim 1, Xs contains a z < y−x. Clearly,
some multiple nz of z (n ∈ {1, 2, ...}) is strictly between x and y. �

Lemma 24 Assume A, I, AC and R1,2,4,5. For every state s, (Es,≥, ◦) is a
topological ordered semigroup.

Proof. Assume A, I, AC and R1,2,4,5, and let s ∈ S. If the model is trivial, the
claim is obvious because Es is empty or singleton. Now assume non-triviality.
By Theorem 3’s isomorphism, it suffices to show the claim for the structure
(X,≥,+), where X := Xx ⊆ (0,∞) is as in Theorem 3. The case X = ∅ is
trivial. Now suppose X �= ∅.

Claim 1. X is topologically dense in (0,∞).

Analogously to Claim 1 in Lemma 23’s proof, infX = 0. This and X’s
closedness under addition imply topological density in (0,∞). Q.e.d.

Claim 2. The ‘intervals’ {z ∈ X : x < z < y}, x, y ∈ X, form a basis of the
order topology.

By definition, every open set is a union of ‘intervals’ of type (i) {z ∈ X :
x < z < y} or (ii) {z ∈ X : x < z} or (iii) {z ∈ X : z < y}. Intervals of type
(ii) or (iii) are writable as the union of intervals of type (i):

• {z ∈ X : x < z} = ∪z∈X{z ∈ X : y < x < z} because X has no smallest
element (otherwise {c ∈ Cs : c is not weak} would by Lemma 13 have a
smallest element, violating R4);

• {z ∈ X : z < y} = ∪z∈X{z ∈ X : y < x < z} because X has no largest
element (as it is closed under addition).

So the intervals of type (i) alone form a basis. Q.e.d.

Claim 3. For all x, y ∈ X the inverse +−1({z ∈ X : x < z < y}) is open in
X2 (which by Claim 2 proves continuity of + : X2 → X, as desired).

Let x, y ∈ X. It suffices to show that each (a, b) ∈ A := +−1({z ∈ X : x <
z < y}) has an open environment A0 ⊆ A. Let (a, b) ∈ A. So x < a + b < y.
Hence ǫ := min{|(a + b) − x|, |(a + b) − y|} > 0. By Claim 1, there exist
a∗, a

∗, b∗, b
∗ ∈ X such that a− ǫ/2 ≤ a∗ < a < a

∗ ≤ a+ ǫ/2 and b− ǫ/2 ≤ b∗ <
b < b∗ ≤ b+ ǫ/2. The set A0 := {z ∈ X : a∗ < z < a

∗} × {z ∈ X : b∗ < z < b
∗}

contains (a, b), is open in X2, and is contained in A because all (a′, b′) ∈ A0
satisfy x < a′ + b′ < y by |(a+ b)− (a′ + b′)| < ǫ. �

I now apply the Arzél-Tamari Theorem to prove the following result.
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Lemma 25 Assume A, I, AC and R1,2,4,5. For every state s to which some
experience attracts, (Es,≥, ◦) ≡ ((0,∞),≥,+) and (Cs,≥) ≡ ([0,∞),≥).

Proof. Assume A, I, AC and R1,2,4,5, and let s ∈ S such that Es �= ∅; hence
#Es = ∞ by Theorem 3. By Lemmas 15, 20, 23 and 24, (Es,≥, ◦) satisfies
all of Arzél-Tamari’s premises (Lemma 19), hence is isomorphic to (S,≥,+)
or (S,≤,+) for some S ∈ {R, [0,∞), (0,∞), [1,∞), (1,∞)}. But, as e ◦ e > e
for all e ∈ Es, (Es,≥, ◦) is isomorphic to neither (R,≥,+), nor ([0,∞),≥,+),
nor (S,≤,+); and by Lemma 22 it is isomorphic to neither ([1,∞),≥,+) nor
((1,∞),≥,+). So (Es,≥, ◦) ≡ ((0,∞),≥,+); which by Theorem 3 also implies
that (Cs,≥) ≡ ([0,∞),≥). �

Lemma 25 is very useful: one can now define additional structure (operations
or relations) on Es, as long as it is definable in terms of the (via Lemma 25 fully
understood) structure ≥, ◦. Notably, one can define powers of experiences:

Definition 4 Assume A, I, AC and R1,2,4,5. For each experience e and real
number a > 0, let ea (‘e raised to the power a’) be the (by (Ee,≥, ◦) ≡ ((0,∞),≥
,+) uniquely existing) supremum

ea := sup{e
m

n : m,n ∈ {1, 2, ...} and
m

n
≤ a},

where e
m

n denotes the (by (Ee,≥, ◦) ≡ ((0,∞),≥,+) uniquely existing) experi-
ence e′ ∈ Ee given by e′n = em (i.e. by e′ · · · e′︸ ︷︷ ︸

n

= e · · · e︸ ︷︷ ︸
m

).

