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Abstract. The elements geometry in finite element meshes can be enhanced by means of mesh
smoothing procedures. This paper present a smoothing technique based on the concept of ideal
shapes for finite elements and the use of finite element deformation analyses. The ideal shape
for a particular element corresponds to a regular shape with the same area or volume. This
ideal element is optimally placed over the original one. Assuming a given mechanical stiffness
for an element, the resulting nodal points distances between the original and new shapes are
used to calculate the forces required to deform the original shape into the ideal one. The
forces collected from all elements using this procedure are applied as boundary conditions in a
conventional finite element analysis. The results provide a deformed mesh where the elements
show improved quality. The whole process can be applied iteratively to get better improvements,
however, this technique shows that few iterations are enough to obtain significant enhancement.
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1 INTRODUCTION

The accuracy of finite element analyses is highly dependent on the quality of the mesh in
use. In fact, very thin or skewed elements may lead to poor results. Several authors pointed
the effect on results due to distorted elements (Lee et al., 1993; Babuška et al., 1976; Oh et al.,
1996; Shewchuk, 2002; Kim et al., 2012). Mesh improving techniques aim to enhace the shape
of elements in order to increase the value of a given quality metric. Park et al. (2011) pointed
the existence of three quality improvement techniques: adaptivity, smoothing and swapping.

Several mesh improvement methods were proposed after the invention of the finite element
method (Field, 1988; Canann et al., 1998b; Bank et al., 1997; Freitag, 1997; Knupp, 2000;
Freitag et al., 2002; Dı́az et al., 2005; Yilmaz et al., 2009; Jiao et al., 2011; Park et al., 2011;
Sun et al., 2012; Vartziotis et al., 2013; Renka, 2015; Wei et al., 2015). In particular, smoothing
methods aim to improve the quality of elements by moving individual nodes while keeping
the original mesh topology. Canann et al. (1998a) described three main approaches for mesh
smoothing: Laplacian, optimization-based and physics-based approaches.

This paper proposes a physics-based mesh smoothing method for two-dimensional finite
element meshes. In a similar way as the method proposed by Wei et al. (2015), this method is
composed by two main steps: Local regularization and Global optimization. The local regu-
larization step is performed by finding an ideal shape for each element in the mesh; later each
ideal shape is adjusted at the location of the corresponding element using a least-squares fitting
technique. In the second step, a global mesh optimization is performed by solving a finite ele-
ment static analysis on the mesh. The boundary conditions are given by all nodal forces needed
to deform the original elements into the ideal ones. Significant enhacement was obtained by
applying the proposed method on meshes composed by triangular and quadrilateral elements.

2 SMOOTHING PROCEDURE

The proposed smoothing procedure is composed by two main steps: Local regularization
and Global optimization. These steps can be executed iteratively to continue improving the
quality of a mesh.

2.1 Local regularization of elements

In this step, for each element in the mesh, an ideal shape with ideal position should be
found. Given an element, the idea is to get the geometry of an ideal shape, usually a regular
polygon for triangular and quadrilateral elements, with the same area A as the original element.
Initially, for each type of element, a matrix of initial coordinates that provide an area equal
to one is considered. For example, for any quadrilateral element, the matrix with the initial
coordinates is given by:

C0 =


0. 0.

1. 0.

1. 1.

0. 1.

 . (1)

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
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To get an ideal element with the same area as the original element, these coordinates are scaled
by A1/2, thus:

Cr = A1/2C0. (2)

Later the set of points whose coordinates are listed in matrix Cr is adjusted (moved and ro-
tated) to the coordinates of the origininal element. This is performed by a least-squares fitting
procedure.

2.2 Least-squares fitting of two point sets

Given two point sets, Pi and P′i with i = 1, 2, 3, ..., n, where Pi needs to be moved and
rotated in order to get its points as close as possible to the points of P′i. For a rotation matrix R
and translation matrix T we could write:

P′i = RPi + T + Ni. (3)

where Ni is a set of noise vectors. Then the problem is to find R and T that minimizes the
following norm:

n∑
i=1

‖P′i − (RPi + T)‖2 . (4)

Arun et al. (1987) presented a procedure for least-squares fitting of two point sets. The
procedure is applicable in two and three dimensions. According to the authors, a 3 × 3 matrix
is calculated as a function of the coordinates of both sets as:

H =
n∑

i=1

qiq
′T
i . (5)

where:

qi = Pi −P. (6)

q′i = P′i −P ′. (7)

P =
1

n

n∑
i=1

Pi. (8)

P
′
=

1

n

n∑
i=1

P′i. (9)

From the singular value decomposition of H we get:

H = UAV. (10)

For most cases of fitting point sets, the rotation matrix is found by:

R = VU. (11)
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Finally, the translation matrix T is calculated by:

T = P̄′ −RP̄. (12)

This procedure is used to adjust the nodal coordinates of the ideal element (or reference
element) to the nodes of the original element. In this sense, P represents the set with the nodal
positions of the original element and P′ the set with the nodal positions of the ideal element
prior to fitting.

To guaranty a proper adjustment, an initial rotation is performed to the coordinates of the
scaled ideal element. Thus, the optimally placed nodal coordinates of the ideal element can be
obtained trough the rigid transform:

C = CrR
T + T. (13)

where R represents the rotation matrix between coordinate systems (x, y) and (r, s) as shown
in Figure 1.

Figure 1: Least squares fitting of the regular element

2.3 Quality Metric
Acoording to Knupp (2001), an element quality metric is a scalar function of node positions

that measures some geometric property of the element. There are several metrics proposed to
represent the quality of elements in a finite element mesh (Robinson, 1987; Oddy A. Et al.,
1988; Field, 2000). Usually those measures provide highest values to shapes that are close to
the correspondig regular polygon.

In order to evalueate the improvement of quality of the elements after the application of
the proposed algorithm, this work presents a simple but general quality metric. Thus, for a
two-dimensional element τ we have:

q(τ ) =
pR

p
. (14)
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where p is the perimenter of a mesh cell and pR is the perimeter of a cell with ideal shape (e.g.
regular polygon) with the same area. The isoperimetric inequality for regular polygons (see
Osserman, 1978) ensures that q(τ ) is limited to the real interval (0, 1] for elements with linear
sides. For the case of elements with quadratic sides, this value may rarely be greater than one.

Since the introduced quality measure is relative to the ideal quality of a regular polygon,
it takes into account features as skew and elongation of elements. This simple measure can be
easily implemented, with low computational cost, and extended to quadratic elements and even
to three-dimensions.

2.4 Global regularization

After the ideal nodal positions for each element are already found following the local reg-
ularization procedure, the global regularization procedure uses these information to get a new
mesh where elements present improved quality. This is achieved by solving a finite element de-
formation analysis assuming linear elastic behavior. For this analysis, the material parameters
are given by the Young’s modulus E and de Poisson ratio ν. In theory, any value could be taken
for E but small values are preferred to avoid numerical errors, e.g. E = 1. As for the Poisson
ratio, good result were obtained using ν = 0.

For each element a displacements vector U is obtained subtracting the nodal coordinates
from the ideal positions. Later, a vector of corresponding nodal forces F is determined with the
aid of the element stiffness matrix K, it is F = KU. The forces in F represent the necessary
ones to turn the current element into its ideal counterpart after deformation. This procedure is
repeated for each element in the mesh enabling to mount by superposition a global vector of
forces FG.

Finally, a deformation analysis for the whole mesh is performed assuming the forces in
FG as natural boundary conditions. Essential boundary conditions are given by displacements
restrictions according to the mesh boundary. The displacements obtained from this analysis
provide the nodal shifts required to improve the mesh. After the mesh is updated the whole
procedure can be repeated to get better improvements. Usually, the first iteration provides the
greatest improvements. In most analyses, the authors observed that few iterations, less than five,
were necessary to obtain significant enhancement.

2.5 Smoothing Algorithm

The smoothing algorithm used in this work can be summarized as:

1. Local regularization

1.1. For each element in mesh get the ideal nodal positions.

1.2. Scale, rotate and translate the ideal element and fit over the original element.

2. Global optimization

2.1. For each element, get distances for each node to corresponding node of the ideal
element to mount a displacement vector. Also calculate a corresponding force vector
with the aid of the mechanical stiffness matrix from the element.

2.2. Mount a global vector of forces that will represent natural boundary conditions.
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2.3. Mount a global stiffness matrix.

2.4. Solve the finite element system using, as essentials boundary conditions, restrictions
at nodes that are intended to be fixed.