Keeping in mind that I use multiplicative notation within (Es,≥, ◦) but
additive notation within ((0,∞),≥,+), raising to the power a in Es is the image
under the isomorphism of multiplying by a in (0,∞).37 So, the known rules
‘(a+b)x = ax+bx’ (distributivity) and ‘b(ax) = (ba)x’ (associativity) in (0,∞)
imply by isomorphism the corresponding rules ‘ea+b = eaeb’ and ‘(ea)b = eab’ in
Es. The next lemma contains these two rules and a third (non-obvious) one.

Lemma 26 Assume A, I, AC and R1,2,4,5. For all experiences e, ė and all reals
a, b > 0, we have eaeb = ea+b, (ea)b = eab and (eė)a = eaėa.

Proof. Assume A, I, AC and R1,2,4,5. As mentioned, it remains only to show
the third rule ‘(eė)a = eaėa’. Let e, ė ∈ E and a > 0.

1. First suppose a is rational, say a = m
n
for m,n ∈ {1, 2, ...}. Then

(eė)a = eaėa because, repeatedly using the rule ‘(ea)b = eab’ and commutativity,
we have

(eė)
m

n = ((eė)m)
1

n = (emėm)
1

n = ((e
m

n )n(ė
m

n )n)
1

n = ((e
m

n ė
m

n )n)
1

n = e
m

n ė
m

n .

37Because ax = sup{mn x : m,n ∈ {1, 2, ...} and
m
n ≤ a} where

m
n x is the element x

′ ∈ (0,∞)
given by nx′ =mx.
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2. Now let a be arbitrary. Let s := eė and letM be the set of all (m,n) ∈
{1, 2, ...}2 such that m

n
≤ a. I have to show that eaėa = sup(m,n)∈M(eė)

m

n , which
follows from the following three claims.

Claim 1. eaėa ∈ Es, i.e. eaėa = s.

It suffices to show that |eaėa − s| ≤ ǫ for all ǫ > 0. Let ǫ > 0. W.l.o.g.
suppose e ≤ ė (the proof is similar else). Then (*) e ≤ eė ≤ ė. Let r be a
rational with 0 < r < a. By (eė)r = s and Lemma 21 there is a δ > 0 such
that for all b ∈ (0, δ) we have |(eė)reb − s| ≤ ǫ and |(eė)rėb − s| ≤ ǫ, and hence
(eė)reb−s ≥ −ǫ and (eė)rėb−s ≤ ǫ. So, as by (*) (eė)reb ≤ (eė)rebėb ≤ (eė)rėb,
we have (eė)rebėb − s ≥ −ǫ and (eė)rebėb − s ≤ ǫ, i.e. |(eė)rebėb − s| ≤ ǫ, still
for all b ∈ (0, δ). Now take any rational r′ > r such that a − δ ≤ r′ ≤ a and
choose b = a − r′. Note that eaėa = er

′−r+r+bėr
′−r+r+b = er

′−rėr
′−rerėrebėb =

(eė)r
′−r(eė)rebėb, where the last equality holds by part 1. So

|eaėa − s| = |(eė)r′−r(eė)rebėb − s| ≤ |(eė)rebėb − s| ≤ ǫ. Q.e.d.

Claim 2. eaėa ≥ (eė)
m

n for each (m,n) ∈M.

Let (m,n) ∈ M. If m
n
= a then eaėa = (eė)

m

n by part 1. If m
n
< a then

eaėa = e
m

n ea−
m

n ė
m

n ėa−
m

n = (eė)
m

n ea−
m

n ėa−
m

n ≥ (eė)
m

n , where the second equality
uses part 1. Q.e.d.

Claim 3. No ẽ ∈ Es with ẽ < eaėa satisfies ẽ ≥ (eė)
m

n for all (m,n) ∈M.