2.5. Update the mesh with resulting displacements.

3. Evaluation of mesh improvement.

3 NUMERICAL EXAMPLES

In order to assess the applicability and effectiveness of the proposed mesh improvement
method, four numerical examples are examined in this section. Triangular and quadrilateral
meshes consisting of linear elements with different topologies are treated. The algorithm out-
lined in Section 2.4 was implemented in the FemMesh (Durand, 2015) software library, written
in Julia language (Bezanson et al., 2012).

For a given general mesh composed ofN elements, one can define the set {q1, q2, ..., qN} in
which qi is the computed quality metric, given by Eq. (12), for the element i. Three parameters
are considered to evaluate the global mesh quality, namely, qmin, qavg and qmax, defined as:

qmin = min {q1, q2, ..., qN} , qavg =
1

N

N∑
i=1

qi , qmax = max {q1, q2, ..., qN} . (15)

As stated previously, the smoothing procedure can be applied iteratively to increasingly
improve the overall mesh quality. For the purpose of this paper, a convergence criterion was
defined as:

∣∣qkmin − qk+1
min

∣∣ < ε ∧
∣∣qkavg − qk+1

avg

∣∣ < ε. (16)

where k indicate the calculation step and ε is the required tolerance. Such condition enforces
the iterative processes to terminate when the simple average and minimum element quality no
longer improve considering two consecutive steps. For the problems regarded in this section,
ε = 10−2 was used.

3.1 Triangular Mesh

The interior nodes of a regular 1-by-1 mesh composed by near equilateral triangles were
randomly displaced resulting in the distorted mesh depicted in Fig. 2. The smoothing process
converges within 4 iterations and successfully improves the mesh quality while restoring the
original mesh regular pattern. Figure 3 shows the initial distorted mesh and subsequent resulting
meshes obtained along the iterations.
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Figure 2: First Example - Triangular Mesh

(a) Initial Mesh (b) 1st Iteration (c) 4th Iteration

Figure 3: Element Quality Plot

Table 1 summarizes the quality parameters for each computed iteration. A drastic mesh
improvement is verified in the first iteration. The enhancement obtained from the subsequent
iterations provide marginal improvement until the process terminates.

Table 1: Mesh Quality Parameters for Each Iteration

Iteration qmin qavg qmax

Initial Mesh 0.233 0.750 0.998

1 0.791 0.967 1.000

2 0.865 0.982 0.999

3 0.882 0.982 0.998

4 0.883 0.982 0.998

The local regularization process of the element highlighted in Fig. 2 is represented in Fig. 4.
The dotted line represents the ideal element optimally transformed according to the least squares
fitting procedure described in Section 2.2. The displacement field required to regularize the
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element is represented as blue vectors. It can be noted that as the element’s shape approximates
to the ideal one, the quality metric approaches to unity.

q0 = 0.233 q1 = 0.964 q2 = 0.996 q3 = 0.996

Figure 4: Local Regularization and Corresponding Displacement Field Along Iterations

Figure 5 shows the nodal forces resulting from the global optimization process. As the
mesh quality improves the forces magnitude tend to decrease as expected.

(a) 1st Iteration (b) 2nd Iteration (c) 4th Iteration

Figure 5: Nodal Force Field Resulting from the Global Optimization Process

3.2 Quadrilateral Mesh

As a second example, consider the distorted mesh displayed in Fig. 6, obtained by a ran-
dom perturbation on the nodes coordinates of a regular structured mesh composed of 10-by-10
quadrilaterals.

Figure 6: Second Example - Quadrilateral Mesh
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Within 3 iterations the smothing process terminates, accordingly to the convergence criteria
defined in Eq. (16). The structured mesh is recovered successfully as can be observed in Fig. 7.

(a) Initial Mesh (b) 1st Iteration (c) 3dr Iteration

Figure 7: Element Quality Plot

Table 2: Mesh Quality Parameters for Each Iteration

Iteration qmin qavg qmax

Initial Mesh 0.437 0.827 0.992

1 0.977 0.996 1.000

2 1.000 1.000 1.000

3 1.000 1.000 1.000

Table 2 summarizes the global mesh quality parameters, defined in Eq. (15), for each
iteration along the smothing process of the mesh regarded in this example. An astounding
overall quality improvement is verified at the very first iteration and a complete regularization
at the second iteration. Numerical convergence is achieved in the third iteration due to the
adopted precision (ε = 10−2).