Consider any ẽ ∈ Es with ẽ < eaėa. Then, as (Es,≥, ◦) = ((0,∞),≥,+),
for sufficiently small r > 0 we have ẽ(eė)r < eaėa; hence for sufficiently small
rational r > 0 we have (by part 1) ẽerėr < eaėa = ea−rėa−rerėr, which (by
cancellation) implies ẽ < ea−rėa−r. Take any (m,n) ∈ M with m

n
> a− r. We

have ẽ < ea−rėa−r < ea−rėa−re
m

n
−(a−r)ė

m

n
−(a−r) = e

m

n ė
m

n . �

Lemma 27 Assume A, I, AC and R1,2,4,5. For all experiences e0, e1 with e0 <
e1, the assignment a �→ e0ea1 defines an increasing bijection from (0,∞) to
(e0, e1). In particular, {e : e ∈ E} (⊆ S) is an interval.

Proof. Assume A, I, AC and R1,2,4,5, let e0, e1 ∈ E with e0 < e1, and let
f : (0,∞)→ R, a �→ e0ea1. Claims 1 and 3 below establish the result.

Claim 1. f is strictly increasing.

For all 0 < a < b, f(b) = e0eb1 = e0ea1e
b−a
1 > e0ea1 = f(a), where the

inequality holds by eb−a1 > e0ea1. Q.e.d.

Claim 2. lima→∞ f(a) = e1 and lima→0 f(a) = e0.

By Lemma 4, f(n) = e0en1 → e1 as the natural number n tends to ∞. So

(using Claim 1) f(a) → e1 as a → ∞. By a similar argument, eb0e1 → e0

as b → ∞. So, as by Lemma 26 eb0e1 = (eb0e1)
1/b = e0e

1/b
1 = f(1

b
), we have

f(1
b
)→ e0 as b→∞, i.e. f(a)→ e0 as a→ 0. Q.e.d.

Claim 3. f((0,∞)) = (e0, e1).
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Let s ∈ (e0, e1). I show that f(a∗) = s for some a∗ ∈ (0,∞). We have
sup f−1((e0, s]) = inf f−1([s, e1)), by Claim 1 and f−1((e0, s]) ∪ f−1([s, e1)) =
(0,∞). Let a∗ := sup f−1((e0, s]) = inf f

−1([s, e1)) (∈ [0,∞]). Note that a
∗ �∈

{0,∞}, because otherwise f−1((e0, s]) = ∅ or f−1([s, e1)) = ∅, violating Claim
2. So a∗ ∈ (0,∞). The proof is completed by showing that f(a∗) ≤ s and
f(a∗) ≥ s.

I first show f(a∗) ≤ s. For all n ∈ {1, 2, ...}, by Lemma 26 f( na
∗

n+1
) =

e0e
na∗/(n+1)
1 = en+10 ena

∗

1 = e0(e0ea
∗

1 )
n. So f( na

∗

n+1
) → e0ea

∗

1 = f(a∗) as n → ∞ by

Lemma 4. As, for all n, f( na
∗

n+1
) < s (by na∗

n+1
< a∗ = inf f−1([s,∞))), in the

limit f(a∗) ≤ s.

I finally show f(a∗) ≥ s. For all n ∈ {1, 2, ...}, by Lemma 26 f( (n+1)a
∗

n
) =

e0e
(n+1)a∗/n
1 = en0e

(n+1)a∗

1 = ea
∗

1 (e0e
a∗
1 )

n. So f( (n+1)a
∗

n
) → e0ea

∗

1 = f(a∗) as n →

∞ by Lemma 4. For all n . f( (n+1)a
∗

n
) > s (by (n+1)a∗

n
> a∗ = sup f−1((0, s])),

whence in the limit f(a∗) ≥ s. �

Lemma 28 Assume A, I, AC and R1-5. We have {e : e ∈ E} = S.

Proof. Assume A, I, AC and R1-5. Let s ∈ S. I have to show that e∗ = s for
an e∗ ∈ E. Let c ∈ C be such that c = s. By R3 there are e, e

′ ∈ E such that
c|e ≤ c ≤ c|e′. So, by A, e ≤ c ≤ e′. Hence by Lemma 27 there is an e∗ ∈ E
such that e∗ = c = s. �

Proof of Theorem 4. First, the linear model for a state set S obviously
satisfies all of properties A, I, AC and R1-5; and so do its isomorphic variants,
because reparametrisations preserve these properties (in the case of I because
an increasing bijection between two state sets is automatically continuous).