q0 = 0.551 q1 = 0.992 q2 = 1.000

Figure 8: Local Regularization and Corresponding Displacement Field Along Iterations

Figure 8 shows the local regularization process of the element highlighted in Fig. 6 in a
orange color tone. The dotted lines represent the ideal element, transformed according to the
rigid transform given by Eq. (13), with the same area as the mesh element represented in solid
lines. The displacement field required to regularize the element, represented by blue vectors,
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are used to compute the nodal forces in the global optimization process. The resultant nodal
forces from the global optimization process are plotted for each iteration in Fig. 9. It can be
observed that the nodal resultant is proportional to the worst element quality that concurs at that
node. Also, the total force magnitude decreases as the mesh quality improves, as exepected.

(a) 1st Iteration (b) 2nd Iteration (c) 3rd Iteration

Figure 9: Nodal Force Field Resulting from the Global Optimization Process

4 CONCLUSIONS

An innovative mesh optimization method constituted by local and global regularizations is
presented. The local regularization is based on the use of the singular value decomposition and
the global regularization is performed using a physics-based approach. The proposed method is
applied to two dimensional meshes of triangular and quadrilateral cells. Also, it does not present
restrictions for meshes with concave boundary as in the Laplacian method. Results show rapid
improvement in mesh quality in all examples. In most cases only three or four iterations were
needed to get significant enhancement. The computation time for each iteration were mostly
spent in the finite element solution used to get the nodal displacements used to update the mesh.
The authors consider that the proposed method is applicable for three-dimensional meshes,
however it will be subject of an upcoming paper.
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hedral mesh smoothing using a direct method”. In: Computers & geosciences 31.4, pp. 453–
463.

Durand, Raul (2015). FemMesh: Structured meshes for FEM analyses. https://github.
com/RaulDurand/FemMesh. [Online; accessed 01-July-2016].

Field, David A (1988). “Laplacian smoothing and Delaunay triangulations”. In: Communica-
tions in applied numerical methods 4.6, pp. 709–712.

Field, David A (2000). “Qualitative measures for initial meshes”. In: International Journal for
Numerical Methods in Engineering 47.4, pp. 887–906.

Freitag, Lori A (1997). “On combining Laplacian and optimization-based mesh smoothing tech-
niques”. In: ASME APPLIED MECHANICS DIVISION-PUBLICATIONS-AMD 220, pp. 37–44.

Freitag, Lori A and Patrick M Knupp (2002). “Tetrahedral mesh improvement via optimization
of the element condition number”. In: International Journal for Numerical Methods in Engi-
neering 53.6, pp. 1377–1391.

Jiao, Xiangmin, Duo Wang, and Hongyuan Zha (2011). “Simple and effective variational opti-
mization of surface and volume triangulations”. In: Engineering with Computers 27.1, pp. 81–
94.

Kim, Jibum, Shankar Prasad Sastry, and Suzanne M Shontz (2012). “A numerical investigation
on the interplay amongst geometry, meshes, and linear algebra in the finite element solution of
elliptic PDEs”. In: Engineering with Computers 28.4, pp. 431–450.

Knupp, Patrick M. (2000). “Achieving finite element mesh quality via optimization of the Jaco-
bian matrix norm and associated quantities. Part Ia framework for surface mesh optimization”.
In: International Journal for Numerical Methods in Engineering 48.3, pp. 401–420.

Knupp, Patrick M. (2001). “Algebraic mesh quality metrics”. In: SIAM journal on scientific
computing 23.1, pp. 193–218.

Lee, N. and K.J. Bathe (1993). “Effects of element distortions on the performance of isopara-
metric elements”. In: International Journal for Numerical Methods in Engineering 36.20, pp. 3553–
3576.

Oddy A. Goldak J, McDill M and Bibby M. (1988). “A distortion metric for isoparametric
elements”. In: Trans. Canad. Soc. Mech. Engrg. 12, pp. 213–217.

Oh, HS and JK Lim (1996). “A simple error estimator for size and distortion of 2D isoparametric
finite elements”. In: Computers & structures 59.6, pp. 989–999.

Osserman, Robert (1978). “The isoperimetric inequality”. In: Bulletin of the American Mathe-
matical Society 84.6, pp. 1182–1238.

Park, Jeonghyung and Suzanne M Shontz (2011). “An alternating mesh quality metric scheme
for efficient mesh quality improvement”. In: Procedia Computer Science 4, pp. 292–301.

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
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