Second, I consider a change model (S,E,C, (̄.), (.|.)) satisfying A, I, AC and
R1-5, and show that it is a reparametrisation of the linear model, to be denoted
(S, Ê, Ĉ, (̂.), (.̂|.)). Specifically, I first define three transformations σ : S → S,
ǫ : Ê → E, χ : Ĉ → Ĉ, and then prove in several claims that they define a
reparametrisation in the required sense.

W.l.o.g. let S = [0, 1]. (The proof is analogous for other choices of S.) For
all states s, let w(s) the (by Lemma 25 uniquely existing) weak constitution
in Cs. Further, let w̃ ∈ C be an arbitrary weak constitution. Fix experiences
e0 ∈ E0 and e1 ∈ E1 (they exist by Lemma 28).

Let any experience sx ∈ Ê = [0, 1] × (0,∞) be transformed into ǫ(sx) =

exs1 e
x(1−s)
0 ∈ E, where the last expression is to be read as ex1 if s = 1 and as

ex0 if s = 0. Let any state s ∈ Ŝ = [0, 1] be transformed into σ(s) = ǫ(s1)

(= es1e
1−s
0 ∈ S = [0, 1]). And let each constitution sx ∈ Ĉ be transformed into

χ(sx) =

{
w̃|ǫ(sx) if x > 0 (i.e. if sx ∈ Ê)

w(σ(s)) if x = 0 (i.e. if sx �∈ Ê).
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Claim 1. σ : [0, 1]→ [0, 1] is a strictly increasing bijection (hence is contin-
uous).

For all s ∈ (0, 1) we have σ(s) = es1e
1−s
0 = e

s/(1−s)
1 e0. So σ is on (0, 1)

the composition of the strictly increasing bijection (0, 1) → (0,∞), s �→ s
1−s

and the function (0,∞) → (0, 1), a �→ ea1e0, which is also a strictly increasing
bijection by Lemma 27. So σ defines a strictly increasing bijection from (0, 1)
to (0, 1). σ extends to a strictly increasing bijection from [0, 1] to [0, 1] because
σ(0) = e0 = 0 and σ(1) = e1 = 1. Q.e.d.

Claim 2. ǫ : Ê→ E is bijective.

To show injectivity, consider distinct sx, s
′
x′ ∈ Ê.

Case 1: s = s′. Then x �= x′. We have

ǫ(sx) = e
xs
1 e

x(1−s)
0 �= [exs1 e

x(1−s)
0 ]x

′/x = ex
′s
1 e

x′(1−s)
0 = ǫ(sx′), as desired.

Case 2: s �= s′. Suppose w.l.o.g. that s < s′ (the proof is analogous if

s > s′). We have ǫ(sx) = [ǫ(sx)]
1/x =

[
exs1 e

x(1−s)
0

]1/x
= es1e

1−s
0 , and analogously

ǫ(s′x′) = e
s′
1 e

1−s′

0 . So it suffices to show that es1e
1−s
0 �= es

′

1 e
1−s′

0 . This follows from

es1e
1−s
0 < es

′−s
1 es1e

1−s
0 = es

′

1 e
1−s
0 = es

′

1 e
1−s′

0 es
′−s
0 < es1e

1−s′

0 .

To show that ǫ is also surjective, consider any e ∈ E. As σ is bijective
(Claim 1), there is and s ∈ [0, 1] such that ē = σ(s) = ǫ(s1). As e and ǫ(s1)
both belong to Ee, there is (by Lemma 25) an x > 0 such that e = [ǫ(s1)]

x. So

e = [ǫ(s1)]
x =

[
es1e

1−s
0

]x
= exs1 e

x(1−x)
0 = ǫ(sx). Q.e.d.

Claim 3. χ : Ĉ→ C is bijective.

Note that Ĉ is the disjoint union of Ê and {s0 : s ∈ [0, 1]} (containing
the non-weak resp. weak constitutions). So the claim follows from these two
observations:

• The restriction χ|
Ê
is bijective between Ê and {c ∈ C : c is not weak},

because it is the composition of the (by Claim 2 bijective) mapping ǫ :
Ê → E and the (by Lemma 13 bijective) mapping e �→ w̃|e from E to
{c ∈ C : c is not weak}.

• The restriction χ|{s0:s∈[0,1]} is bijective between {s0 : s ∈ [0, 1]} and {c ∈
C : c is weak} because it is given by the assignment s0 �→ w(σ(s)), where
σ is (by Claim 1) bijective from [0, 1] to [0, 1]. Q.e.d.

Claim 4. (̄.) is the image of (̂.), i.e. σ(ĉ) = χ(c) for all c ∈ Ĉ.

Consider any sx ∈ Ĉ. I have to show that χ(sx) = σ(ŝx), i.e. that χ(sx) =
σ(s). If x = 0 this holds because χ(s0) = w(σ(s)) = σ(s). If x > 0 then it holds
because

χ(sx) = w̃|ǫ(sx) = ǫ(sx) = exs1 e
x(1−s)
0 = (es1e

1−s
0 )x = es1e

1−s
0 = ǫ(s1) = σ(s),
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where the second equality holds by the weakness of w̃, the fourth by Lemma
26, and all others by definition. Q.e.d.

Claim 5. (.|.) is the image of (.̂|.).

Consider any sx ∈ Ĉ and s′x′ ∈ Ê. I have to show that χ(sx)|ǫ(s′x′) =

χ(sx̂|s′x′).

Case 1 : x = 0 (i.e. sx is weak). Then χ(sx)|ǫ(s
′
x′) = χ(sx̂|s

′
x′) as, by

definition of χ and (.̂|.) and by the weakness of w(σ(s)),

χ(sx)|ǫ(s
′
x′) = w(σ(s))|ǫ(s

′
x′) = w̃|ǫ(s

′
x′) and χ(sx̂|s

′
x′) = χ(s

′
x′) = w̃|ǫ(s

′
x′).

Case 2 : x > 0 (i.e. sx is not weak). Then, by definition of χ,

χ(sx)|ǫ(s
′
x′) = w̃|ǫ(sx)ǫ(s

′
x′) and χ(sx̂|s

′
x′) = w̃|ǫ(sx̂|s

′
x′).

So I have to show that w̃|ǫ(sx)ǫ(s′x′) = w̃|ǫ(sx̂|s′x′), i.e. by Lemma 13 that

ǫ(sx)ǫ(s
′
x′) = ǫ(sx̂|s

′
x′). The latter holds because, by definition of ǫ and Lemma

26,

ǫ(sx)ǫ(s
′
x′) = exs1 e

x(1−s)
0 ex

′s′

1 e
x′(1−s′)
0

= exs+x
′s′

1 ex(1−s)+x
′(1−s′)

0 = exs+x
′s′

1 ex+x
′−sx−s′x′

0 ,

ǫ(sx̂|s
′
x′) = ǫ

([
xs + x′s′

x+ x′

]

x+x′

)

= exs+x
′s′

1 e
(x+x′)(1−xs+x′s′

x+x′
)

0 = exs+x
′s′

1 ex+x
′−xs−x′s′

0 . �

7 Conclusion

I hope that the axiomatic approach to modelling change is a fruitful step to-
wards filling the wide gap between recognised importance of (endogenous or
exogenous) change and lack of theoretical understanding of how to model it.
Our findings can be applied in a range of ways, depending on interests and
views:

• The decision- or game-theorist might either model a form of change that
keeps fundamental preferences fixed (in line with orthodox methodology;
see Applications 1-3), or model a form of change that induces dynamic
inconsistency (see Application 4).

• He might either take our theorems as welcome arguments for neglecting
the order of experience (Theorems 1 and 2) and perhaps for modelling
change linearly (Theorems 3 and 4), or insist in order-relevance and non-
linearity, in which case he will have to decide whether to give up Attrac-
tion, Indoctrination or Attraction-Consistency.
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• The empirical researcher might take a given change model and conduct
some intriguing estimation or hypothesis testing, thereby informing us
about the real-life values of model parameters such as the strength of the
experience of cooperation by other people (players).

There is plenty of room for follow-up work: one could study other condi-
tions on change models, generalise change models to multi-dimensional indi-
vidual states (in order to study simultaneous change in multiple interrelated
characteristics like feelings for one’s partner and pleasure at work), introduce
the possibility of decay in the long-term effect of experiences and initial consti-
tutions, study various dynamic games with change in individual characteristics,
and so on. My ultimate hope is that change will be taken more seriously in our
modelling practice.
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